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Abstract
To merge databases is a strategy of paramount interest especially in

medical research. A common problem in this context comes from a vari-
able which is not coded on the same scale in both databases we aim to
merge. This paper considers the problem of finding a relevant way to re-
code the variable in order to merge these two databases. To address this
issue, an algorithm, based on optimal transportation theory, is proposed.
Optimal transportation theory gives us an application to map the mea-
sure associated with the variable in database A to the measure associated
with the same variable in database B. To do so, a cost function has to
be introduced and an allocation rule has to be defined. Such a function
and such a rule is proposed involving the information contained in the
covariates. In this paper, the method is compared to multiple imputa-
tion by chained equations and has demonstrated a better performance in
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many situations. Applications on both simulated and real datasets show
that the efficiency of the proposed merging algorithm depends on how the
covariates are linked with the variable of interest.

1 Introduction
Nowadays, sharing and producing information from heterogeneous sources be-
comes a major issue and is an important and ubiquitous challenge in the Big
Data era. This question is now widely found not only in medical field but also
in spatial data processing, finance, robotics, and in many other fields where the
need of global and quality knowledge is required to make a better decision. The
main issue when merging databases is to associate, mix and include databases
from different sources in order to provide a strong knowledge database. This
allows us to extract more information from merged database than we would
obtain from using the databases separately ([4, 8]). Different techniques are al-
ready widely used to produce combinations of heterogeneous data from different
sources ([1]), especially probabilistic models ([19]), the best known of which are
probably the Bayes rule ([24, 6]), Hidden Markov Models ([16]), the technique
of least square, multi-agent systems ([9]) and logical reasoning ([7]).

In this paper, one focuses our attention to a specific issue related to database
merging, the recoding problem. Indeed, it is usual and problematic when two
databases have to be merged, to observe a categorical variable that is not coded
in the same scale in both databases. This problem can occur in many situations:
for example, in a epidemiology survey, this can be a change in the associated
collection questionnaire for asking the same information between two waves of
recruitment (for different subjects) or two waves at different ages (for same sub-
jects), in two different studies, this can be a different questionnaire for asking
the same information (for different subjects).

The problem can be formalized in terms of two databases A and B: the first
contains the observations of P +Q variables measured on nA units, the second
of the observations on a subset of P variables for nB units. Consider a variable
Y observed by means of Y A on database A and by means of Y B on database
B (see Table 1). To make inference and analysis of the merged database, it is
therefore necessary to find a common scale of evaluation. The objective is thus
to complete Y A on database B and/or complete Y B on database A.

The motivation of this investigation comes from the analysis of a french lon-
gitudinal cohort of children: ELFE study. A variable of interest is the answer of
the question: "how would you rate your overall health?". During the first base-
line data collection wave (January to April 2011), the different possible answers
are proposed in a five point ordinal scale: "excellent", "very well", "well", "fair",
"bad" and during the second baseline data collection wave (May to December
2011), there are a five other point ordinal scale: "very well", "well", "medium",
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"bad" and "very bad". This difference in coding information yields to difficulties
to compare these two waves. A preliminary step of recoding appears to be a
appealing strategy.

Table 1: Statement of the database merging problem.

Database A Database B

C1 . . . CP +Q Y A Y B C1 . . . CP Y A Y B

1
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no

bs
er
ve
d 1
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O
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. . . . . .

. . . . . .

nA nB

This variable recoding issue could be treated as a classical missing data prob-
lem. In this context, the missingness process is considered missing at random.
This problem has been widely studied in the litterature ([13]) and many existing
methods for treating missing data could be used. Moreover, Y A and Y B refers
to the same information Y which can be interpreted as a latent variable. Meth-
ods of prediction of this latent class could also be applied (class latent analysis
or trait latent analysis) ([3, 18]). Finally, methods for classification learning,
enable to explain, for example Y A in database A from covariates and then to
predict Y A in database B, in a second step ([22]).

Methods listed below only account for the information contained in database
A to complete Y B and contained in database B to complete Y A. The infor-
mation contained in Y A on database A (resp. Y B on database B) may be
exploited. Indeed, assuming that the distribution of Y A (resp. Y B) is the
same in database A and B, the theory of optimal transportation ([23]) exhibits
a map that pushes the distribution of Y A forward to the distribution of Y B .
Using that map and the link between covariates and outcome, new algorithm
of recoding, called the OT-algorithm (Optimal Transportation algorithm) can
be constructed. To do so, we have to assume that the covariates explain the
outcomes Y A and Y B similarly in the two databases. In the authors knowledge,
this is the first attempt to use optimal transportation theory in this context.

This article is organized as follows: a brief review of Optimal Transporta-
tion theory together with the application to the variable recoding problem is
described in Section 2. Section 3 details the new algorithm based on Optimal
Transportation. The assessments of the performances of the algorithm are in-
vestigated in Section 4 by means of simulation studies. The first simulation
study is based on a "deterministic decision rule" in order to investigate the in-
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trinsic performances of the OT-algorithm. Indeed, this algorithm is based on
an estimation procedure which necessitates a sufficiently large sample size for
databases A and B. The minimal size is evaluated in Section 4.1. The second
simulation study in Section 4.2 is based on a "stochastic decision rule" in or-
der to link the performance of the OT-algorithm with the correlation between
covariates and outcome. The performances of the OT-algorithm are compared
with multiple imputation technique ([17]). Section 5 is the application of OT-
algorithm on a real dataset. Finally, some concluding remarks are given in
Section 6.

2 Optimal transportation
Consider a pile of sand distributed with density f , that has to be moved to
fill a hole (of the same total volume) according to a new distribution, whose
density is prescribed and is g. Consider a map T describing this movement,
T (x) represents the destination of the particle of sand originally located at x.
The Optimal Transportation problem consists in finding a map T such that the
average displacement is minimal (a cost function c measuring the displacement
from x to y has to be introduced at this point). This is the original statement
of the Tranportation problem due to Gaspar Monge ([14]).

2.1 Abstract Statements of the Optimal Transportation
problem

Consider X and Y two Radon spaces. Given µ a probability measure on X, ν a
probability measure on Y and c : X×Y −→ [0,∞] a Borel-measurable function
(the cost function), Monge’s formulation of the optimal transportation problem
consists in finding a map (transport map) T : X→ Y that realizes the infimum:{∫

X
c(x, T (x)) dµ(x)

∣∣∣∣ T∗(µ) = ν

}
, (1)

where T∗(µ) denotes the so-called push-forward measure of µ (the image mea-
sure of µ by T ).

A map T that attains this infimum is called an "optimal transportation
map". Monge’s formulation of the optimal transportation problem may be ill-
posed, because sometimes there is no T satisfying T∗(µ) = ν. This happens
for example when µ is a Dirac measure but ν is not. Monge’s formulation of
the transportation problem is a strongly non-linear optimization problem and
to find a solution requires rigid assumptions on the regularity of T and on the
cost function.

Kantorovich’s formulation ([11]) consists in finding a measure γ ∈ Γ(µ, ν)
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that realizes the infimum:{∫
X×Y

c(x, y) dγ(x, y)
∣∣∣∣ γ ∈ Γ(µ, ν)

}
, (2)

where Γ(µ, ν) denotes the set of measures on X×Y with marginals µ on X and
ν on Y. This is related to optimal coupling theory. Kantorovich’s formulation
plugs the problem in a linear setting and the solution is achievable thanks to
compacity argument. It can be shown ([23]) that a minimizer for this problem
always exists as soon as the cost function c is lower semi-continuous.

2.1.1 The discrete case on the line

In the discrete case, the Optimal Transportation problem is known as Hitch-
cock’s problem ([10]). The measures are defined by weighted Dirac measures
(δx denotes Dirac measure at point x):

µ =
R∑

r=1
arδpr

and ν =
S∑

s=1
bsδqs

where {p1, . . . , pR} (resp. {q1, . . . , qS}) are the locations of point masses of
measure µ (resp. ν) and ar (resp. bs) are the weights verifying

∑p
r=1 pr =∑q

s=1 qr = 1.

The Optimal Transportation problem in this setting consists in finding a
measure γ which satisfies equation (2). In this context, γ is a S × R matrix
and for any r and any s, γr,s represents the joint probability (pr, qs)→ P(X =
pr, Y = qs), where X ∼ µ and Y ∼ ν and can be seen as a map from modality
pr of X to modality qs of Y . The cost function is, in this setting, a S×R matrix
(c(pr, qs), r = 1, . . . , R ; s = 1, . . . , S). The problem consists in finding γ that
minimizes:

R∑
r=1

S∑
s=1

γr,s c(pr, qs), (3)

under the following constraints, for any r and any s,

γr,s ≥ 0,
R∑

r=1
γr,s = bs and

S∑
s=1

γr,s = ar.

2.2 Application to database merging
In the sequel, our attention focuses on the discrete setting which is the most
common and the hardest to handle setting.
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2.2.1 General considerations

Consider two databases A and B we aim to merge. The same covariates are
assessed on both databases. Denote C = (C1, . . . , CP ) the set of P covariates
observed in both databases A and B and Ci (resp. Cj) the values of C observed
for patients i of database A (resp. j of database B). Our attention focuses
on a variable Y evaluated in both databases but not assessed on the same
variable. Denote Y A the assessment of Y on database A and Y B the assessment
of Y on database B. For example Y could be measured by a three-category
discretization on A and by a four-category discretization on B. Table 1 with
Q = 0 illustrates the appearance of the databases we are describing. In order to
merge those databases, we have to complete Y A on database B and/or complete
Y B on database A. Note that the problem is not reversible when the number
of modalities is not the same. Let µ be the distribution of Y A and ν the
distribution of Y B . Distribution µ (resp. ν) is assumed discrete with modalities
{p1, . . . , pR} (resp. {q1, . . . , qS}). We denote by ind(A) = {1, . . . , nA} and
ind(B) = {1, . . . , nB}.

2.2.2 Assumptions

In order to properly plug our problem in an Optimal Transportation framework,
two assumptions have to be fulfilled.

• Assumption 1 :

– (Y A
i , i ∈ ind(A) ∪ ind(B)) are i.i.d with same distribution µ

– (Y B
i , i ∈ ind(A) ∪ ind(B)) are i.i.d with same distribution ν

Assumption 1 imposes that the unobserved valued of Y A (resp. Y B) on
database B (resp. A) comes from the same distribution as Y A (resp. Y B)
on database A (resp. B).

• Assumption 2 : (Y A
i |Ci, ind(A)∪ind(B)) (resp. (Y B

i |Ci, ind(A)∪ind(B)))
are i.i.d with same distribution as Y A|C (resp. Y B |C).

Assumption 2 demands that the covariates explain the outcomes Y A and Y B

similarly in both databases. Notice that Assumption 2 cannot be verified from
the data. That allows us to define a relevant cost function in Section 2.2.3
below.

2.2.3 Cost function

The problem reduces to the choice of a relevant cost function between modality
pr of µ and modality qs of ν. To define such a cost, our attention restricts to
patients satisfying modality pr in database A and patients satisfying modality
qs in database B. Considering that the farther these patients are (in terms
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of distance between covariates), the more expensive the transportation is. If
assumption 2 is fulfilled then a relevant choice for the cost function is:

c(pr, qs) = 1
κr,s

nA∑
i=1

nB∑
j=1

d(Ci,Cj) I{Y A
i

=pr , Y B
j

=qs}, (4)

where κr,s =
∑nA

i=1
∑nB

j=1 I{Y A
i

=pr , Y B
j

=qs} and d is the distance between vec-
tors of covariates.

The choice of the distance d depends on the type of the covariates. This may
necessitate a preliminary transformation of the covariates. For example, in the
case of only categorical covariates were considered, we can use the Hamming dis-
tance from the associated complete disjunctive tables. In the case of continuous
covariates, one can use directly the Euclidean or Manhattan distance. Finally,
in the case of mixed covariates, we can use a distance for mixed data (e.g.
the Heterogeneous Euclidean-Overlap Metric ([2]), the Value Difference Metric
([20]), or the Mahalanobis distance) or a distance for continuous covariates on
the coordinates extracted from a factor analysis of mixed data ([15]).

3 Algorithm for variable recoding: OT-algorithm
The proposed OT-algorithm splits in two parts.

Step 1. Estimation of γ̂ the optimal joint distribution of (Y A, Y B)

• Compute the empirical distributions of µ and ν given by the estimation
âr (resp. b̂s) defined as:

âr = 1
nA

nA∑
i=1

I{Y A
i

=pr}, r = 1, . . . R

b̂s = 1
nB

nB∑
j=1

I{Y B
j

=qs}, s = 1, . . . S

Notice that Assumption 1 (defined in Section 2.2.2) insures that these
estimators are unbiased.

• Compute the matrix of distances between each pair of patients of database
A and database B (the Euclidian distance between the transformed co-
variates is used by default).

• Compute the matrix of costs for each pair of modalities (pr, qs) thanks to
equation (4).
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• As explained in Section 2.1.1 a solution is given by solving Hitchcock’s
problem statement this means a Linear programming: γ̂ is the minimum
of

γ = {γr,s, r = 1, . . . , R, s = 1, . . . , S} →
R∑

r=1

S∑
s=1

γr,s c (pr, qs)

under the following constraints

R∑
r=1

γr,s = b̂s, ∀s = 1, . . . S

S∑
s=1

γr,s = âr, ∀r = 1, . . . R

γr,s ≥ 0, ∀r = 1, . . . R, ∀s = 1, . . . S

Step 2. Affectation of a predicted value Ŷ B for each patient of
database A comes from a nearest neighbor algorithm accounting for
a distance constructed from covariates

• Compute, for any r = 1, . . . , R and s = 1, . . . , S :

Nr,s = Ent(nA × γ̂r,s)

where Ent(x) denote the integer part of x. Nr,s stands for the number of
subjects having modality pr for Y A and qs for Y B in database A.

• Consider, for any r and any s:

Nr,s =
{

(i, j)|yA
i = pr, y

B
j = qs

}
Nr = ∪S

s=1Nr,s =
{
i|yA

i = pr

}
– Consider (r̃, s̃) = argmaxr,sNr,s

– For any i ∈ Nr̃,
∗ if card(Nr̃) ≤ N(r̃,s̃) then Y B

i = qs̃ (all the subjects are recoded
in qs̃),

∗ else we have to identify which patients in Nr̃ will be recoded in
qs̃. The patients selected are the ones closer to this modality in
terms of average distance to modality qs̃ defined as:

ci(pr̃, qs̃) = 1∑nB

j=1 I{yB
j

=qs̃}

nB∑
j=1

d(Ci, Cj) I
(
yB

j = qs̃

)
,

– Remove patient that has been recoded at this step and repeat the
procedure,

– Removed patients of modality (pr̃, qs̃) and repeat the procedure.

8



4 Simulation studies
In this section the performance of the algorithm defined in Section 3 are assessed
by means of simulation studies. Database A of size nA and database B of size nB

are constructed by nA + nB random generations of the P covariates according
to predefined distributions. Denote parameter F = nB/nA, the ratio between
the sizes of the two databases. The construction of variables Y A and Y B for
the nA + nB patients depends on the generation plan. The values of Y B for
patients 1 to nA and the values of Y A for patients nA + 1 to nA + nB allow us
to assess the performances of the algorithm defined in Section 3 by comparing
these values to the predicted ones ŷB in database A (resp. ŷA in database B).

4.1 Performance of the OT-algorithm : effect of sample
size

4.1.1 Simulation design

The Optimal Transportation algorithm is based on estimated values of the
parameters of the distributions of Y A and Y B . Obviously, the sizes of the
databases are thus parameters of potential importance in the performances of
the algorithm. In order to investigate this question, a simulation study is per-
formed by considering a deterministic construction of variables Y A and Y B . As
our attention focuses on the databases sample size, P is fixed to two covariates
(C1, C2). To construct (C1, C2), consider (D1, D2) a two-dimensional Gaus-
sian distribution with mean (0, 0), cor(D1, D2) = 0.2, var(D1) = var(D2) = 1.
C1 is the discretization of D1 in two modalities and is so Bernoulli-distributed
B(π1) with π1 = 0.4, C2 is the discretization of D2 in two modalities and is so
Bernoulli-distributed B(π2) with π2 = 0.3. The construction of yA

i and yB
i for

any patient i, is defined by the following rules, which endows Y A and Y B with
three and four modalities respectively:

If C1
i = 1 and C2

i = 1 then yA
i = 3 and yB

i = 4,
If C1

i = 1 and C2
i = 0 then yA

i = 2 and yB
i = 3,

If C1
i = 0 and C2

i = 1 then yA
i = 3 and yB

i = 2,
If C1

i = 0 and C2
i = 0 then yA

i = 1 and yB
i = 1.

4.1.2 Simulation scenarios

In order to investigate the role of sample sizes nA and nB , different scenarios
are considered. First, the ratio F is fixed as 1 (well-balanced scenarios) and nA

varies over {50, 100, 500, 1000, 5000}. Second, the size nA is fixed as 1000 and
F varies over {0.25, 0.5, 0.75} (unbalanced scenarios).
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4.1.3 Results

The assessment of the performance of the OT -algorithm is evaluated by means
of the parameter Perf(OT), the Average Prediction Accuracy, defined as:

Perf(OT) = 1
nA

nA∑
i=1

I{ŷB
i

=yB
i } + 1

nB

nB∑
i=1

I{ŷA
i

=yA
i } (5)

where ŷB and ŷA are the predicted values from the OT-algorithm.

The results for well-balanced scenarios and results for unbalanced scenarios
are collected in Table 2. The results are expressed in terms of mean over 100
independent runs of the algorithm together with the corresponding standard
errors.

Table 2: Assessment of the effect of sample size on the performance of the
OT-algorithm from deterministic databases (mean ± standard error over 100
independent simulations runs). On the left, Well-balanced scenarios, varying
nA. On the right, Unbalanced scenarios varying F for nA fixed to 1000.

nA Perf(OT) F Perf(OT)

50 0.89 ± 0.06 0.25 0.95 ± 0.02

100 0.92 ± 0.04 0.50 0.96 ± 0.02

500 0.96 ± 0.02 0.75 0.97 ± 0.01

1000 0.97 ± 0.01

5000 0.99 ± 0.01

4.1.4 Conclusions

From Table 2, the average performance of the OT method increases as the
sample size nA and the ratio F increases. The average performances exceed
more than 89% in all considerated scenarios. The OT-algorithm gives better
performance in a well-balanced design than in an unbalanced context. The
OT method demonstrates acceptable performance in this deterministic context.
Since we consider an estimation problem, this is not surprising: the larger the
sample size (nA and nB) is, the better the quality of the estimates is.
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4.2 Performance of the OT-algorithm: effect of association
between covariates and outcome

4.2.1 Simulation design

By construction, the performances of the OT-algorithm are linked to the de-
pendence of Y A and Y B with the covariates. This second simulation study
highlights the link between those performances and the main parameters which
depend on the generated databases. To do so, a more complicated simulation
design is considered involving P = 3 covariates (C1, C2, C3). Those covariates
are constructed from (D1, D2, D3), a three-dimensional N ((0, 0, 0); Σ) Gaussian
distribution with:

Σ =


1 ρ δ

ρ 1 µ

δ µ 1

 .

C1 is the discretization of D1 in two modalities in order to be B(π1) Bernoulli-
distributed. C1 = I{D1>t1} where t1 is chosen such as π1 = P(D1 > t).
C2 is the discretization of D2 in three modalities in order to be M(π21, π22)
multinomially-distributed. C2 = I{t21<D2<t22} + I{D2>t22} where t21 and t22
is chosen such as π21 = P(t21 < D2 < t22) and π22 = P(D2 > t22). Finally,
C3 = D3 and is normally-distributed.

The construction of yA
i and yB

i for any patient i, is defined by the following
rules including an error term on the determination of Y A and Y B . Consider Y
to be a continuous outcome defined by:

Y = D1 +D2 +D3 + σU,

with U following a standard normal distribution. Y A is the discretization of
Y by quartiles in database A and Y B is the discretization of Y by tertiles in
database B.

The data observed are covariates (C1, C2, C3), Y A for nA subjects in database
A and Y B for nB subjects in database B.

Scenarios consists in choosing values for parameters ρ, δ, µ, π1, π21, π22, σ.
Parameters ρ, δ, µ, σ are related to the parameter R2 which measures the asso-
ciation between covariates and the outcome and is defined as:

R2 = var(D1 +D2 +D3)
var(Y ) (6)

= var(D1 +D2 +D3)
var(D1 +D2 +D3 + σU) ,

= 3 + 2ρ+ 2δ + 2µ
3 + 2ρ+ 2δ + 2µ+ σ2 . (7)
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This relation (7) allows us to calibrate the model in order to obtain a given R2

which appears to be the parameter of paramount importance for the relevancy
of the algorithm.

4.2.2 Simulation scenarios

In order to assess the performances of the algorithm as a function of the sample
size nA, the correlation between the three covariates Σ, the association measure
between the covariates and the outcome R2, different scenarios are considered:

• Scenarios (Sn) investigate the effect of the sample size nA by fixing F = 1,
R2 = 0.5, ρ = δ = µ = 0.2, π1 = 0.5, π21 = π22 = 0.3 and varying
nA ∈ {50, 100, 500, 1000, 5000}.

• Scenarios (SF) investigate the effect of the ratio F between the sample sizes
of the datasets A and B by fixing nA = 1000, R2 = 0.5, ρ = δ = µ = 0.2,
π1 = 0.5, π21 = π22 = 0.3 and varying F in {0.25, 0.5, 0.75, 1}.

• Scenarios (SR) investigate the effect of R2 by fixing nA = 1000, F =
1, ρ = δ = µ = 0.2, π1 = 0.5, π21 = π22 = 0.3 and varying R2 in
{0.2, 0.4, 0.6, 0.8}.

• Scenarios (Sρ) investigate the effect of ρ by fixing nA = 1000, F = 1,
R2 = 0.5, δ = µ = 0.2, π1 = 0.5, π21 = π22 = 0.3 and varying ρ in
{0.2, 0.4, 0.6, 0.8}.

4.2.3 Results

The assessment of the performance of the OT-algorithm is assessed by means
of the following indicators:

• Perf(OT) defined by (5)

• Perf(MICE) defined by

Perf(MICE) = 1
nA

nA∑
i=1

I(ỹB
i = yB

i ) + 1
nB

nB∑
i=1

I(ỹA
i = yA

i ). (8)

where ỹB and ỹA are the predicted values from the MICE algorithm.
This indicator plays the role of comparator to assess the performances of
MICE (Multivariate Imputation by Chained Equations) algorithm ([21]).
This algorithm generates multiple imputations for incomplete datasets by
Gibbs sampling. For a given outcome, all other columns in the database
were included as the default set of predictors to make the results compa-
rable to those obtained with the OT-algorithm. Five imputed datasets
were generated and the pooled results were retained to impute the ap-
propriate targets. The structural parts of the imputation models and the
error distributions have been specified according to the types of the co-
variates: we used the Predictive Mean Matching (pmm) method when the
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covariates were continuous and the polytomous regression method when
the covariates were categorical.

• Conc(OT,MICE) defined as

Conc(OT,MICE) = 1
nA

nA∑
i=1

I(ŷB
i = ỹB

i ) + 1
nB

nB∑
i=1

I(ŷA
i = ỹA

i ). (9)

evaluates the concordance of both algorithms.

Notice that the results are obtained by R version 3.2.5 and especially the
following packages: MICE for multiple imputation by chained equation ([21]),
FactoMineR for factor analysis of mixed data ([12]) and linprog for simplex al-
gorithm.

The results for scenarios (Sn), (SF), (SR) and (Sρ) are collected in Table 3.
The results are expressed in terms of mean over 100 independent runs of the
algorithm together with the standard error of the different indicators defined
above. The main results for simulation studies with scenarios (SI) (resp. (SR))
are summarized in Figure 2 (resp. Figure 1) which are the plots of the average
(over the 100 simulation runs) of Perf(OT) and Perf(MICE) over the coefficient
nA (resp. R2).

13



Table 3: Estimation of the performance criteria of OT and MICE algorithms to-
gether with concordance criteria. (mean ± stardard error over 100 independent
simulation runs).

(a) Scenarios (SI) varying nA and fixing F = 1, R2 = 0.5, ρ = δ =
µ = 0.2, π1 = 0.5, π21 = π21 = 0.3.

nA Perf(OT) Perf(MICE) Conc(OT,MICE)

50 0.66 ± 0.12 0.46 ± 0.10 0.51 ± 0.10

100 0.73± 0.05 0.49 ± 0.08 0.51 ± 0.09

500 0.76 ± 0.02 0.50 ± 0.03 0.51 ± 0.03

1000 0.76 ± 0.01 0.50 ± 0.03 0.51 ± 0.03

5000 0.76 ± 0.01 0.50 ± 0.01 0.51 ± 0.01

(b) Scenarios (SF) varying F and fixing nA = 1000, R2 = 0.5,
ρ = δ = µ = 0.2, π1 = 0.5, π21 = π21 = 0.3.

F Perf(OT) Perf(MICE) Conc(OT,MICE)

0.25 0.81 ± 0.02 0.52 ± 0.04 0.54 ± 0.04

0.5 0.79 ± 0.01 0.51 ± 0.03 0.53 ± 0.04

0.75 0.78 ± 0.01 0.50 ± 0.03 0.52 ± 0.03

1 0.76 ± 0.01 0.50 ± 0.02 0.51 ± 0.03

(c) Scenarios (SR) and (Sρ) by varying R2 and fixing nA = 1000,
F = 1, ρ = δ = µ = 0.2, π1 = 0.5, π21 = π21 = 0.3.

R2 Perf(OT) Perf(MICE) Conc(OT,MICE)

0.2 0.71 ± 0.01 0.36 ± 0.02 0.37 ± 0.03

0.4 0.75 ±0.01 0.46± 0.03 0.47 ± 0.03

0.6 0.78 ± 0.01 0.55 ± 0.02 0.56 ± 0.02

0.8 0.84 ± 0.01 0.66 ± 0.02 0.66 ± 0.02

(d) Scenarios (Sρ) by varying ρ and fixing nA = 1000, F = 1,
R2 = 0.5, δ = µ = 0.2, π1 = 0.5, π21 = π21 = 0.3.

ρ Perf(OT) Perf(MICE) Conc(OT,MICE)

0.2 0.77 ± 0.01 0.50 ± 0.02 0.52 ± 0.03

0.4 0.77 ± 0.01 0.51 ± 0.02 0.52 ± 0.03

0.6 0.77 ± 0.01 0.51 ± 0.02 0.52 ± 0.03

0.8 0.77 ± 0.01 0.51 ± 0.02 0.52 ± 0.03
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Figure 1: Performance of OT (in continuous line) and MICE (in dashed line)
methods (means ± standard errors) on non determinist data F = 1, R2 = 0.5,
ρ = δ = µ = 0.2, π1 = 0.5, π21 = π22 = 0.3, varying nA.
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Figure 2: Performance of OT (in continuous line) and MICE (in dashed line)
methods (means ± standard errors) on non determinist data nA = 1000, F = 1,
ρ = δ = µ = 0.2, π1 = 0.5, π21 = π22 = 0.3, varying R2.

4.2.4 Conclusions

From Table 3(a), the average performance of prediction of OT and MICE algo-
rithms, increases as the sample size nA increases in well-balanced design situa-
tions. The OT-algorithm always provides better average performances (> 66%)
than those obtained with the MICE algorithm (< 51%). The curves in Figure
2 confirm this trend. When the sample size is too small (less than 500), the av-
erage performances of both algorithms are unstable and reaches stability when
nA is greater than 500. We can approximate this sufficient sample size to obtain
reliable prediction of the average performance for the OT-algorithm in future
research. Multiplying the sample size by 100 (from nA = 50 to nA = 500),
generates a higher average performance gain for the OT-algorithm (10%) than
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for the MICE algorithm (only 4%). The concordance rates between MICE and
OT stays low (a little more than 50%) in each case and remains stable when
the sample size n varies.

From Table 3(b), the average performance of prediction of OT and MICE
algorithms decreases as the ratio F increases (5% decrease with OT and 2%
with MICE when F varies from 1 to 0.25). The concordance rates between
MICE and OT stays low (a little more than 50%) in each case but is stable
across values of the ratio F .

According to Table 3(c), the average performance of prediction of OT and
MICE algorithms decreases as the R2 increases, and the covariates better pre-
dict the outcome (13% increase with OT and 30% increase with MICE , when
R2 varies from 0.2 to 0.8). This gives opposite results than those observed in the
determinist context but is coherent with the construction of the OT-algorithm.
Figure 1 shows this difference in slope between average performances when R2

varies. We can notice that the MICE curve tends to approximate the OT per-
formance curve. The concordance rates between the two algorithms increases
as R2 increases. When the R2 criterion is close to 0.8, the average performances
are very close to those obtained in the deterministic context, because the co-
variates explain a large part of the variability of the outcome.

From Table 3(d), the average performance of prediction of the OT and MICE
algorithms remain stable as the ratio ρ increases. The variation of correlation
between covariates does not influence the average performance whatever the
used algorithm. The concordance rates between MICE and OT stay low (a
little more than 50%) in each case but remain stable as the coefficient of corre-
lation ρ varies.

To conclude, in each table, the standard errors of performance of the OT
and MICE algorithms remain stable. The OT-algorithm demonstrates a better
performance than the MICE algorithm overall. It always gives good predictions
for more than 66% of the simulated data in each scenario. Notice that "overlap-
ping issues", classical problem in classification, which appears when the values
of the covariates is the same for two different subjects and the value of outcomes
are different. This explain the 20% of subjects which are not well classified in
the best situation R2 = 0.8 and n = 1000.

5 Application to a real-life dataset: the ELFE
database

The ELFE (Etude Longitudinale Francaise depuis l’Enfance) project is a na-
tionally representative french cohort started in 2011, included more than 18 000
children, followed from birth. The aim is to explain how various contextual
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factors (such as perinatal conditions and environment) affect children’s devel-
opmental health and well-being over time, and into adulthood. During the first
baseline data collection wave (between January and April 2011), the mother’s
health status of the participating children was collected using a question ("How
would you rate your overall health") MHS containing categories on a five point
ordinal scale: "excellent", "very well", "well", "fair", "bad" which corresponds to
the standard scale used in French Cohorts. However, during the second baseline
data collection wave (May to December 2011), the health state of the mother
MHS was collected using the same question containing categories on a different
five point ordinal scale: "very well", "well", "medium" "bad" and "very bad" , the
standard scale used currently in many European cohorts (see Table 4 for details).

Table 4: ELFE study. Description of the modalities of the outcome MHS at each
wave.

MHS First wave Second wave

Modality Coding Number (%) Coding Number (%)

1 "excellent" 950 (42.54) "very well" 1834 (16.20)

2 "very well" 1047 (46.89) "well" 4374 (38.64)

3 "well" 212 (9.49) "medium" 4586 (40.51)

4 "passable" 22 (0.99) "bad" 478 (4.22)

5 "bad" 2 (0.00) "very bad" 49 (0.43)

In order to unify the database by means of a recoding of variable MHS by
OT-algorithm the data of the first wave is consider as database A (nA = 2236)
and data of the second wave is consider as database B (nB = 11324). Three
covariates coded in the same way in both databases are selected for their ability
to predict the outcomes:

• AGE (continuous): the mother’s age at baby birth in years.

• PL (categorical with six modalities): the health state of the mother and
her physical limitations reported for a duration of at least six months.

• CMH (categorical with three modalities): the chronic mother health prob-
lem at two months of baby age.

The association between the outcome and the covariates are tested inde-
pendently in each dataset by using standard chi-square tests of independence
for categorical covariates and student tests for continuous covariates. Each ob-
tained p-value is less than 10−14. The same results hold by ascending inclusion
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Table 5: ELFE study. Description of covariates at each wave. Modalities to-
gether with the numbers at each wave (%) for each categorical covariates and
mean ± standard error for continuous covariate AGE. Comparison of the distri-
bution for each covariate by means of an adequate test. The modalities for the
MHS variable are not the same at wave 1 and wave 2.

Covariate Modalities Wave 1 Wave 2 p-value

MHS 1 1047 (46.89) 5238 (46.27) 0.22

2 1002 (44.87) 5159 (45.57)

3 170 (7.61) 861 (7.61)

4 12 (0.54) 58 (0.51)

5 2 (0.09) 5 (0.04)

PL Severely limited 18 (0.81) 64 (0.57) 0.20

Limited 140(6.27) 657 (5.80)

No 2075 (92.92) 10600(93.63)

CMH Yes 285 (12.76) 1433 (12.66) 0.99

No 1948 (87.24) 9888 (87.34)

AGE 30.77 ±4.68 31.10 ± 4.80 0.002

in an ordered logistic regression.

Table 5 do not show any significant difference between covariates distribu-
tion at wave 1 and wave 2 except age. Assumption 1 is thus realistic.

The results of recoding of MHS in database A and database B by the OT-
algorithm are given by the confusion matrix between the two completed scales
and are presented in Table 6. The tridiagonal structure observed for this matrix
reflects a good re-allocation of the values from one outcome to another. The
values on the diagonal and on the first lower diagonal represents 89.2% of the
recoding.

6 Results and discussion
In this paper, OT-algorithm is introduced. That algorithm aims to recode vari-
ables. Variable recoding is an usual issues which appears when a variable is
not coded on the same scale in two different databases while merging or at two
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Table 6: ELFE study results. Confusion matrix of the recoding by means of
the OT-algorithm (number (%)). In rows, European coding, in columns, French
coding.

"very well" "well" "average" "bad" "very bad"

"excellent" 2196 (16.2) 588 (4.3) 0 (0) 0 (0) 0 (0)

"very well" 2982 (22.0) 1666 (12.3) 773 (5.7) 0 (0) 0 (0)

"well" 0 (0) 3917 (28.9) 801 (5.9) 80 (0.6) 0 (0)

"passable" 0 (0) 0 (0) 405 (3.0) 75 (0.6) 20 (0.1)

"bad" 0 (0) 0 (0) 0 (0) 51 (0.4) 0 (0)

different times while comparing. OT -algorithm splits in two step. The first step
is based on optimal transportation theory specifying the optimal numbers of
transitions from a scale to another and a second step, an allocation rule, based
on average distance between covariates.

OT-algorithm is based on two assumptions:

• First, the distribution of the variable of interest is the same in both
databases. This assumption is realistic when merging databases from two
waves of recruitment but has limitations when merging two cohorts for
example from different countries. This has already been studied in North
American NHANES study and the French National Health Survey. The
distribution of the outcome "self-rated health" is not distributed identically
in the two databases. Poor self-rated health is more frequently reported
in France ([5]).

• Second, the covariates explains the outcome in the same way in both
databases. This assumption cannot be evaluated from data but example
of situation where this assumption is not acceptable are numerous. For
example in ([5]) a comparison of the outcomes "functional limitations"
and "self-rated health" in these shows that "functional limitation" is more
strongly associated with "poor self-rated health" for the most educated
men than in the least educated in US rather than in France.

The performances of OT-algorithm has been assessed by simulations studies.
The results show that the method works very well. The performances depend
on the sample size of the databases and of the intensity of the link between co-
variates and the outcome of interest (essessed by R-square parameter). In any
situation, OT-algorithm is more accurate than a multiple imputation algorithm.
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OT-algorithm has been applied to recode a variable on real dataset where the
scales of coding are different at two different times. This investigation shows the
performance of the OT-algorithm for practical use. We have also successfully
applied our methodology to a dataset on children.
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