
HAL Id: hal-01905856
https://hal.science/hal-01905856

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermo-acoustic Instablilities
Laurent Gicquel, Franck Nicoud, Thierry Poinsot

To cite this version:
Laurent Gicquel, Franck Nicoud, Thierry Poinsot. Thermo-acoustic Instablilities. N. Swaminathan
and K. Bray. Turbulent Premixed Flames, Cambridge University Press, 2011, 9780511975226. �hal-
01905856�

https://hal.science/hal-01905856
https://hal.archives-ouvertes.fr


Lean Turbulent Premixed Flames:
Physics and Modelling

Edited by

N. Swaminathan and KNC. Bray
(Draft - March 18, 2011)



Contents

1 Instabilities in Lean Flames 1
1.1 Thermo-acoustic Instablilities . . . . . . . . . . . . . . . . . . 2

1.1.1 Basic Equations and Levels of Description . . . . . . . 2
1.1.2 LES of Compressible Reacting Flows . . . . . . . . . . 7
1.1.3 3D Helmholtz Solver . . . . . . . . . . . . . . . . . . . 17
1.1.4 Upstream/Downstream Acoustic Conditions . . . . . . 23
1.1.5 Application to an Annular Combustor . . . . . . . . . 25
1.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 34

i



ii CONTENTS



Chapter 1

Instabilities in Lean Flames

1



2 CHAPTER 1. INSTABILITIES IN LEAN FLAMES

1.1 Thermo-acoustic Instablilities
By L. Gicquel F. Nicoud & T. Poinsot

Thermo-acoustic instabilities arise from the coupling between acoustic
waves and flames and can lead to high amplitude instabilities [1, 2, 3, 4].
In general, these instabilities induce oscillations of all physical quantities
(pressure, velocities, temperature, etc.); in the most extreme cases, they can
destroy the burner by inducing large amplitude flame motion (flashback) or
unsteady pressure (material fatigue). Since the equivalence ratio oscillates
when instabilities are present, there is a general trend for combustors to be
more unstable when operating in the lean regime. Also, due to new inter-
national constraints, pollutant emissions must be reduced and gas turbine
manufacturers need to operate their systems under leaner and leaner condi-
tions. Consequently, there is a need to understand combustion instabilities
and to be able to predict them at the design level [5].

The objective of the following sections is to provide the reader with the
relevant information regarding the description, modeling and computation of
thermo-acoustic instabilities. The basic equations are first recalled in Section
1.1.1. Among the possible levels of description, two are discussed in more
details in the subsequent Sections: the Large-Eddy Simulations approach
in 1.1.2 and a 3D linear description based on the Helmholtz equation in
1.1.3. Since using appropriate acoustic boundary conditions is critical when
analyzing combustion instabilities this issue is discussed in Section 1.1.4. At
last, the different tools and approaches discussed are used in order to study
the thermo-acoustic behavior of an industrial annular combustor in section
1.1.5.

1.1.1 Basic Equations and Levels of Description

Three types of numerical or semi-analytical methods have been considered
so far to predict/describe these instabilities:

1. Large Eddy Simulation (LES) of all relevant scales of the reacting, tur-
bulent, compressible flow where the instability develops. Many recent
studies have demonstrated the ability of this method to represent the
flame dynamics [6, 7, 8, 9, 10, 11, 12], as well as the interaction between
reaction zone and acoustic waves [13, 14, 15, 16]. However, even when
simulations confirm that a combustor is unstable, LES calculations do
not say why and how to control the instability. Besides, because of
its intrinsic nature (full three-dimensional resolution of the unsteady
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Navier-Stokes equations), LES remains very CPU demanding, even on
today’s computers,

2. Low-order methods where the geometry of the combustor is modelled
by a network of homogeneous (constant density) 1D or 2D axisymmetric
acoustic elements where the acoustic problem can be solved analytically
[17, 18, 19, 20, 21, 22]. Jump relations are used to connect all these
elements, enforcing pressure continuity and mass conservation and ac-
counting for the dilatation induced by infinitely thin flame, if any. The
acoustic quantities in each segment are related to the amplitudes of
the forward and backward acoustic waves which are determined such
that all the jump relations and the boundary conditions are satisfied.
This can only be achieved for a discrete set of frequencies, ω, which
are the roots of a dispersion relation in the complex plane. The main
advantage of low-order methods is that they allow the representation of
a complex system with only a few parameters, thus allowing an exten-
sive use for pre-design/optimization/control purposes. However, the
geometrical details of the combustor cannot be accounted for and only
the first "equivalent" longitudinal or orthoradial modes are sought.

3. As an intermediate step between LES and low-order methods, one may
consider using a finite-element or finite-volume technique to solve for an
equation (or a system of equations) describing the space-time evolution
of small amplitude perturbations. A set of linear transport equations
for the perturbations of velocity, temperature and density can be de-
rived by linearizing the Navier-Stokes equations [23], where the local
unsteady heat release appears as a forcing term. The resulting system
of linear partial differential equations for the fluctuating quantities can
be solved, for example in the time domain [24]. Depending on the cou-
pling between the flame and acoustics, especially the phase between
the pressure and heat release fluctuations, some modes present in the
initial field can be amplified and grow exponentially; after a while, the
unsteady field is dominated by the most amplified mode which can then
be analyzed [24]. To facilitate the description of time delayed bound-
ary conditions and also to obtain more information about the damped
or less amplified mode, it is worth solving the set of linear equations
in the frequency space, as proposed by [25] for the wave propagation
through a complex baseline flow. If applied within the combustion in-
stability framework, this would give rise to an eigenvalue problem, the
eigenvalues being related to the (complex valued) frequencies of the
thermo-acoustic modes. Combined with LES, this approach proved
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useful to understand the structure and nature of the instabilities ob-
served in academic or industrial burners [26, 27, 15, 28].

Except when the thermo-acoustic analysis relies on LES, viscous contri-
butions are generally neglected together with the mixture inhomogeneities.
The latter assumption amounts to considering a gas mixture where all species
share the same molar weight and heat capacity which is acceptable for typical
practical flames. A direct consequence is that the difference in heat capaci-
ties r = Cp − Cv is constant even if Cp, Cv and their ratio, γ, may depend
on temperature.

Under the above assumptions, the mass, momentum and entropy equa-
tions read respectively:

Dρ

Dt
= −ρ∂u`

∂x`
, (1.1)

ρ
Du`
Dt

= − ∂p

∂x`
, (1.2)

Ds

Dt
= r

Ω̇

p
, (1.3)

where Ω̇ is the heat release per unit volume. Together with the state equation
and entropy expression

p

ρ
= rT and s− sst =

T∫
Tst

Cp(T
′)

T ′
dT ′ − r ln

(
p

pst

)
, (1.4)

these transport equations describe the spatio-temporal evolutions of all rel-
evant physical flow quantities.

Although thermo-acoustic instabilities can lead to high amplitude fluctu-
ations, it is meaningful to consider the linear regime to analyze the conditions
under which these instabilities appear. Eqs. (1.1) to (1.4) can be linearized
by considering a simple case of large scale small amplitude fluctuations, de-
noted by ′, super-imposed on a zero Mach number mean flow, denoted by an
over-bar, which depends only on space. The instantaneous pressure, density,
temperature, entropy and velocity fields can then be written as p = p + p′,
ρ = ρ+ρ′, T = T +T ′, s = s+s′ and u` = u′` where the quantities p′/p, ρ′/ρ,
T ′/T , s′/s and

√
u′`u

′
`/c are of order ε, where ε � 1 and c =

√
γp/ρ is the

mean speed of sound. Note that the zero Mach number assumption implies
that ∂p/∂x` = 0, from Eq. (1.2), and Ω̇ = 0, from Eq. (1.3), the latter condi-
tion being acceptable because only the fluctuating quantities are of interest
in the linear analysis. The same assumption also implies that the approx-
imation D/Dt ≈ ∂/∂t holds for any fluctuating quantity since u` ' 0, the
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non linear convective terms are always of second order in ε. For simplicity,
the temporal fluctuations of the heat capacities are often neglected. Inject-
ing the above expansions for the instantaneous flow quantities into Eqs (1.1)
to (1.4) and keeping only terms of order ε, one obtains the following set of
linear equations for the fluctuating quantities ρ′, u′`, s′ and p′:

∂ρ′

∂t
+ u′`

∂ρ

∂x`
+ ρ

∂u′`
∂x`

= 0, (1.5)

ρ
∂u′`
∂t

+
∂p′

∂x`
= 0, (1.6)

∂s′

∂t
+ u′`

∂s

∂x`
= r

Ω̇′

p0

. (1.7)

The linearized state equation and entropy expression are:

p′

p
− ρ′

ρ
− T ′

T
= 0 and s′ = Cp

T ′

T
− rp

′

p
. (1.8)

In order to close the set of Eqs. ( 1.5) to (1.8), a model must be used to express
the unsteady heat release Ω̇′ in terms of the other fluctuating quantities.

Flame response: Modeling the unsteady behavior of the flame is the most
challenging part in the description of thermo-acoustic instabilities [29]. Sev-
eral models have been proposed in the past to describe the response of conic
or V-shape laminar flames [30], accounting for non-linear saturation effects
[31, 32] and equivalence ratio fluctuations [33, 34]. Most models describe the
global (integrated over space) heat released in the whole flame zone. For
premixed flames, the most natural way to proceed is to relate this global
quantity to the acoustic velocity in the cold gas region upstream of the flame
region. The idea behind this approach is that the heat release is mainly con-
trolled by the fresh gas flow rate, if the flame speed is specified. The most
classical model follows seminal ideas by Crocco [35, 36] and is referred to as
the n− τ model. This 1D formulation stipulates that the global heat release
at time t is proportional to a time lagged version of the acoustic velocity at
a reference upstream position xref , usually taken at the burner mouth:

Ω̇′tot =

∫
V

Ω̇′(t) dx = Sref
γp

γ − 1
n u′(xref , t− τ). (1.9)

In this expression, the LHS term is the heat release fluctuations integrated
over the flow domain V , Sref is the cross section area of the burner mouth,
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u′ denotes the fluctuating velocity component in the direction x of the main
flow which feeds the flame, the interaction index n controls the amplitude of
the flame response to acoustic perturbations and τ is the time delay between
the acoustic perturbation and the response of the flame. This latter param-
eter controls the phase between the acoustic pressure and the unsteady heat
release in the flame zone, and thus the value of the Rayleigh index is

R =

∫
t

∫
V

p′ Ω̇′ dx dt. (1.10)

According to the classical Rayleigh criterion, flame/acoustics coupling pro-
motes the appearance of instabilities if R > 0, showing the importance of the
parameter τ in the description and prediction of thermo-acoustic instabilities.

Models for the global response of the flame are only justified for acous-
tically compact flames, where the typical length of the flame region Lf is
small compared to the characteristic acoustic wavelength La. This condition
is not always met. It is then natural to use a local flame model which relates
the local unsteady heat release to a reference acoustic velocity in the injector
mouth. The natural way to proceed is then to write:

Ω̇′(x, t)

Ω̇tot

= nu(x)
u′`(xref , t− τu(x)) nref,`

Ubulk

, (1.11)

where nu(x) and τu(x) are fields of interaction index and time lag and nref,`

are the components of a fixed unitary vector defining the direction of the
reference velocity. The scaling by the total heat release Ω̇tot and the bulk
velocity Ubulk have been used to make sure that nu(x) has no dimension.
Obviously this modeling approach allows more degrees of freedom than any
global model to represent the actual response of a typical industrial flame
(two fields of parameters instead of two real numbers). However, a large
amount of pointwise data is required to tune such models and for obvious
technological reasons these data can hardly be obtained experimentally. As
discussed in section 1.1.2, the alternative is then to use compressible reacting
LES to investigate the response of a turbulent flame submitted to acoustic
perturbations.

Using the local flame model given in Eq. (1.11), the transport equation
for s′, Eq. (1.7), can be re-written as:

∂s′

∂t
+ u′`

∂s

∂x`
=
r

p

Ω̇tot

Ubulk

nu(x) u′`(xref , t− τu(x)) nref,`, (1.12)

and the set of Eqs. (1.5) to (1.12) can be solved to determine the thermo-
acoustic properties of the system.
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1.1.2 LES of Compressible Reacting Flows

LES [37, 38] is nowadays recognized as an intermediate approach to the more
classical Reynolds Averaged Navier-Stokes (RANS) methodologies [38, 39].
Although conceptually very different these two approaches aim at provid-
ing new systems of governing equations to mimic the characteristics of tur-
bulent flows. Recent studies using LES have shown the potential of this
approach for reacting flows (see reviews in [12] or [40]). LES is able to
predict mixing [16, 41, 42, 43, 44], stable flame behaviour [45, 46, 47, 48]
and flame acoustic interaction [16, 49, 50, 51]. It is also used for flame
transfer function evaluation [27, 52, 53] needed for Helmholtz solvers (see
subsection refsubsec:3DHelm). Although LES seems very promising for in-
dustrial applications, it remains computationally too intensive to integrate
in the design cycle of the next generation of gas turbines. For example a
typical single-sector LES computation as presented below usually costs of
the order of 50, 000 CPU-hours. Helmholtz solvers, on the other hand, offer
great flexibility and allow the prediction of combustion instabilities while de-
signing new combustion chambers. The computional cost with this approach
and for the complete combustion chamber is more of the order of 200 CPU-
hours It is also important to note that while most academic set ups used
to study combustion instabilities [5, 40, 54, 55] are limited to single burners
and are subjected mainly to longitudinal acoustic modes, real gas turbines
exhibit mostly azimuthal modes [18, 56, 57] due to the annular shape of their
chambers [5].

The governing equations for RANS and LES are respectively obtained by
ensemble averaging [38, 39] and filtering the set of compressible Navier-Stokes
equations. These operations yield unclosed terms which are to be modelled.
In RANS, the unclosed terms are representative of the physics taking place
over the entire range of frequencies present in the ensemble of realizations
used for averaging. In LES, the operator is a spatially localized time inde-
pendent filter of given size, 4, to be applied to a single realization of the
studied flow. Resulting from this "spatial average" is a separation between
the large (greater than the filter size) and small (smaller than the filter size)
scales. The unclosed terms are representative of the physics associated with
the small structures (with high frequencies) present in the flow. Figure 1.1
illustrates the conceptual differences between (a) RANS and (b) LES when
applied to a homogeneous isotropic turbulent field.

Due to the filtering approach, LES allows a dynamic representation of the
large scale motions whose contributions are critical in complex geometries.
The LES predictions of complex turbulent flows are henceforth closer to
the physics since large scale phenomena such as large vortex shedding and
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(a) (b)

Figure 1.1: Conceptual representation of (a) RANS and (b) LES applied to
a homogeneous isotropic turbulent field.

acoustic waves are embedded in the set of governing equations [40].
For the reasons presented above, LES has a clear potential in predict-

ing turbulent flows encountered in industrial applications especially in the
context of thermo-acoustic instabilities. In particular and in conjunction
with Helmholtz solvers, LES can provide the estimation and validation of
the model used to represent the thermo-acoustic coupling: i.e. the Flame
Transfer Function (FTF).

The LES Sub-Grid Scale (SGS) models: LES for reacting flows in-
volves the spatial Favre filtering operation that reduces for spatially, tempo-
rally invariant and localised filter functions [58, 59] to,

f̃(x, t) =
1

ρ(x, t)

+∞∫
−∞

ρ(x′, t) f(x′, t)G(x′ − x) dx′, (1.13)

where G denotes the filter function.
In the mathematical description of compressible turbulent flows with

chemical reactions and species transport, the primary variables are the species
densities ρi(x, t), the velocity vector u`(x, t), the total energy E(x, t) ≡
es + 1/2 u`u` and the fluid density ρ(x, t) =

∑N
i=1 ρi(x, t).

The application of the filtering operation to the instantaneous set of com-
pressible Navier-Stokes transport equations with chemical reactions yields
the LES transport equations [40] which contain the so-called Sub-Grid Scale
(SGS) quantities that need modelling [37, 60].
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The SGS velocity stress tensor :
The unresolved SGS stress tensor τij t, is modelled using the Boussinesq as-
sumption [61, 38, 39]:

τij
t− 1

3
τ``

t δij = −2 ρ νt S̃ij, with, S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3

∂ũ`
∂x`

δij. (1.14)

In Eq. (1.14), S̃ij is the resolved strain rate tensor and νt is the SGS turbulent
viscosity.

Most SGS turbulent viscosity model [61, 62, 63, 64] take on the generic
form,

νSGS = Cm∆2OP (x, t), (1.15)

where Cm is the constant of the model, ∆ is the subgrid characteristic length
scale (in practice the size of the mesh) and OP is an operator of space and
time, homogeneous to a frequency, and defined from the resolved fields.

The SGS species and energy flux models :
The SGS species flux J i`

t
and the SGS energy flux q`

t are, in most cases,
respectively modelled by use of the species SGS turbulent diffusivity Di

t =
νt/Sc

i
t, where Scit is the turbulent Schmidt number (= 0.7 for all i). The

SGS thermal conductivity for energy flux is also obtained from νt by λt =
ρ νt Cp/Prt where Prt is a turbulent Prandtl number (= 0.7),

J i`
t

= −ρ

(
Di
t

Wi

W

∂X̃i

∂x`
− Ỹi V c

`

)
, with, q`t = −λt

∂T̃

∂x`
+

N∑
i=1

J i`
t
h̃is. (1.16)

In Eq. (1.16), the mixture molecular weight W and the species molecular
weight Wi can be combined with the species mass fraction to yield the ex-
pression for the molar fraction of species i: Xi = YiW/Wi. V c

` is the diffusion
correction velocity resulting from the Hirschfelder and Curtiss approxima-
tion [40] and T̃ is the Favre filtered temperature which satisfies the modified
filtered state equation p = ρ r T̃ [65, 66]. Finally, h̃is stands for the enthalpy
of species i. Note that the performances of the closures could be improved
using dynamic formulations described in [65, 62, 67, 68, 69].

The Dynamic Thickened Flame (DTF) model :
LES of turbulent reacting flows imply the modelling of SGS combustion
terms. One model employed in the context of thermo-acoustic instabilites
is the Thickened Flame (TF) model [9]. Following the theory of laminar
premixed flames [70], the flame speed SoL and the flame thickness δoL may be
expressed as,

SoL ∝
√
α A , and, δoL ∝

α

SoL
=

√
α

A
, (1.17)
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where α is the thermal diffusivity and A the pre-exponential constant of the
reaction rate. Increasing the thermal diffusivity by a factor F , the flame
speed is kept unchanged if the pre-exponential factor is decreased by the
same factor [71]. This increases the flame thickness by factor F which is
easily resolvable on a coarser mesh. Additional information needs however
to be supplied to reproduce the effect of turbulence–chemistry interaction at
the subgrid-scales [72, 13, 73]. This is the intent of the so-called efficiency
function, E [9]. When thickening is applied everywhere in the flow, the
model is limited to fully premixed combustion. If mixing is present then
thickening will strongly interfere with the physics by increasing the diffusion
artificially everywhere in the flow. Thus, diffusion flames are inappropriate
configurations for such an approach. To compute partially premixed or non-
premixed flames [40], a modified version of the Thickened Flame model (TF)
is used [73, 26, 16, 74]: the Dynamic Thickened Flame model (DTF).

With the DTF model, the SGS fluxes are modified to become:

J i`
t

= −(1−S)ρDi
t

Wi

W

∂X̃i

∂x`
+ρ ỸiV

c
` , with, q`

t = −(1−S)λt
∂T̃

∂x`
+

N∑
i=1

J i`
t
h̃is,

(1.18)
where S is a sensor detecting reaction zones: i.e. derived from an Arrhenius
type of law for example. The local thickening factor depends on the local
mesh size: typically thickening must ensure that enough points are present
in the flame zone and the thickening factor F is given by,

F = 1 + (Fmax − 1) S, and, Fmax =
Nc

∆x

δoL, (1.19)

where Nc is the number of grid points, typically 5 to 10, used to resolve the
flame front and ∆x is the local mesh spacing.

Although this approach is still being developed and further validations
are needed, its ease of implementation and it success in prior applications [26,
16, 75, 74, 28] suggest its suitability for the problem of thermo-acoustic in-
stabilities such as presented in this chapter.

Numerical issues in LES solvers: In many cases, turbulence results
from the development, amplification and saturation of unstable hydrody-
namic modes of the main flow. Any numerical method used to compute such
flow must therefore be able to represent the growth of these modes: i.e. it
must not be too dissipative. In high-Reynolds number flows, the scale sep-
aration can be large (the integral to Kolmogorov length scale ratio is Re3/4,
with Re = k2/(νε), where k is the turbulent kinetic energy, ν the kinematic
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viscosity and ε the rate of turbulent kinetic energy dissipation), and it is
worth minimizing the number of grid point necessary to represent the small-
est scales. Finally, the effective dissipation at the Kolmogorov scale must
not be over estimated if the actual flow Reynolds number is to be accounted
for (with Re = k2/(νε), any extra dissipation decreases Re). Numerics, es-
pecially in the context of LES, faces an important constraint: i.e. numerical
dissipation must be as small as possible for all the length scales present in
the flow. Such a constraint is the reason why spectral methods [76] have
been considered, until the early 90’s, as the only appropriate methods for
performing DNS or LES of turbulent flows. However, in the case of com-
plex geometries or boundary conditions, spectral methods cannot be used
and the simulations must be based on either finite-volume, finite-element or
finite-difference methods. The three methods can be used for unsteady simu-
lations as long as appropriate spatial and temporal time stepping procedures
are used.

As mentioned earlier, the numerical error must be controlled and mini-
mized for all length scales present in the unsteady flow to be computed. This
means that the accuracy of a numerical scheme cannot simply be reduced to
its order of accuracy. As far as unsteady flow computations are concerned,
it is necessary to perform a wavelength based numerical analysis where one
considers a harmonic perturbation and compares how the discrete and the
exact derivatives operate on this perturbation [77]. The effective-to-exact
wavenumber ratio, κ′/κ, can be used to quantify the errors related to the
numerical scheme. Considering the simple linear convection equation, this
ratio can be interpreted as an error in the speed of propagation of a pertur-
bation of wavelength κ. In a general case, κ′/κ can be written in the form
κ′/κ = E(κ∆x) = Er(κ∆x) + i Ei(κ∆x) and the effective equation solved
numerically reads,

∂f

∂t
+ u0 E(κ∆x)

∂f

∂x
= 0. (1.20)

Assuming that the initial condition is f(x, t = 0) = exp(iκ), the exact solu-
tion of Eq. (1.20), or equivalently the solution for the linear convection equa-
tion provided by the numerical scheme (with perfect time advancement), is
simply,

f(x, t > 0) = exp [κ Ei(κ∆x) u0 t] exp [iκ (x− Er(κ∆x) u0 t)] . (1.21)

When κ∆x tends to zero or the number of grid point per wavelength tends
to infinity, κ′/κ = E(κ∆x) tends to unity and the exact solution is recov-
ered: i.e. exp (i κ (x− u0 t)). When the imaginary part of κ′/κ is not zero,
Ei(κ∆x) 6= 0, the amplitude of the harmonic perturbation is not conserved; it
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FD name Er Ei

[fi − fi−1]/∆x 1st order upwind [sin(κ∆x)]/κ∆x [cos(κ∆x)− 1]/κ∆x
[fi+1 − fi−1]/2∆x 2nd order centered [sin(κ∆x)]/κ∆x 0

[3fi − 4fi−1 + fi−2]/2∆x 2nd order upwind [sin(κ∆x)][2− cos(κ∆x)]/κ∆x −[cos(2κ∆x)− 4 cos(κ∆x) + 3]/κ∆x
[−fi+2 + 8fi+1 − 8fi−1 + fi−2]/12∆x 4th order centered [sin(κ∆x)][4− cos(κ∆x)]/3κ∆x 0

Table 1.1: Classical finite difference formula for the spatial first derivative
and associated error.

0 0.5 1 1.5 2 2.5 3
0
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1.5

k ! x
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[E
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 x
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[E

(k
 !

 x
)]

Figure 1.2: Effective-to-exact wavelength ratios for the schemes displayed in
Table. 1.1. The imaginary part (right plot) is zero for centered schemes. The
1st order upwind and the 2nd order centered schemes share the same real
part (left plot). These graphs can be interpreted as the effective-to-exact
convection velocity ratio, or as the effective-to-exact first derivative ratio.
The legend goes as: 2nd order centered, continuous line; 4th order centered,
dash line; 2nd order upwind, dot-dash line.

is damped if Ei(κ∆x) < 0 and unbounded if Ei(κ∆x) > 0. The effective-to-
exact wavelength ratios of some classical finite difference schemes are reported
in Table. 1.1 and plotted in Fig. 1.2.

Centered finite difference schemes have real valued κ′/κ ratio and thus
are non dissipative, whatever their order is. This property is not shared by
the biased schemes which all introduce dissipation. Note also that a property
shared by all finite difference schemes is that they cannot propagate wiggles
accurately (E(π) = 0).

The same analysis can be performed for second derivative schemes for
which κ′2/κ2 ratios are of interest. For LES, the effective energy dissipation
issued by second-order derivatives at the small scales cannot be close to zero,
whatever the SGS model is. Indeed, the energy flux from the largest to the
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smallest scales should be balanced to avoid an energy accumulation at the
smallest resolved scales [78].

A key issue when performing LES of turbulent flows is the necessity to
use virtually non-dissipative schemes to handle flow fields which contain a
lot of energy at large wave numbers. Since numerical errors are large for the
smallest scales, the risk for such computation to run unstable is high. As far
as incompressible Navier-Stokes equations are concerned, experience shows
that the kinetic energy must be conserved if a stable and dissipation-free nu-
merical method is sought. Indeed, such property ensures that the sum of the
square of the velocities cannot grow, even through non-linear interactions
between modes exist: a numerical scheme which conserves kinetic energy
cannot lead to unbounded growth of oscillations [79, 80, 81, 82]. It should be
noted that the concept of kinetic energy conservation is only valid for incom-
pressible or low-Mach number flows. Since the extension of this principle to
compressible situations is quite difficult [83], one usually relies on numerical
stabilization via artificial viscosity to stabilize LES of such flows [84, 85].

To conclude on LES and the difficulties of the approach, modelling is
clearly needed for the problem to be solved adequately from a purely math-
ematical and physical point of view. Numerics is however crucial and is also
to be adequately addressed so as to properly qualify the modelling strat-
egy at hand. Fundamental issues such as error propagation and cancellation
are still not clear in LES codes. Parallelization and associated alogorithms
are another difficulty which emphasize the need for careful validation and
developments of such tools.

Flame transfer function based on LES: evaluation and validation:
To predict and avoid combustion instabilities [40, 86, 54, 55], a well-known
method is the identification of the combustion chamber response or Flame
Transfer Function (FTF) to acoustic waves introduced in the combustor us-
ing loudspeakers or rotating valves. This identification of the FTF is usually
performed either numerically or experimentally. Two methods may be found
in the literature to analyze this response: the Purely Acoustic (PA) ap-
proach [87, 88, 89, 90, 91] and the n− τ approach [35, 36, 40, 92, 93, 94]. In
the PA approach, the burner is considered as a "black box" and a two-ports
formulation (based on acoustic pressure and velocity perturbations) is used
to construct a transfer matrix linking acoustic fluctuations on both sides of
the burner. In the n − τ approach, pressure measurements are replaced by
a global heat release measurement (usually based on optical methods). The
heat release fluctuations are then related to the flow velocity modulations at
the combustor inlet. Both PA and n − τ methods can be used experimen-
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tally or numerically. Numerical experiments comparing FTF results show
that the n − τ approach often leads to an ill-defined problem where the
measured transfer function depends on acoustic impedances upstream and
downstream of the combustor.

The essential drawback of the original n − τ model comes from the fact
that it tries to correlate heat release perturbations to velocity perturbations
only. With the FTF model presented in [95] (called "extended n − τ"), a
consistent formulation can be used for any location of the reference point by
introducing the effects of pressure perturbation on heat release: The FTF
model is formulated using the local unsteady pressure and velocity measured
upstream of the flame,

Ω̇′

Ω̇tot

= Au
u′(xa, t− τu)

c
+ Ap

p′(xa, t− τp)
p

, (1.22)

where the unsteady velocity, pressure and heat release are scaled respectively
by the sound speed c, the mean pressure p and the mean integrated heat
release Ω̇tot =

∫
V

Ω̇(x) dx.1 Equation (1.22) contains four unknowns Au, Ap,
τu and τp which depend on the point where velocity and pressure fluctuations
are measured. These parameters may be determined when adding a new state
to have enough equations exactly as in the PA method.

Figure 1.3: Schematic view of the laminar premixed flame configuration used
to validate the PA and extended n− τ models.

1Assuming that all the fuel is burnt Ω̇tot may be estimated using the fuel mass flow
rate ṁF and the heat of reaction Q:

Ω̇tot = Q ṁF (1.23)



1.1. THERMO-ACOUSTIC INSTABLILITIES 15

(a) (b)

(c) (d)

Figure 1.4: The four coefficients of the transfer matrixM of a laminar burner
for different positions of the reference point xa. Solid line: absolute value;
dashed line: phase [rad]. Line and symbols: PA; line: extended n− τ [95].

It is possible to demonstrate that the extended n−τ model is fully compatible
with the PA approach [95] as illustrated in Fig. 1.4 which compares two
matrices constructed from the PA (lines with circles) and extended n − τ
(solid line) models for a simple laminar premixed flame stabilized in a duct
as shown in Fig. 1.3.

The concept of FTF and its modeling being clearly defined in the context
of the PA or extended n − τ formalisms [95], two options are available for
its estimation: laboratory measurements or numerical simulations. In the
former, turbulent closure and combustion models are introduced and vali-
dation of the FTF is needed. For real turbulent flow configurations, two
approaches are conceptually able to produce estimates of the FTF: RANS
(or more suitably Unsteady RANS) and LES. Figure 1.6 compares numerical
predictions [52] and experimental measurements of the FTF using the origi-
nal n − τ model [40, 96] in a gas turbine configuration with turbulent flow,
shown in Fig. 1.5. Experimental results are given by the phase comparison
between the signal given by a photomultiplier (with a OH* frequency filter)



16 CHAPTER 1. INSTABILITIES IN LEAN FLAMES

Figure 1.5: Forced turbulent premixed flame in a real gas turbine configu-
ration: iso-surface of heat release colored by the local value of the delay as
estimate with LES and the classical n− τ model [52].

which is directly linked to heat release, and a hot wire probe velocity signal at
the inlet of the combustion chamber. Values of the LES phase φω = −τω ∗ ω
(where ω = 2π f is the the angular frequency, f the frequency and τω is the
time delay) are in good agreement with experimental values (Fig. 1.6) and
confirm the potential of LES when compared to RANS.

The differences between RANS and LES show that the heat release fluc-
tuations are not solely linked to the convection of an initial perturbation but
can result from a complex interaction between acoustics and the flow in the
chamber. That observation supports the need for a fully spatially and tem-
porally dependent numerical approach for a proper numerical estimation of
the FTF. As of today, only LES seems able to provide such a comprehensive
framework as illustrated on real applications.
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Figure 1.6: Comparison of LES, RANS and experiment phases [52].

1.1.3 3D Helmholtz Solver

Despite the potentials of LES, simpler and faster methods are often needed
to design stable combustors. Solving the wave equation in reacting flow
and identifying linearly unstable modes is such a technique and is found in
Helmholtz solvers. These tools offer great flexibility and permit the predic-
tion of combustion instabilities beforehand while designing the new combus-
tion chambers. As noted earlier, while most academic set ups used to study
combustion instabilities [5, 40, 54, 55] are limited to single burners and are
subjected mainly to longitudinal acoustic modes, real gas turbines exhibit
mostly azimuthal modes [18, 56, 57] due to the annular shape of their cham-
bers [5] for which LES is very difficult and expensive to use while Helmholtz
solver can be applied economically. This section presents the required wave
equation and its solution methodology using linear algebra techniques.

Wave equation: Taking the time derivative of Eq. (1.5), adding the di-
vergence of Eq. (1.6) and using Eqs. (1.7) and (1.8) to eliminate ρ′ yields the
following wave equation for p′,

∂

∂x`

(
1

ρ

∂p′

∂x`

)
− 1

γp

∂2p′

∂t2
= −γ − 1

γp

∂Ω̇′

∂t
, (1.24)
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when the Mach number of the mean flow is zero (i.e., u`/c = 0). An order of
magnitude analysis suggests that this assumption (u` ' 0) is valid when the
characteristic Mach numberM =

√
u`u`/c of the mean flow is small compared

to Lf/La where Lf is the flame zone thickness and La is the typical acoustic
wavelength [97]. However, the effect of the approximation M ' 0 on the
shape, frequency of oscillation and stability of the thermo-acoustic modes
is far from being well understood [98, 99, 100, 101, 102]. Recent studies
suggest that the validity domain of the zero mean flow assumption might
be rather small [103]. Nevertheless, this somewhat restrictive assumption is
necessary to derive a wave equation for the thermo-acoustic perturbations.
This situation is different for classical aeroacoustics where combustion is
not present and where a wave equation for the perturbation potential can
be derived if the baseline flow is assumed homentropic and irrotational [104].
Since assuming the mean flow to be homentropic is not realistic when dealing
with combustion instabilities, assuming that the mean flow is at rest is the
most convenient way to simplify the formalism, the alternative being to deal
with the complete set of Linearized Euler Equations [25, 103].

Equation (1.24) being linear, it is natural to introduce harmonic varia-
tions at frequency f = ω/(2π) for pressure, velocity and local heat release
perturbations,

p′ = < (p̂(x) exp(−j ωt)) ,
u′` = < (û`(x) exp(−j ωt)) , (1.25)

Ω̇′ = <
(

ˆ̇Ω(x) exp(−j ωt)
)
.

Introducing Eq. (1.25) into Eq. (1.24) leads to the following Helmholtz equa-
tion,

∂

∂x`

(
1

ρ

∂p̂

∂x`

)
+
ω2

γp
p̂ = j ω

γ − 1

γp0

ˆ̇Ω(x), (1.26)

where ρ and γ depend on the space variable x and the unknown quantities
are the complex amplitude p̂(x) of the pressure oscillation at frequency f
and angular frequency ω. In the frequency space, the zero Mach number
assumption leads to j ω û` = (∂p̂/∂x`)/ρ and the flame model, Eq. (1.11),
translates into,

ˆ̇Ω(x) =
Ω̇tot

j ω ρ(xref) Ubulk

nu(x) ej ω τu(x)∂p̂(xref)

∂xk
nref,k. (1.27)

Introducing Eq. (1.27) into Eq. (1.26) leads to,

∂

∂x`

(
1

ρ

∂p̂

∂x`

)
+
ω2

γp
p̂ =

γ − 1

γp

Ω̇tot

ρ(xref)Ubulk

nu(x)ej ω τu(x)∂p̂(xref)

∂xk
nref,k.(1.28)
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The applications discussed in references [26, 27, 105] as well as in section 1.1.5
are based on the solution of Eq. (1.28) but the methodologies developed can
be applied to a more general case where the complex amplitude of the heat
release is given by [97]:

ˆ̇Ω(x) = L̂u

[
∂p̂(x)

∂x`

]
+ L̂p [p̂(x)] , (1.29)

where L̂p and L̂u are two linear operators acting on p̂ and its gradient respec-
tively. Of course the general formulation Eq. (1.29) has potential to include
more physical effects than the local n − τ model described by Eqs. (1.11)
and (1.27). Notably, it allows relating the unsteady heat release to the com-
plete acoustic field at the reference position xref instead of the velocity field
only, consistently with the matrix identification approach for flame model-
ing [106, 107] (see also Eq. (1.22)). Although the effects of the acoustic
pressure are often neglected in flame transfer formulations, relating the un-
steady heat release to the complete acoustic field (velocity and pressure) is
highly desirable for cases where the flame is not compact or when its distance
to the injector mouth is not small compared to the acoustic wavelength [95].

Boundary conditions: Denoting by nBC = (nBC,1, nBC,2, nBC,3) the out-
ward unit normal vector to the boundary ∂Ω of the flow domain, three types
of boundary conditions are usually used for acoustics:

• Zero pressure: this corresponds to fully reflecting outlets where the
outside pressure is imposed strongly at the flow boundary, zeroing the
pressure fluctuations:

p̂ = 0, on boundary ∂ΩD, (1.30)

where the subscript D in ∂ΩD refers to the subset of ∂Ω where this
Dirichlet boundary condition holds.

• Zero normal velocity, viz. ûk nBC,k = 0: this corresponds to fully
rigid walls or reflecting inlets where the velocity of the incoming flow
is imposed, zeroing the velocity fluctuations. Under the zero Mach
number assumption, Eq. (1.6) can be used to re-write this condition as
a Neumann condition for the acoustic pressure:

∂p̂

∂xk
nBC,k = 0, on boundary ∂ΩN , (1.31)

where the subscript N in ∂ΩN refers to the subset of ∂Ω where this
Neumann boundary condition holds.
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• Imposed reduced complex impedance Z = p̂/ρc ûk nBC,k. Under the
zero Mach number assumption, this condition can be re-written as a
linear relationship between the acoustic pressure and its gradient in the
normal direction to the boundary:

cZ
∂p̂

∂x`
nBC,` − j ω p̂ = 0, on boundary ∂ΩZ , (1.32)

where the subscript Z in ∂ΩZ refers to the subset of ∂Ω where the
reduced impedance is imposed.

Associated with the homogeneous boundary conditions (1.30), (1.31) and
(1.32) on ∂Ω = ∂ΩD

⋃
∂ΩN

⋃
∂ΩZ , Eq. (1.28) defines a non-linear eigenvalue

problem whose solutions provide the shape, frequency and growing/damping
rate of the relevant thermo-acoustic modes.

Assuming that the sound speed c and the density ρ distributions over
space are known, Eq. (1.28) can be solved using a Galerkin finite-element
method to transform this equation into a nonlinear eigenvalue problem of
size N (the number of nodes in the finite element grid used to discretize the
geometry, except those nodes belonging to ∂ΩD where p̂ = 0 is known) of
the form,

[A][P ] + ω[B(ω)][P ] + ω2[C][P ] = [D(ω)][P ], (1.33)

where [P ] is the column vector containing the nodal values of the eigenmode
at frequency ω and [A] and [C] are square matrices depending only on the
discretized geometry of the combustor and mean flow fields c and ρ. Matrix
[B] contains information related to the boundary conditions and thus depends
on ω since in general Z is frequency dependent. Matrix [D] contains the
unsteady contribution of the flame, i.e., Ω̇′, and usually depends non-linearly
on the mode frequency ω, see Eq. (1.27). Thus, Eq. (1.33) defines a non-
linear eigenvalue problem which must be solved iteratively, the kth iteration
consisting in solving the quadratic eigenvalue problem in ωk defined as,

([A]− [D(ωk−1)]) [P ] + ωk[B(ωk−1)][P ] + ω2
k[C][P ] = 0. (1.34)

A natural initialization is to set [D](ω0) = 0 so that the computation of the
modes without acoustic/flame coupling is in fact the first step of the iteration
loop. Usually, only a few (typically less than 5) iterations are enough to
converge toward the complex frequency and associated mode.

Note that a quadratic problem must be solved at each iteration Eq. (1.34).
These problems are rather well known from a theoretical point of view; they
can be efficiently solved numerically once converted into an equivalent linear
problem of size 2 ×N [108], for example by making use of a parallel imple-
mentation of the Arnoldi method [109] available in the P-ARPACK library.
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Another option is to solve the quadratic eigenvalue problem directly without
linearizing it; a specific algorithm must then be used instead of the Arnoldi
approach. A good candidate is the Jacobi-Davidson method [110] which has
recently been applied successfully to combustion instability problems [111].
Another way to proceed is to define the kth iteration in the following way:

([A]− [D(ωk−1)] + ωk−1[B(ωk−1)]) [P ] + ω2
k[C][P ] = 0, (1.35)

so that a linear eigenvalue problem must be solved at each sub-iteration
and the classical Arnoldi iterative method [109] can be used. This latter
formulation showed good potential for large scale problems (N of order 106)
arising from the thermo-acoustic analysis of annular combustors [112]. More
details can be found in [97].

Accounting for dissipative effects: The linear formulation described
above is dissipation-free since no damping terms have been taken into ac-
count for its derivation (except for the acoustic radiation at boundaries which
can be modeled via a complex valued impedance). However, damping effects
should be included in some practical cases, for example when dealing with
modern combustors for which perforated liners are increasingly used. Multi-
perforated plates (MP) are widely used in combustion chambers of turbofan
engines to cool the chambers walls exposed to high temperatures [113]. These
plates consist of submillimeter apertures, across which the mean pressure
jump forces a cold jet through the holes, from the casing into the combustion
chamber. The micro-jets then coalesce to form a cooling film. Due to the
tiny diameter of the perforations, the holes cannot be meshed for numeri-
cal computations and a model is required for the effect of perforated plates.
This problem is encountered not only in CFD calculations [114, 115], but
also while computing acoustic modes of combustion chamber. Indeed, MP
are known to have a damping effect on acoustics [116, 117], which is enhanced
by the presence of a mean bias flow [118]. Acoustic waves interact with the
shear layer, creating a vortex breakdown at the rims of the apertures [119],
which converts part of the acoustic energy into vortical energy (see Fig. 1.7).
To study the acoustic behavior of such a device, it is useful to introduce
the Rayleigh conductivity KR [120] of the aperture, relating the harmonic
volume flux Q̂ to the acoustic pressure jump across the plate:

KR =
j ω ρQ̂

p̂+ − p̂−
, (1.36)

where p̂+ and p̂− are the harmonic pressures upstream and downstream of
the aperture respectively. Of course the following equation holds:

Q̂ = d2û±, (1.37)



22 CHAPTER 1. INSTABILITIES IN LEAN FLAMES

Figure 1.7: Array of circular apertures, of diameter 2a and aperture spacing
d, with a bias flow of speed U .

where û± is the acoustic velocity on the plate, equal on both sides. Hence,

KR =
j ω ρd2û±

p̂+ − p̂−
. (1.38)

Howe expressed the Rayleigh conductivity for a circular aperture in an in-
finitely thin plate [117] as:

KR = 2a(ΓR − j∆R), (1.39)

where

ΓR − j∆R = 1 +
π
2
I1(St)e

−St − jK1(St)sinh(St)

St(π
2
I1(St)e−St + jK1(St)cosh(St))

, (1.40)

with St as the Strouhal number defined by ωa/U . Using the momentum
equation and Eq. (1.38), one obtains:

∂p̂

∂x`
n` =

KR

d2
[p̂+ − p̂−] (1.41)

This simple analytical model showed good agreement with experiments [118]
at least in the linear limit [121]. Improvements of this model have been
made to include the plate thickness [122] and the interaction between the
apertures [123].
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When using a linear Helmholtz solver to compute the modes of a thermo-
acoustic system, Eq. (1.41) can be used as a Neumann boundary condition
at both sides of a multi-perforated plate present in the computational do-
main: once the geometrical properties of the plate (a, d) have been selected
together with the bias flow velocity (U), Eqs. (1.39), (1.40) and (1.41) can
be used to express the pressure gradient normal to the multiperforated plate
as a function of the angular frequency ω. A numerical procedure similar to
the one used for accounting for complex valued impedance (see section 1.1.3)
can then be used to solve the eigenvalue problem. This allows us to account
for the acoustic damping related to the acoustic-to-vortical energy transfer
while keeping an inviscid formulation based on the zero Mach number as-
sumption [112].

1.1.4 Upstream/Downstream Acoustic Conditions

In practical applications, the combustion chamber where the zero Mach num-
ber thermo-acoustic analysis is relevant is surrounded by decelerated/accelerated
regions. Thus, upstream and downstream boundary conditions must be pre-
scribed in order to account for the acoustic impedance of the compressor and
turbine stages. These complex valued impedances can be assessed analyti-
cally under the so-called compact assumption discussed next or numerically
in the more general case.

Acoustic impedance under the compact assumption: In the low fre-
quency limit, the acoustic wavelength is much larger than the characteristic
length of the upstream and downstream devices which surround the com-
bustor. Using the mass, energy and entropy conservations, Marble and Can-
del [124] established the relations linking the different perturbations in the
case of planar waves traveling throughout quasi-1D devices (some analyti-
cal results can also be obtained in the case of circumferential modes in a
choked nozzle [125] or for 2D baseline flows [126]). For example, one can
show analytically that the reflexion coefficient of a compact choked nozzle
equals:

1− (γ − 1)M/2

1 + (γ − 1)M/2
, (1.42)

where M is the Mach number of the flow entering the nozzle. More details
regarding the analytical treatment can be found in the references cited above
as well as in [127].
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Figure 1.10: Definition of the flow domain for the derivation of the quasi-1D
approximation.

2. impose a non zero forward propagating acoustic wave at the inlet sec-

tion Sin. The corresponding boundary condition relates p̂ and û at

x = xin, viz.

2A+exp
(
jk+xin

)
= p̂ + ρcû,

where A+exp (jkx) stands for the forward propagating wave, k = ω/c

is the acoustic wave number and A+ is the associated pre-exponential

factors which is set to any non zero value to ensure that the inlet

condition is non homogeneous,

3. define the appropriate boundary condition to be prescribed at the outlet

section depending on whether the mean flow is subsonic or supersonic,

typically imposed pressure or no boundary condition respectively,

4. solve the corresponding linear system Eq. 1.62,

5. compute the acoustic equivalent impedance as Zin = p̂/ρcû assessed at

x = xin.

Note that when the mean flow is subsonic, there is a backward propagat-

ing wave entering the domain through the outlet section Sout so that an outlet

Figure 1.8: Quasi-1D flow domain for the computation of impedance.

Acoustic impedance of non-compact elements: A numerical approach
can also be used to compute the acoustic impedance of diffusers/nozzles un-
der the isentropic mean flow assumption [128]; it can be seen as a way to
extend previous analytical results [124] to non compact nozzles. The appro-
priate equations to be considered are the quasi-1D linearized Euler equations
written in the frequency space and under the constant mean entropy as-
sumption. Once discretized, these equations can be converted into an linear
algebraic system:

[A][V ] = [BT ], (1.43)

where [V ] is the discrete counterpart of the vector of acoustic unknowns
V = (ρ̂, û)T , the matrix [A] depends on both ω and the details of the spatial
discretization and the right-hand-side term comes from possibly non homo-
geneous boundary conditions.

For any quasi-1D flow domain with inlet and outlet section Sin and Sout

respectively (see Fig. 1.8), the following procedure is used to compute the
equivalent acoustic impedance:

1. fix the frequency ω,

2. impose a non zero forward propagating acoustic wave at the inlet sec-
tion Sin. The corresponding boundary condition relates p̂ and û at
x = xin, viz.

2A+ exp
(
j k+xin

)
= p̂+ ρc û,

where A+ exp (j kx) stands for the forward propagating wave, k = ω/c
is the acoustic wave number and A+ is the associated pre-exponential
factors which are set to any non zero value to ensure that the inlet
condition is non homogeneous,

3. define the appropriate boundary condition to be prescribed at the outlet
section depending on whether the mean flow is subsonic or supersonic,
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4. solve the corresponding linear system Eq. (1.43),

5. compute the acoustic equivalent impedance as Zin = p̂/ρc û assessed at
x = xin.

Note that when the mean flow is subsonic, there is a backward propa-
gating wave entering the domain through the outlet section Sout so that an
outlet boundary condition is required. In this case, the above procedure turns
out to provide a way to transform a supposedly known acoustic boundary
condition at Sout to another condition at Sin. For example, when the flow
domain is a nozzle, this procedure allows us to displace an acoustic boundary
condition at a high speed section to an upstream, low Mach number position.
In the case where the nozzle is choked, no extra acoustic condition is required
since no wave can enter the domain through the outlet section Sout. In the
particular case where the outlet section coincides with the location of the
throat, the proper acoustic impedance to impose at Sout is given by [124, 5],

Zth =
2du/dx− j ω

(γ − 1)du/dx− j ω
, (1.44)

and the above procedure allows us to convert this impedance condition valid
at the sonic throat to another condition valid at an upstream, low Mach
number location.

1.1.5 Application to an Annular Combustor

The target configuration chosen to illustrate the proposed LES / Helmholtz
solver strategy corresponds to an annular helicopter combustion chamber
equipped with fifteen burners designed for a helicopter by Turbomeca, shown
in Fig 1.9. Each burner contains two co-annular counter-rotating swirlers.
The fuel injectors are placed in the axis of the swirlers. To avoid uncer-
tainties in boundary conditions the chamber’s casing is also computed. The
computational domain starts after the inlet diffuser and ends at the throat
of the high pressure stator. In this subsection, the flow is choked allowing
for an accurate acoustic representation of the outlet. The air and fuel inlets
use non-reflective boundary conditions [129]. The air flowing at 578 K in the
casing feeds the combustion chamber through the swirlers, films and dilution
holes. To simplify the LES, fuel is supposed to be vaporized at the lips of the
injector and no model is used to describe liquid kerosene injection, dispersion
and vaporization.

All LES’s presented here use the Smagorinsky approach [61] to model SGS
stresses. Combustion is modeled using Arhenius type reaction rates: a re-
duced one-step scheme for JP10 / air flames fitted to match the full scheme’s
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Figure 1.9: The annular helicopter combustor: (a) full annular view of the
computational domain, (b) identification of one sector composing the full
annular combustor, (c) detailed view of one single sector and (c) the expected
flow distribution within the sector.

behavior for equivalence ratios ranging from 0.4 to 1.5 [74, 130] is used. Five
species explicitly solved are JP10, O2, CO2, H2O and N2. Turbulence/flame
interaction is modeled with the DTF model [9, 16, 73, 131] described earlier.
A high-order spatial and temporal scheme (TTGC [132]) is used to propa-
gate acoustic waves with precision. Computations are obtained for (a) the
entire configuration (15 burners) and (b) a single sector (see Fig. 1.9 (b))
computational domain for FTF evaluations prior to (c) Helmholtz analysis.

Massively parallel LES of the full annular chamber: In the first com-
putation [133, 134], shown in Fig. 1.10, the whole chamber is simulated from
the diffuser outlet to the high pressure stator nozzle by a 9, 009, 065 nodes
and 42, 287, 640 cell mesh2. The LES captures the self-excited instability and
results (unsteady pressure RMS and phase fields) show that it is character-

2Resolution effects on LES of real configurations have been addressed in [130, 135].
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ized by two superimposed rotating modes with different amplitudes3 shown
in Fig. 1.11. The turning modes4 are found to modulate the flow rate through
the fifteen burners and the flames oscillate back and forth in front of each
burner shown in Fig. 1.12, leading to local heat release fluctuations. Due
to the rotating motion of the modes, all individual transfer functions of all
the burners are the same: i.e., no mechanism of flame interactions between
burners within the chamber is identified. Note that although such computa-
tions are very CPU demanding and not realistically possible in an industrial
context, they allow validation of the hypotheses introduced in the use of a
hierarchy of computational modelling based on single sector LES (b) and
Helmholtz solvers (c).

The flow rate fluctuations in this computation are such that they impact
the flame response and the heat release perturbations, Fig. 1.13. Swirler flow
rate and pressure fluctuations are out-of-phase. The phase between global
heat release and swirler flow rate fluctuations satisfies a Rayleigh criterion
for the fifteen sectors.

It is possible to evaluate the response to the flow rate oscillations by
computing the transfer function between inlet velocity fluctuations and mean
single sector unsteady heat release [35, 36]. Figure 1.14 shows the modulus
n and the phase τ of the classical n− τ model for each of the fifteen burners.
Amplitudes and delays are fairly constant suggesting a common response for
all burners. This has important implications for steps (b) and (c) of the
proposed computational hierarchy.

Single sector LES: FTF evaluation: Based on the previous observa-
tions, single sector forced LES should be sufficient to retrieve the FTF nec-
essary for the 3D Helmholtz solver computations. For the case of interest, a
single sector forced LES is obtained for an inlet acoustic modulation at 600
Hz. The local response amplitude coefficient, n(x) at 600 Hz is plotted in
three different planes in Fig. 1.15 . One remarks that the flame response is
spread in the primary zone, it is neither homogenous nor symetric. In the

3Paschereit et al [136, 57] propose a non-linear theoretical approach showing that stand-
ing wave modes can be found at low oscillation amplitudes but that only one rotating mode
is found for large amplitude limit cycles.

4A simple model can be used to recover the amplitude and phase of the pressure signals
found in the LES for the different burners by considering two counter-rotating acoustic
modes P+ and P− such that:

P+ = A+ · ei·k·θ−iωt and P− = A− · e−i·k·θ−iωt (1.45)

When A− = 0.33A+, the amplitude and phase of the resulting acoustic pressure P+ + P−
compare very well to the LES data (Fig. 1.11)
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Figure 1.10: 3D view of the computational domain; temperature field on a
cylindrical plane passing through all the swirlers with velocity magnitude
isocontours. Black dots denote typical probe locations for which diagnostics
are provided below.

following, the response amplitude coefficient n(x) is kept in its local formula-
tion in order to take into account the flame response inhomogeneities. This
flame response is assumed to be independent of the frequency of the acoustic
forcing. This assumption is false if the forcing frequency varies in a broad
band, but since in this particular case the known frequency of the first az-
imuthal mode varies between 550 Hz and 610 Hz, the flame response can be
considered constant. To obtain the flame response over a broader frequency
range, a white noise inlet forcing, together with a Whiener-Hopf inversion
should be used [106]. At the oscillation frequency of 600 Hz, the delay and
the phase obtained between peak flow rate oscillation and peak global heat
release is 0.6761 ms or 2.548 rad respectively and they compare quite well
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Figure 1.11: (a) Angular variation of Prms
Pmean

on a ring passing through probes
located in the lower part of the chamber casing and (b) pressure signal phase
for probes located in front of all swirlers ( Fig. 1.10). Note that sector 1 is
used as reference: - model, ◦ LES.

Figure 1.12: Detailed view of half of the burners. Top : Temperature field
with temperature isocontour. Bottom: Pressure fluctuations with p′ = 0
isoline.

with the data obtained on the full chamber, Fig. 1.14.

Thermo-acoustic stability prediction: 3D Helmholtz solver: In this
section, a detailed thermo-acoustic study of the annular helicopter combustor
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Figure 1.13: (a): - Maximum flame position (along the burner axis) and �
Average heat release; (b) • Heat release and - Pressure fluctuation average.
All results are obtained for sector 1.

is provided by the use of a 3D Helmholtz solver. First, the influence of the
geometry of the chamber in a non reactive flow is investigated. It is shown
that the casing, the swirler and the primary holes have a strong influence on
the acoustics of the azimuthal mode. A methodology to compute azimuthal
instabilities in the context of Helmholtz solvers is then presented. The main
advantages of this approach is its low CPU time cost. The coupling between
acoustics and combustion is accounted for using a classical n − τ model.
These n and τ parameters are computed by post processing the previous
single sector LES and the corresponding fields are extended to multi-injection
annular combustion chamber under the Independence Sector Assumption in
Annular Combustor [105] (ISAAC). This assumption is validated thanks to
the LES of the full annular helicopter combustion chamber discussed above.
Then the stability of the first azimuthal mode is investigated.

Helmholtz equations being essentially elliptic in their nature, the solu-
tion of the model equation strongly depends on the geometry and boundary
conditions. This raises a simple but critical question in the context of indus-
trial systems: what computational domain, technological devices, asperities
and boundary conditions are needed to properly capture the right physics as
observed in LES or on the engine ? To illustrate the impact of this critical
step several 3D Helmholtz simulations are provided in Table 1.2. For these
results combustion effects (FTF) are not taken into account and geometri-
cal complexity is increased while keeping the boundary conditions identical.
The vector P gives the pressure distribution in the domain, the real part of ω
gives the eigen-frequency of the mode and the imaginary part of ω the growth
rate or the damping of the eigen-mode due to acoustic flux at the boundaries
∂ΩZ . In the calculation presented in Table 1.2 there is no acoustic flux at
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Geometry computed

CC C CC+C+S CC+C+S+PH
The first azimuthal mode

700 Hz 500 Hz 575 Hz 609 Hz
A cut of the first azimuthal mode

Table 1.2: Influence of the geometry on the first azimuthal eigenmode calcu-
lated by Helmholtz solver (light grey denotes a pressure anti-node and black
gray a pressure node).

the boundaries since Z =∞ is imposed everywhere. The combustion cham-
ber (CC) and the casing (C) are first computed separately. Then they are
connected with the swirler (CC+C+S) and finally primary holes are taken
into account in the calculation (CC+C+S+PH).

In this particular case the frequency of the first azimuthal mode re-
mains within a narrow band between 500 Hz and 700 Hz which is typi-
cally the range of frequency involved in combustion instabilities. A first
approximation of the frequency can be easily obtained using the formula:
fapprox = cmean/(2πRmean), where cmean stands for the mean sound speed in
the domain and Rmean is the mean radius of the annular configuration. With
cmean = 750 m/s, fapprox = 680 Hz. This approximation is in the range of
the results of the full calculation given in Table 1.2, as well as the frequency
observed in the full annular LES. It is clear that the frequency of the first
azimuthal mode is greater for CC+C+S than for CC and it is lower than
for C. Note also that the computed modes are not purely azimuthal and
that the azimuthal modes also have a longitudinal component. Adding the
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primary holes in the calculation changes this longitudinal component as well
as the mode frequency. Those results emphasize the necessity to treat care-
fully all the geometrical details to model correctly the acoustics involved in
combustion instabilities.

The coupling between acoustics and combustion is accounted for using a
classical n − τ model. In its global formulation, it relates the fluctuations
of the total heat release to the fluctuating velocity at a reference point,
noted xref . As underlined previously, this reference point must be chosen
in the injection zone where acoustic fluctuations influence the flow rate or
the equivalence ratio and it must be as close as possible to the combustion
zone [95]. ~̂u1(xref ).~n is the longitudinal velocity leaving the swirler. The
time delay, τ , controls the stability of the configuration according to the
Rayleigh criterion [1]. The local n − τ approach allows us to account for
the inhomogeneities of the flame response. Obviously, in this full annular
chamber, the coupling between the fluctuating heat release and the acoustic
fluctuation cannot be described by a flame transfer function involving only
one point of reference. The local formulation is thus extended as follows,

ˆ̇Ω′(x)

Ω̇tot

=


n(x, ω)eiωτ(x)

~̂u′(xref1
). ~n1

Ubulk
for x ∈ Sector 1,

n(x, ω)eiωτ(x)
~̂u′(xref2

). ~n2

Ubulk
for x ∈ Sector 2,

...

n(x, ω)eiωτ(x)
~̂u′(xref15

). ~n15

Ubulk
for x ∈ Sector 15.

(1.46)

In this approach, the annular combustion chamber is split in 15 sectors and
the Independence Sector Asumption in Annular Combustor (ISAAC) is as-
sumed. The heat release fluctuations in a given sector are driven only by
the fluctuating mass flow rates due to the velocity perturbations through
its own swirler. The ISAAC assumption is implicitly used in most studies
of annular combustors [18, 22, 57]. It is true only if flames issuing from
neighboring burners do not interact, a property which is known to be false
in certain cases [137] but seems to be accceptable in this case, as presented
above in the massively parallel LES of the full helicopter combustion cham-
ber, Fig. 1.14. Based on ISAAC, FTF can be retrieved from the single-sector
LES presented above and used in the context of the full annular Helmholtz
solver as described above.

Note that in the following section, τ will be used in its global form and a
sensitivity analysis of the combustor stability to this parameter is performed.
The reaction index coefficient is used in its local form, nl(x), in order to
take into account the space inhomogeneities of the flame response to a given
excitation.
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Under the ISAAC assumption, the local amplitude single sector response
coefficient nl(x) is duplicated in all sectors and test values for τ are chosen
between 0 and 2 ms. Because of the geomtry which azimuthally periodic, the
stability behavior in this direction is also periodic in τ . Results are plotted
in Fig. 1.16. When τ varies the frequency of the azimuthal eigenmode varies

Figure 1.16: Influence of the parameter τ on the frequency and the stability
of the first azimuthal mode: (a) eigenfrequency, • with and - - without
combustion; (b) growth rate, � with and - - without combustion.

between 555 Hz and 610 Hz. When τ is in [0, T/2], with T the period, the
azimuthal mode is damped. The delay measured in the full LES and in the
single sector LES is ≈ 0.65 ms so that the burner is obviously operating very
close to its stability limits. The same stability ranges are predicted analyti-
cally in a simple annular configuration with an infinitely thin flame [138].

1.1.6 Conclusions

The prediction of thermo-acoustic instabilities in aeronautical gas turbine en-
gines and more generally premixed and partially premixed burners is not an
easy task. As of today, industrials are faced with such instabilities at the end
of the design process. Recent developments in numercial applications allow
to partially apprehend such problems. In the present document, a strategy
based on the use of the fully unsteady LES approach and Helmoholtz solvers
is proposed. Applications to a single sector and full annular gas turbine heli-
copter combustion chamber proves the methodology to be applicable. Tech-
nological details such as the swirler geometry, primary and secondary holes...
are proven to be of importance in the determination of the eigen-modes and
eigen-frequencies of the acoustics field obtained with the Helmholtz solver.
With the help of the ISAAC hypothesis the prediction of the azi,uthal insta-
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bilities is also accessible and in very good agreement with full annular LES
for the same configuration. Note however that current limitations, applicable
to LES and Helnholtz solvers, rely on the proper determination of the acous-
tic impedances at the inlet and outlet of the computational domains. Simple
approximations are possible but their extension to more complex systems is
not so clear and further investigations seem needed. Finally, the estimation
of the FTF, needed for the Helmholtz solver to determine the stability of the
eigen-modes, remains a critical point although it can be retrieved from single
sector LES for a given forcing frequency, determination of the FTF to the
entire frequency range of interest inferring large compter costs.
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