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Context: Architecture constraints are specifications of conditions to which an architecture model must adhere in order to satisfy an architecture decision imposed by a given design principle. These constraints can be specified with predicate languages like OCL at design time and checked on design artifacts. Objective: Many works in the literature studied the importance of checking these constraints to guarantee quality on design models, and to prevent technical debt and maintenance difficulties. In this paper, we propose a process whose ultimate goal is to enable the checking of these constraints in the implementation stage. Method: The proposed process takes as input a textual specification of an architecture constraint specified at design stage. It translates this specification into meta-programs and then it uses them with aspect-oriented programming to check constraints at the implementation stage and at run-time on objectoriented programs. Results: We experimented an implementation of this process on a set of 12 architecture constraints. The results of this experimentation showed that our process is able to statically and dynamically detect architecture constraint violations on toy object-oriented applications, but also on real-world ones. Conclusion: The automatic checking of architecture constraints is important

Introduction: Context and Problem Statement

Documenting architecture decisions is an important activity in software development processes [START_REF] Clements | Documenting software architectures: views and beyond, 2nd Edition[END_REF]. Indeed, this documentation allows for, among other benefits, limiting the disappearance of architectural knowledge. Several models for defining this type of documentation exist [START_REF] Falessi | Decision-making techniques for software architecture design: A comparative survey[END_REF]. These models include both textual (informal) and formal specifications. These models include, among other elements, the description of the decision itself, its state and its alternative decisions. One of the most important elements that compose this documentation of an architecture decision, are architecture constraints.

This kind of constraints should not be confused with functional constraints, which are checked by analyzing the state of the running elements constituting the modeled system and which navigate in models like UML class models. An architecture constraint represents the specification of a condition to which an architecture description must adhere, in order to satisfy an architecture decision [START_REF] Tibermacine | Software Architecture 2[END_REF]. For example, an architect may make the decision to use the Layered pattern [START_REF] Eden | Architecture, design, implementation[END_REF]. An architecture constraint allowing the verification of the adherence to this pattern in an architecture model consists of checking, among other aspects, that elements of a layer must depend only on elements on the same layer or of lower layers. Other examples of architecture constraints include the formalization of structural conditions imposed by design patterns [START_REF] Gamma | Design patterns: Elements of Reusable Object-Oriented Software[END_REF], like the Adapter or the Façade. In the second case, the constraint states that there is a unique object in an application, which serves client objects, and which hides the other internal objects/methods of the application.

In addition to their descriptive role (being part of the architecture documentation), architecture constraints also play a prescriptive role. They ensure that the evolution of the software architecture still conforms to architecture decisions previously made. Architecture constraints exist in metamodels and not in models. They are frequently specified with predicate languages, like OCL (Object Constraint Language) 1 .

Functional constraints are used in Design by Contract for ensuring the definition of accurate and checkable interfaces for software components [START_REF] Meyer | Touch of Class[END_REF]. Architecture constraints are used during the evolution of a software architecture for guaranteeing that changes do not have bad side effects on the applied architecture patterns or styles, and thus on quality [START_REF] Tibermacine | On-demand quality-oriented assistance in component-based software evolution[END_REF]. As opposed to constraints in constraint programming, architectural constraints are not sufficient to find a solution. They complement architecture models to provide a richer specification of the architecture. Their checking is not used for exploring a space of solutions to identify the most appropriate one, given the set of constraints. Their sole role is to check if a design rule is still respected in the architecture model after its evolution. The output of their checking is a boolean value: the formalized design rule is respected or not.

In the literature and practice of software engineering there exists a large catalog of formalized architecture constraints [START_REF] Zdun | A catalog of architectural primitives for modeling architectural patterns[END_REF][START_REF] Gamma | Design patterns: Elements of Reusable Object-Oriented Software[END_REF][START_REF] Erl | SOA design patterns[END_REF]. But unfortunately, currently architecture constraints can be checked mainly at design time on design artifacts. Checking the conformance of software artifacts, with regard to these constraints, downstream in the software life-cycle (during the implementation stage or at runtime) is equally important. What if the architecture evolves in the implementation artifacts (the application's programs)?

Or, what if the architecture evolves at runtime (through dynamic adaptation, for example)?. Therefore, architecture constraints have to be checked at design/implementation stage and at runtime to preserve the conformance of the software architecture to the previously taken architecture decisions.

To be able to check architecture constraints in the implementation stage and at run-time, it is interesting first to see how to specify architecture constraints at those levels. In this case, two solutions are possible. The first one consists in writing a new interpreter, usable at the implementation phase, for the language used for constraint specifications at design time. But this solution can be quickly discarded because it is time-consuming, and it obliges programmers to learn another language (the language used to specify constraints in the design phase, like OCL) to specify their new architecture constraints, in the implementation phase. The second solution is to rewrite the architecture constraints (specified at design time) entirely with programming languages. This task of rewriting manually all these constraints is tedious, time consuming and error prone. In addition, constraints on the design and implementation stages of development are syntactically different but they are semantically equivalent (conditions on architecture models that are present, even implicitly, in the two stages). Indeed, constraints deal with architectural aspects which are orthogonal. So why not generate ones from the others, like skeletons of code can be generated from UML models? In the practice of software development, most of existing tools for model-totext (code) generation do not consider the generation of code for constraints associated to models. For those which exist, they only translate functional constraints, and not architectural ones.

In this paper, we propose an automated multi-step process for translating OCL architecture constraints into code. We are using Java as a target language, but a similar approach may be safely used with other programming languages. The obtained Java code uses the introspection mechanism provided by the standard library of the programming language (Java Reflect) to analyze the structure of the application. This choice is motivated by our wish to use a standard mechanism without having to resort to external libraries. The generated code is a "meta-program" which uses the introspection mechanism of the programming language for implementing an architecture constraint. In addition, we propose in this paper a complementary automated micro process, which combines static and dynamic constraint checking, based on the aforementioned generated meta-programs. This checking is fully automatic and seamless for users. This process notifies developers on the possible violations of constraints.

The goal of the experimentation conducted for evaluating the contribution is to check, from the one hand, if the process generates valid and efficient meta-programs to specify the constraints at the implementation phase and, from the other hand, if the constraint checking process provides precise results in real projects. These are the two research questions which the experimentation tried to answer.

The remainder of this paper is organized as follows. In Section 2, we present the general approach indicating the steps for checking architecture constraints using the generated meta-programs. Sections 3 and 4 describe these steps in detail. Section 5 presents the experimentation we have conducted to evaluate the process. Before concluding and presenting some perspectives, we discuss the related works in Section 6. The process tests first if the OCL constraint, specified in the UML metamodel needs a refinement in order to make it more concrete. For example, if a constraint has a navigation to Dependency meta-class (on a UML metamodel) then we need to refine this constraint by specifying the different kinds of concrete dependencies (for instance, types of fields or parameters). Then, the OCL constraint is transformed to a constraint specified on a JAVA metamodel. Finally, JAVA meta-programs are generated from it.

General Approach

The constraint checking phase needs the generated meta-programs to check the corresponding architecture constraints at the source code level. This step is based on aspect-oriented software development (AOSD) [START_REF] Filman | Aspect-oriented software development[END_REF] since the constraints are specified separately from the source code. It combines static and dynamic checking of the constraints.

In the first phase, we did not perform a direct translation from OCL/UML to Java code because this translation includes several transformations at the same time: shifting to a new meta-model, changing the syntax of constraints, etc. Indeed, our approach first requires a mapping from abstractions of design level to abstractions of implementation level (mapping abstractions from UML meta-model to the Java meta-model) and subsequently a translation of the syntax.

OCL (version 2.3.1)/UML(version 2.4.1) was chosen among many languages enabling the specification of architecture constraints (see [START_REF] Tibermacine | Software Architecture 2[END_REF] for a survey). This choice is motivated by the fact that UML2 the de facto standard modeling language, and that OCL is its original constraint language.

We have intuitively chosen to transform constraints in the implementation level into Java programs because it is a main-stream language in objectoriented programming. In addition it implements a small reflective meta-level and provides in its standard library introspection capabilities.

Generation of Meta-programs from Constraint Specifications

Before detailing how meta-program generation is performed, we present an example of an architecture constraint specification. This will serve as a running example to illustrate the steps of this first phase of the process.

Illustrative Example

We introduce an example of an architecture constraint that characterizes the MVC (Model-View-Controller) architecture pattern [START_REF] Peters | A genetic approach to architectural pattern discovery[END_REF]. This constraint navigates in the UML meta-model shown in Figure 2. This meta-model was obtained from the UML language superstructure specification, version 2.4.1 3 . By "navigating in the meta-model", we refer to OCL navigation expressions specified in the constraints, in which we move from a given metaclass to another meta-class and/or to meta-attributes in order to analyze the architecture elements corresponding to these meta-level elements.

The MVC constraint specification is presented in Listing 1. We assume that we have three stereotypes, enabling us to annotate the classes in an application which represent the different roles in this pattern: View, Model and Controller. This constraint states that the classes stereotyped Model must not declare dependencies with the classes stereotyped View nor Controller. Note that oclAsType(Class) operation is used in this constraint to allow navigation between Type and Class through the specialization indirect relation. Lines 4 to 18 serve to collect together the sets of classes representing the Model, the View and the Controller. For example, we move from the package to look for the types defined in it by ownedType. Then, we select only those which have Model as an applied stereotype, using the operation getAppliedStereotypes(). The remaining of the constraint checks that the classes stereotyped Model should not have any dependencies with View or Controller classes by using clientDependency.supplier navigation.

In the following subsections, we explain each step of meta-program generation process illustrated using this example.

Constraint Refinement

The refinement mechanism is used whenever some abstractions in the UML meta-model do not have a direct equivalence in the JAVA language (like dependencies). There are some navigations in the UML meta-model that do not enable to generate JAVA code. For example, in the previous specification of the MVC constraint on the UML meta-model, we have collected all types (classes) which have dependencies with a specific type by using clientDependency.supplier (Listing 1, Line 21). This expression does not have a direct equivalence in JAVA. As a result, we refine the constraint on the UML meta-model to express the different kinds of dependencies.

Often, a a high-level dependency between two classes A and B is translated as: i) the declaration in A of at least one attribute having as a type B, ii) at least one parameter in an operation of A has as type B, or iii) at least one operation of A, has B as a return type or a thrown exception type.

Our constraint is automatically refined to what follows: Listing 2: MVC refined constraint in OCL/UML After refinement, our constraint (Listing 2) is composed of three subconstraints. Each sub-constraint matches one kind of dependency. In Lines 2 to 4, the dependency is primarily verified on all attributes defined in classes.

In Lines 6 to 11, the dependency is related to the types of operation parameters and its returned value.

In Listing 2, we have shown that the Model's classes do not have to declare dependencies with the View classes, which makes it a constraint of a static nature, i.e. it is checkable on static types. However, according to the existing implementations of the MVC, we may find ourselves with a reference to a View object in a Model object at run-time, while statically the classes comply with the constraint. In this case, the "dependency" between the Model and the View can be implemented by the Observer pattern: a model object stores a collection of objects listening to changes on the model (the collection can be statically typed by an interface). At runtime, however, this collection will include view objects, whose classes implement the aforementioned interface. In this case, the constraint should take into consideration relations between objects and not only classes. The constraint needs therefore to be further refined by specifying it on the UML meta-model related to instances (Figure 3) in order to rely on objects rather than classes. This new specification allows to check the values of object slots (slots can be seen as instances of attributes. A class has an attribute and an object has a slot).

In Figure 3, an instance specification has a Classifier which defines it. It includes a number of slots, which have a StructuralFeature (e.g. a Property) that declares them. They have values of type ValueSpecification. These can be of different types. We are interested in InstanceValue (a reference to an instance). This is a "pointer" to an InstanceSpecification.

This kind of refinement is applied automatically by our process, whenever class attributes are introspected by a constraint. The result on the MVC constraint is shown in Listing 3. 2 l e t Model : 3 S e t ( C l a s s i f i e r )= s e l f . c l a s s i f i e r In Listing 3, InstanceSpecification is the constraint context. We therefore assume that the constraint must be verified on all instance specifications making up the application. In the constraint, we navigate to the classifier of the instance specification. We then access to the Classifier of the value stored in the slot of the Model and we check that View and Controller are not stereotypes applied on it.

We have implemented the constraint refinement step using an XML mapping between UML meta-model elements. We analyze the AST (Abstract Syntax Tree) generated by a compiler from the text of the constraint. According to the AST node the appropriate refinement is applied. For doing so, we have defined a list of possible refinements. For example, if a node content is "supplierDependency" or "isComposite", the process refines the constraint.

The refinement of a constraint implies a translation of an architecture constraint from a relatively abstract level to a concrete one. In contrast to the translation detailed in the following section, in this step, the translation is an endogenous transformation, the constraints which are the source and the target of the transformation both navigate in the (UML) meta-model.

Constraint Transformation

We transform the OCL constraint specified on the UML meta-model into an OCL constraint specified on the JAVA meta-model. We searched in the literature for a JAVA meta-model for our process but unfortunately none of the existing ones satisfied our needs (producing a constraint in an intermediate step towards code generation). We relied on the JAVA Reflect library to create a new simplified JAVA meta-model. In fact, we can define our meta-model relying on JAVA specification but we deliberately chose JAVA Reflect because it gives us access to the meta-level of the language which was implemented in the JDK and also because it reflects exactly what we can do in the generated JAVA code. Figure 4 5 depicts the simplified JAVA meta-model that we have defined.

In Figure 4, classes have fields, methods and constructors. A Class belongs to a package. In JAVA, from one package, we cannot know which types are defined there. All these elements can be annotated and have modifiers (except packages), which can have different values listed in the enumeration named Modifier. An attribute can have a reference towards another object as its value for a particular object. In constructing this meta-model, we relied on classes defined in the JAVA Reflect API whose methods enable the introspection of JAVA objects. The get(...) method of the Field metaclass returns the value stored in the field of an object which is passed as an argument. In JAVA there is no equivalent of UML's Slot meta-class. Actually, this is a more general problem. It is due to the fact that in JAVA, there is no true coupling between the objects and their meta-objects (instances of Class). Once we invoke getClass() on an object, we obtain the meta-object, but in this meta-object, there is no reference back to the object (we therefore loose access to the values of its "fields").

Constraint transformation consists in establishing a mapping between UML modeling elements and JAVA programming entities. Mappings are classified in three categories depending on meta-model-level OCL expressions: meta-classes, roles and navigation patterns. Table 1 presents an excerpt of these mappings.

An abstract syntax tree (AST) is generated from the initial constraint (refined OCL constraint, if any). This AST includes the names and the types of the nodes for each expression in the OCL constraint. The process automatically parses this AST in depth and according to each matched node, the corresponding part of the constraint is translated into the appropriate part based on the predefined mapping between the two meta-models (Table 1). This translation starts by identifying the navigation patterns, then the roles and finally the meta-classes in the same way as in [START_REF] Tibermacine | Simplifying transformations of architectural constraints[END_REF]. After each modification of the AST, a new constraint is generated from it and evaluated with an OCL compiler that validates it on the JAVA meta-model.

In the case of navigation pattern transformation, we need to store some parameters and variables such as the name of the class annotation (Line 9 in Table 1) to put them in the equivalent of this navigation pattern in JAVA. These variables or parameters can be easily obtained from the AST. We opted for the specification of the mappings in XML, and we have written an ad-hoc program for implementing the transformation instead of using an existing model transformation language like Kermeta6 or ATL [START_REF] Jouault | Transforming models with atl[END_REF], because we do not consider architecture constraints as models. We might have generated models from the constraints and then transform them. But this process is tedious to implement. It requires to transform the text of the constraint to models, then to use a transformation language for transforming these models, and after that to generate again the text of the new constraint from the new model. We decided to follow a simple solution that consists in exploiting simply an OCL compiler.

At the end of this step, two kinds of constraints, which navigate in the JAVA meta-model, are provided: i) a constraint which deals with classes and which has as a context ApplicationsClasses (for instance, see Listing 4 as the transformation output of Listing 2), and ii) a constraint which deals with objects and which has as a context ApplicationsObjects (for instance, see Listing 5 as the transformation output of Listing 3).

1 package JAVA 2 context A p p l i c a t i o n C l a s s e s inv :
3 l e t Model : S e t ( C l a s s )= s e l f . c l a s s e s ->oclAsType ( C l a s s ) 4 -> s e l e c t ( c : C l a s s | c . i s A n n o t a t i o n P r e s e n t ( ' model ' ) ) in 5 l e t View : . . . . in 6 l e t C o n t r o l l e r : . . . . . In Listing 4, the context of the constraint is ApplicationClasses. It is a set of business classes that compose the user application. It excludes classes related to libraries. As indicated in Listing 4, we replace, among others, ownedAttribute by field and ownedOperation by method. By parsing the AST, we perform transformations for some complex navigations like getAppliedStereotypes() ->exists (s:Stereotype | s.name='model'). This navigation is transformed to isAnnotationPresent('model'). In Listing 5, the starting point is ApplicationObjects. It is a set of objects that compose the user application. The constraint analyzes object relations. To access to a field reference, it uses the Field's get() method.

The use of declarative mappings gives us the possibility when the metamodels evolve to modify easily the changed elements. In addition, it allows us to offer a generic method which does not depend on particular meta-models (languages). After this transformation step, an architecture constraint is ready to be translated into a meta-program.

Meta-program Generation

The meta-program generation step relies on String Templates7 . We use

String Templates because of their flexibility (easy evolution), simplicity and the existence of a good tool support. This mechanism is based on the Depth-FirstAdapter pattern proposed in the DresdenOCL parser used in the implementation. The OCL parser 2.0 we have used is from Dresden OCL. The templates have been created using StringTemplate 4.0.8.

Three elements are responsible for generating the JAVA code from the ASTs that are generated from the OCL constraints which exist in the JAVA meta-model. The first one is CodeGenerator which its role is to traverse in depth the AST and generate code, which depends on the type of the node and its content. The second one is Environment. This element saves all the variables generated and some other information needed during code generation. The last one is CodeStacker. It manages the code which is generated by the CodeGenerator. The code generated is saved under the StringTemplate format.

The CodeGenerator reads the type of the node from the AST. According to its type, it obtains the template associated to this node. It saves it in a list in the CodeStacker and receives its position. Then, it launches the same procedure for its descendant nodes. This procedure is stopped when leaves are found. After the generation of its descendants, it can use every template positioned after the position received above from the CodeStacker.

The obtained templates are used to fill its own template. In the fulfillment of the template, it uses the introspection methods according to the AST node.

After that it removes all the templates that it has used. The CodeGenerator also has a map that contains for each used template the associated result.

This serves for the complex or the repetitive expressions. When it fills each template, it checks if it has an existing result (a variable) for the template which it uses. If yes, it uses the existing variable, if not, it creates one and uses it. For example, the constraint which contains navigations like the following one: a.method.returnType, the CodeGenerator creates for example a variable named m1 which corresponds to the template used for a.method. In the code, we have m1=a.getDeclaredMethod(). After that, we obtain m1.getReturnType(). Every variable created to fill the template must be registered in the Environment, as an InitializedVariable.

At the end, our process provides two kinds of meta-programs. Each metaprogram is a JAVA class that has a public method called invariant(..) which returns a Boolean value. The first meta-program is a JAVA class generated from a constraint that has as context "ApplicationClasses", such as Listing 4, while the second one is a JAVA class generated from a constraint whose context is "ApplicationObjects", such as Listing 5. Listing 6 and Listing 7 present respectively two excerpts of these two metaprograms: In Listing 6, Line 3 presents the invariant method signature. Lines 4 to 17 present the source code generated to select the classes annotated Model (a code generated from the first let expression of Listing 4). Indeed, the generator calls the string template associated to OCL select operation. In this template, an array list is created presenting the returned value of this operation. A loop is generated to browse all the classes of the application (it is a parameter of the invariant method). It tests for each class if it has an annotation equal to Model. The same mechanism is followed to generate the code for obtaining the classes annotated Controller and View.

1 public c l a s s MVCConstraint { 2 // . . .
The constraint imposes conditions on fields of a class (Lines 10 to 11 in Listing 4). The generator in this case tests if that field has a simple or a generic type in order to get the appropriate type of this field. This is shown in Lines 29 to 34 in the generated meta-program in Listing 6.

From the Line 43, the code generation process generates the source code of the second sub-constraint. This sub-constraint (Lines 13-14 in Listing 4) contains the forAll quantifier. So, as we noted above, the process calls the string template associated to this quantifier. This template requires as parameters: i) a collection to iterate, i.e. an array is created to collect all the declared methods of the Model class, ii) an iterator i,e a loop browses this array, iii) an expression i.e. the Java code that corresponds to the OCL expression included in this quantifier: the generator tests if the types of all the method return values are different from the Controller ones, and iv) a Boolean variable, i.e. it stores the result of the test. The parameter "expression" is the body of the iterator. It uses other filled string templates (the templates which correspond to the descendant nodes of the node that contains this quantifier in the AST) of other quantifiers like excludes and OCL variable initialization. In this case, the generator stores variables and parameters of the first quantifier in the map created by the CodeStacker and then puts them in the parameters of the string template associated to the second one when it is called.

Since each sub-constraint is an OCL invariant, for each one, a Boolean variable is initialized to store its result. At the end, all the created Boolean variables are concatenated by the JAVA operator "&&" to give the result of the whole constraint.

The code generation process followed to generate Listing 6 is similar to the one used for Listing 7. It deals with objects instead of classes. The major difference is related to how to get object slot values. This occurs in Line 30 in Listing 7. This is preceded by several checks to ensure that the object class attribute is not of a primitive type and is accessible (it has a public accessibility). It is the slot value type in question which is checked, to ensure that it does not relate to an annotated Controller class. As stated previously, this is a meta-program which is generated from an excerpt of the architecture constraint, considering only object fields. The complete constraint, which is not shown here, includes the other possible dependencies, like parameters.

Henceforth, architecture constraints are specified in the implementation phase with JAVA language as meta-programs. These meta-programs are executable to check the initial constraints statically and dynamically.

Constraint Checking

The goal of this phase is to complete the object-oriented application engineering process by providing a micro process to check architecture constraints on programs. This process exploits the generated meta-programs and Aspect-Oriented Programming (AOP) in order to not be intrusive, since the constraints are specified separately from source code.

Figure 5 presents an activity diagram that explains the micro-process of automatic checking of architecture constraints. We assume the availability of a catalog composed of a set of architecture constraints written in OCL/UML with their Java meta-programs. First, the user is asked to load her/his classes accompanied with a set of test cases. Second, she/he is asked to load her/his architecture constraint as an OCL file if this constraint did not belong to the catalog. Meta-programs are generated from the loaded new architecture constraints. If the user chooses a constraint from the catalog, then, the process uses the corresponding pre-generated meta-programs. Sometimes, to be checkable a constraint requires specific annotations in the source code. In this case, the user is asked to indicate the necessary class names in her/his source code, to automatically integrate the annotations and to recompile the code. Then, a static checking is performed using the appropriate metaprograms that analyze the user classes. The next step in our process consists in checking the constraint dynamically using the meta-programs and some pre-defined aspects in our process. Finally, a diagnosis report is provided.

Static Checking

The static checking consists in invoking the invariant method after loading the byte code of user programs in order to collect the classes. It provides a result for each sub-constraint. If at least one sub-constraint is violated, the full constraint is considered not respected.

It should be noted here that unlike approaches for static code analysis, constraint checking and thus execution of the invariant method, necessitates loading of the entire application by the class loader, in order to obtain the class objects reifying the different application classes, before passing them as an argument (array) in the invariant method invocation.

Many constraints, beyond their static checking, require to be dynamically checked. This concerns constraints that introspect the application's objects (and not only classes). These constraints need to be valid at the application's runtime.

Dynamic Checking

In this step of the checking process, the first question being asked is how we can collect all the objects that compose the user's application without modifying the user application by inserting or deleting statements or using an external tool. We found that aspect-oriented programming (AOP) responds to our needs and is an optimal solution to collect the class objects of the user application and then check the constraints dynamically.

AOP provides architectural abstractions and composition mechanisms in order to specify crosscutting concerns into separate functional units, called aspects. This separation of concerns improves modularity and reusability, and allows having a clean code which is easy to understand. One possible language for writing aspect-oriented programs is AspectJ. Listing 8 presents an example of an AspectJ code to collect the class objects making up the user application.

A join point is a well-defined point in the program flow. In our example, the join point is "When the new keyword is executed (Line 3). An Advice defines a crosscutting behavior. It is defined in terms of pointcuts. The code of a piece of advice runs at every join point picked out by its pointcut.

Exactly how the code runs depends on the kind of the advice. In Listing 8, we wanted to create the objects of the application. AOP offers a simple and a quick way to collect an object of any object-oriented application with a small number of statements and without requiring any information.

After getting a collection of the objects of an OO application, the invariant 645 method of the second kind of the generated meta-programs can be invoked after passing this collection as parameter in order the check the corresponding architecture constraints. We have tried to find the appropriate "pointcuts" offered by AOP; i.e. where in the business source code, the aforementioned invariant method should be invoked.

In this process we offer the possibility to check architecture constraints independently from the business source code. In other words, we do not require any analysis of the source code (extracting elements, adding statements, etc). Thus, the developed AspectJ code does not include "pointcuts" that use for example a name of a method, or a field. In this case, because the meta-programs used in this step of the process deal with "objects", we have involved "pointcuts" that manage the places in the source code to identify object states, object relations, object modifications and run-time attribute assignment.

• Object pre-initialization : preinitialization(*. )

660

• Object initialization : initialization(*. )

• Object creation : execution(*.new(..))

• Object suppression : set(* )

• Constructor call : call(*.new(..))

• Field set : set(* *)

665

We can reduce the execution time of the aspect code when we specify exactly for which class of the user application we need to modify the value of the object (last "pointcut") by using the predefined annotations for each constraint. For example, we defined the following AspectJ code in order to execute the invariant method when a field value in the class annotated Model 670 is modified: It is true that the dynamic checking is a crucial step in the process. However, it uses one instance of the user application (one execution scenario). We can obtain different results for other scenarios. In our solution, we apply the checking process on the set of user test cases and we provide the corresponding report for each test case. Our checking process makes alerts on 685 constraint violation by printing log messages about anomalies. It does not abort the execution of the application, but it gives the user all the checking results. She/He can read the log messages and then change her/his code to respect the constraints.

Experimental Evaluation

This section reports on some experiments we have conducted to evaluate our entire constraint specification and checking process.

Research Questions

Our experiments have been conducted in order to answer the following research questions:

• RQ1: Does the process allow to generate valid and efficient metaprograms?

Our automated process generates JAVA meta-programs allowing the checking of architecture constraints. The aim of this research question is to measure: i) the validity of the meta-programs on several objectoriented case examples. These examples have been developed by students. Patterns have been instantiated in these examples and in variants of them (other case examples), in which these patterns have been voluntarily "broken"; ii) the performance of our approach by measuring the time required for generating and executing the meta-programs.

• RQ2: Does the constraint checking process provide precise results in JAVA real projects?

The aim of this research question is to show that the process of constraint checking provides results that conform to the modifications made in large-sized JAVA projects (with several patterns in the same project)

Experiment for RQ1 5.2.1. Data Collection

We invited 6 students to manually accomplish the steps of meta-program generation process. These students know JAVA, its reflection API, and have followed an OCL lecture. We split this group of developers into two groups. We asked the first one to identify textual constraints of some design patterns and then to formalize their structural conditions with OCL. We chose architecture patterns as data, because they are widely used as a means to characterize an architecture, and are considered as a suitable way to document a part of design decisions. The students have chosen the most popular design patterns which concern only the structural aspect of the architecture.

For the second group, we asked them to write a set of OCL constraints and their corresponding JAVA programs using JAVA reflect.

We have collected some descriptive measures (time and size) during the textual identification of the constraints, their formalization with OCL, their transformation in OCL/JAVA, the code generation and the execution of the generated meta-programs. We compared the time spent in each step made manually and automatically. Finally, we have obtained 12 design patterns characterized by their architectural constraints.

Each pattern is represented by its architecture constraint. Each constraint is usually composed of a set of sub-constraints. Each sub-constraint is a formalization of a structural condition that the class diagram of an application in which the pattern is instantiated should respect. The same group of developers have prepared for each pattern (included in our experiment) a toy class model and its corresponding JAVA application. Moreover, they have prepared for each pattern, a set of models each of which invalidates a sub-constraint in the constraint of the pattern.

We take for example a design pattern P characterized by its architecture constraint C. This constraint is composed of two sub-constraints C1 and C2. The developers prepared 4 models. The first one complies with P, the second complies with C1 but not with C2. The third one complies with C2 but not with C1, and the fourth model do not comply neither with C1 nor with C2. Besides, the developers implemented for each model a simple JAVA application. 4 JAVA applications were developed, each of which is the implementation of one of the models previously mentioned.

The experiment data is available online here: https://seafile.lirmm. fr/f/5221db540b6348d9b9be/. We have used as tools in this evaluation, Eclipse Luna and the plugin OCLinEcore to check the OCL architecture constraints on the pre-defined models.

All the measures taken during this experimentation are presented in Tables 2 and 3.

In Table 2, the first column presents the name of each architecture pattern. The second column shows the size (in terms of number of tokens in the AST) of the architecture constraints that formalize the pattern. We have chosen constraints with different sizes, ranging from 186 tokens for the smallest to 579 for the largest one. The Third column presents the size (in terms of number of lines of code) of the manually written and the automatically generated meta-programs. As we can observe, the automatically generated meta-programs are larger than the manually created one. Indeed, as men- tioned previously the automatically generated code is not optimal in terms of complexity. It was built incrementally without any optimization. In Table 3, the OCL specification time includes the identification time of the constraints. The developers have manually performed all the steps of our process (constraint specification, constraint transformation and metaprogram generation). This work followed a precise order starting with the Adapter pattern and finishing with the Proxy pattern. We have chosen a precise order for all the developers to examine the correlation, if exists, between the size of the constraint, the time spent in process steps and the acquisition degree of the OCL language.

We observe that in some cases, there is no correlation between the size of the constraint and the time spent specifying it. For instance, the Observer pattern is larger than the Composite pattern but it took less time for its specification. Indeed, the developers have naturally acquired experience when specifying each time a new constraint. The first constraint took more time to be specified than the others. The average time decreases when specifying more constraints despite of their size variance. Constraints were specified with OCL which is a language easy to learn and to use (as empirically demonstrated in [START_REF] Briand | An experimental investigation of formality in uml-based development[END_REF]). The students need only to know for each constraint the appropriate navigation in the UML meta-model and frequently used the same "patterns" of OCL expressions.

We can see in Tables 2 and3 two variants of the Decorator pattern. The constraints of these variants have the same size in terms of number of tokens. They share some sub-constraints. This decreases the time spent specifying the second variant.

It takes for a developer an average of 1.47 hours without considering the time of constraint identification, to manually develop a JAVA source code that allows to check an architecture constraint. It is true that this time may be decreased even more when the developer manually develops metaprograms. But it is still significantly higher than the time spent by the automatic generation process.

Protocol and Results:

The protocol followed in this experimentation consists in, on the one hand, checking the OCL constraints on the corresponding pre-defined models, and on the other hand, checking the meta-programs generated from these constraints on the different implementations of the aforementioned models.

If we take the same example (introduced in the previous subsection) we get the results presented in Table 4, where: The checking of the constraint on the first model must return "True" and on the other models it must return "False". Besides, we must also obtain the same results when checking the meta-program, generated from

Table 4: Expected results C/M1 ->True -----> Mc/I1 ->True C/M2 ->False -----> Mc/I2 ->False C/M3 ->False -----> Mc/I3 ->False C/M4 ->False -----> Mc/I4 ->False
this constraint, on the implementations of these models. Following this first protocol, we test if each generated meta-program corresponds to the initial constraint or not. These constraints and their meta-programs are checked on several variants of models and programs to avoid any error during the generation process.

We have 12 architecture patterns. We have created more than 250 test cases to check the OCL constraints on models and on source code. All the expected results are obtained for the constraints which require only the static checking. For the other constraints, we were not able to dynamically check the OCL constraints on the static (class-based) models. We have then considered a second evaluation. It consists in applying our constraint checking process (Section 4) using, on the one hand, manually written meta-programs and on the other hand the automatically generated ones in the same pattern instance implementation variants (Ii).

Considering the checking results, we noticed that the tool successfully generated valid meta-programs. The two meta-programs notify the same errors (error and code localization) in the source code.

Our approach worked well with the experiment data created by the developers. For improving the process validation, we have evaluated our generated meta-programs and our constraint checking technique on real JAVA projects in which many design patterns are instantiated. This evaluation is presented in Subsection 5.3.

Performance:. Our analysis was about performance. We measured the time our technique required to implement and execute the manually written and the automatically generated meta-programs of our patterns. The results are summarized in Tables 3 and5 (Table 5 is an extension of Table 3). As expected, the time is proportional to the size of the constraint formalizing the pattern (see Table 2). We must mention that execution time was absolutely within our expectations. The interesting part is when we compare the values in the two columns of Table 5. We can notice that the execution time of the generated source code is lightly higher than the execution time of the manually written one, in all cases. This is explained by the fact that the generated code has a greater complexity than the manually written one. The average overhead of the generated code is +16% (in milliseconds). But this is negligible and does not affect much a process of architecture verification. Indeed, for the moment, the software systems that we target in our work are not real-time ones and this performance overhead does not affect them too much. If we consider the time needed to execute the entire JAVA application, an example of an application reaction time increases to 2,43s instead of 1,99s. This difference is negligible even if we consider the dynamic aspect of the checking. After considering all the JAVA applications used in our evaluation, we can say that we are quite confident that the overhead of constraint checking at execution time is marginal.

Experiments of RQ2

We would like here to evaluate our approach on large-sized JAVA projects. The source code of these projects should contain at least two different design pattern instances.

Data Collection

We have conducted our checking process on several JAVA projects: Applied JAVA Patterns (AJP) [START_REF] Stelting | Applied Java Patterns[END_REF], the Eclipse Pattern Box (EPB) [START_REF] Ehms | Patternbox eclipse tool[END_REF], Find-bugs 8 . and MapperXML9 . Based on their documentation, we have identified the design patterns that are instantiated in the projects.

Protocol

As a first experimentation, we have applied our checking method on all the source codes (the results are shown in Table 6). Meta-programs were generated form the architecture constraints which formalize the patterns instantiated in each source code. Aspect codes are prepared to check these architecture constraints using their generated meta-programs. The aspect codes include all the pointcuts defined in Section 4.

In the second experimentation, we have invited 3 other persons (1 Phd and 2 Master students) who have enough experience with design patterns. We asked them to introduce some modifications on the source code of these applications. They have written scripts that describe each architecture pattern as textual items. A master student who was not involved in the last task tried to modify the sources by altering at least one item in the script. Therefore, the patterns' source code were made non-conforming to their architecture model, and their constraints became violated. These modifications are made by using the reflective API of Java. The students use the reflective methods especially those responsible for modifying the behavior of the objects, like invoke() and newInstance(). Then, we have reapplied our process on the altered sources to see whether the patterns are respected or not. Finally, we analyzed the output of the checking to verify its correctness compared to the modifications.

Results and Discussion

To present our results, we use the following notations:

• √ + : the pattern is well implemented and the result is "pattern respected"

• √ -: the pattern is well implemented but the result is "pattern not respected"

• x+ : the pattern is not well implemented and the result is "pattern not respected"

• x-: the pattern is not well implemented and the result is "pattern respected" 

√ + √ + √ + Adapter √ - √ - Proxy √ + √ + Bridge √ + Composite √ - √ + Decorator √ - MVC √ + Facade √ -
√ + shows the cases where our method succeeded. Most of the design patterns are correctly verified. We found 10 from 15 pattern occurrences that are well verified, with a success rate of 66.66% (in the first experimentation).

Our tool does not detect the conformance of the sources to the Adapter and Decorator pattern architectures. Indeed, the Adapter and Decorator intercept method invocations between the caller and the delegation class. However this relation is neither well defined, nor definable [START_REF] Gamma | Design patterns: Elements of Reusable Object-Oriented Software[END_REF]. This point may influence the specification of the constraint and then produces an error in our process validation.

The Decorator pattern implementation in the AJP project is not well verified by our tool. This is explained by the fact that there are many variants of this pattern and unfortunately the one implemented in the AJP source is not taken into consideration in our data collection. The Composite pattern is usually tightly related to other patterns. This relation can affect some lightweight modifications on its implementation to be composed with other patterns to answer the user needs. These modifications probably concern composite object states.

In the Findbugs project, in the Facade pattern occurrence, our tool correctly pointed out that class edu.umd.cs.findbugs.Lookup directly uses class edu.umd.cs.findbugs.ba.XClass without accessing it through the Facade which is called edu.umd.cs.findbugs.ba.Hierarchy as documented in the Findbugs API. With this relation, the Facade implementation actually does not strictly satisfy the requirements for the Facade design pattern. If the strict interpretation of the Facade pattern is to be used, then the fact pointed by the tool is a design flaw. In the second experimentation, the source code of all the projects is already altered. There were no x-found in the Table 7 . All checking results produce "pattern not respected". But, among the x+ are consequences of the first experimentation. Indeed, the √ -showed in Table 6 is automatically changed to x+, considering the errors produced during the first experimentation.

It is true that the Abstract-factory pattern implementation in EPB undergoes some modifications and the experimentation result produces "pattern is not well implemented", but the experimentation output and the modifications made are not suitable. The obtained output displays "pattern is currently not respected" throughout the execution but in some of the cases we found that the pattern is respected.

Concerning the Proxy pattern, the modifications made in its implementation in AJP source code are performed using reflective methods that affect the pattern architecture. Our constraint and its generated meta-program does not take into consideration this way of modification.

Threats to Validity

We discuss the threats to validity according to internal and external aspects. In this work, the internal validity concerns the confidence we have in the correctness of experiment data. This data consists of architecture constraints, AspectJ programs, models and manually-written meta-programs. The external validity concerns the reproduction of our evaluation in other contexts.

Internal validity

Architecture constraint specification: The description of architecture patterns sometimes implicitly imposes some constraints that were undiscovered. We mitigate this threat by using architecture patterns that are specified from several sources and by participants who have a relatively good experience in software design.

AspectJ code development: The checking of architecture constraints sometimes uses an AspectJ code that contains a large number of pointcuts.

The execution of some large and complex applications under our constraint checking process may produce errors like endless loops, especially with generic AspectJ code (without optimization). For dealing with this case, we created several AspectJ programs, each of which contains at most 2 or 3 pointcuts (which are not overlapped). We checked the constraints more times using at each time one AspectJ program.

Model and meta-program implementation: In Experiment 1 (Section 5.2), many students have manually performed the identification of architecture constraints and prepared examples of models to statically check OCL constraints. These students may have designed models that nearly conform to the constraints. To mitigate this threat, we have performed the second evaluation (Section 5.3) that consists in checking the constraints on external projects. Besides, the students have also manually developed the metaprograms. To reduce implementations errors, each student implemented the 12 meta-programs (for 12 architecture constraints) and the most appropriate meta-program for each pattern was selected.

External validity

The architectural patterns used in our experiments have been collected from the literature. Our process uses as input object-oriented architecture patterns and provides as output Java ones. Our process can have as input any kind of patterns (component-based design patterns or SOA patterns) and can provide as output a code written in any reflective language. To achieve this, the constraint transformation step in our process is applicable with any meta-model as it uses external mappings in XML. In addition, the code generation step uses the technique of "Templates" which can be written in any language that provides a reflective API to exploit the reflective methods.

Related Works

In this section we present works related to our contribution.

Constraint Specification

A state of the art on languages used for the specification of architecture constraints at design and implementation stages is presented in [START_REF] Tibermacine | Software Architecture 2[END_REF]. Some languages are considered as notations in existing ADLs, like Armani for Acme, FScript for Fractal ADL or REAL for AADL. Others are embedded notations with a logic programming style, like Alloy, LogEn or Spine, or notations with an object-oriented programming (OOP) style or DSLs for OOP languages, like CDL or SCL. There exist in practice some static code quality analysis tools like Sonar, Lattix and Architexa that authorize the specification of architecture constraints. These languages and tools, cited above, do not enable transformation or code generation of specifications in OCL or any other predicate language.

Constraint Transformation

Hassam et al. [START_REF] Hassam | Adapting ocl constraints after a refactoring of their model using an mde process[END_REF] use a model transformation method to transform OCL constraints during UML model refactoring. The others use a mapping table, created under the UML model transformation for transforming OCL constraints of the initial model into OCL constraints of the target one. Their solution of constraint transformation cannot be used straightforwardly because it needs some knowledge about model transformation languages and tools. In our work, constraint transformation is performed in a simple and ad-hoc way without using additional modeling and transformation languages.

The works in [START_REF] Ferdjoukh | A csp approach for metamodel instantiation[END_REF][START_REF] Cabot | On the verification of uml/ocl class diagrams using constraint programming[END_REF] focus on UML/OCL transformation into CSP (Constraint Satisfaction Problem). The authors in [START_REF] Ferdjoukh | A csp approach for metamodel instantiation[END_REF] proposed an approach for instantiating models from meta-models taking into account OCL constraints. Based on CSP, they defined some formal rules to transform models and constraints associated to them. These approaches are similar to our transformation process since the transformed/handled artifacts are the same (OCL specifications and meta-models). They use the same OCL compiler as us (DresdenOCL [START_REF] Demuth | The dresden ocl toolkit and its role in information systems development[END_REF]) to analyze constraints. In contrast to CSP, our process does not require an external tool for the interpretation of constraints. Besides, in their approaches, everything should be transformed into a CSP to be solved (the constraints + the models/meta-models) while in our approach, we transform only constraints.

All these works considered only functional and not architectural constraints. They allow constraint checking only on design phase and they do not provide a way to generate code from them to be specified in the implementation phase. However, in [START_REF] Brucker | A specificationbased test case generation method for uml/ocl[END_REF] the authors propose to transform constraints into HOL representations before generating Test Data. Thus, the OCL constraint undergoes major modifications. Some features of OCL will be disappeared as confirmed in [START_REF] Ali | Generating test data from ocl constraints with search techniques[END_REF]. Our approach transforms the architecture constraints from OCL/UML to OCL/JAVA before generating code. This transformation considers only the change of the meta-model. The constraints are still written in OCL. In addition, in our case, architecture constraints are specified after transformation in the meta-model of the programming language used later for implementation. This has the benefit that architecture constraints can be documented in a language that all designers and developers understand.

Constraint Checking

Eclipse OCL 10 and DresdenOCL [START_REF] Demuth | The dresden ocl toolkit and its role in information systems development[END_REF] which provide OCL constraint translation to JAVA, transform constraints which are functional and not architectural. The generated code by Dresden OCL is difficult to understand. In fact, it is true that Dresden OCL is the first tool implemented in this domain, but it extensively uses a vocabulary proposed only by its APIs. This code is normally intended to developers who master, and will continue to use, Dresden OCL, contrary to our work, where code is intended to be used by any JAVA developer. Besides, with these tools, we need to create beforehand the classes of the model before generating constraints.

In [START_REF] Hamie | Pattern-based mapping of ocl specifications to jml contracts[END_REF],the authors integrate constraints translated on JML assertions at compilation time. Jass [START_REF] Bartetzko | Jassjava with assertions[END_REF] integrate constraints translated into JAVA comments through source code instrumentation. These works generate skeletons of code in user source code and then use external tools to validate the constraints. In our work, our constraints need to be verified at run-time because they impose conditions on object dependencies which can be obtained only at that level. Our approach allows to generate source code and check the constraints without altering the user source code and it uses a standard mechanism, the introspection mechanism offered by the language used for programming the source code.

In [START_REF] Cheon | Automating java program testing using ocl and aspectj[END_REF], the authors translate functional constraints into AspectJ specifi-10 http://www.eclipse.org/modeling/mdt/?project=ocl cations which are checked the at runtime. One disadvantage of this approach is the strong coupling of the aspects to the base code. Pointcut definitions specify the interception points for constraint validation. The definitions are exactly specified with method signatures, class of field names. Any change in the underlying base code undergoes modifications to these definitions. However, in our work, with architecture constraints, this strong coupling between the aspects and the source code does not exist since we need only a collection of the classes or of the objects of the user application which is obtained by using a code separately developed from the source code. Sometimes, this code requires only the class annotations.

Despite the existence of several approaches, as noted above, to check design constraints on code, the gap between the state of the art and the state of the practice has become apparent. Indeed, these approaches generally require learning a language different from the programming language to specify design constraints. This increases the learning curve and put at risk the adoption of these approaches. We believe that an approach that allows specification of design constraints in the same language as that of the software can increase the adoption of conformance checking by both designers and programmers.

In this context, an approach that admits this affirmation is presented in [START_REF] Brunet | Design tests: An approach to programmatically check your code against design rules[END_REF]. The authors of this approach generate design rules into design tests which are specified in the programming language (Java). These design tests allow to automatically check the conformance of the design rules in the implementation. These design tests are written as JUnit tests. Two frameworks are implemented: a code structure analysis API and a testing framework. The first one is responsible for analyzing the source code and for specifying the design rules through methods offered by this API. The second framework provides assertion routines and an automatic way to execute the generated tests. It is true that the authors in this work rely on the utilization of the language used for implementation to specify design constraints but these constraints are manually specified and the authors use an external framework for the checking instead of using an API provided by the programming language (like Java.reflect) and an extended language (like AspectJ). In this way, the whole process will be more adopted by the designers and the Java programmers, knowing that in our approach, the developers do not develop entirely AspectJ code and in most cases, they use pre-defined aspects. Besides, the authors in this work, noticed that they do not consider dynamic constraints.

A work presented in [START_REF] Van Eyck | Using code analysis tools for architectural conformance checking[END_REF] provides a comparative study between code analysis tools about their capabilities for architectural conformance checking. The authors proved that: i) The tools the authors investigated do not allow dependency constraint conformance checking at run-time, especially on object-oriented source code and ii) Most of the tools do not succeed to localize where the constraint violation takes place in the source code. In this case, the user should manually inspect the source code in order to determine the error location. In contrast, our developed tool allows static and dynamic checking of architecture constraints. It is capable to check automatically and dynamically constraints that formalize objects dependencies in object-oriented application. Besides, our checking process, based on the AOP technique, notifies the user with the traces of constraint violation with a log result. The authors in [START_REF] Xiao | Design rule spaces: A new form of architecture insight[END_REF] introduced a new form of architecture model called Design Rule Space. This model represents the software architecture as an ensemble (a DRSpace) of design rules (e,g, dependency, inheritance, aggregation) and independent modules. This work identifies structural and evolutionary problems between these modules by clustering the source code and visualizes them is structure matrices. The algorithm of clustering provides a hierarchy of the files which are embedded in these modules. The authors, by applying Baldwin and Clark's design rule theory features [START_REF] Baldwin | Design rules: The power of modularity[END_REF], identify the error prone DRSpace in files. This work considers that software architectures are as multi-layered modules. These later may or may not be equivalent to the abstractions used to express the system's architecture. Indeed, this new proposed representation can restrict custom architecture entities representation and thus their architecture constraint specifications. In our work, the source code is considered as one layer and with the introspection mechanism provided by the programming language, we can examine all problems inside this layer.

Conclusion

Architecture constraints bring a valuable help for preserving architecture styles, patterns or general design principles in a given application after having evolved its architecture model [START_REF] Tibermacine | On-demand quality-oriented assistance in component-based software evolution[END_REF]. These architecture constraints are checked at design time. They also need to be checked if the architecture evolves in the implementation artifacts or at runtime. For that purpose, we proposed an automatic process which allows to check these constraints in that development stage and at run-time. This verification process uses the meta-programs that are generated from these constraints and uses the reflection mechanism provided by the programming language.

The proposed automatic process is composed of two phases. The first phase consists in transforming architecture constraints into meta-programs, towards the implementation phase. The second phase is to check these constraints statically by loading the application and executing the appropriate meta-programs, and then to check them dynamically (if necessary) using aspect-oriented programming.

Expressing architecture constraints with the same language as the one used in the implementation phase provides an executable documentation.

With this documentation, architecture constraints are more likely to keep in synchronization with the actual implementation. We believe this is especially useful in development teams in which developers change often and can easily miss or misunderstand the previously made design decisions. In our implementation (JAVA code generation), our approach uses Java.reflect API and AspectJ which are known by a lot of JAVA developers. The standard introspection mechanism is enough to make this kind of architecture constraints executable in the implementation phase. Besides, for checking them, we require only the user annotated source code. This later is not altered during the process. The checking is fully automatic, seamless for users, flexible and provides a diagnostic result that identifies where the constraints in the code are violated.

One of the limitations of our approach is the fact that it does not cover all the OCL language. Some operations, like OCLIsNew, OclAny, OclVoid and OclInvalid, are not considered. But these are mainly used in OCL post conditions and not in OCL invariants adopted by our approach. Besides, our tool is flexible, in order to integrate new OCL expressions. We just need to write specific String Templates and to implement a method that initializes them.

After working in checking dynamically architecture constraints on object oriented programs and component-based and service-oriented applications [START_REF] Kallel | Generating reusable, searchable and executable "architecture constraints as services[END_REF], a good idea would be to generalize the proposed approaches, by specifying architecture constraints in a paradigm-independent way: using predicates on graphs and operations on them and then making automatic transformations towards a particular object-oriented, component-based or service-oriented programming language.
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 1 Figure1depicts the general steps of our process, which can be seen as a two-phase process (meta-program generation and constraint checking), the first phase being composed of three steps (after excluding "loading" steps).
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 7667 f ( b o o l ) { 8 k l a s s . add ( c ) ; 9 } } C l a s s <? >[] k l a s s 1 = new C l a s s <?>[ k l a s s . s i z e ( ) ] ; i n t s e l e c t i t e r a t o r = 0 ; f o r ( C l a s s c : k l a s s ) { k l a s s 1 [ s e l e c t i t e r a t o r ] = c ; s e l e c t i t e r a t o r ++; } C l a s s [ ] model = k l a s s 1 ; // same way f o r c o n t r o l l e r and view boolean b o o l 1 8 = true ; f o r ( C l a s s c : model ) { F i e l d [ ] f i e l d = c . g e t D e c l a r e d F i e l d s ( ) ; f o r ( F i e l d i t e r a t o r : f i e l d ) { i t e r a t o r . s e t A c c e s s i b l e ( true ) ; } boolean b o o l 6 = true ; f o r ( F i e l d p : f i e l d ) { C l a s s <?> k l a s s 6 = n u l l ; i f ( p . g e t G e n e r i c T y p e ( ) i n s t a n c e o f ParameterizedType ) { k l a s s 6 = ( C l a s s <?>) ( ( ParameterizedType ) ( p . g e t G e n e r i c T y p e ( ) ) ) . getActualTypeArguments ( ) [ 0 ] ; } e l s e { k l a s s 6 = p . getType ( ) ; } boolean b o o l 3 = true ; f o r ( C l a s s i t e r a t o r : c o n t r o l l e r ) { i f ( i t e r a t o r . e q u a l s ( k l a s s 6 ) ) { b o o l 3 = f a l s e ; } } // . . . . . // s e c o n d c o n s t r a i n t Method [ ] method = c . g e t D e c l a r e d M e t h o d s ( ) ; boolean b o o l 1 0 = true ; f o r ( Method o : method ) { C l a s s <?> k l a s s 8 = o . getReturnType ( ) ; boolean b o o l 7 = true ; f o r ( C l a s s i t e r a t o r : c o n t r o l l e r ) { i f ( i t e r a t o r . e q u a l s ( k l a s s 8 ) ) { b o o l 7 = f a l s e ; } } // . . . . // r e t u r n . . . } } An excerpt of the MVC meta-program in JAVA 1 public c l a s s MVCConstraintObj { 2 public boolean i n v a r i a n t ( O b j e c t [ ] s e l f ) 3 throws I l l e g a l A r g u m e n t E x c e p t i o n , I l l e g a l A c c e s s E x c e p t i o n { 4 A r r a y L i s t <Object> o b j e c t = new A r r a y L i s t <Object >() ; 5 f o r ( O b j e c t c : s e l f ) { l a s s <?> k l a s s = c . g e t C l a s s ( ) ; 7 boolean b o o l = k l a s s . i s A n n o t a t i o n P r e s e n t ( Model . c l a s s ) ; 8 i f ( b o o l ) { 9 o b j e c t . add ( c ) ; } } O b j e c t [ ] o b j e c t 1 = new O b j e c t [ o b j e c t . s i z e ( ) ] ; i n t s e l e c t i t e r a t o r = 0 ; f o r ( O b j e c t c : o b j e c t ) { o b j e c t 1 [ s e l e c t i t e r a t o r ] = c ; s e l e c t i t e r a t o r ++; } O b j e c t [ ] model = o b j e c t 1 ; // f o r View and C o n t r o l l e r boolean b o o l 7 = true ; f o r ( O b j e c t o : model ) { C l a s s <?> k l a s s 3 = o . g e t C l a s s ( ) ; F i e l d [ ] f i e l d = k l a s s 3 . g e t D e c l a r e d F i e l d s ( ) ; f o r ( F i e l d i t e r a t o r : f i e l d ) { i t e r a t o r . s e t A c c e s s i b l e ( true ) ; } boolean b o o l 6 = true ; f o r ( F i e l d f : f i e l d ) { O b j e c t o b j = f . g e t ( o ) ; boolean b o o l 3 = true ; f o r ( O b j e c t i t e r a t o r : c o n t r o l l e r ) { i f ( i t e r a t o r . e q u a l s ( o b j ) ) { b o o l 3 = f a l s e ; An excerpt of the MVC meta-program in JAVA (Objects)
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 6809 a s p e c t C o n s t r a i n t { p o i n t c u t C o n s t r a i n t C h e c k i n g ( ) : s e t ( * * ) && w i t h i n ( @Model * ) ; 675 b e f o r e ( ) : C o n s t r a i n t C h e c k i n g ( ) { v e r i f y C o n s t r a i n t ( ) ; } } Constraint checking when model attribute assignment

C:

  Architecture Constraint Mc: Meta-program generated from C Mi: Model number i Ii: Implementation of Mi C/Mi: Result of checking C on Mi Mc/Ii: Checking Mc on Ii False: Constraint is violated True: Constraint is respected

Table 1 :

 1 An excerpt of UML-JAVA mappings

		UML	JAVA
	Metaclass Package	ApplicationClasses/ ApplicationObjects
		ownedAttribute	field
		ownedOperation	method
	Role	superClass getImplementedInterfaces	superClass interface
		ownedType	class / object
		isAbstract	isInterface()
	Nav.	getAppliedStereotypes() ->(s:Stereotype|s.name='N')	isAnnotationPresent('N')
		c.ownedOperation ->(o:Operation|o.name=c.name)	c.declaredConstructor
		visibility=VisiblityKind::public	modifier(Modifier::public)
	Metaclass Class	Class/Object
	Metaclass Operation	Method
		type	returnType
	Role	ownedParameter	parameterType
		raisedException	exceptionType
	Metaclass Property	Field
		type	type
	Role	value	type
		slot	field
		name	name

Table 2 :

 2 Size of constraints and their meta-programs

	Design Pattern	OCL Constraint Meta-program LOC #tokens Manual Automatic
	Adapter	348	160	381
	Bridge	248	142	234
	ChainOfResponsibility 225	155	250
	Composite	306	120	306
	Decorator 1	387	100	500
	Decorator 2	387	100	500
	Facade	186	135	292
	Factory-method	234	167	210
	Mediator	190	120	150
	MVC	189	40	100
	Observer	579	120	300
	Proxy	238	117	200

Table 3 :

 3 Time spent on each step of the process (in seconds)

	Design Pattern	Spec UML	UML-JAVA Manual Automatic Manual Automatic to Meta-program
	Adapter	16500	480	0.05	5400	6.21
	Bridge	15240	480	0.05	3300	4.38
	ChainOfResponsibility 6000	600	0.22	600	4.41
	Composite	14100	720	0.11	9000	4.67
	Decorator 1	10320	540	0.09	4380	5.91
	Decorator 2	2400	120	0.01	4440	3.57
	Facade	10620	420	0.18	6060	4.25
	Factory-method	7440	540	0.18	4920	4.71
	Mediator	10740	660	0.14	4260	3.70
	MVC	5400	300	0.19	3900	4.98
	Observer	8502	840	0.36	6180	6.88
	Proxy	5820	720	0.27	4920	4.24

Table 5 :

 5 Execution time of meta-programs (in seconds)

	Design Pattern	Execution Time Manual Automatic
	Adapter	0.65	0.86
	Bridge	0.54	0.66
	ChainOfResponsability	0.57	0. 97
	Composite	0.30	0.57
	Decorator 1	0.52	0.66
	Decorator 2	0.54	0.69
	Facade	0.77	0.93
	Factory-method	0.69	0.87
	Mediator	0.68	0.87
	MVC	1.00	1.23
	Observer	1.40	1.73
	Proxy	1.12	1.69

Table 6 :

 6 Checking Results (before altering the sources)

	Patterns Abstract-factory	AJP EPB Findbugs MapperXML √ + √ +
	Factory-method	

Table 7 :

 7 Checking Results (after altering the sources)

	Patterns	AJP EPB JAVA Findbugs MapperXML
	Abstract-factory x+	x+	x+
	Factory-method x+	x+	x+	x+
	Adapter	x+	x+	x+
	Proxy	x+		x+	x+
	Bridge	x+		x+
	Composite	x+	x+	x+
	Decorator	x+		x+
	MVC				x+
	Facade				x+

http://www.omg.org/spec/OCL/2.3.1/PDF/

Even if a recent study[START_REF] Petre | Uml in practice[END_REF] pointed that UML is not widely used by developers in industry, we all agree that it is a general-purpose modeling language, easy to learn and known by a lot of developers.

http://www.omg.org/spec/UML/2.4.1/

In this meta-model, we limited ourselves to the elements necessary for architecture constraint specification

http://www.kermeta.org

String Template : http://www.stringtemplate.org/

Findbugs, http://findbugs.sourceforge.net/

MapperXML, http://essere.disco.unimib.it/svn/DPB/MapperXML20v1.9.7/