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Abstract—In the last decade, the research on CPU-FPGA
hybrid architectures has become a hot topic. One of the main
challenges in this domain consists in efficiently and safely
managing dynamic partial reconfiguration (DPR) resources. This
paper focuses on the management of the reconfiguration by an
hypervisor on an ARM-FPGA platform. Using the virtualization
approach, virtual machines (VM) may access resources indepen-
dently, being unaware of the existence of other VMs. The purpose
of our work is to provide an abstract and transparent interface
for virtual machines to access reconfigurable resources. The
underlying infrastructure of partial reconfiguration management
is hidden from the virtual machines, so that software developers
do not need to consider the implementation details. We propose
a framework where DPR accelerators are presented as virtual
devices, which are universally mapped in each VM space as
ordinary peripherals. The hypervisor automatically detects VM’s
requests for DPR resources and handles them dynamically
according to a preemptive allocation mechanism. Our custom
hypervisor guarantees the independent and isolation of VM
domains. We also evaluate the efficiency of our framework
by measuring the critical overheads during DPR management
and allocations. The results demonstrate that our mechanism is
implemented with low overhead.

Keywords: virtualization, FPGA, real-time system, micro-
kernel

I. INTRODUCTION

Today, the concept of CPU-FPGA hybrid processor has
become more and more popular in both academic and commer-
cial worlds. Unlike in traditional FPGA devices where CPU
cores are synthesized in the FPGA fabric as soft processors,
the hybrid approach provides System on Chip (SoC) archi-
tectures with CPU and FPGA domains that are independently
implemented.CPU-FPGA hybrid processors have several ad-
vantages. On one hand, the high-end general purpose proces-
sors are capable of establishing complex computing systems,
and an existing software stack can be directly used without
any obstacle. On the other hand, the implementation of FPGA
accelerators offers a compelling improvement in performance
when performing intensive computations. Moreover, with the
help of CPU processing, FPGA accelerators can be managed
much more efficiently with more complex strategies, which
inevitably optimizes the acceleration.

This emerging convergence point of conventional CPU
and FPGA computing makes it possible to extend traditional

CPU virtualization technologies into the FPGA domain to
fully exploit the mainstream FPGA computing. Our research
focuses on the virtualization technology, which has gained
a lot of interests and achieved enormous progress in the
embedded computing domain. It has been proven that it
can provide users with increased energy efficiency, shortened
development cycles and enhanced security [1][2]. In parallel,
the dynamic partial reconfiguration (DPR) technology on
FPGA has been playing an important role in high performance
adaptive computing [3]. Therefore, the combination of both
DPR and virtualization technologies may be an interesting
idea to significantly accelerate the computationally intensive
applications in embedded systems.

While being considered as quite promising, the exploitation
of DPR-enhanced virtualization also brings up new challenges.
In virtualization, guest OSs are executing in strongly-isolated
environments called virtual machines (VM). Each VM has
its own software tasks and virtualized resources, which are
isolated from the physical resources. In this context, the usage
of hardware accelerators from VMs will be dynamic and
independent. Thus, it is preferred that DPR accelerators are
shared by multiple VMs by means of abstract and transparent
layer so that the isolation of virtual machines will not be
undermined. The actual allocation and management should be
performed via an additional hypervisor mechanism, and should
remain hidden from the guest OSs.

In this paper, we present an approach to exploit the potential
of CPU-FPGA systems by proposing a framework extending
virtualization with DPR accelerators. We will describe and
evaluate a virtual embedded system in a hybrid ARM-FPGA
platform Xilinx Zynq-7000. The remainder of the paper is
organized as follows: Section II presents the related works.
Section III presents the mechanisms of the DPR management
in a virtualized environment. In Section IV, we verify and
examine the proposed system with practical hardware/software
applications and analyze the results.

II. RELATED WORKS

The hybrid CPU-FPGA architecture generally features C-
PUs that are dedicated to the embedded systems domain.
For example, Xilinx released the Zynq-7000 series which
offers an ARM-FPGA SoC. ARM processors have also been



introduced in Cyclone-V and Arria-V Altera families. Intel 

propose its Atom processor E600C Series, which pairs an 

Intel Atom processor SoC with an Altera FPGA in the same 

package. Recently, Intel has taken a further step by releasing 

a XeonlFPGA platform dedicated for data centers. 

In the academic domain, the topic of embedded CPU

FPGA based systems has also been massively studied. Numer

ous works have consisted in providing current reconfigurable 

FPGA devices with OS support ([4][5][6] [7]). One successful 

approach in this domain is ReconOS [8], which is based on 

an open-source RTOS (eCos) that supports multithreaded hard

ware/software tasks. ReconOS provides a classical solution for 

managing hardware accelerators in a hybrid system in standard 

thread model. However, the possibility of virtualization was 

not fully discussed in these works. 

In [9], this concept is implemented by providing the OS4RS 

framework in Linux. The virtual hardware permits the same 

hardware devices and the same logic resources to be si

multaneously shared between different software applications. 

However, this approach is proposed in the context of a single 

OS, without considering any virtualization features. Another 

study is given in [10], one of the earliest researches in this 

domain. The authors try to extend the Xen hypervisor to 

support the FPGA accelerator sharing among virtual machines. 

However, this research focuses on an efficient CPUIFPGA 

data transfer method, with a relatively simple FPGA scheduler 

that provides a FCFS (first-come, first served) sharing of the 

accelerator, without including the DPR technology. 

DPR virtualization is much more popular on cloud servers 

and data centers, which generally have a higher demand 

for computing performance and flexibility. For example, in 

[11], the authors use partial reconfiguration to split a single 

FPGA into several reconfigurable regions, each of which is 

managed as a single Virtualized FPGA Resource (VFR). Based 

on the similar principle, the work of RC3E [12] provides 

several vFPGA models, which permits users to require for 

DPR resources as full FPGA, virtual FPGA or background 

accelerators. However, DPR virtualization on these platforms 

are inappropriate for embedded systems, in which available 

resources are really limited compared to those available in 

servers or data centers. 

Another interesting research [13] consists in proposing a 

framework dedicated to hardware task virtualization on a 

hybrid ARM-FPGA platform. In this work, the authors mod

ified the CODEZERO hypervisor to manage reconfigurable 

accelerators. However the classical DPR technology is not 

employed in this work for hardware reconfiguration. Instead, 

reconfigurable computing components are quite simple and are 

more appropriate to systems with light but frequently-switched 

computations. 

In this paper, we proposed an original approach of DPR 

virtualization on an embedded hypervisor named Ker-ONE, an 

updated version of a custom micro-kernel [14]. Efforts have 

been made to provide efficient DPR resource sharing among 

virtual machines, while meeting the applications constraints. 

Fig. l. Allocation of virtual devices for virtual machines via manipulating 
the mapping of IFs. 

III. DPR MANAGEMENT FRAMEWORK 

Ker-ONE is a custom small-sized hypervisor which provides 

para-virtualization on ARM processors. It allows multiple 

guest OSes to be hosted concurrently with different priority 

levels. Each guest OS is running in an isolated domain named 

virtual machine, and is managed by an underlying virtual 

machine monitor (VMM). The VMM provides fundamental 

functions such as VM scheduling and inter-process com

munication (IPC). In The proposed framework, Ker-ONE is 

extended with dedicated management mechanism for partially 

reconfigurable (PR) accelerators. 

Ker-ONE is designed to host several OSs of different 

priorities. We assume that all critical tasks are hosted in a 

high-priority VM, with higher timing and performance require

ments. Non-critical tasks are running on low-priority VMs, 

for which long-latency and resource blocking is tolerable. 

To keep the behavior of critical tasks predictable, we also 

assume that the FPGA resources are always sufficient for the 

high-priority VM, whereas they can also be shared and re

used by low-priority VMs. This assumption seems reasonable 

in practice, since critical tasks are pre-determined in most 

embedded systems. 

A. Accelerator Mapping 

In our system, reconfigurable accelerators are hosted in 

pre-determined partial reconfiguration regions (PRR), which 

are serving as containers. We denote these accelerators as 

HW tasks. A HW task can be implemented in a PRR by 

downloading the corresponding bitstream into the targeted 

PRR area via the PCAP interface [15]. HW tasks are presented 

as a virtual devices (VD) in the VM domain, and is completely 

isolated from the implementation details. Therefore, one spe

cific virtual device can be hosted in different PRRs. 

Fig. 1 describes how virtual devices are mapped to the fixed 

addresses in all guest OSs and considered as ordinary devices. 

A unified interface, i.e. a standard structure of registers, is 

provided to users. Like other peripherals in ARM systems, 

OSs access these devices by reading/writing at the address 

of the corresponding device interface. Note that the physical 



positions of these virtual devices are not known since they can 

be implemented in different PRRs. 

We introduce an intermediate structure, called PR interface 

(IF), on the FPGA side, which can be seen as an intennediate 

layer between the logical virtual devices and the actual ac

celerators. These IFs are in charge of connecting the virtual 

machines with accelerators so that software can control their 

behavior. Each IF is exclusively associated to a specific VM. 

Thus, mapping of reconfigurable accelerators is perfonned in 

two steps: first, the IF is mapped to the VM address space as 

a virtual device interface. Second, on the FPGA side, the IF is 

connected to the target PRR that implements the corresponding 

device function. 

As shown in Fig. 1, IFs are initiated on the FPGA side and 

are mapped to the physical memory space of the processor. 

Their physical addresses are configured to be aligned to inde

pendent 4KB memory pages. VMs access IFs via independent 

page tables, which maps IFs as memory pages in virtual 

address space. Therefore, though a virtual device is mapped 

to the same virtual address for all VMs, it is implemented 

by using separated IFs in the FPGA. The mapping between a 

particular IF and the VM space of a virtual device is fixed. 

An IF has two identifiers: vm_id and dev _id (i.e. referred to 

as IF( vm_id, dev _id» to identify the virtual machine and the 

virtual device to which it is associated. 

An IF has two states, connected to a certain PRR or 

unconnected. When an IF is connected, the corresponding 

virtual device is implemented in the PRR and it is ready to 

be used. Being in the unconnected state means that the target 

accelerator is unavailable. We leverage the ARM paging mech

anism to control VM's access to IFs. When a IF is connected, 
its page is marked as read/write so that virtual machine can 

control this accelerator by manipulating IF registers. On the 

other hand, for unavailable devices (with an unconnected IF), 

the IF pages are set as read-only, and a VM cannot configure 

or command this virtual device by writing to its interface. This 

mechanism guarantees the monopoly use of accelerators. 

An example is presented in Fig.!. In VM #1, an application 

is free to program and command Dev #1 (FFT-2048) as the 

IF associated with it is currently connected to PRR #1, where 

the algorithm is implemented. Meanwhile, VM #1 cannot give 

orders to Dev #2 and #3 since these interfaces are currently 

read-only. Any writing on these interfaces will cause a page

fault exception to the VMM. 

One major characteristic of virtualization is that virtual 

machines are totally independent from each other. In our 

case, however, VMs are obliged to share DPR resources. 

This can unfortunately lead to resource sharing issues that 

are well known in computing systems. In traditional OS, 

such problem can be solved by applying synchronization 

mechanisms such as semaphores or spin-locks. For Ker-ONE 

however, such mechanisms are not suitable since they may 

undermine the independence of VMs. Therefore, our system 

introduces additional management mechanisms to dynamically 

handle the virtual machines' request for DPR resources. Note 

that such requests may occur randomly and are unpredictable. 

( Dev #1 ) ( Dev #2 ) ( Dev #3 ) : 
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Fig. 2. Overview of the DPR management framework in Ker-ONE. 
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Fig. 3. Model of reconfigurable accelerator. 

In Fig. 2, the proposed management mechanism is de

scribed. A Virtual Device Manager and a PRR Monitor 
component are made available in both software and hardware 

parts of the FPGA. The Virtual Device Manager is a particular 

software service implemented in an independent VM domain, 

which aims at detecting and handling the requests coming 

from VMs that want to use the virtual devices. This is 

performed through an IPC mechanism. In the static part of 

the FPGA, a PRR Monitor is created and is in charge of 

maintaining the connections between IFs and PRRs. This 

monitor runs in cooperation with Virtual Device Manager, 
to dynamically monitor reconfigurable accelerators and search 

proper solutions for VMs' requests. 

B. Hardware Task Model 

HW tasks see PRRs as containers, which provide FPGA 

resources to implement their algorithms. In this case, a given 

PRR may not be compatible with some virtual device, if its 

area (i.e. resource amount) is insufficient to implement the 

corresponding HW task logic. Therefore, the compatibility 

infonnation of HW tasks must be foreseen beforehand. 

An HW Task Index table is created to provide a quick look

up search for HW tasks. In this table the compatible virtual 

devices for each PRR are listed. For each compatible virtual 

device, a HW Task Descriptor structure is given, which stores 

the information of the corresponding bitstream, including its 

ID, memory address and size. This information is used to 

correctly launch PCAP transfers and perform reconfiguration. 

Fig. 3 depicts the model of HW task and its interaction 

with VM client. As shown, Virtual machines access HW tasks 

via IFs. We proposed a standard interface to facilitate the 

multiplexing of DPR resources, denoted as PR accelerator 
interface. It is implemented in both IFs and HW tasks, and 

conveys the register values from the IF to HW tasks. Once the 



TABLE I 
LIST AND DESCRIPTION OF PORTS IN PR accelerator inteiface 

Register Width Description 

STAT 32-bit HW task status register 

START 8-bit Start /lag 

OVER 8-bit Computation Over /lag 

CMD 32-bit Command register 

DATA_ADDR 32-bit Data buffer address register 

DATA_SIZE 32-bit Data buffer size register 

RESULT 64-bit Computation result register 

INT_CTRL 32-bit Interrupt controller register 

Custom Ports 8*32-bit Provide 8 IP-defined ports 

IF is connected to an HW task, a virtual machine can write 

commands or configurations into the IF registers to control the 

HW task behavior. 

In TABLE I, the structure of the PR accelerator interface is 

listed. Virtual machines start the process by setting the START 
flag. When the required computation is over, the OVER flag 

is set and the result is returned in the RESULT register. HW 

tasks can be programmed to perform a DMA data transfer or 

to generate interrupts. Note that a PR accelerator interface 
structure is implemented in IF. When an IF is disconnected 

from a PRR, the states of virtual device execution (e.g. results, 

status) are still stored in this IF. In this way, the consistency 

of the virtual device interface is guaranteed. 

The VMs that are currently using HW tasks are denoted as 

clients. HW tasks inherit the priorities of VM clients. We use 

preemptive policy for HW tasks, meaning that requests from 

higher-priority VMs can preempt low-priority HW tasks. 

The preemption of HW tasks requires extra attention since 

their computations can only be stopped when they reach 

some point of their execution paths where the integrity of 

the data frame is preserved. These points are denoted as 

consistency points where the execution path is safe to interrupt 

and may resume without a loss of data consistency. Designers 

of HW tasks have to identify the consistency points that allow 

the accelerators execution to be preempted and to save the 

interrupt state. This mechanism is shown in Fig. 3. In each 

IF, a IKE buffer is implemented to store the accelerator 

intermediate execution context at the consistency points. This 

data can later be used by the VM to resume the execution. 

In our case, the format of saved context is openly defined by 

designers. However, considering the extra overhead, the size 

of context data should be kept as light a possible to enable 

fast context switch. 

C. PRR State Machine 

A PRR houses HW tasks to implement different devices, 

and behaves as a state machine. The state determines if a PRR 

can be allocated, and how should it be allocated. There exist 

five states: 

• Idle: The PRR is idle without any ongoing computation 

and is ready for allocation. 

• Busy: The PRR is in the middle of a computation 

-----------------------------, I Start I I Idle Busy I I Over 
I I Start I I :�� Allocate Reach I I clien:����:�:uled PRR consistency points I I I I PCAP Over I I Reconfig. Hold I 

1_ - - - - - - - �l":!.n- - - - - - - - - - - - - - - - - --'  

PRR Descriptor I STATE I RCFG TIME I VM 10 I OEV_IO I PRIO 

Fig. 4. The behavior of PRRs as a state machine. 

• Preempt: The PRR is running, but the computation will 

be stopped (preempted) once it reaches a consistency 

point. 

• Hold: The PRR is allocated to a VM and is preserved 

for a certain amount of time 

• Reconfig: The PRR is in the middle of a PCAP recon

figuration. 

The PRRs behaviour can be described according to the flow 

chart given in Fig. 4. As depicted in this figure, a PRR can 

only be directly allocated to VMs when it is in Idle state and 

requires no reconfiguration. In other situations, the allocation 

process requires extra overheads caused by PCAP transfers or 

preemption. 

We also have introduced Hold as an intermediate state. The 

PRRs that are allocated to a VM will first enter this state. This 

indicates that the PRR is reserved to a certain VM client. PRRs 

in the Hold state will block any re-assignment and will wait to 

be used by the VM. PRRs will be released and return to the 

Idle state under two conditions: the target VM is scheduled 

into the CPU, or the pre-set waiting time Expire runs out. 

PRR holds the essential information in a PRR Descriptor 
data structure. This list indicates PRR state (see Fig. 4). It also 

includes the information of the currently-hosted HW task: the 

client VM ID, the virtual device ID (i.e. accelerator ID) and the 

HW task priority, which are used to make allocation decisions. 

Note that, in our context, the bitstreams size is strictly pre

defined by the size of the reconfigurable area. Therefore, the 

reconfiguration time of each PRR can be predicted. This factor 

is also included in the PRR Descriptor. 

D. PR Resource Requests and Solutions 

Every time that a VM tries to use an unavailable virtual 

device, a page-fault exception will be triggered and then 

handled by Virtual Device Manager as a PR resource request: 

Request (vm_id, dev_id, prio), which is composed of the VM 

ID, the virtual device ID and a request priority. The request 

priority is equal to the priority of the calling VM. 

The PPR Monitor on the FPGA side is responsible to search 

for appropriate allocation plans for such requests. This plan is 

referred as a solution. A complete solution is formatted as: 

Solution{vm, dev, M ethod(prr _id) , Reconfig}, (1) 

which includes the target VM, the required device, the ac

tual allocation method and reconfiguration flag. The different 

methods include: 
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Fig. 5. Solution searching mechanism in the PPR monitor. 

• Assign(prr _id): this solution directly allocates the re

turned PRR (i.e. prr _id) to the request VM. If the 

requested device dev_id is not implemented in this PRR, 

a Reconfig flag will also be added. 

• Preempt(prr _id): no PRR can be directly allocated, but 

the returned PRR (i.e. prr _id) can be preempted and re

allocated. If the requested device dev _id is not imple

mented in this PRR, a Reconfig flag will also be added. 

• Unavailable: currently no PRR is available for Re
quest(vm_id, dev _id, prio). 

The PPR Monitor searches for the best solution by check

ing the PRR Descriptors (see Fig. 4). For a given Request 
(vm_id, dev_id, prio), the PRR Monitor first obtains the list of 

compatible PRRs for the target device (dev_id) by checking 

the HW task index table. The states of these compatible 

PRRs are then checked for possible solutions. Then it searches 

the states of PRRs for solutions. If multiple solutions are 

found, the best one is chosen according to the selecting 

policy. In our algorithm, Idle PRRs are considered to be best 

solutions. Preemptions are chosen only when no Idle PRR 

exists. Besides, the selector always chooses the solution with 

a minimal PRR size since it causes the minimal reconfiguration 

overhead and power consumption. However, these policies can 

be easily modified and adapted. 

Fig. 5 depicts the interaction between the PPR Monitor and 

the Virtual Device Manager. Normally the selected solution 

is sent to the Virtual Device Manager for further handling. 

However, if there is no valid solution (i.e. Unavailable), this 

unsolved request will be added to the Search List, which is a 

waiting list buffer of all unsolved requests. PPR Monitor keeps 

searching solutions for requests in this list, and acknowledges 

the Virtual Device Manager whenever a new solution is found. 

The searching runs in parallel with VMs, following priority

based FIFO principle, so that when a requests conflict occurs, 

the PPR Monitor always chooses the highest priority request. 

E. Virtual Device Manager 

The Virtual Device Manager is a special service provided 

by Ker-ONE, running in an independent VM a with the highest 

priority. Running in isolated VM improves the security of its 

functioning. This service stores all the HW task bitstreams 

in its memory and is the only component that can launch 

PCAP reconfigurations. The main task of this manager is: (1) 

to communicate with VMs and manage the virtual devices in 

their space; (2) to correctly allocate PR resources to VMs. 

Request (vmOl, devOl, prioOl) 
(e) 

os (d) 

(a) IF_Disconnect 

(a) Clear PRR Descriptor (c) Update PRR Descriptor 
PRR1 1�1 .... r;ij#·(T"§#'c:� VM#l I DEV#l I PRIO#l l 

Fig. 6. Execution flow for solution to directly allocate an accelerator. 

We already know that any writing operations on an unavail

able virtual device interface will trap to a VMM as a page

fault exception. We assume that, in order to command a virtual 

device, a VM always need to configure the device interface 

in the IF. In this case, any VMs' attempt to use unavailable 

virtual devices will be automatically detected by the VMM, 

and then passed to the Virtual Device Manager. 

Since the virtual devices are pre-determined and identically 

mapped in all VM virtual address spaces (see Fig. 1), it is 

easy to identify the target device by simply checking the page

fault address. Then this exception is translated into the Request 
(vm_id, dev_id, prio) format to search solutions. The Virtual 
Device Manager allocates DPR resource to VMs according to 

different solutions. 

The allocation/ de-allocation of DPR resources consist in 

manipulating IF connections and VM page tables. In Fig. 6, 

we depict the complete flow to allocate an accelerator to 

VM as a virtual device. In this example, after a given 

Request( vmOl, devOl, prioOl )}, a solution {Assign (prrOl), 
non-Reconfig} is performed. We assume that PRR #1 was 

previously used by VM #2 and that it is currently in the Idle 
state. It can then be directly re-allocated in following steps: 

(a) Command IF _Disconnect is given to the PRR Monitor to 

disconnect the IF of VM #2. Meanwhile, the PRR descriptor 
entry of PRR#l is cleared. (b) Set the no-more-available device 

interface as read-only in VM #2's page table (via hyper-call). 

(c) Use IF_Connect to connect PRR to the IF of VM #l. 

PRR Monitor also updates the PRR descriptor entry with the 

new client VM #l. (d) Change VM #l's devOL interface as 

read-write (via hyper-call). (e) VMM suspends Virtual Device 
Manager and resumes VM #1 to the exception point and VM 

#1 continues to use this device. 

For guest OSs, the ideal solution is {Assign, non-Reconfig}, 
because a PRR can be allocated inunediately as shown in the 

previous example, and the allocation is totally transparent. On 

other solutions which require reconfiguration or preemption, 

the target virtual device need to wait for several additional 

steps before it is ready to use. In these cases, the Virtual Device 
Manager informs the requesting VM with IPC messages, and 

suspends itself to wait for the completion of reconfiguration 



Fig. 7. The process of Virtual Device Manager handling Solutions. 
TABLE II 

COMMUNICATION SIGNALS FOR DPR ALLOCATION 
Signal Type Recv. Message 

IPC_WAlT IPC VM Device currently unavailable 

IPCREADY IPC VM Device is ready 

IPC]REEMPT IPC VM Device is preempted 

IRQ_New _Solution IRQ VDM New solution is found 

IRQ_PCAP _Over IRQ VDM Reconfiguration over 

IRQ]RR Stop IRQ VDM Preemption is complete 

or preemption before making further operations. Meanwhile, 

the PRR Monitor keeps tracking the procedure of unfinished 

solutions on the FPGA side, and sends interrupts to the Virtual 
Device Manager whenever further operations are needed. 

This mechanism is explained in details in Fig. 7, which 

demonstrates the role of the Virtual Device Manager. The 

routine is composed of one main function Run_Solution() 
and several interrupt service routine (ISR). We can notice 

that preemption and reconfiguration solutions are performed 

in two stages: (1) the manager launches the reconfiguration 

or preemption and then goes to sleep, (2) the manager is 

awakened to complete the unfinished solution in ISR. Note that 

for Preempt solution, the manager first stops the preempted 

accelerator, and then handles it as Assign solutions. 

In Fig. 7, different signals are used to facilitate the alloca

tion process, helping the synchronization among components. 

Some communication signals are destined to the requesting 

VMs, and indicate the state of the required device. Others are 

sent from the PRR Monitor to the Virtual Device Manager, to 

acknowledge the events for unfinished solutions. These signals 

are listed in TABLE II. 

F User Policy 

With our framework, coding is significantly simplified for 

software applications to use virtual devices. From their point 

of view, the use of virtual devices is performed by a series 

of write/read operations on the interface registers as ordinary 

devices. In an ideal situation, the interrupted virtual device 

would immediately be allocated and the task would continue 

seamlessly from the interrupted point. In other cases, specific 

user policies are required for the VMs. The virtual device 

may currently be not ready. In this case the usage of virtual 

device should be suspended until it is allocated. This can be 

implemented by blocking/unblocking the involved tasks. 

Another situation is the preemption of virtual devices so that 

a VM no longer controls the accelerator. In this case, it is the 

user's responsibility to re-launch the interrupted accelerator. 

For example, user can create a dedicated task to detect the 

preemption (via IPC_PREEMPT) of accelerators and to restart 

them. Note that, for high-priority VM, such situation will not 

occur according to our assumption that there always exist 

sufficient FPGA resources for high-priority tasks. Therefore, 

in the domain of high-priority VM, the problem of resource 

blocking can be ignored. 

IV. PERFORMANCE EVALUATION 

A. Experimental Description 

Our experiments were performed on the Xilinx ZedBoard, 

which provides a dual-core ARM Cortex-A9 processor and a 

partially reconfigurable FPGA fabric. The operating frequency 

of the CPU and FPGA logic are 667 MHz and 100 MHz 

respectively. 

An experiment is shown in Fig. 9. The FPGA fabric is 

initially implemented with three PRRs of different sizes. Four 

accelerators, i.e. QAM16, QAM64, FFT512, FFTl024, have 

been synthesized into bitstream files. During the initialization 

stage of Ker-ONE, these files have been loaded into the 

RAM memory and are only accessible to the Virtual Device 
Manager. This experiment is taken from an OFDM receiver 

that is intended to be very flexible by considering several 

configurations of modulators and mappers according to the 

channel condition. QAM blocks aims to take a complete frame 

of incoming bits into account and generate 16-bit width I 

and Q symbols. FFT blocks work on the outcoming QAM 

I and Q symbols to perform demodulation. To simplify the 

experiment, we assume that FFT always works in sequence 

of QAM-16 algorithm. The data frame is set to be 18,800 

bits, according to actual OFDM requirements. Therefore, the 

incoming frame sizes were 18,800 bits for QAMI6/QAM64 

and 4700 16-bit width symbols (as the outcome of QAMI6) 

for FFT512JFFTl024, respectively. In each PRR, a DMA

supported data buffer keeps transferring frames from VM 

memory space to the accelerators. 

Regarding the guest ass running in virtual machines, we 

have modified the j.lC/OS-II RTOS to execute it on top 

of Ker-ONE. In our experiment, two j.lC/OS-II guests are 

hosted with different priority levels. For each guest as, four 

available virtual devices are instantiated. Two and three tasks 

run respectively in both guest ass to periodically command 

virtual devices to process data frames containing 18,800 bits, 

which causes requests for allocations during the experiment. 

Accelerators are then allocated at run-time. The experiment 

executes for several hours continuously. A custom monitor is 

built to measure and record the various costs of allocation 

mechanisms. Based on the collection of numerous samples, 

the overall cost for our allocation mechanism can be then 

estimated. 



Fig. 8. Execution paths of DPR resource aUocation 

Fig. 9. Experimental architecture for performance evaluation. 

B. Overhead Analysis 

Our evaluation focuses on the allocation latency, i.e. the 

delay that occurs before the accelerator is properly allocated 

and ready to start. This latency is considered as the response 

time of DPR accelerators, and plays an important role for the 

OS tasks timing. 

Allocation latency comes from two main sources: the al

location mechanism itself and the Ker-ONE micro-kernel. 

Additional overheads will be caused if the allocated accelerator 

requires reconfiguration. Besides, the virtualization mecha

nism takes up extra time. For example, the page-table faults 

handling, IPCs and VM scheduling will noticeably contribute 

to the total allocation latency. The models of execution paths in 

different solutions can be calculated according to the diagrams 

displayed in Fig.8. In these models, the allocations consist 

of four different solution paths that can be decomposed into 

smaller atomic execution overheads: 

• Ttrap: Time required by Ker-ONE to detect a page-table 

exception in VM domain and to invoke the Virtual Device 
Manager. 

• Tresume: Time required by Ker-ONE to schedule back to 

a VM. 

• TPL_irq: Time required by Ker-ONE to receive IRQs 

from the PRR Monitor and to redirect them to the Virtual 

TABLE III 
MEASUREMENTS OF OVERHEADS DURING DPR ALLOCATION 

Micro-kernel 

Operation Overheads (/-ls) 

Ttrap 0,76 

Tresume 0,64 

TPL_irq 0.81 

Device Manager. 

Virtual Device Manager 

Operation Overheads (/-ls) 

TSearch 0.50 

TSolution(l) 1.13 

TSolution(2) 2.77 

TSolution(3) 0.34 

Tirq...:pcap 0.64 

Tirq stop 0.28 

• TSearch: Time required by the Virtual Device Manager 
to receive the VM requests and to search for solutions. 

• TSalutian(1)(2)(3f Execution time to handle different so

lutions: (1) direct assignment, (2) assignment with recon

figuration, (3) preemption. 

• Tirq_pcap, Tirq_stop: Time required by the Virtual De
vice Manager to handle the following IRQs (i.e. 

IRQ_peAP _Over, IRQ_PRR_Stop). 
• Tpreempt: Overhead of waiting for preemption. 

The results of our measurements are listed in TABLE III. 

Note that since Ker-ONE provides an efficient virtualization 

mechanism, virtual machine scheduling and virtual interrupt 

emulation are performed with an overhead less than IMS. The 

heaviest overhead is caused by TSalutian(2), referring to the 

PRR assignment with reconfiguration. This is because this 

process includes the launch of a PCAP transfer which is 

composed of complex operations to set up the DMA transfer. 

According to the experiment measurements, allocation over

heads can be estimated as: 

TPathl = 3.03MS, 

Tpath2 = 6.76MS + TRFCC, 

Tpath3 = 5.10MS + Tpreempt, 

TpatM = 9.96MS + Tpreempt + TRFCC· 

(2) 

Note that the estimated overheads in Eq. 2 demonstrates the 

allocation overheads for the high priority OS, since high 

priority request can always get a valid solution in our system. It 

can be clearly noticed that direct allocations can be efficiently 

performed with 3 MS latency, whereas other solutions suffer 

from extra overheads of preemption or reconfiguration. The 



Virtual 
Device 

QAM16 

QAM64 

FF T 5J2 

FFTl02 4 

TABLE IV 
RECONFIGURATION AND PREEMPTION DELAYS 

Tpreempt (j.Ls) TRCFC(j.LS) 
(WCET) PRR#l PRR#2 PRR#3 

47.0 231 810 1,206 

31.0 231 810 1,206 

24.1 810 1,206 

33.6 1,206 

TABLE V 
COMPARISONS BETWEEN SW AND HW IMPLEMENTATION 

Algorithm 
THW(j.LS) Tsw(j.Ls) FPGA Resource 

(per frame) (per frame) Usage 

QAM-16 47.0 1,513 2% 

QAM- 6 4  31.0 1,174 2% 

FF T- 5J2 71.1 6,582 8% 

FF T-102 4 90.6 12,784 13% 

worst-case solution corresponds to the overhead Tpath4, which 

may result in hundreds of microseconds_ 

The costs of preemption (Tpreempd and reconfiguration 

(TRCFG) are mostly depending on the implementation and 

application of accelerators.In TABLE IV we provide the value 

of these costs_ T RC FG is determined by the size of the 

bitstream, and therefore corresponds to three PRR areas_ The 

worst-case preemption time Tpreempt is determined by the 

computation granularity. In our case, in order to respect the 

integrity of the OFDM process, QAM and FFT modules are 

set to be preemptive only when their determined data frame is 

completely processed. Note that, since the implementation of 

the PRRs and accelerators are fixed beforehand, these costs 

can then be predicted and considered for guest OS tasks 

schedulability. 

In TABLE IV, for the accelerators used in our experiment, 

Tpreempt is significantly lower than TRCFG. Actually, this is 

the case in most DPR accelerator implementations. Therefore, 

a preemptive allocation of DPR resources can effectively 

reduce the heavy reconfiguration overheads, which, however, 

will also considerably undermine the schedulability of low 

priority OS tasks. In a system where preemptions occur 

frequently, low priority virtual machine may never use DPR 

resources. The trade-off between preemption and consistency 

has been considered when we chose the solution selecting 

policy in the PRR Monitor. In our current searching policy, 

allocating Idle PRRs are preferred than preempting PRRs, as 

we want to respect the execution of tasks in low priority virtual 

machines. However, in a system where the higher priority 

OS is in charge of critical tasks, an alternative policy which 

encourages preemption should be applied, so that high priority 

tasks are guaranteed to acquire DPR resources with minimum 

latency. 

In TABLE V, we also compare with the software com

putation time when processing a complete data frame. It 

shows that accelerator performance of heavy computation (i.e. 

FFT512/1024) significantly surpasses software implementa

tions. Even though these accelerators suffer from allocation 

latency that may prolong the execution time, their benefit 

is still considerable. On the other hand, for relatively light 

computation, QAM, though hardware accelerators still have 

advantage in processing speed, this advantage gets under

mined when taking TRCFG into account. This is because 

when implemented in large PRRs, i.e. PRR#2 and PRR#3, 

time is wasted on reconfiguring large unused FPGA area. 

This results indicates that DPR technology is more suitable 

for large complex computation algorithms. Furthermore, the 

FPGA area only implements 3 PRR areas, taking around 

23% of the available resources. Compared to static circuits 

with accelerators for both VMs, which may take up to 50% 

resources, the usage of FPGA is greatly reduced. 

V. CONCLUSI ON 

In this paper we have introduced an hypervisor which 

facilitates the DPR resource management in a virtual machine 

system. Our framework is based on Ker-ONE, a micro-kernel 

running on the ARMv7 architecture. This micro-kernel is 

able to host multiple OSs. In each virtual machine, DPR 

accelerators are mapped as universally-addressed peripherals, 

which can be accessed as ordinary devices. Through dedicated 

memory management, our kernel automatically detects the 

request for DPR resources and allocates them dynamically. 

Dedicated management components are implemented on both 

software and hardware sides to handle allocations at run

time. We also propose an efficient preemptive allocation 

mechanism that emphasizes the sharing and enhances security 

for virtual machine systems. In this paper we have described 

implementation details and presented extensive experiments 

to evaluate the overheads of allocation in our framework. 

Through evaluations and analysis, we have demonstrated that 

the proposed framework is capable of virtual machine DPR 

allocation with low overhead. As prospects, we would like to 

evaluate our framework more deeply by applying real-scenario 

implementations, e.g. complex communication systems with 

real-time tasks, to discuss the capability and schedulability of 

hosted guest OSs. We would also like to develop more sophis

ticated searching algorithms, so that the overall performance 

may be improved. 
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