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Abstract. Quality of Service (QoS) prediction is an important task in
Web service selection and recommendation. Existing approaches to QoS
prediction are based on either Content Filtering or Collaborative Filter-
ing. In the two cases, these approaches use external data or past interac-
tions between users and services to predict missing or future QoS scores.
One of the most effective techniques for QoS prediction is Matrix Factor-
ization (MF), with Latent Factor Models. The key idea of MF consists
in learning a compact model for both users and services. Thereafter QoS
prediction is simply computed as a dot product between the user’s latent
model and the service’s latent model. Despite the successful results of
MF in the recommendation area, there are still a set of problems that
should be handled, like: i) the sparsity of the input models, and ii) the
learning of the latent factors which is prone to over-fitting. In this paper,
we propose an approach to solve these two problems by using a simple
neural network, an auto-encoder, and by exploiting cross-validation on a
well-known dataset, in order to select the ideal number of latent factors,
and thereby reduce the over-fitting phenomenon.

1 Introduction

Web service recommendation and selection have attracted much attention in
the service computing community these last years [3][21][23][13][22]. With the
rapid increase of the number of services over the Internet and Cloud computing
platforms, the task of recommendation became more important. One of the most
important criteria taken into consideration in recommending services is their
Quality of Service (QoS). Recommendation systems are based, among other
artifacts, on large collections of QoS scores related to different service users
and invocations over different time periods. However, these collections contain
sometimes missing QoS scores. In addition, QoS scores vary substantially in time.
These two facts induce an additional complexity in building recommendation
systems [11][20].

To deal with the aforementioned complexity, recommendation systems lever-
age either Content Filtering or Collaborative Filtering (denoted CF) techniques



to predict the QoS score of a given service [9]. The first technique (i.e. content fil-
tering) requires external data to build the profile of users or items (the services),
which is not always available. However the second one is mainly based on the
past interactions between the users and the items. Through these interactions
and transactions, recommendation systems can infer the missing values. Roughly
speaking, there are two types of CF techniques: Nearest Neighbors approaches
and Matrix Factorization approaches (also known as Latent Factor Models).
The key idea of matrix factorization consists in learning a compact model for
both users and services, thereafter the QoS prediction is simply computed as
a dot product between the user’s latent model and the service’s latent model.
According to [9][20] Matrix Factorization techniques (MF) are more effective (in
terms of accuracy) than the nearest neighbors schemes. Despite the successful
results of MF in the recommendation area, there are still a set of problems that
should be handled, as mentioned in [20][19]; there are two major issues: i) the
sparsity of the service invocation matrix, which is the input of the recommenda-
tion system, can largely affect the predicted QoS; ii) the learning of the latent
factors is prone to over-fitting; as a result the consistency of the latent factors
can be compromised. To deal with this situation, MF techniques should adopt
additional mechanisms to reduce this side effect.

In this paper, we enhance MF techniques to alleviate the aforementioned
issues. The main contributions of our paper are summarized as follows:

— We leveraged auto-encoders [14][8] to build the latent models of both users
and services. This choice is mainly motivated by the consistent mathematical
foundation of this neural network (in fact, the auto-encoder can learn the
optimal decomposition of any real service invocation matrix). In addition,
we divide the input data set into a set of clusters in order to reduce the data
sparsity (see the discussion of the first algorithm of section 3).

— To reduce the over-fitting phenomenon, we selected the ideal number of
latent factors (the size of the hidden layer) according to the cross-validation
principle;

— To evaluate the proposed approach, we conducted a set of experiments on a
public dataset. These experiments are related to different sizes of the dataset
and different levels of sparsity.

The remaining of the paper is organized as follows. Section 2 introduces
some background material and motivates our work. Section 3 details the pro-
posed approach for Web service QoS prediction. Section 4 exposes the conducted
experiments and discusses the obtained results. Before concluding and present-
ing some perspectives at the end of the paper, we present in Section 5 the related
work.

2 Background & Motivations

Auto-encoder [14][8] is an unsupervised neural network that aims to learn a
representation of the inputs that produces the least deformation. In general,



this representation (or code) must be compact and meaningful. In terms of ar-
chitecture, the auto-encoder is designed as a feed-forward non recurrent neural
network (see figure 1), where the size of the input layer is equal to the size of the
output layer (which is denoted as n). Additionally, the auto-encoder can have
one or more hidden layers, among which the central hidden layer, representing
the code of the inputs (its size is denoted as code_size).

In terms of dynamics, the auto-encoder can be viewed as a composition of two
functions: the encoding function F; (which produces the code) and the decoding
function F» (which produces the reconstruction), where Fj : D} — Dgode-size
and F2: Dgede-size _y pn

The class of functions having D} as domain and D§°%-51¢ as range is termed
A. The class of functions having D5°%-¥*¢ a5 domain and D} as range is termed
B. Thus, the output will be : 2’ = F5(F;(z)), and the code is z = Fy(x).

If the auto-encoder contains only one hidden layer, then the encoding/de-
coding functions will be defined as: z = f(Wz +b) and 2’ = f/(W’'z + V'), such
that: f and f are transfer functions which can be linear or non-linear (sigmoid,
for instance). W and W' are two matrices having the dimensions (code_size,n)
and (n, code_size) respectively. b and b’ represent the bias vectors of dimension
code_size and n respectively.

The auto-encoder is called linear if the transfer functions are linear, otherwise
it is non-linear.

In terms of learning, the auto-encoder has to produce the closest reconstruc-
tions with respect to the inputs. To do so, it minimizes a dissimilarity function
(referred to as error). The latter dissimilarity may leverage either the L, norm,
the Hamming distance, or another elementary function. Formally, the aim is to
find F; € A, F> € B such that:

error(Fy, Fy) ZA Fy(Fi(my)), my) (1)
=1

where: A : is the L, norm, the Hamming distance or another dissimilarity func-
tion. X;: is an example that belongs to the learning data set. m: is the size of
the data set.

It can be proven that, in case where the decoder is linear and the loss function
uses the sum of the squared Euclidean distances, then the linear auto-encoder
has the same performance as the non-linear auto-encoder [18] (which means that
they reach the same optimum).

If we assume that the auto-encoder is linear and contains a unique hidden
layer, and the delta function is the squared Euclidian distance, then the optimal
encoding matrix W and the optimal decoding matrix W’ will be given as follows:

W= Z<p <p° (U-,Sp)t and W/ = (U7SP)2§ 'z < p (2)

where U and X' are derived from the singular value decomposition [7] of the
input matrix X (i.e. X = UXV?). Equation 2 means that we keep the p largest
singular values, where X is a real matrix of size (m,n), U is an orthonormal
matrix of size (m,m), V' is an orthonormal matrix of size (n,n).
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Fig. 1. Auto-encoder architecture (with one hidden layer)

3 Proposed Approach

Figure 2 depicts the global architecture of the proposed approach. First, we
assume that the QoS data is collected from various sources such as social net-
works, third party monitoring systems, or direct feed-backs. The collected QoS
data set is viewed as a matrix that contains n services on columns and m users
on lines, each cell is modeled as a vector of r realizations of the corresponding
QoS criterion with respect to a given user and service. We assume that these
QoS realizations contain missing values which need to be predicted. To do so,
the QoS data set will undergo a set of steps which are described as follows:

— Firstly (Step 1) we cluster the lines of the initial matrix according to the
service location, more specifically we will perform a clustering based on the
service country property and another clustering based on the service provider
property. According to the works in [20] and [17] the services on the same
country are likely to have the same infrastructure and thus similar QoS.
Each cluster contains a set of lines that have the same service provider or
the same country. We noticed that the sparsity of the entire data set is 26%.
However the sparsity of USA’s cluster is 24%. In addition the sparsity of
other clusters is less than 20% (like Australia, Argentina and others). The
aim of this step is to reduce the sparsity of the input matrix. The more the
matrix is dense the better the results are. In summary this step will produce
a set of clusters that have the same property (either the provider ID or the
country ID). Each cluster is represented with a reduced matrix that has less
columns and lines with respect to the initial dataset.

— Secondly (Step 2) we perform the learning of latent factors of each reduced
matrix (or cluster) by leveraging an auto-encoder. During the auto-encoder
training, we also perform a cross validation in order to infer the best size
of the hidden layer (the number of latent factors), we assume that all the
clusters are trained with the same number of latent factors. This step will
provide the hidden layer size that ensures the best validation error (the
lowest error).

— At last (Step 3), the learned auto-encoder produces the missing QoS values
and stores them in the initial data set.
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Fig. 2. Overview of the prediction system architecture

Algorithm 1 allows the clustering of the services according to the country ID
or the provider ID. In step 7 we initialize the set of clusters according to the
provider criterion, the same thing is done for the country criterion in step 8. In
step 9 up to 16, we update each cluster with its corresponding service.

Algorithm 2 learns the latent variables as well as their optimal size (denoted
code_size*). In step 4, we explore six possibilities for the code size (20, 40, 60,
80, 100 and 120), the first possibility is initialized in step 1. Thereafter, we
extract the current cluster Cluster; (step 7) and we learn the optimal encod-
ing/decoding matrices (in the next step). This learning function is explained
later (algorithm 3). Afterward, we average the previous validation error over the
clusters_number available clusters (step 11). In step 12 up to 16, we update
the minimal validation error as well as the optimal encoding/decoding matrices
(W73 up to W), additionally the optimal code size is also updated. In step 17,
we increment the code size and we repeat the same process for the other values.

Algorithm 3, Autoencoder Cross Validation (AeCV), infers the best encod-
ing/decoding matrices W, /W7, for a given Cluster; and predefined code_size.

The learned auto-encoder (AE) leverages a linear transfer function in the
output layer and a sigmoid transfer function in the hidden layer. In step 7, we
divide the current Cluster; into eight parts. After that we perform eight learnings
by training each part as a validation set (step 10) and the remaining parts as a
training set (step 9). In step 11, we learn the optimal encoding/decoding matrices
Wi, 1 and Wi, , (they represent the best encoding/decoding matrices related to
cluster; and foldery,), which are related to the K*" part of the Cluster;. The cost
function represents the squared error between the auto-encoder output and the
desired value. In step 12, we compute the auto-encoder error performed on the
validation set. In step 13 and 19 we sum the validation errors related to all folders
and we take the mean. The statements 14 up to 17 retain the minimal validation
error (i.e. V_error,,) and its corresponding encoding/decoding matrices (i.e.



Algorithm 1: Data clustering according to countries and providers

Input : P,C (Providers and Countries from dataset)
Output: Cluster_Set_P,> Countries clusters Cluster_Set_C > Providers clusters

1 foreach id € Providers(P) do
2 ‘ Cluster_Piqg =0
3 end
4 foreach id € Countries(C) do
5 ‘ Cluster _Ciqg =0
6 end
7 Cluster_Set_P =< Cluster_P1, Cluster_Ps, ..., Cluster_Pp| >
8 Cluster_Set_C =< Cluster_Ci,Cluster_Ca,. .., C’luster,qc‘ >
9 foreach service; € Dataset do
10 provider_id = get_provider(service;)
11 country-id = get_country(service;)
12 Cluster_P,_iq = Cluster_P,_;q U {service;}
13 Cluster_Ce_iq = Cluster_C._iq U {service; }
14 update(Cluster_Set_P, Cluster_Pp_;q)
15 update(Cluster_Set_C, Cluster_Cy_;q)
16 end

Wik, 1, Wi, 5) also termed best_weights. Finally, we return the best weight as
well as the mean validation error (mve).

4 Experimental Evaluation

We conducted an experimental evaluation of the performance of the proposed
approach. In this section, we will show the execution time of the learning algo-
rithm, the prediction accuracy, and the impact of the technical parameters on
the prediction quality.

4.1 Experimental Setup

To evaluate the proposed approach, we conducted experiments on a real-world
Web service QoS performance repository! [24]. This data set contains series of
QoS data (for both response time and throughput) which are collected from 142
users (distributed over 57 countries). These users invoke 4500 web services that
are located all over the world. Each sequence of QoS data contains at most 64
values which are measured once after a time interval in a time slot. The time slot
takes 15 minutes and the duration of the time interval between two consecutive
time slots is 15 minutes. In summary we have 142 x 4500 x 64 QoS records for
each criterion (response time or throughput). These QoS records contain missing
or invalid information that are about 26%. Table 1 summarizes the properties of

! WS-DREAM: http://www.wsdream.net



Algorithm 2: Learning latent factors

Input : Cluster_Set_j >je{PC}
Output: Best Configuration:
errormin > the best validation error
code_size* > the optimal code size
best_weights > the best encoding/decoding matrices
code_size = 20
cs-mazr = 6
ETTOT min = OO
for code_size_value : 1 — cs_max do
error =0
for i : 1 — |Cluster_Set_j| do
Cluster; = getCluster (i, Cluster_Set_j)
<< Wi, Wiy >, er; >= AeCV (Cluster;, code_size)
error = error + er;
end
error = error/ |Cluster_Set_j|
if error < errormin then
erroTmin = €rror
best_weights =<< Wiy, Wiy >, < W31, W35 >, ... < W, Wpa >>
code_size* = code_size
end
code_size = code_size + 20

end

our dataset. All the learning algorithms are implemented in Tensorflow Python?.
The experiments run on 3 different machines: i3-380M 3 GHz with 4 GB RAM,
i5-4200U 1.6GHz with 4GB RAM and i7-3840QM 2.8 GHz with 16 GB RAM.

In what follows, we present some important elements that are primordial to

understand the rest of the section:

— To evaluate the approach performance, we employ two metrics: Mean Abso-

lute Error (MAE) (formula 3) and Root Mean Square Error (RMSE) (for-
mula 4). Since we used the cross-validation, we focus on the average of MAE
(formula 5) and the average of RMSE (formula 6). The score of the last
formula (6) is used as the output of Algorithm 3.

The standard MAE is specified as follows:

1 .

MAEy = — 3 ‘Xustus

YV S
(u,s)eV

3)

where V' represents the validation set. X, s represents the real QoS score for
service s given by user u, and X, ; the predicted one.

% Source code :https://github.com/imsld/Auto-encoder-QoS-Prediction



Algorithm 3: Autoencoder cross validation (AeCV)
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Inputs : Cluster;, code_size
Outputs: < W ,W;, >, mve

V_erToTmin = OO > the best validation error
erry = oo
k_fold =8
mve = 0
T = Cluster; > training set
V=0 > validation set
< folderi, ..., foldery_tora >= division(Cluster;)
for k:1 — k_fold do
T =T — folder
V = foldery,
\/ 1 17
< WI:z 17WI:1‘ 2 >= argmin T Z (AEWk i 1sWk 1(57”) - Sm)2
all possible matrices ‘Tl m=1
Wi i 1:Wk 2
> Sm €T
V] 5
erry = m mzzl (AEWI: LW 1(Sm) — Sm)
muve = muve + erri
if (errr < v_errormi,) then
V_errormin = €rrk
best_weight =< Wg ; 1, Wi ;9>
end
end
mve = mve/k_fold

The standard RMSE is specified as follows:

1 “ 2
RMSE, = |V|<u,§:ev (Xus - Xu,s) (4)

The average MAE is specified as follows:

1
Average MAE = ———— Z (MAEYy, .|Vi) (5)
U allVy,

allVy,

Where V}, represents a validation set. The average RMSE (which is also
denoted as mve in step 19 of Algorithm 3) is specified as follows:

1
AverageRMSE = ———— Z (RMSEv, .|V3]) (6)
U |ave

allVy,




Table 1. Information of Web Service QoS Values

Statistics response time throughput time
Scale 0-20 s 0-20 s
Mean all values 3.165 s 9.608 s
Num. of users 142 142

Num. of web services 4500 4500
Num. of times slices 64 64

Num. all values 30 287 611 30 287 611

Num. missing values 10 609 313 10 609 313

— Before launching the clustering and the learning steps of the framework,

we prepare our data set in order to improve its density. Initially the data

set contains around 26% of invalid values. After the execution of the two
following rules, the percentage of invalid values becomes 23%.

e RI1: For each Qos; 4, 5.+ of the data set, such as ¢ € {response_time, throughput},

u is the user ID, s is the service ID, and t is the time slot of the QoS

realization (¢t € {1,...,64}). If Qo0s; 4 s, is invalid (missing or zero)

then we replace it by the average of the valid QoS values of the previous

(> Q08 ,5,¢-valid(i, u, s,t))

( Z valid(i, U, s, t)) teT
teT

time slots: Q0s; 4.s.+ =

where
1if Q08; 4+ 15 available

valid(i, u, 5, t) = {O if Q0Si st 15 MisSing

e R2: For each Qos; s of the data set, if Qos; s+ is invalid and all its
previous values (regarding time slots) are invalid, then Qos; 4, s, = 0.
In what follows, we assume that this prepared data set is the official input
of the proposed approach.

— We assume that the learning phase of each cluster lasts for 5000 iterations
(at most). Additionally the learning will be stopped if the auto-encoder error
is less than 0.01.

— We perform the clustering step by grouping the services having the same
country ID (the clustering based on provider ID will be handled in future
works), we obtain 70 clusters which can involved up to 1404 services per
group. By doing so, we divide the initial matrix into several sub-matrices
that have the same number of lines (142) and different columns. The number
of columns corresponds to the size of the cluster. This step aims to reduce
the number of invalid entries, and thus it improves the prediction accuracy.

— Concerning the cross validation, we divide each cluster of the data set into
eight parts (k_fold = 8). Each part consists of eight consecutive QoS data
(i.e. Part:{Qosmst, QOSius(t41)s- - s Qosius(t+7)}. In addition, we examine
6 code size values: code_size € {20,40,60,80,100,120}. This means that we
perform eight trainings for each code size. Thereafter we retain the code size
that provides the best validation error. We also notice that the density factor
(Ds) of this scheme is Ds = 80% (density of 80% means that 80% of the



entries data set are retained as training set, while the other 20% are used to
test the performance of our model for easch code size).

4.2 Research questions

Our experiments aim to answer the following questions:

— Q1: Does the proposed approach provide a prediction accuracy better than
well-known state of the art methods? The compared methods are the follow-

ing:

User-based CF using PCC (UPCC) [2]: this model is a user-based pre-
diction model.

Item-based CF using PCC (IPCC) [15]: this model uses similar services
for the QoS prediction.

e WSRec [26][25]: an approach which combines both UPCC and IPCC
e AVG: this approach takes the mean of the three valid QoS data at the

most recent time slots.

IPCC* [26]: a linear aggregation of IPCC and AVG (we take equitable
weights for both sub models).

UPCC* [26]: a linear aggregation of UPCC and AVG (we take equitable
weights for both sub models).

WSRec* [26]: a linear aggregation of WSRec and AVG (we take equitable
weights for both sub models).

ARIMA [6]: this is a well-known statistical method adapted to QoS web
service prediction.

Lasso-k20 [19]: this approach optimizes the recommendation problem by
adapting the lasso penalty function.

— Q2: What is the impact of the code size on the prediction accuracy?
— Q3: What is the impact of the code size on the sensitivity to over-fitting?

4.3 Results & Discussion

Table 2 presents the MAE and the RMSE of different prediction algorithms for
the response time. We assume that the density of the state of the art methods
is Ds= 80%.

From these results, we derive the following findings:

— According to the MAE metric, UPCC, IPCC, WSRec are less effective than
the remaining approaches since they do not use the past QoS data.

— The Lasso-K20 out-performs ARIMA, AVG , UPCC*, IPCC* and WSRec*
in terms of MAE and RMSE. In addition it presents less variation of RMSE
when we change the data set [19]. However ARIMA and AVG approaches
show larger RMSE variations when we change the data set. We notice that,
the more the variation of the model error is low the better the generalization.



Table 2. Accuracy Comparison of Prediction methods on Response Time

Approaches MAE RMSE
AVG 1.159 3.206
IPCC 1.467 3.032
IPCC* 1.242 2.753
UPCC 1.372 2.925
UPCC* 1.200 2.714
WSRec 1.372 2.925
WSRec* 1.200 2.716
ARIMA 1.028 2.986
LassoK20 0.893 2.572

Autoencoder-100 0.704 1.422
Autoencoder-120 0.681 1.369

— The models auto-encoder-100 and auto-encoder-120 present the highest scores
for both MAE and RMSE. For instance, the auto-encoder-100 achieves about
57% improvements in MAE accuracy compared to ARIMA. Likewise it
achieves about 51% improvements in MAE accuracy compared to the las-
soK20 method .

To explain the impact of the code size (denoted as code_size in Algorithm 2)
we show in Figure 3 the variation of RMSE (the output of Algorithm 3) according
to the code size and the cluster size. It can be clearly seen that the code sizes
100 and 120 out-perform the remaining values for all clusters. Furthermore,
we observe that the performance of code size 100 is greater or equal than the
performance of code size 120 for almost all clusters with less than 100 services.
(These clusters represent the majority of services). Therefore, according to the
Occam’s razor principle [1], we should use a code size equal to 100 for test sets
with less than 100 services. In addition, when the test set size is larger than
100 we should use 120 as code size. Broadly speaking, we can say that a model

Fig. 3. The RMSE variation for response time metric

is prone to over-fitting if the prediction error highly changes when we change
the data set (this model is qualified as a high variance model). Consequently,
if we aim to confirm that our approach (i.e. the auto-encoder with 100 hidden
neurons) is less sensitive to over-fitting, we should compute the prediction error
(RMSE) on a new test set and derive the deviation between the validation error



and the new test set error. The larger the deviation is, the higher the over-fitting
sensitivity we obtain. In Table 3 we show the mean validation error (also termed
the average RMSE) as well as the RMSE related to the entire data set (i.e. 142
x 4500 x 64 entries) for some code sizes.

Table 3. Over-fitting sensitivity

Code size 20 40 60 80 100 120
Average RMSE 1.939 1.684 1.564 1,487 1.422 1.369
RMSE Dataset 2.818 2.521 2.337 2.211 2.116 2.040

Deviation (absolute difference) 0.879 0.837 0.773 0.724 0.694 0.671

It is clearly shown in this table that the code sizes 100 and 120 are the
least sensitive to over-fitting, compared to the other possibilities. We also notice
that the code sizes 20, 40 are less sensitive to over-fitting but they also suffer

from under-fitting, since their corresponding auto-encoders have a large average
RMSE.

4.4 Threats to Validity

The way we measured RMSE may be a threat to construct validity. To some
extent, the measurement is biased by the fact that the data set that we consid-
ered is the one that we have slightly modified (by changing some of the invalid
values), instead of the original one from WS-Dream. But since there is only 3
% of values which have been changed, we are quite confident that the impact
of this threat on the validity of the results is really marginal. We have started
another measurement of this metric, but this takes several weeks of training and
prediction. The preliminary results (on all clusters by using the auto-encoder
with a code size of 20) showed that RMSE is higher, but with only 0.01 (1.79
instead of 1.78).

A potential threat to internal validity concerns the extent to which we
may be confident with the conclusions, on sensitivity to over-fitting, which have
been made from variance in prediction error when data sets are changed. We
could have taken one code size and then measure the deviation on several test
data sets. The comparison we have made is between the average RMSE and the
RMSE of the whole data set. The evaluation on this single test data set may
influence the results. But the fact that this was made on several code sizes (20,
40, 60, 80, 100 and 120) mitigates this risk.

A threat to the external validity may be the generalization of the presented
results to other contexts, and more precisely to other data sets. The presence of
such a large data set (WS-Dream) enabled us to train correctly our predictor.
The use of another data set may give lower accuracy. However, the use in our
prediction of an auto-encoder together with a cross-validation to identify the best




code size, helps in reducing the impact of using another data set on prediction
error.

5 Related Works

In this section, we present some related works based on Collaborative Filtering
(CF) algorithms that were proposed recently.

Many existing CF works are based on neighborhood methods. This kind of
methods leverages the most similar neighbors of a service/a user to predict the
missed QoS. However, this category mainly suffers from the data sparsity, small
coverage and cold start problems [25][16].

The work presented in [19] assumes that QoS values depend on service invo-
cation time. In order to make an accurate service recommendation, a time-aware
prediction approach is brought forth. Specifically, the authors make a zero-mean
Laplace prior distribution assumption on the residuals of the QoS prediction,
which corresponds to a Lasso regression problem. To reduce the search range
while improving the prediction accuracy,the approach uses the geo-localization
of web services to handle the sparse representation of temporal QoS values.

The system proposed in [12] uses the liner regression to predict unknowns
QoS data from known QoS values. The work in [10] constructs a recommendation
system by inferring the satisfaction probability of the user with respect to a given
service. This inference is based on a Bayesian network.

To alleviate the limits of the neighborhood methods, the community has de-
signed another type of approaches which is based on matrix factorization. In
fact, this category reduces the sparsity of the invocation matrix by inferring
a low dimension model for both services and users [5][11]. In [20] the authors
propose three contributions for solving the recommendation problem. The first
one combines the matrix factorization with the QoS data provided by the user’s
neighbors. This data is derived from the user’s context (like, the latitude and the
longitude of geographical position, and the IT infrastructure). The second one,
combines the matrix factorization with the QoS data provided by the service’s
neighbors. This data is derived from the service context (such as the country,
the autonomous system), we also notice that the matrix factorization is solved
as an optimization problem with a regularization term. The third contribution
combines both the matrix factorization, the user’s context and the service con-
text. The experimental results show that the third approach is more effective
than the first two.

The work presented in [4], leverages both matrix factorization and service
clustering, first of all, the authors build a set of service clusters through the use
of context information (like the country and service provider) and the Pearson
Correlation Similarity. This hybridization is mainly motivated by the fact that
the services which belong to the same geographical region tend to have correlated
ratings or QoS data. Therefore the authors add a neighborhood based term to
the service latent model.



In [17], the authors develop an enhanced matrix factorization approach by
identifying the users’ or the web services’ neighborhoods. The users’ neighbors
are selected by measuring the network map distance between them. It is empiri-
cally proven that the users with smaller distances are likely to have more similar
QoS values on a common set of web services.

In the field of cloud services, the system presented in [23], considers all the
software /hardware characteristics of the Cloud Computing architecture. The
authors propose a cloud service QoS prediction approach based on Bayesian
Networks. The entire process is divided into three steps: data collection and
pretreatment, Bayesian model training and prediction of QoS values.

Compared to these works, our approach refines clustering approaches based
on service neighborhood by considering a training step that uses a neural net-
work. Thanks to cross-validation, this network, an auto-encoder, is customized
with the code size (number of hidden layers) that minimizes the prediction error.
The ultimate goal of our work is to solve problems that are complementary to
those addressed by the previous works, like data sparsity and over-fitting.

6 Conclusion and Perspectives

We have presented an auto-encoder for predicting unknown QoS scores of Web
services based on their history. To achieve the best scores of accuracy, we lever-
aged the country ID for dividing the whole data set of QoS scores into clusters.
Thereafter we have learned the latent factors by using the auto-encoder neu-
ral network. In addition we have derived the best code size through the use of
cross validation. The comparison results between this prediction system and the
state-of-the-art systems, showed the effectiveness of the proposed model.

As future works, we aim to enhance the prediction accuracy by addressing two
particular points. First, we plan to develop other clustering alternatives (such as
Expectation-Maximization) on user or provider properties. Second, our project
is to develop more elaborated learning models such as stacked auto-encoders or
denoising auto-encoders.
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