
HAL Id: hal-01905758
https://hal.science/hal-01905758

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Microkernel on reconfigurable ARM-FPGA platform
Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel

To cite this version:
Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel. Microkernel on reconfigurable ARM-FPGA
platform. GDR SOC/SIP, Jun 2014, Paris, France. �hal-01905758�

https://hal.science/hal-01905758
https://hal.archives-ouvertes.fr


Microkernel on reconfigurable ARM-FPGA platform

Tian XIA, Jean-Christophe Prevotet, Fabienne Nouvel
Université Européene de Bretagne

INSA, IETR, UMR 6164, F35708 Rennes, France
Email: {tian.xia, Jean-Christophe.Prevotet, Fabienne.nouvel}@insa-rennes.fr

Abstract—This paper proposes a custom microkernel on a
ARM-FPGA platform which is capable of managing reconfig-
urable hardware parts dynamically. After describing the hard-
ware platform on which the microkernel has been ported, We will
focus on the proposed microkernel and the custom specific system
task dealing with the reconfiguration management. Scheduling
mechanism will also be discussed in this paper.

Keywords—FPGA, embedded system, reconfigurable architec-
tures, microkernel

I. INTRODUCTION

The technique of Dynamic Partial Reconfiguration (D-
PR) has gained increasing attention in the embedded domain
because of its runtime adaptivity for hardware algorithms
and higher hardware utilization. However, the reconfiguration
overhead remains a crucial issue for this technique. In modern
FPGA devices, the reconfiguration of a computing-intensive
module may be quite time-consuming [1]. Therefore, a dedi-
cated efficient management is essential for DPR systems.

There have been wide researches in efficient hardware
architecture management with OS support [2][3], which, how-
ever, were restricted to the limited computation power pro-
vided by embedded processors[4]. Such a limitation has been
eliminated on the Zynq-7000 platform, where a fully capable
processing system is provided with powerful ARM Cortex-A9
processor[5]. On Zynq-7000, the FPGA is considered as an
auxiliary computing resource and thereby a specific kernel is
required to efficiently dispatch both hardware and software
resources. Microkernel technique seems to be a promising
solution in this case, due to its features of task isolation
and system security. In embedded circuits such as FPGAs,
a microkernel may also be of interest since a new DPR
management service may be easily developed in the existing
kernel.

In this paper, we describe a custom embedded microkernel
on a hybrid ARM-FPGA Xilinx Zynq-7000 platform. This
microkernel is a revised version of the NOVA microhypervisor
[6], and is capable of the management and scheduling of
reconfigurable hardware resources. This architecture allows for
dynamic management of SW/HW tasks, secure task isolation
and efficient SW/HW communication.

II. PROPOSED PLATFORM

The proposed platform is built on the Zynq-7000 platform
framework. The intention of this framework is to develop a
user-practical environment with a highly abstract microkernel,
on the top of which the management of hardware resources is
integrated as an user application. Both software and hardware
tasks are monitored and scheduled by a custom microkernel

AXI Interconnection

DDR

Microkernel

AXI4-HP Master

PRR1 PRR2 PRR3

PCAP

GIC

DecCfg
Bit

file

Bit

file

Bit

file

HW Task 

Manager

User

App

I/O

Driver

ARM Cortex-A9

HW task data

AXI4-Lite Slave

Config. Reg1

Config. Reg2

Config. Reg3

PPR reg 

group

PPR reg 

group

PPR reg 

group

PRR Controller

Config.

Fig. 1. Diagram of the proposed hybrid platform

based on the Mini-NOVA kernel. A block diagram of the
proposed hybrid platform is shown in Fig. 1.

The Zynq platform framework are composed of Processing
System (PS) and Programmable Logic (PL). As shown in Fig.
1, on the PL side, the FPGA is consisting of multiple partial
reconfigurable regions (PRR), which execute independently
as hardware tasks containers. The hardware task running in
each container is run-time switchable under the control of the
hardware task manager. The fabric information of hardware
task is held by a bitstream file. All bitstream files are loaded
to the DDR memory space at the kernel bootload stage with
unique IDs. The container corresponding to each HW task is
pre-determined. A HW task is dispatched by downloading the
target bitstream file to the pre-assigned PRR.

Several onboard resources are used to support the com-
munication between PL and PS, as well as the downloading
of bitstream file. Partial reconfigurations are conducted by
launching a DMA transfer through the Processor Configuration
Access Port (PCAP). Two memory-mapped AXI GP interfaces
are applied to configure the states of HW tasks. Four AXI HP
interfaces are used by HW tasks to access both on chip
memory(OCM) and DDR at high throughput. Since AXI HP
is working in the slave mode, data are fetched and processed
simultaneously with the processor.

To control and monitor the behavior of the HW tasks, we
developed a PRR controller which consists of a state machine
under the processor supervision. Through the AXI GP inter-
face, we have implemented a group of configuration registers
which are mapped into the memory space and accessible to the
processor. By accessing these registers, a SW service is able to
configure the working state and parameters of HW tasks. One
major feature of the PRR controller is to guarantee a smooth
HW task switch at reconfiguration following these rules:

• The involved pipeline should be emptied before any



HW task switch, so that invalid output is avoided.

• To maintain the integrity of the data structure being
processed, PRR reconfigurations should be launched
in interval of data frames to protect data.

• A reset should be inserted to the reconfigured PRR to
put it into a desired state before activation.

III. REAL TIME MICROKERNEL

To enhance the management of multiple guest SW appli-
cations and HW tasks, we developed a simplified microkernel
based on Mini-NOVA, one revision of the NOVA hypervisor,
by porting it from x86 to the ARM platform. In the process,
additional management and scheduling mechanisms are added
to the system to support dynamic PR management.

One major kernel object in our system is the execution
context (EC), which is the abstraction of user threads or
applications in the kernel space. Each user application is
attached to one unique EC, which is able to maintain and con-
figure user applications states such as the CPU/FPU registers
and scheduling sequence. When sensitive operations (cache
operation, task creation, page allocation, etc.) are required, the
user space may access kernel services by generating system
calls, which are also handled through an EC.

The HW task manager is defined as a special application
service in user space. Any operation and switch of HW tasks
should be accomplished by the HW task manager, so that the
security of the FPGA fabric is ensured. A specific system call
from user space will require the kernel to launch the HW task
manager. The prototype of this specific system call is:

Syscall HW Manager(HW id,irq en,arg01,arg02,arg03)

The HW id is used to identify the target HW task and PRR.
The irq en argument will indicate whether the PL interrupt
will be enabled for the target HW task. Other parameters are
transferred as arg01-arg03. At the completion of the required
operation, the HW task manager gives control back to the pre-
viously interrupted application by generating another system
call Syscall yield() . To avoid the significant reconfiguration
time overhead, the HW task manager aborts the polling-for-
done mechanism. Instead, once the HW task manager launches
the PCAP transfer, it gives up the CPU control and wait for the
next call. The HW task is set to automatically start an operation
as soon as the reconfiguration is done. Thus the reconfiguration
time overhead is overlapped by CPU operations.

A priority-based round-robin mechanism is employed to
schedule SW tasks. The scheduler manages the execution
sequence of ECs. Each EC obtains its priority level at in-
ception. Within the same priority level, SW tasks share the
CPU through round-robin scheduling. Among different priority
levels, high-priority tasks will always preempt low-priority
tasks since the scheduler always selects the highest priority
EC and dispatches the SW task attached to it.

Basically, all general SW tasks execute at the default
priority level. To guarantee a quick response to PR requests,
a higher priority is given to the HW task manager. The
run queue is composed of all executable ECs. In each priority
level, ECs are organized as a round-robin queue. list prio[]
is a group of EC pointers which point respectively to the

Task1 Task2 Task3

List_prio[1]

List_prio[2]

List_prio[prio_top] HW

Manager

prio_top = 2

Task1 Task2 Task3

List_prio[1]

List_prio[2]

prio_top = 1

run_queue

run_queue

(b)

(a)

HW_Manager_Enqueue() HW_Manager_Dequeue()

List_prio[prio_top]

Fig. 2. Scheduling mechanism. (a) prio top=2; (b) prio top=1

TABLE I. SW/HW TASK EXECUTION AND SWITCH OVERHEAD

Task name Execution time (ms)

HW task manager 0,0096

EC switch 0,00232

HW switch overhead 0.0142

entrance EC of each priority level queue. There can be several
priority levels within the run queue, while the highest priority
level is identified by the prio top signal. When reschedule()
is invoked, the highest-priority-level EC queue is dispatched
by indexing list prio[prio top]. Once dispatched the queue
will keep executing until another reschedule() is invoked. As
shown in Fig. 2, The function HW Manager Enqueue() and
HW Manager Dequeue() are used to add the EC of the HW
task manager from to the run queue when invoked and remove
it when it finishes its task. Through this strategy, the PR of
an HW accelerator is able to preempt other SW tasks, thus a
quick response for the HW task management is guaranteed.

The time overheads of SW/HW task switches are listed in
Table I. The latency for HW task switch is composed of the
execution time of the HW task manager and the time required
to perform EC switches between HW task manager and user
applications.

IV. CONCLUSION

In this paper, a custom microkernel on Zynq-7000 platform
is proposed. This approach allows to dynamically manage
reconfigurable HW accelerators and SW tasks by developing a
HW task manager routine and specific scheduling mechanism.

REFERENCES

[1] S. Hauck, and A. DeHon, ”Reconfigurable computing: the theory and
practice of FPGA-based computation,” Morgan Kaufmann, 2010.

[2] F. Berthelot, F. Nouvel, and D. Houzet, ”Partial and Dynamic Recon-
figuration of FPGAs: a top down design methodology for an automatic
implementation,” in 20th International Parallel and Distributed Pro-
cessing Symposium, 2006 (IPDPS 2006) , IEEE, 2006. pp. 4-pp.

[3] J. C. Prvotet, A. Benkhelifa, B. Granado, et al. ”A framework for the
exploration of RTOS dedicated to the management of hardware recon-
figurable resources,” in International Conference on Reconfigurable
Computing and FPGAs, 2008 (ReConFig’08), IEEE, 2008, pp. 61-66.

[4] K. Vipin, and S. A. Fahmy, ”ZyCAP: Efficient Partial Reconfiguration
Management on the Xilinx Zynq,” in IEEE Embedded Systems Letters,
2014, vol. 6.

[5] UG585: Zynq-7000 All Programmable SoC Technical Reference Man-
ual, Xilinx Inc., Mar. 2013.

[6] U. Steinberg and B. Kauer, ”NOVA: a microhypervisor-based secure
virtualization architecture,” in Proceedings of the 5th European confer-
ence on Computer systems, ACM, 2010, pp. 209-222.


