
HAL Id: hal-01905770
https://hal.science/hal-01905770

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transparent Dynamic Management of Reconfigurable
Accelerators in Virtualization Technology

Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel

To cite this version:
Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel. Transparent Dynamic Management of Re-
configurable Accelerators in Virtualization Technology. GDR SOC/SIP, Jun 2016, Nante, France.
�hal-01905770�

https://hal.science/hal-01905770
https://hal.archives-ouvertes.fr

Transparent Dynamic Management of Reconfigurable Accelerators in
Virtualization Technology

Tian Xia, Jean-Christophe Prevotet and Fabienne Nouvel
INSA, IETR, UMR 6164, F-35708 RENNES

Email: {tian.xia, jean-christophe.prevotet, fabienne.nouvel}@insa-rennes.fr

Abstract

This paper is intended to provide an abstract and trans-
parent layer for virtual machines (VM) to access reconfig-
urable resources. The underlying infrastructure of partial
reconfiguration management is hidden from the VMs. D-
PR accelerators are presented as virtual devices, which
are universally mapped in each VM space as ordinary
peripherals. The framework automatically allocates D-
PR resources dynamically according to a preemptive al-
location mechanism. The evaluation of DPR managemen-
t overheads demonstrates that our mechanism is imple-
mented with low latency.

1. Introduction

Today, the concept of CPU-FPGA hybrid processor has
become more and more popula. In this approach CPU and
FPGA domains are tightly connected by dedicated inter-
connections, which makes it possible to enhance the tra-
ditional CPU virtualization with the dynamic partial re-
configuration (DPR) technology on FPGA. However, the
exploitation of DPR-enhanced virtualization also brings
up new challenges. In virtualization, guest OSs are exe-
cuting in strongly-isolated environments [1]. When DPR
accelerators are shared by multiple virtual machines, the
allocation of DPR resources and consistency of hardware
tasks are critical problems to be solved.

There are some researches exploring DPR technologies
with CPU computing, mostly in context of multi-process
OSs [2] or computing servers [3]. In this paper, we pro-
pose a dedicated management framework to provide effi-
cient DPR resource sharing in virtual machine system.

2 Virtualization with DPR Management

Ker-ONE is a lightweight kernel that provides para-
virtualization on small-scaled embedded ARM systems.
Ker-ONE co-hosts multiple guest OSs in isolated virtual
machines (VM) in the user level, which are managed by a
virtual machine monitor (VMM). Ker-ONE provides on-
ly basic functions such as scheduling, inter-process com-
munication (IPC) and memory management, and ends up

VMM

Virtual Device
Manager

CPU

VM

Guest OS

FPGA

App

Guest OS

Guest OS
BootloaderApp App App

VM VM

IPCtraps Hyper-call

User

Host

Scheduler Memory Management IPC

Physical

KER-ONE

User-level
Services

Figure 1. The architecture of KER-ONE vir-
tual machine system

with with a small trust computing base (TCB).The archi-
tecture of the KER-ONE virtual machine system is depict-
ed in Figure 1. The features of Ker-ONE include:

• Isolated memory space for each VM. The allocation
of physical resources can be performed by manipu-
lating VM page tables to allow or forbid VM’s access
to specific memory spaces.

• Preemptive priority-based round-robin scheduler. In
our case, the dedicated DPR resource manager ser-
vice is given a higher priority than guest OSs, and
will preempt other running components as soon as
it’s scheduled.

• IRQ-based simple IPC Channel, which allows VMs
to send messages to other components.

In our system, DPR accelerators are implemented in
pre-determined partial reconfiguration regions (PRR) in
the FPGA fabric. We proposed a standard interface to all
DPR accelerators, so that one PRR can be in multiplexed
usage for different accelerators. Between the software and
the DPR accelerators, we have introduced an intermedi-
ate layer composed by PR interfaces (IF). These IFs are
mapped into the address space of VMs as different virtual
devices. Each IF is exclusively associated to a specific vir-
tual device in a specific VM. For a certain virtual device,
it is mapped at the same address in all VMs, but is im-
plemented with different IFs in lower layer. These IFs are
in charge of connecting VMs with the DPR accelerators
that actually performs the desired algorithm, so that VM
is able to use the virtual devices as normal peripherals.

Inter-connection

Dev #1

PRR #1

PRR Monitor
IF(1) IF(1)

Search
Solutions

VM #1

IF(1)

PRR #2

KER-ONE

VMM

Dev #2

Dev #3
Virtual Device

Manager

IF(2) IF(2) IF(2)

IPC

PRR #3

Request

Return
Solution

VM #1

Dev #1

Dev #2

Dev #3

VM 1

VM 2

Figure 2. Overview of the DPR management
framework in KER-ONE.
An IF has two states, connected to a certain PRR or

unconnected. When an IF is connected, it is considered
that the corresponding virtual device is implemented in
the PRR and that it is ready to be used. Being in the
unconnected state means that the target accelerator is u-
navailable and the IF registers are mapped as read-only
pages. When a VM attempts to use this virtual device by
writing to its interface, this action will trap an page-fault
exception and can be detected by the VMM. Since VM-
s’ usage of DPR accelerators are independent, our system
introduces additional management mechanisms to dynam-
ically handle VMs’ request for DPR resources.

In Figure 2 the proposed management mechanism is
described. The Virtual Device Manager is a particular
software service in an independent virtual machine do-
main, which aims at allocating DPR resources to VMs.
In the static part of the FPGA, a PRR Monitor is creat-
ed and is in charge of interconnections between IFs and
PRRs, and dynamically monitoring DPR accelerators and
search for available solutions of DPR resource requests.

Each time that a VM accesses an unconnected IF, VM-
M immediately schedules Virtual Device Manager to han-
dle this DPR resource request as Request (vm id, dev id,
prio), which is composed of the VM ID, the virtual device
ID and a request priority (i.e. calling VM priority). This
request is posted to the PPR Monitor on the FPGA side
to search for an appropriate allocation solution, which in-
clude different methods:
• Assign (prr id): directly allocates PRR (i.e. prr id)

to VM. If device dev id is not implemented in this
PRR, a Reconfig flag will also be added.
• Preempt (prr id): no PRR can be directly allocat-

ed, but PRR (i.e. prr id) can be preempted and re-
allocated. If device dev id is not implemented in this
PRR, a Reconfig flag will also be added.
• Unavailable: this state means that currently no PRR

is available. This unsolved request is then added to
the searching list which PPR Monitor keeps search-
ing for solutions. New solutions will be sent to Vir-
tual Device Manager immediately.

Virtual Device Manager then performs the allocation
according to the returned solution which may be per-

Table 1. Overheads of DPR allocation
Methods Overheads (µs)
{Assign} 3.03µs

{Assign, Reconfig.} 6.76µs+ TRFCG

{Preempt} 5.10µs+ Tpreempt

{Preempt, Reconfig. } 9.96µs+ Tpreempt + TRFCG

formed in several steps: (1) disconnect the target PRR
from other IFs, and change the memory page as read-only
in the corresponding VM; (2) connect it to the request-
ing VM and update the memory page as read/write; (3)
resumes the requesting VM to the interrupt location and
continues running. In non-immediate solutions (i.e. Re-
config and Preempt), the allocation process can’t be com-
pleted in one-shot execution, since it needs to wait for
the completion of reconfiguration or preemption. In this
case, Virtual Device Manager acknowledges VM software
by releasing IPC messages, and leaves the PPR Monitor
tracking these solutions on the FPGA side, which delivers
interrupts to Virtual Device Manager when reconfigura-
tion/prteemption is over.

3 Evaluation

Our evaluation focuses on the DPR allocation laten-
cy, i.e. the delay that occurs before the accelerator is
properly allocated and ready to start. This latency comes
from several sources: page-table faults handling, IPCs,
VM scheduling and Virtual Device Manager execution.
According to the experiment measurements, overall over-
heads for allocation path can be estimated as in Table 1.
It can be clearly noticed that direct allocations can be effi-
ciently performed with 3µs latency, whereas in other solu-
tions the system overhead remains still quite low and the
major costs come from preemption and reconfiguration,
which are inevitable in most DPR systems.

4 Conclusion

In this paper we have introduced a framework capable
of DPR resource management in a virtual machine system.
DPR accelerators are mapped as ordinary devices in each
VM. Through dedicated memory management, our frame-
work automatically detects the request for DPR resources
and allocates them dynamically with low overheads.

References

[1] G. Heiser, “The role of virtualization in embedded systems,”
in Proceedings of the 1st workshop on Isolation and integra-
tion in embedded systems, pp. 11–16, ACM, 2008.

[2] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner,
M. Platzner, and C. Plessl, “Reconos: An operating sys-
tem approach for reconfigurable computing,” Micro, IEEE,
vol. 34, no. 1, pp. 60–71, 2014.

[3] O. Knodel and R. G. Spallek, “Rc3e: Provision and man-
agement of reconfigurable hardware accelerators in a cloud
environment,” arXiv preprint arXiv:1508.06843, 2015.

2

