
HAL Id: hal-01905744
https://hal.science/hal-01905744v1

Submitted on 6 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hypervisor Mechanisms to Manage FPGA
Reconfigurable Accelerators

Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel

To cite this version:
Tian Xia, Jean-Christophe Prévotet, Fabienne Nouvel. Hypervisor Mechanisms to Manage FPGA
Reconfigurable Accelerators. 15th International Conference on Field-Programmable Technology, FPT
2016, Dec 2016, Xi’an, China. �10.1109/FPT.2016.7929187�. �hal-01905744�

https://hal.science/hal-01905744v1
https://hal.archives-ouvertes.fr

Hypervisor Mechanisms to Manage FPGA
Reconfigurable Accelerators

Tian XIA
IETR

INSA de Rennes
Rennes, France

tian.xia@insa-rennes.fr

Jean-Christophe Prevotét
IETR

INSA de Rennes
Rennes, France

jean-christophe.prevotet@insa-rennes.fr

Fabienne Nouvel
IETR

INSA de Rennes
Rennes, France

fabienne.nouvel@insa-rennes.fr

Abstract—In the last decade, the research on CPU-FPGA
hybrid architectures has become a hot topic. One of the main
challenges in this domain consists in efficiently and safely
managing dynamic partial reconfiguration (DPR) resources. This
paper focuses on the management of the reconfiguration by an
hypervisor on an ARM-FPGA platform. Using the virtualization
approach, virtual machines (VM) may access resources indepen-
dently, being unaware of the existence of other VMs. The purpose
of our work is to provide an abstract and transparent interface
for virtual machines to access reconfigurable resources. The
underlying infrastructure of partial reconfiguration management
is hidden from the virtual machines, so that software developers
do not need to consider the implementation details. We propose
a framework where DPR accelerators are presented as virtual
devices, which are universally mapped in each VM space as
ordinary peripherals. The hypervisor automatically detects VM’s
requests for DPR resources and handles them dynamically
according to a preemptive allocation mechanism. Our custom
hypervisor guarantees the independent and isolation of VM
domains. We also evaluate the efficiency of our framework
by measuring the critical overheads during DPR management
and allocations. The results demonstrate that our mechanism is
implemented with low overhead.

Keywords: virtualization, FPGA, real-time system, micro-
kernel

I. INTRODUCTION

Today, the concept of CPU-FPGA hybrid processor has
become more and more popular in both academic and commer-
cial worlds. Unlike in traditional FPGA devices where CPU
cores are synthesized in the FPGA fabric as soft processors,
the hybrid approach provides System on Chip (SoC) archi-
tectures with CPU and FPGA domains that are independently
implemented.CPU-FPGA hybrid processors have several ad-
vantages. On one hand, the high-end general purpose proces-
sors are capable of establishing complex computing systems,
and an existing software stack can be directly used without
any obstacle. On the other hand, the implementation of FPGA
accelerators offers a compelling improvement in performance
when performing intensive computations. Moreover, with the
help of CPU processing, FPGA accelerators can be managed
much more efficiently with more complex strategies, which
inevitably optimizes the acceleration.

This emerging convergence point of conventional CPU
and FPGA computing makes it possible to extend traditional

CPU virtualization technologies into the FPGA domain to
fully exploit the mainstream FPGA computing. Our research
focuses on the virtualization technology, which has gained
a lot of interests and achieved enormous progress in the
embedded computing domain. It has been proven that it
can provide users with increased energy efficiency, shortened
development cycles and enhanced security [1][2]. In parallel,
the dynamic partial reconfiguration (DPR) technology on
FPGA has been playing an important role in high performance
adaptive computing [3]. Therefore, the combination of both
DPR and virtualization technologies may be an interesting
idea to significantly accelerate the computationally intensive
applications in embedded systems.

While being considered as quite promising, the exploitation
of DPR-enhanced virtualization also brings up new challenges.
In virtualization, guest OSs are executing in strongly-isolated
environments called virtual machines (VM). Each VM has
its own software tasks and virtualized resources, which are
isolated from the physical resources. In this context, the usage
of hardware accelerators from VMs will be dynamic and
independent. Thus, it is preferred that DPR accelerators are
shared by multiple VMs by means of abstract and transparent
layer so that the isolation of virtual machines will not be
undermined. The actual allocation and management should be
performed via an additional hypervisor mechanism, and should
remain hidden from the guest OSs.

In this paper, we present an approach to exploit the potential
of CPU-FPGA systems by proposing a framework extending
virtualization with DPR accelerators. We will describe and
evaluate a virtual embedded system in a hybrid ARM-FPGA
platform Xilinx Zynq-7000. The remainder of the paper is
organized as follows: Section II presents the related works.
Section III presents the mechanisms of the DPR management
in a virtualized environment. In Section IV, we verify and
examine the proposed system with practical hardware/software
applications and analyze the results.

II. RELATED WORKS

The hybrid CPU-FPGA architecture generally features C-
PUs that are dedicated to the embedded systems domain.
For example, Xilinx released the Zynq-7000 series which
offers an ARM-FPGA SoC. ARM processors have also been

introduced in Cyclone-V and Arria-V Altera families. Intel

propose its Atom processor E600C Series, which pairs an

Intel Atom processor SoC with an Altera FPGA in the same

package. Recently, Intel has taken a further step by releasing

a XeonlFPGA platform dedicated for data centers.

In the academic domain, the topic of embedded CPU

FPGA based systems has also been massively studied. Numer

ous works have consisted in providing current reconfigurable

FPGA devices with OS support ([4][5][6] [7]). One successful

approach in this domain is ReconOS [8], which is based on

an open-source RTOS (eCos) that supports multithreaded hard

ware/software tasks. ReconOS provides a classical solution for

managing hardware accelerators in a hybrid system in standard

thread model. However, the possibility of virtualization was

not fully discussed in these works.

In [9], this concept is implemented by providing the OS4RS

framework in Linux. The virtual hardware permits the same

hardware devices and the same logic resources to be si

multaneously shared between different software applications.

However, this approach is proposed in the context of a single

OS, without considering any virtualization features. Another

study is given in [10], one of the earliest researches in this

domain. The authors try to extend the Xen hypervisor to

support the FPGA accelerator sharing among virtual machines.

However, this research focuses on an efficient CPUIFPGA

data transfer method, with a relatively simple FPGA scheduler

that provides a FCFS (first-come, first served) sharing of the

accelerator, without including the DPR technology.

DPR virtualization is much more popular on cloud servers

and data centers, which generally have a higher demand

for computing performance and flexibility. For example, in

[11], the authors use partial reconfiguration to split a single

FPGA into several reconfigurable regions, each of which is

managed as a single Virtualized FPGA Resource (VFR). Based

on the similar principle, the work of RC3E [12] provides

several vFPGA models, which permits users to require for

DPR resources as full FPGA, virtual FPGA or background

accelerators. However, DPR virtualization on these platforms

are inappropriate for embedded systems, in which available

resources are really limited compared to those available in

servers or data centers.

Another interesting research [13] consists in proposing a

framework dedicated to hardware task virtualization on a

hybrid ARM-FPGA platform. In this work, the authors mod

ified the CODEZERO hypervisor to manage reconfigurable

accelerators. However the classical DPR technology is not

employed in this work for hardware reconfiguration. Instead,

reconfigurable computing components are quite simple and are

more appropriate to systems with light but frequently-switched

computations.

In this paper, we proposed an original approach of DPR

virtualization on an embedded hypervisor named Ker-ONE, an

updated version of a custom micro-kernel [14]. Efforts have

been made to provide efficient DPR resource sharing among

virtual machines, while meeting the applications constraints.

Fig. l. Allocation of virtual devices for virtual machines via manipulating
the mapping of IFs.

III. DPR MANAGEMENT FRAMEWORK

Ker-ONE is a custom small-sized hypervisor which provides

para-virtualization on ARM processors. It allows multiple

guest OSes to be hosted concurrently with different priority

levels. Each guest OS is running in an isolated domain named

virtual machine, and is managed by an underlying virtual

machine monitor (VMM). The VMM provides fundamental

functions such as VM scheduling and inter-process com

munication (IPC). In The proposed framework, Ker-ONE is

extended with dedicated management mechanism for partially

reconfigurable (PR) accelerators.

Ker-ONE is designed to host several OSs of different

priorities. We assume that all critical tasks are hosted in a

high-priority VM, with higher timing and performance require

ments. Non-critical tasks are running on low-priority VMs,

for which long-latency and resource blocking is tolerable.

To keep the behavior of critical tasks predictable, we also

assume that the FPGA resources are always sufficient for the

high-priority VM, whereas they can also be shared and re

used by low-priority VMs. This assumption seems reasonable

in practice, since critical tasks are pre-determined in most

embedded systems.

A. Accelerator Mapping

In our system, reconfigurable accelerators are hosted in

pre-determined partial reconfiguration regions (PRR), which

are serving as containers. We denote these accelerators as

HW tasks. A HW task can be implemented in a PRR by

downloading the corresponding bitstream into the targeted

PRR area via the PCAP interface [15]. HW tasks are presented

as a virtual devices (VD) in the VM domain, and is completely

isolated from the implementation details. Therefore, one spe

cific virtual device can be hosted in different PRRs.

Fig. 1 describes how virtual devices are mapped to the fixed

addresses in all guest OSs and considered as ordinary devices.

A unified interface, i.e. a standard structure of registers, is

provided to users. Like other peripherals in ARM systems,

OSs access these devices by reading/writing at the address

of the corresponding device interface. Note that the physical

positions of these virtual devices are not known since they can

be implemented in different PRRs.

We introduce an intermediate structure, called PR interface

(IF), on the FPGA side, which can be seen as an intennediate

layer between the logical virtual devices and the actual ac

celerators. These IFs are in charge of connecting the virtual

machines with accelerators so that software can control their

behavior. Each IF is exclusively associated to a specific VM.

Thus, mapping of reconfigurable accelerators is perfonned in

two steps: first, the IF is mapped to the VM address space as

a virtual device interface. Second, on the FPGA side, the IF is

connected to the target PRR that implements the corresponding

device function.

As shown in Fig. 1, IFs are initiated on the FPGA side and

are mapped to the physical memory space of the processor.

Their physical addresses are configured to be aligned to inde

pendent 4KB memory pages. VMs access IFs via independent

page tables, which maps IFs as memory pages in virtual

address space. Therefore, though a virtual device is mapped

to the same virtual address for all VMs, it is implemented

by using separated IFs in the FPGA. The mapping between a

particular IF and the VM space of a virtual device is fixed.

An IF has two identifiers: vm_id and dev _id (i.e. referred to

as IF(vm_id, dev _id» to identify the virtual machine and the

virtual device to which it is associated.

An IF has two states, connected to a certain PRR or

unconnected. When an IF is connected, the corresponding

virtual device is implemented in the PRR and it is ready to

be used. Being in the unconnected state means that the target

accelerator is unavailable. We leverage the ARM paging mech

anism to control VM's access to IFs. When a IF is connected,
its page is marked as read/write so that virtual machine can

control this accelerator by manipulating IF registers. On the

other hand, for unavailable devices (with an unconnected IF),

the IF pages are set as read-only, and a VM cannot configure

or command this virtual device by writing to its interface. This

mechanism guarantees the monopoly use of accelerators.

An example is presented in Fig.!. In VM #1, an application

is free to program and command Dev #1 (FFT-2048) as the

IF associated with it is currently connected to PRR #1, where

the algorithm is implemented. Meanwhile, VM #1 cannot give

orders to Dev #2 and #3 since these interfaces are currently

read-only. Any writing on these interfaces will cause a page

fault exception to the VMM.

One major characteristic of virtualization is that virtual

machines are totally independent from each other. In our

case, however, VMs are obliged to share DPR resources.

This can unfortunately lead to resource sharing issues that

are well known in computing systems. In traditional OS,

such problem can be solved by applying synchronization

mechanisms such as semaphores or spin-locks. For Ker-ONE

however, such mechanisms are not suitable since they may

undermine the independence of VMs. Therefore, our system

introduces additional management mechanisms to dynamically

handle the virtual machines' request for DPR resources. Note

that such requests may occur randomly and are unpredictable.

(Dev #1) (Dev #2) (Dev #3) :
I
I '-----w-----'
I

VMM

Request

Inter-connection

___ ']::::::�--� -T--�-_-_��-��T�'_ Search

, PRR #1 i PRR #2 i PRR #3 �, __ ..J Solutions

!... ____________ ...!... ____________ ...!... ____________ .J

Fig. 2. Overview of the DPR management framework in Ker-ONE.

Date
L-__________ ---l Exchange

Fig. 3. Model of reconfigurable accelerator.

In Fig. 2, the proposed management mechanism is de

scribed. A Virtual Device Manager and a PRR Monitor
component are made available in both software and hardware

parts of the FPGA. The Virtual Device Manager is a particular

software service implemented in an independent VM domain,

which aims at detecting and handling the requests coming

from VMs that want to use the virtual devices. This is

performed through an IPC mechanism. In the static part of

the FPGA, a PRR Monitor is created and is in charge of

maintaining the connections between IFs and PRRs. This

monitor runs in cooperation with Virtual Device Manager,
to dynamically monitor reconfigurable accelerators and search

proper solutions for VMs' requests.

B. Hardware Task Model

HW tasks see PRRs as containers, which provide FPGA

resources to implement their algorithms. In this case, a given

PRR may not be compatible with some virtual device, if its

area (i.e. resource amount) is insufficient to implement the

corresponding HW task logic. Therefore, the compatibility

infonnation of HW tasks must be foreseen beforehand.

An HW Task Index table is created to provide a quick look

up search for HW tasks. In this table the compatible virtual

devices for each PRR are listed. For each compatible virtual

device, a HW Task Descriptor structure is given, which stores

the information of the corresponding bitstream, including its

ID, memory address and size. This information is used to

correctly launch PCAP transfers and perform reconfiguration.

Fig. 3 depicts the model of HW task and its interaction

with VM client. As shown, Virtual machines access HW tasks

via IFs. We proposed a standard interface to facilitate the

multiplexing of DPR resources, denoted as PR accelerator
interface. It is implemented in both IFs and HW tasks, and

conveys the register values from the IF to HW tasks. Once the

TABLE I
LIST AND DESCRIPTION OF PORTS IN PR accelerator inteiface

Register Width Description

STAT 32-bit HW task status register

START 8-bit Start /lag

OVER 8-bit Computation Over /lag

CMD 32-bit Command register

DATA_ADDR 32-bit Data buffer address register

DATA_SIZE 32-bit Data buffer size register

RESULT 64-bit Computation result register

INT_CTRL 32-bit Interrupt controller register

Custom Ports 8*32-bit Provide 8 IP-defined ports

IF is connected to an HW task, a virtual machine can write

commands or configurations into the IF registers to control the

HW task behavior.

In TABLE I, the structure of the PR accelerator interface is

listed. Virtual machines start the process by setting the START
flag. When the required computation is over, the OVER flag

is set and the result is returned in the RESULT register. HW

tasks can be programmed to perform a DMA data transfer or

to generate interrupts. Note that a PR accelerator interface
structure is implemented in IF. When an IF is disconnected

from a PRR, the states of virtual device execution (e.g. results,

status) are still stored in this IF. In this way, the consistency

of the virtual device interface is guaranteed.

The VMs that are currently using HW tasks are denoted as

clients. HW tasks inherit the priorities of VM clients. We use

preemptive policy for HW tasks, meaning that requests from

higher-priority VMs can preempt low-priority HW tasks.

The preemption of HW tasks requires extra attention since

their computations can only be stopped when they reach

some point of their execution paths where the integrity of

the data frame is preserved. These points are denoted as

consistency points where the execution path is safe to interrupt

and may resume without a loss of data consistency. Designers

of HW tasks have to identify the consistency points that allow

the accelerators execution to be preempted and to save the

interrupt state. This mechanism is shown in Fig. 3. In each

IF, a IKE buffer is implemented to store the accelerator

intermediate execution context at the consistency points. This

data can later be used by the VM to resume the execution.

In our case, the format of saved context is openly defined by

designers. However, considering the extra overhead, the size

of context data should be kept as light a possible to enable

fast context switch.

C. PRR State Machine

A PRR houses HW tasks to implement different devices,

and behaves as a state machine. The state determines if a PRR

can be allocated, and how should it be allocated. There exist

five states:

• Idle: The PRR is idle without any ongoing computation

and is ready for allocation.

• Busy: The PRR is in the middle of a computation

-----------------------------, I Start I I Idle Busy I I Over
I I Start I I :�� Allocate Reach I I clien:����:�:uled PRR consistency points I I I I PCAP Over I I Reconfig. Hold I

1_ - - - - - - - �l":!.n- - - - - - - - - - - - - - - - - --'

PRR Descriptor I STATE I RCFG TIME I VM 10 I OEV_IO I PRIO

Fig. 4. The behavior of PRRs as a state machine.

• Preempt: The PRR is running, but the computation will

be stopped (preempted) once it reaches a consistency

point.

• Hold: The PRR is allocated to a VM and is preserved

for a certain amount of time

• Reconfig: The PRR is in the middle of a PCAP recon

figuration.

The PRRs behaviour can be described according to the flow

chart given in Fig. 4. As depicted in this figure, a PRR can

only be directly allocated to VMs when it is in Idle state and

requires no reconfiguration. In other situations, the allocation

process requires extra overheads caused by PCAP transfers or

preemption.

We also have introduced Hold as an intermediate state. The

PRRs that are allocated to a VM will first enter this state. This

indicates that the PRR is reserved to a certain VM client. PRRs

in the Hold state will block any re-assignment and will wait to

be used by the VM. PRRs will be released and return to the

Idle state under two conditions: the target VM is scheduled

into the CPU, or the pre-set waiting time Expire runs out.

PRR holds the essential information in a PRR Descriptor
data structure. This list indicates PRR state (see Fig. 4). It also

includes the information of the currently-hosted HW task: the

client VM ID, the virtual device ID (i.e. accelerator ID) and the

HW task priority, which are used to make allocation decisions.

Note that, in our context, the bitstreams size is strictly pre

defined by the size of the reconfigurable area. Therefore, the

reconfiguration time of each PRR can be predicted. This factor

is also included in the PRR Descriptor.

D. PR Resource Requests and Solutions

Every time that a VM tries to use an unavailable virtual

device, a page-fault exception will be triggered and then

handled by Virtual Device Manager as a PR resource request:

Request (vm_id, dev_id, prio), which is composed of the VM

ID, the virtual device ID and a request priority. The request

priority is equal to the priority of the calling VM.

The PPR Monitor on the FPGA side is responsible to search

for appropriate allocation plans for such requests. This plan is

referred as a solution. A complete solution is formatted as:

Solution{vm, dev, M ethod(prr _id) , Reconfig}, (1)

which includes the target VM, the required device, the ac

tual allocation method and reconfiguration flag. The different

methods include:

r------,

I HW Task index I
I Table I

PR Regions PRR Monitor
Fig. 5. Solution searching mechanism in the PPR monitor.

• Assign(prr _id): this solution directly allocates the re

turned PRR (i.e. prr _id) to the request VM. If the

requested device dev_id is not implemented in this PRR,

a Reconfig flag will also be added.

• Preempt(prr _id): no PRR can be directly allocated, but

the returned PRR (i.e. prr _id) can be preempted and re

allocated. If the requested device dev _id is not imple

mented in this PRR, a Reconfig flag will also be added.

• Unavailable: currently no PRR is available for Re
quest(vm_id, dev _id, prio).

The PPR Monitor searches for the best solution by check

ing the PRR Descriptors (see Fig. 4). For a given Request
(vm_id, dev_id, prio), the PRR Monitor first obtains the list of

compatible PRRs for the target device (dev_id) by checking

the HW task index table. The states of these compatible

PRRs are then checked for possible solutions. Then it searches

the states of PRRs for solutions. If multiple solutions are

found, the best one is chosen according to the selecting

policy. In our algorithm, Idle PRRs are considered to be best

solutions. Preemptions are chosen only when no Idle PRR

exists. Besides, the selector always chooses the solution with

a minimal PRR size since it causes the minimal reconfiguration

overhead and power consumption. However, these policies can

be easily modified and adapted.

Fig. 5 depicts the interaction between the PPR Monitor and

the Virtual Device Manager. Normally the selected solution

is sent to the Virtual Device Manager for further handling.

However, if there is no valid solution (i.e. Unavailable), this

unsolved request will be added to the Search List, which is a

waiting list buffer of all unsolved requests. PPR Monitor keeps

searching solutions for requests in this list, and acknowledges

the Virtual Device Manager whenever a new solution is found.

The searching runs in parallel with VMs, following priority

based FIFO principle, so that when a requests conflict occurs,

the PPR Monitor always chooses the highest priority request.

E. Virtual Device Manager

The Virtual Device Manager is a special service provided

by Ker-ONE, running in an independent VM a with the highest

priority. Running in isolated VM improves the security of its

functioning. This service stores all the HW task bitstreams

in its memory and is the only component that can launch

PCAP reconfigurations. The main task of this manager is: (1)

to communicate with VMs and manage the virtual devices in

their space; (2) to correctly allocate PR resources to VMs.

Request (vmOl, devOl, prioOl)
(e)

os (d)

(a) IF_Disconnect

(a) Clear PRR Descriptor (c) Update PRR Descriptor
PRR1 1�1 r;ij#·(T"§#'c:� VM#l I DEV#l I PRIO#l l

Fig. 6. Execution flow for solution to directly allocate an accelerator.

We already know that any writing operations on an unavail

able virtual device interface will trap to a VMM as a page

fault exception. We assume that, in order to command a virtual

device, a VM always need to configure the device interface

in the IF. In this case, any VMs' attempt to use unavailable

virtual devices will be automatically detected by the VMM,

and then passed to the Virtual Device Manager.

Since the virtual devices are pre-determined and identically

mapped in all VM virtual address spaces (see Fig. 1), it is

easy to identify the target device by simply checking the page

fault address. Then this exception is translated into the Request
(vm_id, dev_id, prio) format to search solutions. The Virtual
Device Manager allocates DPR resource to VMs according to

different solutions.

The allocation/ de-allocation of DPR resources consist in

manipulating IF connections and VM page tables. In Fig. 6,

we depict the complete flow to allocate an accelerator to

VM as a virtual device. In this example, after a given

Request(vmOl, devOl, prioOl)}, a solution {Assign (prrOl),
non-Reconfig} is performed. We assume that PRR #1 was

previously used by VM #2 and that it is currently in the Idle
state. It can then be directly re-allocated in following steps:

(a) Command IF _Disconnect is given to the PRR Monitor to

disconnect the IF of VM #2. Meanwhile, the PRR descriptor
entry of PRR#l is cleared. (b) Set the no-more-available device

interface as read-only in VM #2's page table (via hyper-call).

(c) Use IF_Connect to connect PRR to the IF of VM #l.

PRR Monitor also updates the PRR descriptor entry with the

new client VM #l. (d) Change VM #l's devOL interface as

read-write (via hyper-call). (e) VMM suspends Virtual Device
Manager and resumes VM #1 to the exception point and VM

#1 continues to use this device.

For guest OSs, the ideal solution is {Assign, non-Reconfig},
because a PRR can be allocated inunediately as shown in the

previous example, and the allocation is totally transparent. On

other solutions which require reconfiguration or preemption,

the target virtual device need to wait for several additional

steps before it is ready to use. In these cases, the Virtual Device
Manager informs the requesting VM with IPC messages, and

suspends itself to wait for the completion of reconfiguration

Fig. 7. The process of Virtual Device Manager handling Solutions.
TABLE II

COMMUNICATION SIGNALS FOR DPR ALLOCATION
Signal Type Recv. Message

IPC_WAlT IPC VM Device currently unavailable

IPCREADY IPC VM Device is ready

IPC]REEMPT IPC VM Device is preempted

IRQ_New _Solution IRQ VDM New solution is found

IRQ_PCAP _Over IRQ VDM Reconfiguration over

IRQ]RR Stop IRQ VDM Preemption is complete

or preemption before making further operations. Meanwhile,

the PRR Monitor keeps tracking the procedure of unfinished

solutions on the FPGA side, and sends interrupts to the Virtual
Device Manager whenever further operations are needed.

This mechanism is explained in details in Fig. 7, which

demonstrates the role of the Virtual Device Manager. The

routine is composed of one main function Run_Solution()
and several interrupt service routine (ISR). We can notice

that preemption and reconfiguration solutions are performed

in two stages: (1) the manager launches the reconfiguration

or preemption and then goes to sleep, (2) the manager is

awakened to complete the unfinished solution in ISR. Note that

for Preempt solution, the manager first stops the preempted

accelerator, and then handles it as Assign solutions.

In Fig. 7, different signals are used to facilitate the alloca

tion process, helping the synchronization among components.

Some communication signals are destined to the requesting

VMs, and indicate the state of the required device. Others are

sent from the PRR Monitor to the Virtual Device Manager, to

acknowledge the events for unfinished solutions. These signals

are listed in TABLE II.

F User Policy

With our framework, coding is significantly simplified for

software applications to use virtual devices. From their point

of view, the use of virtual devices is performed by a series

of write/read operations on the interface registers as ordinary

devices. In an ideal situation, the interrupted virtual device

would immediately be allocated and the task would continue

seamlessly from the interrupted point. In other cases, specific

user policies are required for the VMs. The virtual device

may currently be not ready. In this case the usage of virtual

device should be suspended until it is allocated. This can be

implemented by blocking/unblocking the involved tasks.

Another situation is the preemption of virtual devices so that

a VM no longer controls the accelerator. In this case, it is the

user's responsibility to re-launch the interrupted accelerator.

For example, user can create a dedicated task to detect the

preemption (via IPC_PREEMPT) of accelerators and to restart

them. Note that, for high-priority VM, such situation will not

occur according to our assumption that there always exist

sufficient FPGA resources for high-priority tasks. Therefore,

in the domain of high-priority VM, the problem of resource

blocking can be ignored.

IV. PERFORMANCE EVALUATION

A. Experimental Description

Our experiments were performed on the Xilinx ZedBoard,

which provides a dual-core ARM Cortex-A9 processor and a

partially reconfigurable FPGA fabric. The operating frequency

of the CPU and FPGA logic are 667 MHz and 100 MHz

respectively.

An experiment is shown in Fig. 9. The FPGA fabric is

initially implemented with three PRRs of different sizes. Four

accelerators, i.e. QAM16, QAM64, FFT512, FFTl024, have

been synthesized into bitstream files. During the initialization

stage of Ker-ONE, these files have been loaded into the

RAM memory and are only accessible to the Virtual Device
Manager. This experiment is taken from an OFDM receiver

that is intended to be very flexible by considering several

configurations of modulators and mappers according to the

channel condition. QAM blocks aims to take a complete frame

of incoming bits into account and generate 16-bit width I

and Q symbols. FFT blocks work on the outcoming QAM

I and Q symbols to perform demodulation. To simplify the

experiment, we assume that FFT always works in sequence

of QAM-16 algorithm. The data frame is set to be 18,800

bits, according to actual OFDM requirements. Therefore, the

incoming frame sizes were 18,800 bits for QAMI6/QAM64

and 4700 16-bit width symbols (as the outcome of QAMI6)

for FFT512JFFTl024, respectively. In each PRR, a DMA

supported data buffer keeps transferring frames from VM

memory space to the accelerators.

Regarding the guest ass running in virtual machines, we

have modified the j.lC/OS-II RTOS to execute it on top

of Ker-ONE. In our experiment, two j.lC/OS-II guests are

hosted with different priority levels. For each guest as, four

available virtual devices are instantiated. Two and three tasks

run respectively in both guest ass to periodically command

virtual devices to process data frames containing 18,800 bits,

which causes requests for allocations during the experiment.

Accelerators are then allocated at run-time. The experiment

executes for several hours continuously. A custom monitor is

built to measure and record the various costs of allocation

mechanisms. Based on the collection of numerous samples,

the overall cost for our allocation mechanism can be then

estimated.

Fig. 8. Execution paths of DPR resource aUocation

Fig. 9. Experimental architecture for performance evaluation.

B. Overhead Analysis

Our evaluation focuses on the allocation latency, i.e. the

delay that occurs before the accelerator is properly allocated

and ready to start. This latency is considered as the response

time of DPR accelerators, and plays an important role for the

OS tasks timing.

Allocation latency comes from two main sources: the al

location mechanism itself and the Ker-ONE micro-kernel.

Additional overheads will be caused if the allocated accelerator

requires reconfiguration. Besides, the virtualization mecha

nism takes up extra time. For example, the page-table faults

handling, IPCs and VM scheduling will noticeably contribute

to the total allocation latency. The models of execution paths in

different solutions can be calculated according to the diagrams

displayed in Fig.8. In these models, the allocations consist

of four different solution paths that can be decomposed into

smaller atomic execution overheads:

• Ttrap: Time required by Ker-ONE to detect a page-table

exception in VM domain and to invoke the Virtual Device
Manager.

• Tresume: Time required by Ker-ONE to schedule back to

a VM.

• TPL_irq: Time required by Ker-ONE to receive IRQs

from the PRR Monitor and to redirect them to the Virtual

TABLE III
MEASUREMENTS OF OVERHEADS DURING DPR ALLOCATION

Micro-kernel

Operation Overheads (/-ls)

Ttrap 0,76

Tresume 0,64

TPL_irq 0.81

Device Manager.

Virtual Device Manager

Operation Overheads (/-ls)

TSearch 0.50

TSolution(l) 1.13

TSolution(2) 2.77

TSolution(3) 0.34

Tirq...:pcap 0.64

Tirq stop 0.28

• TSearch: Time required by the Virtual Device Manager
to receive the VM requests and to search for solutions.

• TSalutian(1)(2)(3f Execution time to handle different so

lutions: (1) direct assignment, (2) assignment with recon

figuration, (3) preemption.

• Tirq_pcap, Tirq_stop: Time required by the Virtual De
vice Manager to handle the following IRQs (i.e.

IRQ_peAP _Over, IRQ_PRR_Stop).
• Tpreempt: Overhead of waiting for preemption.

The results of our measurements are listed in TABLE III.

Note that since Ker-ONE provides an efficient virtualization

mechanism, virtual machine scheduling and virtual interrupt

emulation are performed with an overhead less than IMS. The

heaviest overhead is caused by TSalutian(2), referring to the

PRR assignment with reconfiguration. This is because this

process includes the launch of a PCAP transfer which is

composed of complex operations to set up the DMA transfer.

According to the experiment measurements, allocation over

heads can be estimated as:

TPathl = 3.03MS,

Tpath2 = 6.76MS + TRFCC,

Tpath3 = 5.10MS + Tpreempt,

TpatM = 9.96MS + Tpreempt + TRFCC·

(2)

Note that the estimated overheads in Eq. 2 demonstrates the

allocation overheads for the high priority OS, since high

priority request can always get a valid solution in our system. It

can be clearly noticed that direct allocations can be efficiently

performed with 3 MS latency, whereas other solutions suffer

from extra overheads of preemption or reconfiguration. The

Virtual
Device

QAM16

QAM64

FF T 5J2

FFTl02 4

TABLE IV
RECONFIGURATION AND PREEMPTION DELAYS

Tpreempt (j.Ls) TRCFC(j.LS)
(WCET) PRR#l PRR#2 PRR#3

47.0 231 810 1,206

31.0 231 810 1,206

24.1 810 1,206

33.6 1,206

TABLE V
COMPARISONS BETWEEN SW AND HW IMPLEMENTATION

Algorithm
THW(j.LS) Tsw(j.Ls) FPGA Resource

(per frame) (per frame) Usage

QAM-16 47.0 1,513 2%

QAM- 6 4 31.0 1,174 2%

FF T- 5J2 71.1 6,582 8%

FF T-102 4 90.6 12,784 13%

worst-case solution corresponds to the overhead Tpath4, which

may result in hundreds of microseconds_

The costs of preemption (Tpreempd and reconfiguration

(TRCFG) are mostly depending on the implementation and

application of accelerators.In TABLE IV we provide the value

of these costs_ T RC FG is determined by the size of the

bitstream, and therefore corresponds to three PRR areas_ The

worst-case preemption time Tpreempt is determined by the

computation granularity. In our case, in order to respect the

integrity of the OFDM process, QAM and FFT modules are

set to be preemptive only when their determined data frame is

completely processed. Note that, since the implementation of

the PRRs and accelerators are fixed beforehand, these costs

can then be predicted and considered for guest OS tasks

schedulability.

In TABLE IV, for the accelerators used in our experiment,

Tpreempt is significantly lower than TRCFG. Actually, this is

the case in most DPR accelerator implementations. Therefore,

a preemptive allocation of DPR resources can effectively

reduce the heavy reconfiguration overheads, which, however,

will also considerably undermine the schedulability of low

priority OS tasks. In a system where preemptions occur

frequently, low priority virtual machine may never use DPR

resources. The trade-off between preemption and consistency

has been considered when we chose the solution selecting

policy in the PRR Monitor. In our current searching policy,

allocating Idle PRRs are preferred than preempting PRRs, as

we want to respect the execution of tasks in low priority virtual

machines. However, in a system where the higher priority

OS is in charge of critical tasks, an alternative policy which

encourages preemption should be applied, so that high priority

tasks are guaranteed to acquire DPR resources with minimum

latency.

In TABLE V, we also compare with the software com

putation time when processing a complete data frame. It

shows that accelerator performance of heavy computation (i.e.

FFT512/1024) significantly surpasses software implementa

tions. Even though these accelerators suffer from allocation

latency that may prolong the execution time, their benefit

is still considerable. On the other hand, for relatively light

computation, QAM, though hardware accelerators still have

advantage in processing speed, this advantage gets under

mined when taking TRCFG into account. This is because

when implemented in large PRRs, i.e. PRR#2 and PRR#3,

time is wasted on reconfiguring large unused FPGA area.

This results indicates that DPR technology is more suitable

for large complex computation algorithms. Furthermore, the

FPGA area only implements 3 PRR areas, taking around

23% of the available resources. Compared to static circuits

with accelerators for both VMs, which may take up to 50%

resources, the usage of FPGA is greatly reduced.

V. CONCLUSI ON

In this paper we have introduced an hypervisor which

facilitates the DPR resource management in a virtual machine

system. Our framework is based on Ker-ONE, a micro-kernel

running on the ARMv7 architecture. This micro-kernel is

able to host multiple OSs. In each virtual machine, DPR

accelerators are mapped as universally-addressed peripherals,

which can be accessed as ordinary devices. Through dedicated

memory management, our kernel automatically detects the

request for DPR resources and allocates them dynamically.

Dedicated management components are implemented on both

software and hardware sides to handle allocations at run

time. We also propose an efficient preemptive allocation

mechanism that emphasizes the sharing and enhances security

for virtual machine systems. In this paper we have described

implementation details and presented extensive experiments

to evaluate the overheads of allocation in our framework.

Through evaluations and analysis, we have demonstrated that

the proposed framework is capable of virtual machine DPR

allocation with low overhead. As prospects, we would like to

evaluate our framework more deeply by applying real-scenario

implementations, e.g. complex communication systems with

real-time tasks, to discuss the capability and schedulability of

hosted guest OSs. We would also like to develop more sophis

ticated searching algorithms, so that the overall performance

may be improved.

REFERENCES

[1] G. Heiser, "The role of virtualization in embedded systems," in Pro
ceedings of the 1st workshop on Isolation and integration in embedded
systems. ACM, 2008, pp. 11-16.

[2] L. Xu, Z. Wang, and W. Chen, "The study and evaluation of arm
based mobile virtualization," 1nternational lournal of Distributed Sensor
Networks, vol. 2015, pp. 1-10, 2014.

[3] J. Becker, M. Huebner, G. Hettich, R. Constapel, J. Eisenmann, and
J. Luka, "Dynamic and partial fpga exploitation," Proceedings of the
IEEE, vol. 95, no. 2, pp. 438-452, 2007.

[4] K. Jozwik, S. Honda, M. Edahiro, H. Tomiyama, and H. Takada,
"Rainbow: An operating system for software-hardware multitasking on
dynamically partially reconfigurable fpgas," International Journal of
Recorifigurable Computing, vol. 2013, p. 5, 2013.

[5] D. Gohringer, M. HUbner, E. N. Zeutebouo, and J. Becker, "Cap-os:
Operating system for runtime scheduling, task mapping and resource
management on reconfigurable mUltiprocessor architectures," in Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010
IEEE International Symposium on. IEEE, 2010, pp. 1-8.

[6] J. Agron, W. Peck, E. Anderson, D. Andrews, E. Komp, R. Sass,
F. Baijot, and J. Stevens, "Run-time services for hybrid cpulfpga systems
on chip," in Real-Time Systems Symposium, 2006 . RTSS'06 . 27th IEEE
International. IEEE, 2006, pp. 3-12.

[7] D. Y. Vu, O. Sander, T. Sandmann, 1. Heidelberger, S. Baehr, and
1. Becker, "On-demand reconfiguration for coprocessors in mixed crit
icality multicore systems," in High Peiformance Computing Simulation
(HPCS), 2015 International Conference on, July 2015, pp. 569-576.

[8] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and
C. Plessl, "Reconos: An operating system approach for reconfigurable
computing," Micro, IEEE, vol. 34, no. 1, pp. 60-71, 2014.

[9] C.-H. Huang and P'-A. Hsiung, "Hardware resource virtualization for
dynamically partially reconfigurable systems," Embedded Systems Let
ters, IEEE, vol. 1, no. 1, pp. 19-23, 2009.

[10] W. Wang, M. Bolic, and J. Parri, "pvfpga: accessing an fpga-based
hardware accelerator in a paravirtualized environment," in Hard
ware/Software Codesign and System Synthesis (CODES+ ISSS), 201 3
International Conference on. IEEE, 2013, pp. 1-9.

[11] S. Byma, 1. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, "Fpgas in the cloud: Booting virtualized hardware accelerators
with openstack," in Field-Programmable Custom Computing Machines
(FCCM), 20J4IEEE 22nd Annual International Symposium on. IEEE,
2014, pp. 109-116.

[l2] O. Knodel and R. G. Spallek, "Rc3e: Provision and management of
reconfigurable hardware accelerators in a cloud environment," arXiv
preprint arXiv:1508.06843, 2015.

[l3] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell,
"Virtualized execution and management of hardware tasks on a hybrid
arm-fpga platform," Journal of Signal Processing Systems, vol. 77, no.
1-2, pp. 61-76, 2014.

[14] T. Xi a, J.-C. Prevotet, and F. Nouvel, "Mini-nova: A lightweight arm
based virtualization microkernel supporting dynamic partial reconfigu
ration," in Parallel and Distributed Processing Symposium Workshop
(IPDPSW), 2015 IEEE 1nternational. IEEE, 2015, pp. 71-80.

[l5] Xilinx, Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585), 2014. [Online]. Available: http://www.xilinx.com

