
HAL Id: hal-01905786
https://hal.science/hal-01905786v1

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterated local search and very large neighborhoods for
the parallel-machines total tardiness problem

F Della Croce, Thierry Garaix, A. Grosso

To cite this version:
F Della Croce, Thierry Garaix, A. Grosso. Iterated local search and very large neighborhoods for the
parallel-machines total tardiness problem. Computers and Operations Research, 2012, 39 (6), pp.1213
- 1217. �10.1016/j.cor.2010.10.017�. �hal-01905786�

https://hal.science/hal-01905786v1
https://hal.archives-ouvertes.fr

ITERATED LOCAL SEARCH AND VERY LARGE

NEIGHBORHOODS FOR THE PARALLEL-MACHINES TOTAL

TARDINESS PROBLEM

F. DELLA CROCE, T. GARAIX, A. GROSSO

Abstract. We present computational results with a heuristic algorithm for
the parallel machines total weighted tardiness problem. The algorithm com-

bines generalized pairwise interchange neighborhoods, dynasearch optimiza-
tion and a new machine-based neighborhood whose size is non-polynomial in

the number of machines. The computational results significantly improve over

the current state of the art for this problem.

1. Introduction

In the Pm| |
∑

j wjTj problem a set of jobs N = {1, 2, . . . , n} are given, with
their processing times pj , weights wj and due dates dj . The jobs are to be processed
in a schedule S on a set M = {1, 2, . . . ,m} of identical parallel machines so that
their completion times Cj minimize the objective function

T (S) =

n∑
j=1

wjTj =

n∑
j=1

wj max {Cj − dj , 0} .

For m = 1 the problem reduces to the single-machine total tardiness problem, that
is well studied and solved in both the exact and heuristic frameworks — we refer
to [4, 11, 13, 14] and [5, 7, 8] for recent developments.

The literature seems to be fairly limited for the problem with parallel machines;
the most recent references are [2, 3, 9, 13, 14] to the authors’ knowledge.

Iterated Local Search (ILS, see [10] for a survey) is a local search framework that
can be seen as a tradeoff between the naive multistart and complex metaheuristics.
In multistart a local search driven optimization starts several times (often a huge
number of times) from randomly generated initial solutions, in order to achieve a
wide exploration of the solutions set. In metaheuristics a number of sophisticated
devices (genetic crossover, short or long-term memory, etc) are employed in order
to escape poor local optima. In ILS the search is simply restarted from a slightly
perturbed version of the best-known solution. With this type of restart, the starting
point of each local search is not completely random, and the perturbation — called
“kick” — aims at projecting the search “not too far” from previously explored local
optima, without completely loosing their partially optimized structure.

Very Large Neighborhood Search (VLNS) denotes local search methods that
define and explore complex neighborhoods for combinatorial optimization problems;
such neighborhoods are characterized by having an exponential number of neighbor
solutions — with respect to the problem size — but can be explored in polynomial
time by means of exact or heuristic procedures (see [1]).

ILS is often successfully coupled with VLNS, hence moving the complexity of
the search from the overall algorithm to the neighborhood exploration. We refer
to [5, 7] for a successful application of such a VLNS technique (called dynasearch)
to the 1| |

∑
wjTj problem.

1

2 F. DELLA CROCE, T. GARAIX, A. GROSSO

Rodrigues et al. [13] proposed a simple and quite effective ILS algorithm for
the Pm| |

∑
j wjTj problem, using a local search based on pairwise interchange

operators. That algorithm was tested on a batch of 100 instances with n = 40, 50
and m = 2, 4 derived from a subset of the 1||

∑
wjTj problem instances available

in the OR-library1. Notice that, on that batch, the algorithm was able to detect
all but one optimal solutions.

This paper aims at defining an improved ILS algorithm for Pm| |
∑

j wjTj by
incorporating VLNS techniques. Particularly, we introduce a dynasearch optimiza-
tion on each machine in the shop and a new “Very Large” neighborhood whose size
is non-polynomial in the number of machines.

We illustrate the basic building blocks of the algorithm and present compu-
tational experiments for assessing their effectiveness in Section 2. The complete
algorithm is described in Section 3, where also the computational results are dis-
cussed. The proposed ILS algorithm outperforms the ILS of [13] on instances with
a number of jobs n ranging from 40 to 300, and a number of machines m ranging
from 2 to 20. The advantage of the new algorithm grows on instances with large
m thanks to the new neighborhood.

2. The basic neighborhoods

2.1. Generalized pairwise interchanges. The well-known GPI operators work
on a sequence of jobs σ producing a new sequence σ′ Let σ = αiπjω, with jobs i
and j in position k and l respectively. The most common GPI operators are

(1) Swap αiπjω → αjπiω (π may be empty);
(2) Forward insertion αiπjω → απjiω;
(3) Backward insertion αiπjω → αjiπω.
(4) Twist αiπjω → αjπ̄iω with π̄ = π reversed.

The implementation of such operators is straightforward in single-machine sequenc-
ing problems with regular cost functions, since the machine is never idle and the
sequence σ is the schedule. The so-called GPI dynasearch neighborhood for single-
machine sequencing problems combines possibly many independent moves of types
(1)–(4); two moves are said to be independent if the pairs of positions (k, l) and
(p, q) on which they act are non-overlapping, i.e max {k, l} < min {p, q}. In a sin-
gle machine environment with an additive objective function the contributions of
independent moves combine additively, and the best set of independent moves can
be worked out by dynamic programming (see [5] for details). A GPI dynasearch
neighborhood exploration for an n jobs sequence requires O(n2) time with its best
implementation (see [7]).

In parallel-machines environments, GPI operators can be applied provided that
a sequence σ can be converted to a schedule. Rodrigues et al. [13] proposed a
simple yet quite effective ILS algorithm for the Pm| |

∑
j wjTj problem. The algo-

rithm applies GPI operators — limited to (1)–(3) in their implementation — on a
sequence of jobs; the schedule on parallel machines associated with this sequence
σ = (j1, j2, . . . , jn) is computed from scratch by means of the most natural dispatch-
ing rule: assign the next job in the sequence to the earliest available machine. The
neighborhood exploration is performed with a first-improve strategy, and frequent
restarts are applied (one kick every five complete descents).

Whereas the basic GPI neighborhood can be easily adapted to the parallel ma-
chines environment, this is not the case for the GPI dynasearch neighborhood: since
the job starting times are determined by applying the dispatching rule, the con-
tribution of independent moves is no longer purely additive. Rodrigues et al. [13]

1http://people.brunel.ac.uk/~mastjjb/jeb/info.html

ITERATED LOCAL SEARCH FOR Pm| |
∑

wjTj 3

do not provide a different notion of independent moves, neither it is easy to see an
obvious one.

2.2. Integrating GPIs on parallel machines and Dynasearch. A possible
drawback of the basic GPI neighborhood is that, in a parallel environment, the
working sequence on each single machine is poorly optimized, since the machine-
sequencing criterion is extremely crude. We then investigated the opportunity
of adding a single-machine optimization phase through the use of a dynasearch
neighborhood. We tested the following algorithms, called 1 and 2 respectively.

Algorithm A1: The GPI iterated local search of [13] (kindly provided by
the authors).

Algorithm A2: The same algorithm, where after building a schedule by the
dispatching rule, each single machine is optimized by a full descent using
the GPI dynasearch neighborhood where moves (1)–(4) are used.

We considered a batch of 125 randomly instances with n = 100, m = 4; we refer to
Section 3.3 for details on the generation scheme. Two parameters R, T determine
the practical difficulty of the instances. We recorded the performances of the algo-
rithms in terms of time spent for reaching the best solution and number of local
search descents performed. For both algorithms we allowed one hour of CPU time.
Table 1 points to a comparison of the computational costs of the two algorithms in
terms of CPU time and number of descents, detailing them by (R, T) pairs. Out
of the 125 instances in the batch, Algorithm A2 delivered better solutions in 37
cases, and worse solutions in 27 (columns labeled “#Bests”). The higher number
of better solutions comes at the cost of higher CPU times to be spent in the search.
The number of descents required to reach the best solution is always consistently
less for Algorithm A2 than for Algorithm A1, but Algorithm A2 — quite expect-
edly — exhibits in most cases higher CPU times, since every solution undergoes a
full dynasearch descent on each machine. Anyway, in the details of the tests we
were able to observe that on 18 instances of the batch, Algorithm A2 finds a better
solution and requires less CPU time to reach the optimum; this behaviour comes
out with dramatic evidence on some classes of instances like R = 0.6, T = 0.6,
and the classes with R = 1.0. This test suggests that an effort for keeping highly
optimized sequences on the machines can be worth, if a clever search strategy can
be developed in order to limit the growth of the CPU time

2.3. A parallel-machines neighborhood. A simple notion of independent moves
arises if, instead of using the dispatch rule on a sequence, one works directly on
the jobs-to-machines assignment. Assume a schedule is given. We consider, for a
given pair of machines m1, m2, the respective job working sequences σ1, σ2 and
the following moves:

(a) extract a job j from σ1 and insert it into σ2;
(b) extract a job j from σ2 and insert it into σ1;
(c) extract jobs i ∈ σ1, j ∈ σ2 and insert i in σ2 − {j}, and j in σ1 − {i}.

The insertion position for a job j in a sequence σ is chosen in linear time, so that
σ = αjω and T (αjω) is as small as possible. We note that if such moves are executed
on disjoint pairs of machines (m1,m2), (m3,m4), . . . , they are independent moves,
in the sense that their contributions to the schedule’s cost combine additively.
Hence a neighborhood whose size is non-polynomial in the number of machines can
be defined as follows, for a given schedule.

(1) For each pair of machines (m1,m2), compute the maximum decrease in
tardiness ∆m1,m2

that can be obtained by applying moves (a), (b) and (c)
to σ1, σ2, for all j ∈ {σ1} ∪ {σ2}.

4 F. DELLA CROCE, T. GARAIX, A. GROSSO

(2) Build a weighted improvement graph G(M,E) where

E =
{
{m1,m2} : ∆m1,m2

> 0
}
.

(3) A neighbor schedule is generated by taking a matching on G and executing
the moves associated to the matching edges.

Note that, for each pair of machines:

• no more than O(n) jobs have to be considered for moves (a) and (b);
• no more than O(n2) pairs i, j have to be considered for move (c);
• evaluating each move of type (a), (b), (c) requires O(n) operations for each

job (or job pair) — note that the schedule defines the machine to which
the job is assigned.

Hence evaluating all the possible moves (a), (b), (c) requires O(n3) operations. The
best neighbor schedule can be computed by taking a maximum weighted matching
in G; the whole process for building G and selecting the matching can be imple-
mented with running time

O(n3) +O(m3) ≈ O(n3) (as m < n in non trivial instances).

Simple testing showed that the solutions provided by the GPI ILS technique
of [13] are often not locally optimal with respect to the parallel machines neigh-
borhood. Particularly, applying one search of the parallel machine neighborhood
on the best solution provided by Algorithm A1 after a 1-hour run, we found 11
improvements (over 125 solutions) for the instances in the n = 100,m = 10 batch;
the number of improvement rises to 96 for the n = 300,m = 20 batch.

The exploration of the parallel neighborhood is usually fast (less than 0.6 seconds
on the n = 300 instances). Hence, we keep the parallel machines neighborhood as a
cheap and useful tool whose impact becomes more and more important on instances
with many machines.

3. Combining different neighborhoods

3.1. Neighborhoods and refinements. In view of the experimental observations
reported in the previous section, a careful combination of GPI moves, dynasearch
optimization and the parallel machines neighborhood can be the key instrument
for handling larger instances of the Pm| |

∑
j wjTj problem. We used three neigh-

borhoods called N1, N2, N3.

• Neighborhood N1 is the GPI neighborhood of Rodrigues et al. [13]. Note
that in [13] a somewhat sophisticated rule is used for breaking ties in choos-
ing the best neighbor. We avoided it in favor of a random tie-breaking rule.

• Neighborhood N2 is the parallel-machines neighborhood described in Sec-
tion 2.

• Neighborhood N3 is a GPI neighborhood where every neighbor schedule
generated by a GPI operator is improved by a dynasearch descent applied
on each machine schedule.

In order to reduce the computational effort, we applied the following refinements
to N1 and N3. Following [13], the neighborhood search proceed by first-improve,
hence the first improving neighbor is adopted as new solution. We observed that
often profitable moves happen between jobs that appear in relatively “close” posi-
tions. Hence the GPI operators are applied in “stages”; each stage applies the GPI
operators between jobs in positions

i and i+ γ mod n, for i = 1, . . . , n, γ fixed.

In exploringN1, N3, at each successive stage γ is set to 1, 2, . . . , n−1. The improving
neighbor is often found at early stages.

ITERATED LOCAL SEARCH FOR Pm| |
∑

wjTj 5

Accordingly with [13], a full exploration of a N1 neighborhood is accomplished
in O(n3 logm) operations. An exploration of N2 requires O(n3) operations (see
Section 2). Exploring N3 takes up to O(n4) operations.

3.2. The algorithm. We now describe the complete proposed algorithm. It uses
all three neighborhoods N1, N2, N3. Among these neighborhoods, the local search
phase for N1, N2 is exploited to a full descent, while for N3 it is limited to a single
neighborhood exploration because of the higher computational cost of such proce-
dure. This is denoted in the pseudocode by the operations called FullDescent
and Search.

The search starts from the usual EDD (dispatched) sequence, which is often
accepted in literature as a reasonable quick-and-dirty starting point. A full descent
of N1 performs the first optimization in the main loop, then N2 and one exploration
of N3 are invoked iteratively one after the other, as long as the iteration is profitable.
The Kick phase — i.e. perturbation of the best-known solution — consists of a
limited number of random swaps, removal and insertions performed among different
machines.

The algorithm uses a time-limit as stopping criterion, since we considered it the
most simple and tunable one.

Algorithm A3

1: Set S∗ := S := 〈The EDD dispatched sequence〉;
2: Set IterCount := 0;
3: repeat
4: Improve S by executing dynasearch on each machine;
5: S1 := FullDescent(S,N1);
6: repeat
7: S2 := FullDescent(S1, N2);
8: S3 := Search(S2, N3);
9: if T (S3) < T (S2) then

10: Set S1 := S3;
11: end if
12: until

〈
N3 failed improving S2

〉
;

13: if T (S3) ≥ T (S∗) then
14: Set IterCount := IterCount + 1;
15: else
16: Set S∗ := S3;
17: Set IterCount := 0;
18: end if
19: if

〈
N2 and N3 failed to improve S1

〉
then

20: if IterCount >MaxNoImprove then
21: S := Kick(S∗);
22: IterCount := 0;
23: else
24: S := Kick(S3);
25: end if
26: else
27: S := S3;
28: end if
29: until 〈Time-limit exceeded〉

Following [13], a kick is executed each MaxNoImprove non-improving itera-
tions, with MaxNoImprove = 5. Also, as a further refinement, the number of
stages in the exploration on N3 was fixed to a maximum of γmax = 5; note that

6 F. DELLA CROCE, T. GARAIX, A. GROSSO

a higher value of γmax causes more time to be spent in exploring N3 and, corre-
spondingly, a lower number of kicks executed in the allowed time limit. The values
MaxNoImprove = 5, γmax = 5 gave the best results in some preliminary tests —
only a modest amount of testing was needed to identify this value, without need
for extensive calibration. The value γmax = 5 actually lowers the time spent for
exploring N3 to O(γmaxn

3).

3.3. Evaluation of the algorithm. We tested the hybrid ILS algorithm on batches
of random instances adapted from the well established literature on tardiness prob-
lems in single-machine environments. The single-machine instances are character-
ized by uniformly distributed random data with processing times pi and weights wi

from [1, 100], and due dates from a uniform distribution whose bounds are deter-
mined by two parameters R, T called due date range and tardiness factor — see
for example References [6, 12]. Specifically, the di values are randomly drawn from

[(1− T −R/2)
∑n

i=1 pi, (1− T +R/2)
∑n

i=1 pi].

For fixed n,m, we considered five instances for each (R, T) pair, with R, T ∈
{0.2, 0.4, 0.6, 0.8, 1.0} — 25 (R, T) pairs, and 125 instances. For n = 40, 50, 100
we used times, weights, and due dates from the 375 single-machine OR-library in-
stances. For n = 300 we used the instances from Tanaka et al. [15]. The number of
machines m was set to 2, 4 and 10, and pushed up to 20 for the largest instances.
The due dates are adapted to the parallel machines case by scaling the due dates
by 1

m (rounding down the obtained values).
Tables 2–4 focus on the comparison of Algorithm A1 by Rodrigues et al. [13]

and Algorithm A3. Accordingly with [13] we allowed at most one hour CPU time
to each test and report an aggregated comparison in Table 2 2; the results obtained
within shorter CPU times are also presented in Tables 3 and 4. The total number
of instances tested was 1625. For both A1 and A3 the results of a single run are
reported; athough the kick phase accounts for some nondeterminism in A3, we did
not observe it delivering significantly different tadiness values in different runs, as
far as the time limits reported in the tables are allowed.

In Table 2 we report information on the behaviour of the algorithms running
with a 3600 seconds time limit. The “dev” columns report the percentage average
and maximum deviations of the objective function delivered by A1 and A3 with
respect to the best found value — the “best” value is defined as the minimum
between the tardiness value obtained by the two algorithms within the allowed 1-
hour run. The column #best counts the number of instances (out of the 125) where
Algorithm A1 or Algorithm A3 delivered a better solution. CPUbest reports the
average time-to-best for both algorithms and Ndesc the average number of descent
performed. The performances of the two algorithms are basically comparable for
“small” instances (say for n = 40, 50); with such limited problem sizes, both A1
and A3 often find an optimal solution.

Tables 3 and 4 compare the behaviour of the two algorithms for different values
of the time limits enforced. The n = 300 cases are not reported for time limits ≤ 30
secs (Table 3) because in several instances such time limits where not enough to
perform a full execution of A3 — this is due to the heavier computational require-
ments of the dynasearch component of A3. Aside from this limitation, A3 is seen
to strongly outperform A1 in terms of solution quality.

A3 becomes apparently the best option for large n (n = 100, 300), and espe-
cially for instances with a large number of machines (m = 10, 20). On the latter

2per-instance results are available as a compressed file at
www.di.unito.it/~grosso/solution.tar.7z

ITERATED LOCAL SEARCH FOR Pm| |
∑

wjTj 7

instances the key factors for the success of A3 are the ability to exploit the parallel-
machines “very large” neighborhood, and the powerful dynasearch neighborhood
for optimizing each machine sequence.

References

[1] Ahuja R. K., Ergun Ö., Orlin J. B., Punnen A. P., A survey of very large-scale neighborhood
search techniques, Discrete Applied Mathematics 123, 75–102 (2002).

[2] Anghinolfi D., Paolucci M., Parallel machine total tardiness scheduling with a new hybrid

metaheuristic approach, Computers and Operations Research 34, 3471–3490 (2007).
[3] Bilge U., Kyraç S., Kurtulan F., Pekgun M., A tabu search algorithm for parallel machine

total tardiness problem, Computers and Operations Research 31, 397–414 (2004)
[4] Bigras L. Ph., Gamache M., Gilles S. Time-Indexed Formulations and the Total Weighted

Tardiness Problem, INFORMS Journal on Computing 20, 133–142 (2008).

[5] Congram R., Potts C. N., van de Velde S., An iterated dynasearch algorithm for the single
machine total weighted tardiness problem, INFORMS Journal on Computing, 14, 52–67

(2002).

[6] Crawuels H. A. J., Potts C. N., Van Wassenhove L. N., Local search heuristics for the single
machine total weighted tardiness scheduling problem, INFORMS Journal on Computing 10,

341–350 (1998).

[7] Ergun Ö., Orlin J. B., Fast neighborhood search for the single machine total weighted tardi-

ness problem, Operations Research Letters 34, 41–45 (2006).

[8] Grosso A., Della Croce F., Tadei R., An enhanced dynasearch neighborhood for the single
machine total tardiness problems, Operations Reasearch Letters, 32, 68–72 (2004).

[9] Koulamas C., Decomposition and hybrid simulated annealing heuristics for the parallel-

machine total tardiness problem, Naval Research Logistics 44, 109–125 (1997).
[10] Lourenco H. R., Stützle T., Iterated local search, in Handbook of MetaheuRistics, F. Glover

and G. Kochenberger, ISORMS 57, pp. 321–253 (2002).

[11] Pan Y., Shi L., On the equivalence of the max-min transportation lower bound and the time-
indexed lower bound for single machine scheduling problems, Mathematical Programming,

100, 543–559 (2007).

[12] Potts C. N., Van Wassenhove L. N., A branch and bound algorithm for the total weighted
tardiness problem, Operations Research, 33, 363–377 (1985).

[13] Rodrigues R., Pessoa A., Uchoa E., Poggi de Aragão M. Heuris-
tic algorithm for the parallel machine total weighted tardiness sched-

uling problem, internal report 10/2008, Universidad Federal Fluminense

http://www.producao.uff.br/conteudo/rpep/volume82008/RelPesq V8 2008 10.pdf

[14] Rodrigues R., Pessoa A., Uchoa E., Poggi de Aragão M., Algorithms over Arc-time Indexed

Formulations for Single and Parallel Machine Scheduling Problems, Optimization-Online,
http://www.optimization-online.org/DB HTML/2008/06/2022.html.

[15] Tanaka S., Fujikuma S., Araki M. An exact algorithm for single-machine scheduling without

machine idle time, Journal of Scheduling, 12, 575–593 (2009).

8 F. DELLA CROCE, T. GARAIX, A. GROSSO

Algorithm 2 Algorithm 1
R T CPUavg Ndescavg #Bests CPUavg Ndescavg #Bests

0.2 0.2 21.17 3.60 0 1.36 4.40 0
0.2 0.4 27.65 3.20 0 7.10 27.00 0
0.2 0.6 1164.99 147.80 1 301.41 1266.40 0
0.2 0.8 2246.95 252.00 1 540.10 3793.40 0
0.2 1.0 1690.30 205.20 2 723.50 6689.40 0
0.4 0.2 121.81 21.00 0 5.43 22.60 0
0.4 0.4 46.43 4.80 0 25.07 99.20 0
0.4 0.6 752.06 90.80 2 1167.06 5924.60 1
0.4 0.8 1662.31 178.60 1 1057.19 8114.60 4
0.4 1.0 1370.86 165.20 2 976.78 8721.60 3
0.6 0.2 4.00 0.00 0 0.07 0.00 0
0.6 0.4 143.21 19.00 0 163.62 614.40 0
0.6 0.6 414.91 45.00 2 1472.98 8029.20 0
0.6 0.8 2075.77 223.00 3 2085.35 14456.20 2
0.6 1.0 901.48 91.40 3 2178.29 18166.40 2
0.8 0.2 4.20 0.00 0 0.07 0.00 0
0.8 0.4 546.14 84.40 0 210.41 890.80 1
0.8 0.6 1808.82 196.40 2 1781.18 10169.60 2
0.8 0.8 2378.09 244.40 4 1562.70 10504.00 1
0.8 1.0 3004.82 339.80 3 1149.06 9383.20 1
1.0 0.2 4.05 0.00 0 0.07 0.00 0
1.0 0.4 591.58 84.00 0 420.00 2359.80 0
1.0 0.6 1459.21 147.00 3 1855.63 10910.00 2
1.0 0.8 1015.41 107.20 5 2073.00 13795.40 0
1.0 1.0 1879.91 210.40 3 2338.92 17907.40 2

Table 1. Basic GPI local search (Algorithm 1) and
GPI+dynasearch (Algorithm 2). Comparison for n = 100,
m = 4.

n m dev% # best CPUbest(sec) Ndesc

A3avg A1avg A3max A1max A3 A1 A3 A1 A3 A1

40 2 0.0 0.0 0.0 0.0 1 0 0.0 0.2 464 4819
40 4 0.0 0.0 0.0 5.5 2 0 0.9 0.1 2174 8072
40 10 0.0 0.0 0.0 1.5 8 0 0.3 0.2 34780 64940
50 2 0.0 0.0 0.0 0.0 0 0 0.1 0.1 486 4414
50 4 0.0 0.0 0.0 0.6 4 1 2.5 1.5 3077 9885
50 10 0.0 0.1 0.0 8.1 13 0 0.2 29.6 75898 111079

100 2 0.0 0.0 0.0 0.0 14 0 52.3 35.3 5480 44630
100 4 0.0 0.0 0.0 0.1 55 4 835.7 1030.2 8958 23856
100 10 0.0 0.3 0.0 9.0 86 1 1525.6 1139.7 11113 11562
300 2 0.0 0.0 0.1 0.3 72 5 2800.9 3308.3 183 1192
300 4 0.0 0.2 0.0 11.3 89 3 3290.4 1148.8 279 628
300 10 0.0 0.8 0.0 21.3 102 0 2819.9 3022.6 346 287
300 20 0.0 0.8 0.0 28.3 104 1 1663.1 2149.4 336 207

Table 2. Overall results (1 hour time limit).

ITERATED LOCAL SEARCH FOR Pm| |
∑

wjTj 9

n m dev% 5 s. dev% 10 s. dev% 30 s.
avg max avg max avg max

A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1
40 2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40 4 0.1 0.1 0.0 11.3 0.1 0.1 0.0 6.1 0.0 0.1 0.2 6.1
40 10 0.3 0.6 0.2 22.2 0.2 0.5 0.1 22.2 0.2 0.4 0.1 13.9
50 2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
50 4 0.1 0.1 0.0 3.1 0.0 0.0 0.0 3.1 0.0 0.0 0.0 1.8
50 10 0.2 0.7 0.0 35.0 0.1 0.6 0.0 35.0 0.1 0.4 0.0 20.3

100 2 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
100 4 0.1 0.4 0.0 29.1 0.1 0.4 0.0 29.1 0.1 0.3 0.0 29.1
100 10 0.9 2.0 0.1 45.3 0.6 1.5 0.0 44.1 0.4 1.2 0.0 36.4

Table 3. Comparison for small time limits (≤ 30 sec).

10 F. DELLA CROCE, T. GARAIX, A. GROSSO

n
m

d
ev

%
60

s.
d

ev
%

12
0

s.
d

ev
%

1
8
0

s.
2
4
0

s.
d

ev
%

3
0
0

s.
av

g
m

ax
av

g
m

a
x

av
g

m
a
x

av
g

m
a
x

av
g

m
a
x

A
3

A
1

A
3

A
1

A
3

A
1

A
3

A
1

A
3

A
1

A
3

A
1

A
3

A
1

A
3

A
1

A
3

A
1

A
3

A
1

40
2

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

40
4

0.
0

0.
0

0.
0

5.
5

0.
0

0.
0

0
.0

5
.5

0
.0

0
.0

0
.0

5
.5

0
.0

0
.0

0
.0

5
.5

0
.0

0
.0

0
.0

5
.5

40
10

0.
1

0.
3

3.
2

11
.1

0.
1

0.
2

2
.8

5
.6

0
.0

0
.2

2
.8

5
.6

0
.0

0
.2

2
.8

5
.6

0
.0

0
.2

0
.0

5
.0

50
2

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

50
4

0.
0

0.
0

0.
0

1.
8

0.
0

0.
0

0
.0

1
.8

0
.0

0
.0

0
.0

0
.6

0
.0

0
.0

0
.0

0
.6

0
.0

0
.0

0
.0

0
.6

50
10

0.
1

0.
3

3.
3

16
.3

0.
0

0.
2

1
.8

1
6
.3

0
.0

0
.2

1
.8

1
6
.3

0
.0

0
.2

1
.4

1
6
.3

0
.0

0
.2

1
.0

1
6
.3

10
0

2
0.

0
0.

0
0.

1
0.

1
0.

0
0.

0
0
.0

0
.1

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.1

10
0

4
0.

0
0.

3
2.

1
29

.1
0.

0
0.

2
2
.1

1
3
.3

0
.0

0
.2

0
.2

1
3
.3

0
.0

0
.1

0
.2

3
.5

0
.0

0
.1

0
.2

3
.5

10
0

10
0.

3
1.

0
6.

7
29

.7
0.

2
0.

9
4
.2

2
9
.7

0
.1

0
.6

3
.5

9
.6

0
.1

0
.6

3
.5

9
.0

0
.1

0
.6

2
.6

9
.0

30
0

2
0.

1
0.

1
1.

7
1.

8
0.

1
0.

1
0
.9

0
.9

0
.0

0
.0

0
.7

0
.9

0
.0

0
.0

0
.5

0
.9

0
.0

0
.0

0
.4

0
.9

30
0

4
0.

5
1.

3
16

.4
76

.2
0.

3
1.

3
1
6
.4

7
6
.2

0
.3

1
.2

1
6
.4

7
6
.2

0
.3

0
.7

1
3
.6

1
8
.1

0
.3

0
.6

1
3
.6

1
7
.9

30
0

10
0.

7
3.

2
17

.3
72

.6
0.

6
2.

1
1
7
.2

4
1
.9

0
.6

1
.6

1
7
.2

3
7
.5

0
.5

1
.5

1
5
.8

3
7
.5

0
.4

1
.5

1
5
.8

3
7
.5

30
0

20
0.

7
4.

3
11

.4
96

.1
0.

6
2.

2
1
1
.4

5
0
.4

0
.5

2
.0

1
1
.4

5
0
.4

0
.5

1
.9

1
1
.4

5
0
.4

0
.4

1
.8

1
0
.3

5
0
.4

T
a
b
l
e
4
.

C
o
m

p
a
ri

so
n

fo
r

la
rg

e
ti

m
e

li
m

it
s

