

Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western USA basin and its controlling parameters.

Romain Jattiot, Arnaud Brayard, Hugo Bucher, Emmanuelle Vennin, Gwénaël Caravaca, James F. Jenks, Kevin G. Bylund, Gilles Escarguel

▶ To cite this version:

Romain Jattiot, Arnaud Brayard, Hugo Bucher, Emmanuelle Vennin, Gwénaël Caravaca, et al.. Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western USA basin and its controlling parameters.. Palaeontology, 2018, 61 (6), pp.881-904. 10.1111/pala.12375. hal-01905729

HAL Id: hal-01905729 https://hal.science/hal-01905729

Submitted on 28 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	PALAEOBIOGEOGRAPHICAL STRUCTURATION OF SMITHIAN
2	(EARLY TRIASSIC) AMMONOID FAUNAS WITHIN THE
3	WESTERN USA BASIN AND ITS CONTROLLING PARAMETERS
4	
5	Published <i>in</i> Palaeontology 61 881-904
6	
7	by ROMAIN LATTIOT ^{1,2} ARNAUD BRAYARD ² HUGO BUCHER ¹
, 8	EMMANUELLE VENNIN ² GWÉNAËL CARAVACA ² JAMES F. JENKS ³
9	KEVIN G. BYLUND ⁴ and GILLES ESCARGUEL ⁵
10	
11	¹ Paläontologisches Institut der Universität Zürich, Karl Schmid-Strasse 4, 8006,
12	Zürich, Switzerland; e-mail: romain.jattiot@pim.uzh.ch
13	² Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6
14	boulevard Gabriel, 21000 Dijon, France
15	³ 1134 Johnson Ridge Lane, West Jordan, Utah 84084, United States of America
16	⁴ 140 South 700 East, Spanish Fork, Utah 84660, United States of America
17	⁵ Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023
18	Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, 27-43 boulevard
19	du 11 novembre 1918, 69622 Villeurbanne Cedex, France
20	
21	Abstract: We present the first quantitative palaeobiogeographical analysis in terms of
22	distribution and abundance of Early Triassic ammonoids from the western USA basin
23	during the Smithian, ca. 1 myr after the Permian-Triassic boundary mass extinction.
24	The faunal dataset consists of a taxonomically homogenized compilation of spatial
25	and temporal occurrences and abundances from 39 sections distributed within the
26	western USA basin. Two complementary multivariate techniques were applied to
27	identify the main biogeographical structuring recorded in the analysed
28	presence/absence data: additive Cluster Analysis using the Neighbor-Joining
29	algorithm (NJ) and Non-metric Multidimensional Scaling (NMDS). Regarding
30	abundance data, a taxonomic diversity (sensu evenness) analysis was coupled with
31	graphical comparisons of relative abundances of selected taxa. The identified
32	relationships indicate that middle Smithian ammonoids of the western USA basin
33	were geographically organized in terms of both distribution and abundance, with the

34 biogeographical distinction of a southern and a northern cluster. This N/S structuring 35 in the distribution and abundance of middle Smithian ammonoids is notably paralleled 36 by the relative amount of siliciclastics, which suggests that clastic load of the water 37 column and possibly salinity were among the main controlling factors. In marked 38 contrast with the middle Smithian, the studied late Smithian ammonoid assemblages 39 do not show any significant difference, whatever the depositional environments. This 40 abrupt biogeographical homogenization independent from intrabasinal facies 41 heterogeneity indicates a switch from regional to global drivers, associated with the 42 well-known late Smithian global extinction and remarkable cosmopolitan ammonoid 43 distributions during that time. 44 45 Key words: Early Triassic, ammonoids, palaeobiogeography, distribution, 46 abundance, depositional environments. 47 48 FOLLOWING the Permian-Triassic boundary mass extinction (PTBME), the Early 49 Triassic is commonly interpreted to be a highly perturbed ~ 5 myr time interval, as 50 recorded by globally documented fluctuations of the carbon cycle (e.g., Payne et al. 51 2004; Galfetti et al. 2007) and oxygen isotopes (e.g., Romano et al. 2013). 52 Nevertheless, nekto-pelagic organisms such as ammonoids recovered very quickly in 53 comparison with many other marine organisms, reaching diversity levels much higher 54 than during the Permian already in the Smithian, ca. 1 myr after the PTBME (Brayard 55 et al. 2009a; Zakharov & Abnavi 2013; Zakharov & Popov 2014; Brayard & Bucher 56 2015). In this context, the Smithian is a crucial ~0.7 myr long interval recording the 57 first major, global ammonoid diversification-extinction cycle after the PTBME (Fig. 58 1). Indeed, the main rediversification of ammonoids occurred during the early and 59 middle Smithian (e.g., Brayard et al. 2006, 2009a; Brühwiler et al. 2010a; Ware et al. 60 2015), whereas the most severe intra-Triassic crisis for the nekton took place in the 61 late Smithian (Tozer 1982; Hallam 1996; Brühwiler et al. 2010a; Jattiot et al. 2016; 62 Fig. 1). This major late Smithian event, preceded by a middle Smithian C-isotope 63 negative peak and a spore spike (e.g., Hermann et al. 2011), was concomitant with: 64 (1) a shift from latitudinally-constrained to cosmopolitan ammonoid distributions 65 (Tozer 1982; Dagys 1988; Brayard et al. 2006); (2) the transient loss of sphaerocone 66 ammonoids (Brosse et al. 2013); (3) the onset of a global positive shift of the carbon 67 cycle (Galfetti et al. 2007; Fig. 1); and (4) a quick ecological recovery of

68 gymnosperms (Hermann et al. 2011). Overall, these events indicate the occurrence of

69 major successive and global environmental changes during the Smithian.

- 70 Smithian ammonoid assemblages have been recently revised worldwide (e.g., western
- 71 USA: Brayard *et al.* 2009*b*, 2013; Jenks *et al.* 2010; Stephen *et al.* 2010; Jattiot *et al.*
- 72 2017; Guangxi: Brayard & Bucher 2008; South Primorye: Zakharov et al. 2002;
- 73 Shigeta & Zakharov 2009; Shigeta et al. 2009; Zakharov et al. 2013; Shigeta &
- 74 Kumagae 2015; South Tibet: Brühwiler *et al.* 2010*b*; Oman: Brühwiler *et al.* 2012*a*;
- 75 Salt Range: Brühwiler et al. 2012b; Spiti: Brühwiler et al. 2012c; Vietnam: Shigeta &
- 76 Nguyen 2014; Fig. 2), and their biogeographical affinities have been examined at a
- 77 global scale (Brayard *et al.* 2006, 2007, 2009*c*, 2015).
- 78 In this work, we quantitatively investigate the biogeography of Smithian ammonoids
- 79 within the western USA basin, i.e., at a regional scale finer than all Early Triassic
- 80 biogeographical ammonoid studies conducted so far. We discuss the potential
- 81 parameters controlling the distribution and abundance of ammonoid faunas at this
- 82 mesoscale. Various relationships between ammonoid shell morphologies and
- 83 particular lifestyles have already been hypothesized in the literature (e.g., Raup &
- 84 Chamberlain 1967; Swan & Saunders 1987; Jacobs 1992; Batt 1993; Wang &
- 85 Westermann 1993; Jacobs et al. 1994; Westermann 1996; Klug & Korn 2004; Monnet
- 86 *et al.* 2011); and variations of morph frequencies have classically been related to
- 87 taphonomic and environmental fluctuations within a basin (e.g., distinct habitats,
- bathymetry, salinity, terrigenous inputs and oceanic currents; e.g., Company 1987;
- 89 Bulot 1993). In some examples, a link was suggested between the type of sediment
- and shell compression and involution (Bayer & McGhee 1984; Saunders & Swan
- 91 1984; Batt 1989; Jacobs et al. 1994; Westermann 1996; Neige et al. 1997; Klug 2002;
- 92 Kawabe 2003; Wani 2003). For instance, within a restricted oceanic basin (e.g.,
- 83 Kawabe 2003), compressed forms are sometimes more frequently associated with
- 94 high-energy, sandy facies (e.g., nearshore), whereas depressed morphs predominate
- 95 within low-energy, mud-dominated facies (e.g., offshore). Here, we explore such
- 96 relationships and their potential underlying controls within a single basin benefiting
- 97 from a robust biochronological frame. This regional mesoscale approach, classically
- 98 referred to as γ -diversity, is seen as an indispensable step that may help sorting out
- 99 palaeobiogeographical analyses and interpretations when moving up at the global
- 100 geographical scale within a highly resolved temporal frame.
- 101

2 GEOLOGICAL SETTING

103

104 The western USA basin was located at a near-equatorial position in eastern 105 Panthalassa during the Early Triassic (Fig. 2), and was interpreted as a foreland basin 106 related to the emplacement of the Golconda Allochthon during the Sonoma orogeny 107 (e.g., McKee 1954; Collinson et al. 1976; Caravaca et al. in press). Early Triassic 108 epicontinental marine strata of the Thaynes Group (sensu Lucas et al. 2007) were 109 deposited over a large area including Nevada, Utah, Idaho, southern Montana and 110 western Wyoming. The maximum onlap of the Thaynes Group occurred during the 111 late Smithian (Collinson & Hasenmueller 1978; Carr & Paull 1983; Paull & Paull 112 1993; Lucas et al. 2007). The relative positions of the studied sections within the 113 basin have not been significantly altered since the Early Triassic, although the basin 114 underwent successive compressive and extensive tectonic constraints (e.g., Caravaca 115 et al. in press). During the Early Triassic, studied sections were located slightly more 116 westward compared to their respective present-day position (see next section). 117 Although lateral facies changes in the basin have been documented since the 118 beginning of the 20th century (e.g., Gilluly & Reeside 1927; Mansfield & Girty 1927; 119 McKee 1954), Caravaca et al. (in press) provided a very detailed account on 120 lithologies, thickness, and subsidence rates. A distinction between the northern part 121 (including southeastern Idaho) and the southern part (including central and southern 122 Utah) of the basin has long been noticed and was recently interpreted as the influence 123 of rheological properties of the basement terranes and spatial heterogeneity of the 124 Golconda Allochthon (Caravaca et al. in press). 125 This N/S differentiation is also empirically perceptible in the distribution of middle 126 Smithian faunas within the basin, some occurrences being apparently restricted to a 127 single sub-basin and/or relative frequencies being highly disparate. This is particularly 128 pronounced for ammonoids, but such a biogeographical pattern still needs to be 129 quantitatively investigated based on a large dataset covering the entire basin and the 130 largest possible array of depositional settings. 131 The taxonomy and biostratigraphy of Smithian ammonoids from this basin also 132 benefits from recent and thorough treatments (Brayard et al. 2013; Jattiot et al. 2016,

- 133 2017). Comprehensive stratigraphical successions yielding faunal sequences are
- 134 essentially found in the southern and southwestern part of the basin, whereas sections
- in the northern part rarely yield more than two faunas of Smithian age. These primary

136	biostratigraphical data have been processed quantitatively by means of the Unitary
137	Associations method, providing a robust time frame for the basin (Jattiot et al. 2017).
138	
139	DATA AND METHODS
140	
141	Nature of the dataset
142	
143	The original dataset consists of a taxonomically homogenized compilation of
144	ammonoid occurrence and abundance of 19 early Smithian taxa, 73 middle Smithian
145	taxa, and 13 late Smithian taxa in 39 sections within the western USA basin.
146	Palaeopositions of these sections were reconstructed based on the retrodeformation
147	scheme of Caravaca et al. (in press; Fig. 3). Sections providing early Smithian data
148	(Brayard et al. 2013; Jattiot et al. 2017) are too few for an adequate geographical
149	coverage and these were consequently discarded. Hence, the present analyses focus
150	on middle and late Smithian data, which correspond to two time subdivisions (UAZ4
151	and UAZ ₅₊₆ , respectively, as defined by Jattiot et al. 2017).
152	Some taxa were not identified at the species level, either because of poor preservation
153	or because of still unresolved taxonomy as exemplified by Juvenites. Uniques, i.e.,
154	taxa found in only one section, are an important part of the initial middle Smithian
155	dataset (40 out of 73 taxa, i.e., 55 %), and 31 % of the late Smithian dataset (4 out of
156	13 taxa). Because the spatial distribution of uniques strongly depends on differential
157	sampling effort at the local scale, these were removed from the analysed dataset.
158	Sections suffering from insufficient sampling effort resulting simultaneously in low
159	specimen numbers and low taxonomic richness were also removed. Hence, the results
160	presented and discussed in this paper are based on the numerical analysis of the final
161	middle (UAZ4) and late Smithian (UAZ5+6) dataset, including 33 taxa in 20 sections
162	and 9 taxa in 7 sections, respectively.
163	
164	Hierarchical clustering and ordination analyses of presence/absence data
165	
166	Two complementary multivariate techniques were applied using PAST 3.14 (Hammer
167	et al. 2001) to identify the main biogeographical structuring recorded in the analysed
168	datasets: additive Cluster Analysis using the Neighbor-Joining algorithm (NJ) and 2D
169	Non-metric Multidimensional Scaling (NMDS) (Legendre & Legendre 2012). Both

170 analyses are based on the preliminary computation of the same similarity matrix, 171 using the Dice (or Sørensen) index for presence/absence data (SDice; see Brayard et al. 172 2007, 2015 and Peybernes et al. 2016 for the justification of such choice; basic 173 properties of other indices can be found in, e.g., Koleff et al. 2003). A comparison 174 and combination of results obtained with hierarchical clustering and NMDS improve 175 the description and reinforce the confidence in the recognized biogeographical 176 structures (e.g., Sneath & Sokal 1973; Field et al. 1982; Brayard et al. 2007; Legendre 177 & Legendre 2012). The minimum spanning tree (chain of primary connections; 178 Kruskal 1956; Prim 1957) associated with the analysed similarity matrix was 179 superimposed onto the NMDS map, whose Kruskal's stress value is given. A high 180 stress value reflects a poor representation of the taxonomic similarities between 181 assemblages by the NMDS map (Legendre & Legendre 2012). 182 To further decipher the biogeographical structuring identified through NJ and NMDS 183 analyses, a (one-way) ANOSIM test coupled with a SIMPER analysis (both using 184 SDice) was also performed using PAST 3.14 (Hammer et al. 2001). The ANOSIM test 185 is a non-parametric, permutation-based procedure testing the null hypothesis of 186 random compositional differences between sample groups (Clarke 1993). Rejection of 187 the null hypothesis involves that sample groups are "real", i.e., groups show non-188 randomly different taxonomic compositions based on within-group compositional 189 variability. When the ANOSIM test returns a significant difference among groups, a 190 SIMPER analysis can be performed to identify the taxa driving the between-group 191 differences (Clarke 1993). By identifying what taxa are mainly contributing to the 192 compositional differences between sample groups, results from the SIMPER analysis 193 help in the taxonomical characterization of the biogeographical clusters (Brayard et 194 al. 2015). 195 When using the Dice similarity index, localities with close taxonomic richness may 196 cluster together, potentially preventing to determine whether this grouping is a 197 genuine compositional (i.e., biogeographic) signal or results from a taxonomic 198 richness-induced bias unrelated with the biogeographical history of the studied 199 assemblages (Baselga 2010, 2012). To complement our analyses and to untangle the 200 potential effect of taxonomic richness and composition on the NJ and NMDS 201 analyses, we additively decomposed the 1-complement of the Dice similarity matrix, 202 $D_{dice} = 1 - S_{dice}$, into two independent components: a turnover-component dissimilarity

matrix known as the Simpson dissimilarity matrix (D_{Simp} with $D_{Simp} = \frac{C}{\min(A,B)}$; 203 204 Simpson, 1960, where A and B are the number of taxa in samples A and B, and C is 205 the number of taxa shared by A and B), and a nestedness-resultant component 206 dissimilarity matrix referred to as the Nestedness dissimilarity matrix where D_{nest} = 207 Ddice – Dsimp (Baselga 2010, 2012). The comparison of Ddice ("total" taxonomical dissimilarity), D_{simp} (compositional dissimilarity), and D_{nest} (richness dissimilarity) 208 209 using one-tailed Mantel tests (9,999 permutations) allows the separate effect of 210 richness (Nestedness) and compositional (Simpson) dissimilarities on the "total" 211 (Dice) taxonomic dissimilarity to be assessed.

212

213

Taxonomic diversity based on abundance data

214

215 A taxonomic diversity analysis was performed using the one-complement of Simpson's (1949) index $D = \sum_{i=1}^{i=N} p_i^2$, i.e., the commonly called Simpson's Index of 216 Diversity, with N = the number of taxa sampled in a given assemblage and $p_i = \frac{n_i}{M}$ 217 218 where n_i = the number of specimens sampled for taxon *i* and *M* = the total number of 219 specimens in a given assemblage. Under random sampling conditions, 1 - D (ranging 220 between 0 and 1) is an unbiased estimate of the probability that two specimens 221 randomly drawn from an assemblage belong to two different taxa (also known as the 222 probability of interspecific encounter; Hurlbert 1971). On that ground, 1 - D223 measures the diversity (sensu evenness) of a taxonomic assemblage: the higher 1 - D, 224 the more equable the abundances of the taxa in the assemblage. The index 1 - D was 225 computed (using PAST 3.14; Hammer et al. 2001) based on 11 taxa selected for their high average relative abundance and highly significant χ^2 test for contingency table 226 227 (Sokal & Rohlf 1995; Table 1) within 15 middle Smithian sections, each showing at least M = 90 identified specimens (this limit was chosen for the sake of sample 228 229 representativeness, based on the graphical identification of a threshold in the M-230 distribution around this value; Table 1 in Supplementary Data). The same 11 taxa 231 were finally used for graphical comparisons of their relative abundances based on 232 95% 'exact' (i.e., using Clopper-Pearson method) confidence intervals on empirical 233 proportions (also using PAST 3.14; Hammer et al. 2001).

234

235 Depositional environments 237 Table 2 summarizes the main ammonoid-rich facies labelled A, B, C and D (Fig. 4) 238 and their corresponding depositional environments that were identified in the 15 239 middle Smithian sections selected for taxonomic diversity analyses (see above). 240 Identification of these facies by means of petrographic analyses was conducted both 241 macroscopically and microscopically on thin sections and polished slabs. Thin 242 sections have been analysed with optical polarizing microscope. Sections are labelled 243 according to their facies in the appropriate figures. Some sections yielded several 244 fossiliferous middle Smithian beds and therefore, might include more than one 245 depositional environment (e.g., Stewart Canyon). Noteworthy, southern sections and 246 Palomino Ridge share the same facies (facies A), which is not found elsewhere in the 247 basin. This facies, corresponding to the deepest environment, is also singularly 248 characterized by the presence of siltstones (Table 2), indicative of a mixed 249 siliciclastic-carbonate regime. 250 251 RESULTS 252 253 Middle Smithian 254 255 Geographical structuring of taxonomic assemblages based on presence/absence data. The Neighbour Joining tree (Fig. 5A) allows the identification of three geographically 256 257 consistent clusters: mSm1, containing all northern (Idaho) sections plus the Nevada 258 section CS 23; mSm2, grouping the Nevada sections Crittenden Springs and Palomino 259 Ridge; and mSm3, corresponding to the four southern (Utah) sections. Therefore, the 260 NJ tree's topology suggests that the northern and southern parts of the basin differ in 261 terms of faunal assemblages, with mSm2 sections appearing closer to southern ones in 262 terms of taxonomical composition. WIL 9/14 occupies an intermediate position 263 between mSm1 and the mSm2/mSm3 group. Noteworthy, in spite of its geographical 264 proximity with mSm2 (Fig. 3A), CS 23 clusters with mSm1 sections. 265 The NMDS analysis (Fig. 5B) returns a biogeographical structuring compatible with 266 the NJ tree, with mSm3 being well separated from mSm1, suggesting that southern 267 and northern parts of the basin are distinct from each other in their ammonoid 268 assemblages. On the one hand, the three Nevada sections Palomino Ridge, Crittenden 269 Springs and WIL 9/14 form a distinct intermediate group between mSm1 and mSm3.

236

- 270 WIL 9/14 is compositionally closer to mSm1, Palomino Ridge closer to mSm3, and
- 271 Crittenden Springs falls in between. Therefore, we expand the composition of mSm2
- as defined in the NJ tree by now clustering those three Nevada sections in the NMDS
- 273 (Fig. 5B). On the other hand, as already shown by the NJ tree, CS 23 appears more
- similar to mSm1 assemblages than to the three mSm2 sections.
- 275 Mantel tests between D_{Dice} , D_{Simp} and D_{Nest} (see Data and Method section) show a 276 strong and highly significant positive linear correlation between the Dice ("total") and 277 Simpson (compositional) dissimilarity matrices (R = 0.682; $p \le 0.00001$). On the
- other hand, the Dice and Nestedness (richness) dissimilarity matrices show a weak but
- slightly significant positive correlation (R = 0.195; p = 0.02), suggesting that a few
- similarities among assemblages based on the Dice coefficient may be affected by
- 281 differences in taxonomic richness, and thus may not properly reflect richness-free
- variations of taxonomic composition. Nevertheless, these potentially artefactual
- clusters are easy to identify and do not preclude the existence of clusters mSm1,
- 284 mSm2 and mSm3: two are intra-mSm3 and discriminate localities with high
- 285 (Confusion Range-Pahvant Range) vs. low (Mineral Mountains-Torrey area)
- taxonomic richness (Fig. 5A). Another cluster groups the Schmid Ridge, The Pond
- and 2S assemblages from mSm1; these three localities show a high taxonomic
- richness, but this cluster is well supported in terms of composition as it corresponds to
- 289 geographically very close sample localities with occurrences of relatively endemic
- taxa (e.g., *Wyomingites*; see next sections). Overall, the main, three-group structuring
- 291 identified through NJ and NMDS analyses of the Dice similarity matrix thus appears
- as a genuine biogeographical signal unbiased by taxonomic-richness differences
- among the studied assemblages.
- 294 This three-group structuring is corroborated by the (one-way) ANOSIM test of the
- 295 Dice similarity matrix, which demonstrates a significant overall compositional
- difference among the three clusters (R = 0.54, p = 0.0003) driven by the strong
- 297 compositional difference between mSm1 and mSm3 (Table 2 in Supplementary
- 298 Data). The intermediate position of mSm2 is also confirmed, since it is only
- 299 marginally to non-significantly distinct from the southern and northern clusters.
- 300 Based on these results and to further evaluate the gradational interpretation of mSm2
- 301 between mSm1 and mSm3, a SIMPER analysis of the Dice similarity matrix was
- 302 finally performed among five entities: mSm1, mSm3, and the three "intermediate"
- 303 sections Palomino Ridge, Crittenden Springs and WIL 9/14. Overall average

- 304 dissimilarities are shown in Table 3 and confirm the intermediate and gradual
- 305 structure of cluster mSm2, with Palomino Ridge more closely linked to mSm3 (i.e.,
- 306 higher overall average dissimilarity with mSm1), WIL 9/14 showing stronger
- affinities with mSm1 (i.e., higher overall average dissimilarity with mSm3), and
- 308 Crittenden Springs standing in between the two other sections (similar overall average
- 309 dissimilarities with southern and northern clusters).
- 310
- 311 Distribution maps of selected taxa. Based on the previous analyses, three main
- 312 clusters were statistically identified: a southern cluster (mSm3), a northern cluster
- 313 (mSm1), and an intermediate cluster (mSm2) including the three Nevada sections
- Palomino Ridge, Crittenden Springs and WIL 9/14 (Figs 3, 5). Results of the
- 315 SIMPER analysis (Table 3 in Supplementary Data) allow the identification of the taxa
- that most contribute to this 3-group biogeographical structure.
- 317 *Guodunites, Inyoites* and *?Kashmirites cordilleranus* are typical examples of southern
- taxa (Figs 6, 7), although *Inyoites* is represented in the northern cluster mSm1 by one
- small specimen assigned to *Inyoites* sp. indet. at The Pond section (Fig. 3B).
- 320 Similarly, ?Kashmirites cordilleranus apparently occurs in one northern section
- 321 (Schmid Ridge). However, this report is based on five specimens with a tentative
- 322 assignment, only. Conversely, Meekoceras cristatum, Wyomingites, Arctoceras
- 323 *tuberculatum, Euflemingites, and Submeekoceras mushbachanum* are examples of
- 324 northern taxa (Figs 6, 7), even if the latter is represented also in the southern cluster
- 325 mSm3 by one specimen from Mineral Mountains section.
- 326 Nearly all the taxa characteristic of the southern part or the northern part coexist in the
- 327 intermediate group represented by the Nevada sections Palomino Ridge, Crittenden
- 328 Springs, and WIL 9/14 (Figs 6, 7). This biogeographically intermediate group also
- 329 contains a few endemic taxa, such as *Palominoceras nevadanum* and *Preflorianites*
- 330 (Figs 6, 7). The case of *Preflorianites* is a less clear-cut one than that of *P*.
- 331 *nevadanum* because a few specimens occur in one of the northern sections
- 332 (Georgetown). Other middle Smithian taxa such as the emblematic Meekoceras
- 333 gracilitatis, Juvenites and Owenites show a widespread distribution within the
- 334 western USA basin (Figs. 6, 7). However, differences in relative abundance do exist
- 335 (see below). Absence of these widespread taxa in a few sections possibly results from
- 336 still insufficient sampling effort.
- 337

- 338 *Taxonomic diversity*. The taxonomic diversity analysis achieved using the evenness
- index 1 D (Fig. 8) based on 11 taxa within 15 sections (see above, 'Data and
- 340 Methods') allows the quantitative characterization of three main groups. A first group
- 341 gathers sections with high taxonomic evenness (1 D values > 0.74). All southern
- 342 and intermediate sections but CS 23, and only one northern section (Georgetown)
- 343 pertain to this group. A second group corresponding to moderate taxonomic evenness
- 344 values ranging from 0.58 to 0.74 includes most of northern sections and no southern
- 345 or intermediate sections. Last, a third group comprises sections with low taxonomic
- evenness (1 D < 0.56; Hot Springs, CS 23, Grizzly Creek and possibly also
- 347 Georgetown Canyon). Notably, all sections corresponding exclusively to facies D
- 348 (Table 2) fall in this group.
- 349

350 *Relative abundance analysis.* Comparisons of taxon relative abundances (including

- 351 95% Confidence Intervals on sample proportions) for each of the 11 taxa analysed
- 352 (see above, 'Data and Methods') are shown in Figures 9, 10. Dieneroceras,
- 353 ?Kashmirites cordilleranus, Guodunites, and Inyoites (Fig. 9) display an overall S/N
- decreasing gradient in relative abundance (i.e., southern sections with high
- 355 proportions, Nevada sections with intermediate proportions, and northern sections
- 356 with proportions close or equal to zero).
- 357 Regarding *Dieneroceras*, sections departing from this S/N decreasing gradient are CS
- 358 23 and Georgetown. Indeed, CS 23 is the only Nevada section where *Dieneroceras* is
- absent so far. Besides, Georgetown shows a much higher *Dieneroceras* abundance
- than all other northern sections.
- 361 *Inyoites* presents two minor outliers with respect to its clear S/N decreasing gradient.
- 362 First, Crittenden Springs exhibits an especially low *Inyoites* abundance among
- 363 Nevada sections. Second, *Inyoites* is absent in all northern sections, except at The
- Pond, although this occurrence is based on a unique specimen without speciesassignment.
- 366 *?Kashmirites cordilleranus* is recorded in only one northern section (Schmid Ridge),
- 367 based on the identification of only five, rather poorly preserved specimens. Among
- 368 the Nevada sections, CS 23 and Crittenden Springs have values closer to those of
- 369 northern sections than to those of other Nevada sections.
- 370 Last, Guodunites occurs only in Palomino Ridge among Nevada sections. Guodunites
- 371 is apparently absent from all northern sections. As noticed from previous analyses,

372 Palomino Ridge has close affinities with southern sections. Therefore, *Guodunites*

stands as a taxon with strong southern affinities, showing an abrupt S/N decreasing
trend in relative abundance.

375 A very weak S/N decreasing gradient can be tentatively identified for *Owenites*, with

- 376 low abundances in southern and Nevada sections and null abundances in northern
- 377 sections, with the exception of Hot Springs, Crittenden Springs, Georgetown Canyon
- and Georgetown (Fig. 9).
- 379 Conversely, *Meekoceras gracilitatis*, *Submeekoceras mushbachanum* and *Juvenites*
- 380 (Figs. 9, 10) display a more or less robust N/S decreasing gradient in relative
- 381 abundances (i.e., southern sections with low to null proportions, Nevada sections with
- intermediate proportions, and northern sections with high proportions). CS 23 is an
- 383 obvious outlier in the distribution of *Meekoceras gracilitatis*, showing a very low
- abundance compared with other Nevada sections. Northern sections characterized by
- facies D (Hot Springs, Grizzly Creek and Georgetown Canyon) have much lower M.
- 386 *gracilitatis* abundances than other northern sections. Finally, Georgetown has a
- 387 significantly lower abundance compared with other northern sections belonging to388 facies C.
- 389 Likewise, northern sections with facies D display much lower abundances of
- 390 Submeekoceras mushbachanum than other northern sections. Interestingly,
- 391 Georgetown shows once again a significantly lower abundance compared with other
- 392 northern sections with facies C. Besides, the two southern sections show null
- 393 abundances in S. mushbachanum, and among Nevada sections, it is only known from
- WIL 9/14. As exemplified in previous analyses, WIL 9/14 has close affinities with
- 395 northern sections. Therefore, *S. mushbachanum* emerges as a taxon with strong
- 396 northern affinities, showing an abrupt N/S decreasing trend in relative abundance.
- 397 Juvenites shows highest relative abundances in all sections with facies D (Hot
- 398 Springs, Grizzly Creek and Georgetown Canyon). Regardless of those sections, a
- 399 weak N/S decreasing trend can be identified, with only Crittenden Springs and CS 23
- 400 having much higher abundances compared to other Nevada and southern sections.
- 401 Regarding Wyomingites, three sections (Schmid Ridge, 2S and The Pond) show much
- 402 higher abundances than all other sections (Fig. 10). Noteworthy, these sections are
- 403 close to each others (Fig. 2) and could be treated as a single section because of the
- 404 lateral extension of the same fossiliferous beds. *Wyomingites* is absent in all other
- 405 northern sections except Grizzly Creek; it occurs only in WIL 9/14 among the Nevada

406 sections. *Wyomingites* can therefore be considered as a 'local' taxon restricted to the

407 Schmid Ridge area, with a limited or patchy distribution.

- 408 Only a single section (WIL 9/14) shows a much higher abundance of Arctoceras
- 409 *tuberculatum* than all other sections (Fig. 10). Otherwise, no specific pattern is
- 410 emerging, except that this taxon is not recorded so far from the southern sections.
- 411 Finally, no pattern can be found for *Anaflemingites*, except that this taxon is
- 412 extremely rare in southern sections and that Georgetown has a relatively high
- 413 abundance compared with other northern sections (Fig. 10).
- 414

415 Influence of facies and depositional environment on abundance data. We investigated

- 416 a potential relationship between facies, depositional environments and taxonomic
- 417 compositions by grouping the 15 sections analysed for abundances into the four
- 418 categories of facies-based sets. A (one-way) ANOSIM test contrasting these four
- 419 groups indicates significant overall abundance differences among the four clusters (R
- 420 = 0.35, p = 0.014), driven by the abundance differences between the 'facies A' and
- 421 'facies C' groups, as well as between the 'facies A' and 'facies D' groups (Table 4 in
- 422 Supplementary Data). Based on a SIMPER analysis (Table 5 in Supplementary Data),
- 423 *Guodunites, Inyoites, Meekoceras gracilitatis, Dieneroceras* and *Juvenites* are
- 424 identified as the main taxa contributing to the differences in abundance between the 4425 facies groups.
- 426
- 427 Late Smithian
- 428
- 429 So far, few sections have yielded a statistically meaningful amount of late Smithian
- ammonoids, with none in the northern part of the basin. Using the available
- 431 information, a two-group (one-way) ANOSIM test with one group including southern
- 432 sections (Confusion Range and Black Rock Canyon) and another group gathering all
- 433 other sections returned a non-significant difference in terms of faunal assemblages (R
- 434 = -0.1296, p = 0.74). For relative abundances, too few sections have sufficiently large 435 samples, thus preventing any sound statistical analysis.
- 436
- 437 **DISCUSSION**
- 438

439 Our results show that middle Smithian ammonoids of the western USA basin were 440 geographically organized in terms of both distribution and abundance. The main 441 pattern is the biogeographical distinction between a southern and a northern cluster. 442 Some taxa are indeed confined to a single sub-basin (e.g., Guodunites and Invoites in 443 the southern part; Wyomingites and Meekoceras cristatum in the northern part; Figs 6, 444 7). Although some taxa are common to both sub-basins (e.g., Juvenites, Owenites and 445 Meekoceras gracilitatis), only the "intermediate" sections in northeastern Nevada 446 exhibit a mixed composition (Figs 5–7). Regarding abundance, many taxa display a 447 geographical gradient whose maximum is either in the southern or in the northern 448 cluster (Figs 9, 10). This N/S structuring in the distribution and abundance of middle 449 Smithian ammonoids echoes pronounced spatial differences in depositional settings 450 identified for the same time interval (Caravaca et al. in press, figs 3a, 4). From a 451 palaeogeographical point of view, these authors postulated the existence of a W/E452 basement topographic high running across central-northern Utah, which may have 453 contributed to the N/S structuring even if the southern and northern sub-basins shared 454 modest bathymetries.

455

456 Facies and depositional environments as potential drivers of middle Smithian457 ammonoid assemblages

458

459 Sections with facies A: an influence of siliciclastics in the southern sub-basin?
460 Guodunites, Inyoites and Dieneroceras, along with ?Kashmirites cordilleranus, are

461 strongly related to sections characterized by facies A (Fig. 9, Table 5 in

462 Supplementary Data). All sections in the southern sub-basin and the Nevada Palomino

463 Ridge section share this facies (Table 2). Nevertheless, significant differences in

abundance are observed for these four taxa between the southern sections and

465 Palomino Ridge, with constantly lower values for the latter (Fig. 9). A unique feature

466 of facies A is the presence of siltstones (Fig. 4, Table 2), indicative of significant

siliciclastic inputs mixed with the carbonate-rich fraction. It can be assumed that

468 particular environmental parameters hardly detectable through a facies analysis (e.g.,

469 local nutrient availability, seawater temperature and salinity; for the latter, see

470 Banham & Mountney 2013) were associated with those terrigenous inputs. We can

thus hypothesize that the clastic load of the water column induced the segregation of

472 taxa between the southern and northern parts of the basin; the abundant *Dieneroceras*,

473 Inyoites, ?Kashmirites cordilleranus and Guodunites in the south being presumably

474 more tolerant with respect to this abiotic parameter. As the relative siliciclastic

475 fraction mixed with carbonate gradually decreased northwards, the relative abundance

476 of southern taxa gradually decreased accordingly, with intermediate values in Nevada

477 sections (e.g., Palomino Ridge) and low to null values in northern sections. Given that

478 *Guodunites* occurs only in sections with facies A, the abundance of this taxon

- 479 probably reflects preponderant environmental parameters of the southern sub-basin.
- 480

481 Sections with facies C and northern seawater parameters. Submeekoceras

482 mushbachanum, Wyomingites and especially Meekoceras gracilitatis are apparently

483 strongly associated with sections belonging to facies C (Table 5 in Supplementary

484 Data). Most sections in the northern sub-basin and the Nevada section Crittenden

485 Springs fall within this category of facies (Table 2). As specific abiotic parameters

that may have controlled the distribution of ammonoids within this facies were not

487 identified, we suggest that the absence in ammonoid-rich northern environments of

488 components such as siltstones locally fostered the abundance of *Meekoceras*

489 gracilitatis and Submeekoceras mushbachanum. Nevertheless, significant differences

490 in abundance are observed for these three taxa between the northern facies C sections

and Crittenden Springs, with constantly lower values for the latter (Figs 9, 10). This

492 emphasizes the intermediate position of Crittenden Springs.

493 Only Schmid Ridge and its closest neighbouring sections The Pond and 2S exhibit

494 significant relative abundances for Wyomingites (Fig. 9). Sparse other known

495 occurrences of *Wyomingites* are in Grizzly Creek and WIL9/14 only, suggesting that

496 appropriate conditions for its proliferation were essentially met in Schmid Ridge, The

497 Pond and 2S. *Juvenites* was also probably favoured in the north, but its abundance

498 pattern is difficult to interpret due to potential taphonomic biases maybe linked to its

- 499 peculiar sphaeroconic morphology (see below).
- 500

501 *Georgetown: an exception to facies C.* Georgetown often shows a distinct pattern of

relative abundances compared with other northern sections with facies C (Figs 9, 10).

503 Additionally, the high taxonomic evenness value for this section is unexpected,

because it is closer to southern and most Nevada sections (Fig. 8). Noteworthy, even

though Georgetown and other sections with facies C are all characterized by proximal

storm-induced deposits, these occur in a deeper setting at Georgetown. We

- 507 hypothesize here that at Georgetown, the unusual evenness value, linked with the
- 508 unusual proportions of *Dieneroceras*, *M. gracilitatis*, *S. mushbachanum* and *Owenites*
- 509 (compared with northern sections with facies C), is due to a peculiar combination of
- 510 bathymetry and storm-induced deposits.
- 511

512 Sections with facies B: influence of storm-induced deposits. Among the Nevada 513 sections, CS 23 often exhibits peculiar patterns of abundance (Figs 9, 10). CS 23 and 514 WIL9/14 belong to facies B, which corresponds to amalgamated storm-induced 515 deposits found on palaeotopographic highs (Table 2). As CS23 and WIL9/14 do not 516 show similar compositions, it can be assumed that the ammonoid material from each 517 section originated from two different depositional environments, before being 518 taphonomically altered by storms. Ammonoid material from CS 23 probably comes 519 from a depositional environment close to that of northern sections with facies D, 520 explaining that CS 23 clusters with northern sections in NJ and NMDS analyses, and 521 not with close sections from Nevada (Palomino Ridge, Crittenden Springs and 522 WIL9/14; Fig. 5). 523 Regarding WIL9/14, we argue that the much higher value of Arctoceras tuberculatum 524 compared to all other sections cannot be only explained by a taphonomic bias (e.g.,

- mechanical sorting by storms). A primary ecological affinity of this taxon for the
 corresponding depositional environment likely accounts for its spectacular proportion
 in WIL9/14.
- 528

529 High energy depositional setting: facies D and the peculiar case of sphaerocones.

- 530 Facies D corresponds to a high hydrodynamic environment (Table 2), where
- taphonomic biases linked to shell morphology could be predominant. We hypothesize
- that large, compressed shells such as *Meekoceras gracilitatis* and *Submeekoceras*
- 533 *mushbachanum*, as well as serpenticonic shells such as *Dieneroceras* and ?K.
- 534 cordilleranus were selectively broken in this high energy depositional setting,
- resulting in a reduced number of complete, identifiable specimens. This possibly
- 536 explains the lack of *Dieneroceras* and *?K. cordilleranus* in CS 23 (as opposed to
- 537 intermediate abundances in most Nevada sections; Fig. 9), whose depositional
- environment is assumed to be close to that of sections with facies D (see above). It
- 539 would also elucidate the lower proportions of *M. gracilitatis* in CS 23 and in northern

540 sections with facies D compared to other northern sections, although the extremely

541 low proportion of *M. gracilitatis* in Hot Springs remains unexplained.

542 Conversely, small, globose and mechanically more resistant shells (e.g., *Juvenites*)

543 better resisted the high-energy hydrodynamic conditions of facies D. The SIMPER

544 analysis shows that Juvenites is preferentially bounded with facies D (Table 5 in

545 Supplementary Data). Specimens of other taxa also having a somewhat globose shell

shape (e.g., *Owenites*), are present in the same depositional environment but are often

- 547 broken. There is neither taphonomic nor sedimentological evidence for lateral
- 548 transport of shells in facies D, which suggests that *Juvenites* was proliferating in this 549 high-energy, very shallow habitat, regardless of any taphonomic bias that may have

550 increased its relative abundance.

551 Sphaerocones (including globose forms like *Juvenites*) were interpreted either as (i)

inhabitants of low-energy offshore environments (Jacobs 1992; Jacobs et al. 1994),

553 (ii) vertical migrants (Westermann 1996), or (ii) slow demersal swimmers (Swan &

554 Saunders 1987). Their high abundance in Facies D stands in striking contrast with all

these assumptions where smooth sphaerocones are assumed to be less adapted to

shallow, high-energy settings. Assigning a functional explanation to a given shell

morphology (compare, e.g., Brayard & Escarguel 2013 and Zacaï et al. 2016 for

similar analyses leading to divergent conclusions) remains extremely speculative for

nektonic organisms. Wang & Westermann (1993) also stated that "the synecological

560 record indicates that the sphaerocones often lived in low-diversity or monospecific

561 communities". However, in our case study, the low diversity (*sensu* evenness)

562 observed in sections where Juvenites is predominant (CS 23 and sections with facies

563 D; Fig. 8) results from the mechanical sorting that is frequent in these high-energy 564 subtidal shoals.

All other analysed taxa support the non-existence of relationship between *ad hoc*

566 morpho-functional categories and facies in our dataset. The sphaerocone

567 *Paranannites* is too sparse for a robust assessment. Although the shell morphology of

568 Owenites is somewhat akin to that of Juvenites, a high abundance of Owenites is only

observed in Hot Springs among sections with facies D. This peculiar abundance

570 cannot be explained by any consistent relation between shell shape and depositional

- 571 environment across different taxa. Similarly, the unusually high proportion of
- 572 Owenites in Crittenden Springs (facies C) is at variance with such a simplistic

573 relation.

575 *Late Smithian*

576

577 Available data do not indicate any significant structuring within the western USA 578 basin for late Smithian faunal assemblages. Noteworthy, the late Smithian open-579 marine bioclastic limestones and shales of the Thaynes Group regionally mark the 580 Early Triassic maximum flooding (Collinson & Hasenmueller 1978; Carr & Paull 581 1983; Paull & Paull 1993; Lucas et al. 2007; Vennin et al. 2015; Olivier et al. 2014, 582 2016), characterized by the presence of the iconic ammonoid genus Anasibirites and 583 other typical late Smithian ammonoids (Lucas et al. 2007; Brayard et al. 2013; Jattiot 584 et al. 2016, 2017). This large distribution within the entire western USA basin is 585 independent from depositional environments. At a global scale, the late Smithian 586 ammonoid extinction was accompanied by remarkable cosmopolitan distributions, 587 irrespective of the local peculiarities of depositional settings (e.g., Hemiprionites, 588 Wasatchites, Xenoceltites and Anasibirites; Tozer 1982; Brayard et al. 2006; Jattiot et 589 al. 2016). Therefore, the absence of ecological partitioning in the late Smithian of the 590 western USA basin reflects the overriding imprint (diversity collapse and 591 cosmopolitan distributions) of this global extinction.

592

593 CONCLUSION

594

595 Our work has shown that the differentiation recognized between the northern part and 596 the southern part of the western USA basin based on sedimentary evolution and 597 subsidence rates (Caravaca et al. in press), is also captured by the ecological 598 structuration of middle Smithian ammonoid faunas. Occurrences of some species are 599 limited to the southern part of the basin, whereas occurrences of other species are 600 restricted to the northern part of the basin. N/S or S/N gradients of relative abundance 601 are observed for some taxa. In some cases, a concordance between characteristics of 602 depositional environments (e.g., clastic load of the water column and energy level) 603 and the relative abundance of some taxa is clearly emerging. Conversely, the absence 604 of ecological partitioning in the late Smithian does not relate to the nature of 605 depositional settings but reflects the overriding consequences of the global late 606 Smithian ammonoid extinction and associated cosmopolitan distributions. As far as

607	Early Triassic ammonoids are concerned, our quantitative analyses also question the
608	traditional ad hoc morpho-functional interpretations of the shell shape.
609	
610	Acknowledgements. The final version of this paper benefited from constructive
611	reviews by Alistair McGowan, Sally Thomas and an anonymous referee. Support
612	from the Swiss NSF (project 160055 to HB), from the Claraz Fund (to HB) and from
613	the French ANR-13-JS06-0001-01 AFTER project (to AB) is deeply acknowledged.
614	
615	DATA ARCHIVING STATEMENT
616	
617	The following supplementary data files are available in the Dryad Digital Repository:
618	
619	
620	REFERENCES
621	
622	BANHAM, S. G. and MOUNTNEY, N. P. 2013. Controls on fluvial sedimentary
623	architecture and sediment-fill state in salt-walled mini-basins: Triassic Moenkopi
624	Formation, Salt Anticline Region, SE Utah, USA. Basin Research, 25, 709-737.
625	
626	BARESEL, B., BUCHER, H., BROSSE, M., CORDEY, F., GUODUN, K. and
627	SCHALTEGGER, U. 2017. Precise age for the Permian-Triassic boundary in South
628	China from high-precision U-Pb geochronology and Bayesian age-depth modeling.
629	<i>Solid Earth</i> , 8 , 361–378.
630	
631	BASELGA, A. 2010. Partitioning the turnover and nestedness components of beta
632	diversity. Global Ecology and Biogeography, 19, 134–143.
633	
634	- 2012. The relationship between species replacement, dissimilarity derived from
635	nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223–1232.
636	
637	BATT, R. J. 1989. Ammonite shell morphotype distributions in the Western Interior
638	Greenhorn Sea and some paleoecological implications. Palaios, 4, 32-42.
639	

640	— 1993. Ammonite morphotypes as indicators of oxygenation in a Cretaceous
641	epicontinental sea. Lethaia, 26, 49–63.
642	
643	BAYER, U. and MCGHEE, G. R. J. 1984. Iterative evolution of Middle Jurassic
644	ammonite faunas. Lethaia, 17, 1–16.
645	
646	BRAYARD, A. and BUCHER, H. 2008. Smithian (Early Triassic) ammonoid faunas
647	from northwestern Guangxi (South China): taxonomy and biochronology. Fossils and
648	<i>Strata</i> , 55 , 1–179.
649	
650	— — 2015. Permian-Triassic extinctions and rediversifications. 465–473. In KLUG,
651	C., KORN, D., DE BAETS, K., KRUTA, I. and MAPES, R. H. (eds). Ammonoid
652	Paleobiology: From macroevolution to paleogeography. Topics in Geobiology, 44,
653	Springer, Dordrecht, 599 pp.
654	
655	- and ESCARGUEL, G. 2013. Untangling phylogenetic, geometric and ornamental
656	imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study.
657	<i>Lethaia</i> , 46 , 19–33.
658	
659	- BUCHER, H., ESCARGUEL, G., FLUTEAU, F., BOURQUIN, S. and
660	GALFETTI, T. 2006. The Early Triassic ammonoid recovery: paleoclimatic
661	significance of diversity gradients. Palaeogeography, Palaeoclimatology,
662	Palaeoecology, 239 , 374–395.
663	
664	- ESCARGUEL, G. and BUCHER, H. 2007. The biogeography of Early Triassic
665	ammonoid faunas: clusters, gradients, and networks. Geobios, 40, 749–765.
666	
667	— — — MONNET, C., BRÜHWILER, T., GOUDEMAND, N., GALFETTI, T. and
668	GUEX, J. 2009a. Good genes and good luck: ammonoid diversity and the end-
669	Permian mass extinction. Science, 325, 1118–1121.
670	

671	- BRÜHWILER, T., BUCHER, H. and JENKS, J. 2009b. Guodunites, a low-
672	palaeolatitude and trans-Panthalassic Smithian (Early Triassic) ammonoid genus.
673	<i>Palaeontology</i> , 52 , 471–481.
674	
675	— ESCARGUEL, G., BUCHER, H. and BRÜHWILER, T. 2009c. Smithian and
676	Spathian (Early Triassic) ammonoid assemblages from terranes: paleoceanographic
677	and paleogeographic implications. Journal of Asian Earth Sciences, 36, 420-433.
678	
679	- BYLUND, K. G., JENKS, J. F., STEPHEN, D. A., OLIVIER, N., ESCARGUEL,
680	G., FARA, E. and VENNIN, E. 2013. Smithian ammonoid faunas from Utah:
681	implications for Early Triassic biostratigraphy, correlation and basinal
682	paleogeography. Swiss Journal of Palaeontology, 132, 141-219.
683	
684	- ESCARGUEL, G., MONNET, C., JENKS, J. F. and BUCHER, B. 2015.
685	Biogeography of Triassic ammonoids. 163–187. In KLUG, C., KORN, D., DE
686	BAETS, K., KRUTA, I. and MAPES, R. H. (eds). Ammonoid Paleobiology: From
687	macroevolution to paleogeography. Topics in Geobiology, 44, Springer, Dordrecht,
688	599 pp.
689	
690	BROSSE, M., BRAYARD, A., FARA, E. and NEIGE, P. 2013. Ammonoid recovery
691	after the Permian-Triassic mass extinction: a re-exploration of morphological and
692	phylogenetic diversity patterns. Journal of the Geological Society, 170, 225–236.
693	
694	BRÜHWILER, T., BUCHER, H., BRAYARD, A. and GOUDEMAND, N. 2010a.
695	High-resolution biochronology and diversity dynamics of the Early Triassic
696	ammonoid recovery: the Smithian faunas of the Northern Indian Margin.
697	Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 491–501.
698	
699	— — and GOUDEMAND, N. 2010b. Smithian (Early Triassic) ammonoids from
700	Tulong, South Tibet. Geobios, 43, 403–431.

702	——— and GALFETTI, T. 2012a. Smithian (Early Triassic) ammonoids faunas
703	from Exotic Blocks from Oman: taxonomy and biochronology. Palaeontographica
704	<i>Abteilung A</i> , 296 , 3–107.
705	
706	— — WARE, D., HERMANN, E., HOCHULI, P. A., ROOHI, G., REHMAN, K. and
707	YASEEN, A. 2012b. Smithian (Early Triassic) ammonoids from the Salt Range.
708	Special Papers in Palaeontology, 88, 1–114.
709	
710	— — and KRYSTYN, L. 2012c. Middle and late Smithian (Early Triassic)
711	ammonoids from Spiti, India. Special Papers in Palaeontology, 88, 115-174.
712	
713	BULOT, L. G. 1993. Stratigraphical implications of the relationships between
714	ammonites and facies: examples taken from the Lower Cretaceous (Valanginian -
715	Hauterivian) of the western Tethys. In HOUSE, M. R. (ed.). The Ammonoidea:
716	environment, ecology, and evolutionary change. Systematics Association Special
717	Volume, Clarendon Press, Oxford, 354 pp.
718	
719	CARAVACA, G., BRAYARD, A., VENNIN, E., GUIRAUD, M., LE POURHIET,
720	L., GROSJEAN, A. S., THOMAZO, C., OLIVIER, N., FARA, E., ESCARGUEL, G.,
721	JENKS, J. F., BYLUND, K. G. and STEPHEN, D. A. (in press). Controlling factors
722	for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western
723	USA). Geological Magazine, 1–25.
724	
725	CARR, T. C. and PAULL, R. K. 1983. Early Triassic stratigraphy and
726	paleogeography of the Cordilleran miogeocline. Rocky Mountain Symposium, 2, 39-
727	55.
728	
729	CLARKE, K. R. 1993. Non-parametric multivariate analyses of changes in
730	community structure. Australian Journal of Ecology, 18, 117–143.
731	
732	COLLINSON, J. W. and HASENMUELLER, W. A. 1978. Early Triassic
733	paleogeography and biostratigraphy of the Cordilleran miogeosyncline. Pacific Coast
734	Paleogeography Symposium, 2, 175–187.
735	

736	- KENDALL, C. and MARCANTEL, J. B. 1976. Permian-Triassic boundary in
737	eastern Nevada and west-central Utah. Geological Society of America Bulletin, 87,
738	821–824.
739	
740	COMPANY, M. 1987. Los ammonites del valanginiense del sector oriental de las
741	cordilleras béticas (SE de España). PhD thesis, University of Granada, Granada, 344
742	pp.
743	
744	DAGYS, A. 1988. Major features of the geographic differentiation of Triassic
745	ammonoids. 341-349. In WIEDMANN, J. and KULLMANN, J. (eds). Cephalopods-
746	present and past. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.
747	
748	FIELD, J. G., CLARKE, K. R. and WARWICK, R. M. 1982. A practical strategy for
749	analysing multispecies distribution patterns. Marine Ecology Progress Series, 8, 37-
750	52.
751	
752	GALFETTI, T., BUCHER, H., OVTCHAROVA, M., SCHALTEGGER, U.,
753	BRAYARD, A., BRÜHWILER, T., GOUDEMAND, N., WEISSERT, H.,
754	HOCHULI, P. A., CORDEY, F. and GUODUN, K. 2007. Timing of the Early
755	Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid
756	biochronozones. Earth and Planetary Science Letters, 258, 593-604.
757	
758	GILLULY, J. and REESIDE, J. B. 1927. Sedimentary rocks of the San Rafael Swell
759	and some adjacent areas in eastern Utah. U.S. Geological Survey Professional Paper,
760	150-D , 61–110.
761	
762	HALLAM, A. 1996. Major bio-events in the Triassic and Jurassic. 265–283. In
763	WALLISER, O. H. (ed.). Global Events and Event Stratigraphy in the Phanerozoic:
764	Results of the International Interdisciplinary Cooperation in the IGCP-Project 216
765	"Global Biological Events in Earth History". Springer-Verlag, Berlin, 333 pp.
766	
767	HAMMER, Ø., HARPER, D. and PAUL, D. 2001. Past: paleontological statistics
768	software package for education and data analysis. Palaeontologia Electronica.
769	Available from: http://folk.uio.no/ohammer/past/.

770	
771	HERMANN, E., HOCHULI, P. A., BUCHER, H., BRÜHWILER, T., HAUTMANN,
772	M., WARE, D. and ROOHI, G. 2011. Terrestrial ecosystems on North Gondwana in
773	the aftermath of the end-Permian mass extinction. Gondwana Research, 20, 630-637.
774	
775	HURLBERT, S. H. 1971. The nonconcept of species diversity: a critique and
776	alternative parameters. Ecology, 52 , 577–586.
777	
778	JACOBS, D. K. 1992. Shape, drag, and power in ammonoid swimming.
779	Paleobiology, 18, 203–220.
780	
781	- LANDMAN, N. H. Y. and CHAMBERLAIN, J. A. 1994. Ammonite shell shape
782	covaries with facies and hydrodynamics: iterative evolution as a response to changes
783	in basinal environment. Geology, 22, 905–908.
784	
785	JATTIOT, R., BUCHER, H., BRAYARD, A., MONNET, C., JENKS, J. F. and
786	HAUTMANN, M. 2016. Revision of the genus Anasibirites Mojsisovics
787	(Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early
788	Triassic) extinction. Papers in Palaeontology, 2, 155-188.
789	
790	— BUCHER, H., BRAYARD, A., BROSSE, M., JENKS, J. F. and BYLUND, K. G.
791	2017. Smithian ammonoid faunas from northeastern Nevada: implications for Early
792	Triassic biostratigraphy and correlation within the western USA basin.
793	Palaeontographica Abteilung A, 309 , 1–89.
794	
795	JENKS, J. F., BRAYARD, A., BRÜHWILER, T. and BUCHER, H. 2010. New
796	Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada:
797	Implications for taxonomy, biostratigraphy and biogeography. New Mexico Museum
798	of Natural History and Science Bulletin, 48, 1–41.
799	
800	KAWABE, F. 2003. Relationship between mid-Cretaceous (upper Albian-
801	Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido,
802	Japan. Cretaceous Research, 24, 751–763.
803	

804	KOLEFF, P., GASTON, K. J. and LENNON, J. J. 2003. Measuring beta diversity for
805	presence-absence data. Journal of Animal Ecology, 72, 367-382.
806	
807	KLUG, C. 2002. Conch parameters and habitats of Emsian and Eifelian ammonoids
808	from the Tafilalt (Morocco) and their relation to global events. Abhandlungen der
809	Geologischen Bundesantalt, 57, 523–538.
810	
811	— and KORN, D. 2004. The origin of ammonoid locomotion. Acta Palaeontologica
812	<i>Polonica</i> , 49 , 235–242.
813	
814	KRUSKAL, J. B. 1956. On the shortest spanning subtree of a graph and the traveling
815	Salesman problem. Proceedings of the American Mathematical Society, 7, 48-50.
816	
817	LEGENDRE, P. and LEGENDRE, L. 2012. Numerical ecology, 3 rd edn.
818	Developments in Environmental Modeling, 24, Elsevier, Amsterdam, 1006 pp.
819	
820	LUCAS, S. G., KRAINER, K. and MILNER, A. R. 2007. The type section and age of
821	the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi
822	Group in Southwestern Utah. New Mexico Museum of Natural History and Science
823	Bulletin, 40 , 109–117.
824	
825	MANSFIELD, G. R. and GIRTY, G. H. 1927. Geography, geology, and mineral
826	resources of part of southeastern Idaho. U.S. Geological Survey Professional Paper,
827	152 , 1–447.
828	
829	MCKEE, E. D. 1954. Stratigraphy and history of the Moenkopi Formation of Triassic
830	age. Geological Society of America Memoirs, 61, 1–126.
831	
832	MONNET, C., DE BAETS, K. and KLUG, C. 2011. Parallel evolution controlled by
833	adaptation and covariation in ammonoid cephalopods. BMC evolutionary
834	<i>Biology</i> , 11 , 115.
835	
836	NEIGE, P., MARCHAND, D. and BONNOT, A. 1997. Ammonoid morphological
837	signal versus sea-level changes. Geological Magazine, 134, 261–264.

838	
839	OLIVIER, N., BRAYARD, A., FARA, E., BYLUND, K. G., JENKS, J. F., VENNIN,
840	E., STEPHEN, D. A. and ESCARGUEL, G. 2014. Smithian shoreline migrations and
841	depositional settings in Timpoweap Canyon (Early Triassic, Utah, USA). Geological
842	Magazine, 151 , 938–955.
843	
844	— — VENNIN, E., ESCARGUEL, G., FARA, E., BYLUND, K. G., JENKS, J. F.,
845	CARAVACA, G., STEPHEN, D. A. 2016. Evolution of depositional settings in the
846	Torrey area during the Smithian (Early Triassic, Utah, USA) and their significance for
847	the biotic recovery. Geological Journal, 51, 600-626.
848	
849	OVTCHAROVA, M., BUCHER, H., SCHALTEGGER, U., GALFETTI, T.,
850	BRAYARD, A. and GUEX, J. 2006. New Early to Middle Triassic U-Pb ages from
851	South China: calibration with ammonoid biochronozones and implications for the
852	timing of the Triassic biotic recovery. Earth and Planetary Science Letters, 243, 463-
853	475.
854	
855	— GOUDEMAND, N., HAMMER, Ø., GUODUN, K., CORDEY, F., GALFETTI,
856	T., SCHALTEGGER, U. and BUCHER, H. 2015. Developing a strategy for accurate
857	definition of a geological boundary through radio-isotopic and biochronological
858	dating: the Early-Middle Triassic boundary (South China). Earth-Science Reviews,
859	146 , 65–76.
860	
861	PAULL, R. A. and PAULL, R. K. 1993. Interpretation of Early Triassic nonmarine-
862	marine relations, Utah, USA. New Mexico Museum of Natural History and Science
863	Bulletin, 3 , 403–409.
864	
865	PAYNE, J. L., LEHRMANN, D. J., WEI, J., ORCHARD, M. J., SCHRAG, D. P. and
866	KNOLL, A. H. 2004. Large perturbations of the carbon cycle during recovery from the
867	end-Permian extinction. Science, 305, 506–509.
868	
869	PRIM, R. C. 1957. Shortest connection networks and some generalizations. Bell
870	System Technical Journal, 36, 1389–1401.
871	

872	RAUP, D. M. and CHAMBERLAIN, J. A. 1967. Equations for volume and center
873	of gravity in ammonoid shells. Journal of Paleontology, 41, 566-574.
874	
875	ROMANO, C., GOUDEMAND, N., VENNEMANN, T. W., WARE, D.,
876	SCHNEEBELI-HERMANN, E., HOCHULII, P. A., BRÜHWILER, T.,
877	BRINKMANN, W. and BUCHER, H. 2013. Climatic and biotic upheavals following
878	the end-Permian mass extinction. Nature Geoscience, 6, 57-60.
879	
880	SAUNDERS, W. B. and SWAN, A. R. H. 1984. Morphology and morphologic
881	diversity of Mid-Carboniferous (Namurian) ammonoids in time and space.
882	Paleobiology, 10, 195–228.
883	
884	SHIGETA, Y. and KUMAGAE, T. 2015. Churkites, a trans-Panthalassic Early
885	Triassic ammonoid genus from South Primorye, Russian Far East. Paleontological
886	Research, 19, 219–236.
887	
888	— and NGUYEN, H. D. 2014. Systematic paleontology: cephalopods. 65–167. In
889	SHIGETA, Y., KOMATSU, T., MAEKAWA, T. and DANG, H. T. (eds). Olenekian
890	(Early Triassic) stratigraphy and fossil assemblages in northeastern Vietnam.
891	National Museum of Nature and Science Monographs, 45, Tokyo.
892	
893	— and ZAKHAROV, Y. D. 2009. Systematic paleontology: cephalopods. 44–140. In
894	SHIGETA, Y., ZAKHAROV, Y., MAEDA, H. and POPOV, A. M. (eds). The Lower
895	Triassic system in the Abrek Bay area, South Primorye, Russia. National Museum of
896	Nature and Science Monographs, 38, Tokyo.
897	
898	- MAEDA, H. and ZAKHAROV, Y. D. 2009. Biostratigraphy: ammonoid
899	succession. 24–27. In SHIGETA, Y., ZAKHAROV, Y., MAEDA, H. and POPOV, A.
900	M. (eds). The Lower Triassic system in the Abrek Bay area, South Primorye, Russia.
901	National Museum of Nature and Science Monographs, 38, Tokyo.
902	
903	SIMPSON, E. H. 1949. Measurement of diversity. Nature, 163, 688.
904	

905	SNEATH, P. H. A. and SOKAL, R. R. 1973. Numerical taxonomy - the principles
906	and practice of numerical classification. W.H. Freeman & Co. Ltd., San Francisco,
907	588 pp.
908	
909	SOKAL, R. R. and ROHLF, F. J. 1995. Biometry: the principles and practice of
910	statistics in biological research, 3rd edn. W. H. Freeman and Co. Ltd., 896 pp.
911	
912	STEPHEN, D. A., BYLUND, K. G., BYBEE, P. J. and REAM, W. J. 2010.
913	Ammonoid beds in the Lower Triassic Thaynes Formation of western Utah, USA.
914	243-252. In TANABE, K., SHIGETA, Y., SASAKI, T. and HIRANO, H. (eds).
915	Cephalopods-present and past, Tokyo.
916	
917	SWAN, A. R. H. and SAUNDERS, W. B. 1987. Function and shape in late Paleozoic
918	(mid-Carboniferous) ammonoids. Paleobiology, 13, 297–311.
919	
920	TOZER, E. T. 1982. Marine Triassic faunas of North America: their significance for
921	assessing plate and terrane movements. Geologische Rundschau, 71, 1077-1104.
922	
923	VENNIN, E., OLIVIER, N., BRAYARD, A., BOUR, I., THOMAZO, C.,
924	ESCARGUEL, G., FARA, E., BYLUND, K. G., JENKS, J. F., STEPHEN, D. A. and
925	HOFMANN, R. 2015. Microbial deposits in the aftermath of the end-Permian mass
926	extinction: A diverging case from the Mineral Mountains (Utah, USA).
927	Sedimentology, 62 , 753–792.
928	
929	WANG, Y. and WESTERMANN, G. E. G. 1993. Paleoecology of Triassic
930	ammonoids. <i>Geobios</i> , 26 , 373–392.
931	
932	WANI, R. 2003. Taphofacies models for Upper Cretaceous ammonoids from the
933	Kotanbetsu area, northwestern Hokkaido, Japan. Palaeogeography,
934	Palaeoclimatology, Palaeoecology, 199, 71–82.
935	
936	WARE, D., BUCHER, H., BRAYARD, A., SCHNEEBELI-HERMANN, E. and
~~-	

937 BRÜHWILER, T. 2015. High-resolution biochronology and diversity dynamics of the

938	Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian
939	Margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 363–373.
940	
941	WESTERMANN, G. E. G. 1996. Ammonoid life and habitat. 607–707. In
942	LANDMAN, N. H. Y., TANABE, K. and DAVID, R. A. (eds). Ammonoid
943	Paleobiology. Topics in Geobiology, 13, Springer-Verlag US, 857 pp.
944	
945	ZACAI, A., BRAYARD, A., DOMMERGUES, J. L., MEISTER, C, ESCARGUEL,
946	G, LAFFONT, R, VRIELYNCK, B and FARA, E. 2016. Gauging scale effects and
947	biogeographical signals in similarity distance decay analyses: an early Jurassic
948	ammonite case study. Palaeontology, 59, 671–687.
949	
950	ZAKHAROV, Y. D. and ABNAVI, N. M. 2013. The ammonoid recovery after the
951	end-Permian mass extinction: evidence from the Iran-Transcaucasia area, Siberia,
952	Primorye, and Kazakhstan. Acta Palaeontologica Polonica, 58, 127-147.
953	
954	— and POPOV, A. M. 2014. Recovery of brachiopod and ammonoid faunas
955	following the end-Permian crisis: additional evidence from the Lower Triassic of the
956	Russian Far East and Kazakhstan. Journal of Earth Science, 25, 1–44.
957	
958	— SHIGETA, Y., POPOV, A. M., BURYI, G. I., OLEINIKOV, A.V.,
959	DORUKHOVSKAYA, E. A. and MIKHALIK, T. M. 2002. Triassic ammonoid
960	succession in South Primorye: 1. Lower Olenekian Hedenstroemia bosphorensis and
961	Anasibirites nevolini Zones. Albertiana, 27, 42–64.
962	
963	-BONDARENKO, L. G., SMYSHLYAEVA, O. P. and POPOV, A. M. 2013. Late
964	Smithian (Early Triassic) ammonoids from the Anasibirites nevolini Zone of South
965	Primorye, Russian Far East. New Mexico Museum of Natural History and Science
966	Bulletin, 61 , 597–612.
967	
968	Figure captions
969	
970	FIG. 1. Chronostratigraphic subdivisions of the Early Triassic calibrated with
971	published radiometric ages (Ovtcharova et al. 2006, 2015; Galfetti et al. 2007;

972	Baresel <i>et al.</i> 2017). δ^{13} C _{carb} curves and anoxic/euxinic events from Galfetti <i>et al.</i>
973	2007. A: Anasibirites, X: Xenoceltites, ea.: early, mi.: middle, l.: late. Simplified
974	ammonoid diversity curve is inferred from data from Brayard et al. (2006, 2009a),
975	Brühwiler et al. (2010a) and Ware et al. (2015).
976	
977	FIG. 2. Early Triassic location of the western USA basin (black star). White stars
978	indicate some other basins from which Smithian ammonoids have been documented.
979	
980	FIG. 3. Palaeopositions of sampled Smithian sections within the western USA basin.
981	A, whole western USA basin. B, inset of most northern sections. Abbreviations:
982	HC: Hawley Creek, GC: Grizzly Creek, GR: Grays Range, RM: Reservoir Mountain,
983	M: Monsanto, SR: Schmid Ridge, WR: Webster Range, SC: Sage Creek, GCa:
984	Georgetown Canyon, CR: Confusion Range, PR: Pahvant Range, SRa: Star Range,
985	GT: Georgetown, HS: Hot Springs, CS: Crittenden Springs, LWC: Lower Weber
986	Canyon, CG: Cephalopod Gulch, FD: Fort Douglas, C: Cottonwood, PRi: Palomino
987	Ridge, CC: Cedar City Area, BRC: Black Rock Canyon, RC: Rock Canyon, CCa:
988	Cuts Canyon, MM: Mineral Mountains, TO: Torrey Area, SRS: San Rafael Swell,
989	KAN: Kanarraville, WIL: Willow Creek.
990	
991	FIG. 4. Thin sections of the main ammonoid-rich facies. A, ammonoid (Am)-rich
992	floatstone in a micritic matrix associated with very fine siltstones (Palomino Ridge
993	section). B, ammonoid-rich (Am) floatstone alternating with a bivalve-rich floatstone
994	(WIL 9/14 section). C, ammonoid (Am) and bivalve bioaccumulation (The Pond
995	section). D, stacked bioclastic and ammonoid (Am) packstone (Stewart Canyon
996	section). Scale bars: 0.5 mm.
997	
998	TABLE 1. Contingency table for the 11 taxa selected for the abundance-based
999	analyses. For each taxon, the χ^2 test contrasts the raw abundance of this taxon against
1000	the raw abundance of the 10 other taxa within the 15 selected middle Smithian
1001	sections.
1002	
1003	TABLE 2. Main facies and their corresponding depositional environments identified
1004	in the 15 middle Smithian sections selected for the analyses based on abundance data.

1006	FIG. 5. A, Neighbour Joining tree; B, most common NMDS map obtained (378 out of
1007	500 analysis iterations, i.e., 75%) and superimposed minimum spanning tree, with a
1008	Kruskal-stress value of 0.18. Dashed lines indicate non-significant variations in the
1009	NMDS map.
1010	
1011	TABLE 3. Overall average dissimilarities of WIL 9/14, Palomino Ridge and
1012	Crittenden Springs with mSm1 and mSm3 clusters.
1013	
1014	FIG. 6. Distribution maps of Meekoceras gracilitatis, Meekoceras cristatum,
1015	Guodunites, Euflemingites, Inyoites and Owenites within the western USA basin,
1016	based on palaeopositions of sampled Smithian sections.
1017	
1018	FIG. 7. Distribution maps of Palominoceras nevadanum, Wyomingites, Arctoceras
1019	tuberculatum, Juvenites, ?Kashmirites cordilleranus and Submeekoceras
1020	mushbachanum within the western USA basin, based on palaeopositions of sampled
1021	Smithian sections.
1022	
1023	FIG. 8. Diversity (sensu evenness) of the 15 analysed sections using 11 selected taxa.
1024	Square, circle, triangle, star: facies A, B, C, D sections, respectively.
1025	
1026	FIG. 9. Relative abundances (average and 95% confidence intervals) on empirical
1027	proportions of Dieneroceras, Inyoites, ?Kashmirites cordilleranus, Guodunites,
1028	Owenites and Meekoceras gracilitatis among the 15 analysed sections. Square, circle,
1029	triangle, star: facies A, B, C, D sections, respectively.
1030	
1031	FIG. 10. Relative abundances (average and 95% confidence intervals) on empirical
1032	proportions of Submeekoceras mushbachanum, Juvenites, Wyomingites, Arctoceras
1033	tuberculatum and Anaflemingites among the 15 analysed sections. Square, circle,
1034	triangle, star: facies A, B, C, D sections, respectively.

Figure caption: This NMDS map is the most common map obtained (378 out of 500 analysis iterations; i.e., 75%) and it is the one with the lowest stress value (0.184).

Α

middle Cmithian	Cuedunites	Cuedunites	Churchitae	Lancoolitos	Lancaolitos	Involtor	Quionitos	Maakasaras	Maakasaras	Hadaastroomia	Droflorionitor	Droflosianitos	Acconitor	Anaflominaitos	Anaflaminaitas	Washmiritas	Delominocorec
middle Smithian	Guodunites	Guodunites	churkites	compacture	hicarinatur	owani	koeneni	aracilitatic	cristatum	korrmati	toulai	regionanites	Aspenites	cf cilborlingi	Anajiemingites	cordilloranur	Palominoceras
Confusion Pango	1	1	1	1 tompactus	1	1 Oweni	1 KOEnem	gracintatis	Cristatum	KOSSINUU	100101	radiuns	1	cj. silberiirigi	nussem 0	torumeranas	nevadanum
Pahyant Pange	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	1	0
Mineral Mountaine	â	1	1	Ô	â	1	â	1	0	â	0	0	0	0	0	â	0
Torrey Area	0	1	1	1	0	Ô	ő	1	0	1	0	0	0	0	0	0	0
Crittenden Springe	1	<u>_</u>	1	1	0	1	1	1	0	1	0	1	1	0	0	1	0
CS 22	â	0	ô	1	1	1	â	1	0	<u>.</u>	1	<u>,</u>	î	0	1	â	0
Palomino Ridge	1	1	1	1	â	1	1	1	0	1	1	0	1	1	â	1	1
WII 9/14	<u>,</u>	â	1	0	0	1	1	1	0	0	1	1	1	0	1	1	1
Wood Canyon	0	ő	Ô	0	0	ô	1	1	0	0	Ô	0	ô	0	1	â	Ô
Grizzly Creek	0	ő	0	0	0	0	â	1	1	0	0	0	1	0	1	0	0
Hot Springs	0	0	1	1	1	0	1	1	1	0	0	0	1	1	1	0	0
Schmid Ridge	0	ő	1	1	1	0	â	1	1	1	0	0	1	0	1	1	ő
25	ő	ő	1	Ô	î	ő	ő	1	1	1	ő	0	1	0	1	Ô	ő
The Rond	0	0	1	1	1	0	ő	1	1	1	0	0	1	0	1	0	0
Georgetown Canvon	0	0	1	0	â	0	1	1	1	â	0	0	1	0	1	0	0
Georgetown	0	ő	1	1	0	0	1	1	Ô	0	0	0	1	0	1	0	0
Same Creek	0	ő	Ô	1	0	0	1	1	0	0	0	0	1	0	1	0	0
Reservoir Mountain	0	ő	0	0	0	0	â	1	0	0	0	0	1	0	1	0	ő
Monsanto	0	ő	0	1	0	0	ő	1	0	0	0	0	1	0	1	0	0
Stewart Canyon	0	ő	ő	1	1	0	ő	1	0	0	0	0	1	0	â	0	0
steria e san jen				-	-			-	-			-	-		-		
	Parussuria	Dieneroceras	Dieneroceras		Owenites		Pseudaspidites	Proharpoceras	Pseudosaaeceras	Arctoceras	Submeekoceras				Paranannites	Invoites	
	Parussuria compressa	Dieneroceras dieneri	Dieneroceras knechti	"Dagnoceras"	Owenites carpenteri	Juvenites	Pseudaspidites silberlingi	Proharpoceras carinatitabulatum	Pseudosageceras multilobatum	Arctoceras tuberculatum	Submeekoceras mushbachanum	Flemingites	Euflemingites	Wyomingites	Paranannites aspenensis	Inyoites sp.	
Confusion Range	Parussuria compressa 1	Dieneroceras dieneri 1	Dieneroceras knechti 0	"Dagnoceras" 0	Owenites carpenteri 1	Juvenites	Pseudaspidites silberlingi 0	Proharpoceras carinatitabulatum 0	Pseudosageceras multilobatum 1	Arctoceras tuberculatum 0	Submeekoceras mushbachanum 0	Flemingites 0	Euflemingites	Wyomingites 0	Paranannites aspenensis 0	Inyoites sp. 0	
Confusion Range Pahvant Range	Parussuria compressa 1 1	Dieneroceras dieneri 1 1	Dieneroceras knechti 0 0	"Dagnoceras" 0 0	Owenites carpenteri 1 1	Juvenites	Pseudaspidites silberlingi 0 0	Proharpoceras carinatitabulatum 0 0	Pseudosageceras multilobatum 1 1	Arctoceras tuberculatum 0 0	Submeekoceras mushbachanum 0 0	Flemingites 0 1	Euflemingites 0 0	Wyomingites 0 0	Paranannites aspenensis 0 0	Inyoites sp. 0 0	
Confusion Range Pahvant Range Mineral Mountains	Parussuria compressa 1 1 1	Dieneroceras dieneri 1 1 1	Dieneroceras knechti 0 0 0	"Dagnoceras" 0 0 0	Owenites carpenteri 1 1 1	Juvenites	Pseudaspidites silberlingi 0 0 0	Proharpoceras carinatitabulatum 0 0 0	Pseudosageceras multilobatum 1 1 0	Arctoceras tuberculatum 0 0 0	Submeekoceras mushbachanum 0 0 1	Flemingites 0 1 0	Euflemingites 0 0 0	Wyomingites 0 0 0	Paranannites aspenensis 0 0 0	Invoites sp. 0 0 0	
Confusion Range Pahvant Range Mineral Mountains Torrey Area	Parussuria compressa 1 1 1 1	Dieneroceras dieneri 1 1 1 0	Dieneroceras knechti 0 0 0 0	"Dagnoceras" 0 0 0 0	Owenites carpenteri 1 1 1 0	Juvenites	Pseudaspidites silberlingi 0 0 0 0	Proharpoceras carinatitabulatum 0 0 0 0	Pseudosageceras multilobatum 1 1 0 0	Arctoceras tuberculatum 0 0 0 0	Submeekoceras mushbachanum 0 0 1 0	Flemingites 0 1 0 0	Euflemingites 0 0 0 0	Wyomingites 0 0 0 0	Paranannites aspenensis 0 0 0 0	Inyoites sp. 0 0 0 0	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs	Parussuria compressa 1 1 1 1 1 1	Dieneroceras dieneri 1 1 1 0 1	Dieneroceras knechti 0 0 0 0 1	"Dagnoceras" 0 0 0 0 0	Owenites carpenteri 1 1 0 0	Juvenites 1 1 0 1 1 1	Pseudaspidites silberlingi 0 0 0 0 1	Proharpoceras carinatitabulatum 0 0 0 0 1	Pseudosageceras multilobatum 1 0 0 1	Arctoceras tuberculatum 0 0 0 0 1	Submeekoceras mushbachanum 0 1 0 0 0	Flemingites 0 1 0 0 0	Euffemingites 0 0 0 0 1	Wyomingites 0 0 0 0 0	Paranannites aspenensis 0 0 0 0 1	1nyoites sp. 0 0 0 0 1	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23	Parussuria compressa 1 1 1 1 1 0	Dieneroceras dieneri 1 1 1 0 1 0 1 0	Dieneroceras knechti 0 0 0 0 1 0	"Dagnoceras" 0 0 0 0 0 0	Owenites carpenteri 1 1 0 0 0	Juvenites 1 1 0 1 1 1 1	Pseudaspidites silberlingi 0 0 0 1 0	Proharpoceras carinatitabulatum 0 0 0 0 1 0	Pseudosageceras multilobatum 1 0 0 1 0	Arctoceras tuberculatum 0 0 0 1 1	Submeekoceras mushbachanum 0 0 1 0 0 0 0	Flemingites 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Euflemingites 0 0 0 1 0	Wyomingites 0 0 0 0 0 0	Paranannites aspenensis 0 0 0 1 0	Invoites sp. 0 0 0 0 1 1	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge	Parussuria compressa 1 1 1 1 1 0 1	Dieneroceras dieneri 1 1 0 1 0 1 0 1	Dieneroceras knechti 0 0 0 1 0 1	"Dagnoceras" 0 0 0 0 0 0 0 0	Owenites carpenteri 1 1 0 0 0 0	Juvenites 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 0 1 0 0 0	Proharpoceras carinatitabulatum 0 0 0 1 1 0 1	Pseudosageceras multilobatum 1 0 0 1 0 1	Arctoceras tuberculatum 0 0 0 0 1 1 1	Submeekoceras mushbachanum 0 1 0 0 0 0 0	Flemingites 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Euflemingites 0 0 0 1 0 0 0	Wyomingites 0 0 0 0 0 0 0 0	Paranannites aspenensis 0 0 0 1 0 1 0 1	Invoites sp. 0 0 0 1 1 1 1	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge WIL 9/14	Parussuria compressa 1 1 1 1 1 0 1 1 1	Dieneroceras dieneri 1 1 1 0 1 0 1 1 1	Dieneroceras knechti 0 0 0 1 0 1 0 1 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0	Owenites carpenteri 1 1 0 0 0 1 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 1 0 0 0 0 0	Proharpoceras carinatitabulatum 0 0 0 1 1 0 1 0	Pseudosageceras multilobatum 1 1 0 1 1 1 1	Arctoceras tuberculatum 0 0 0 1 1 1 1 1	Submeekoceras mushbachanum 0 1 0 0 0 0 1	Flemingites 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Euflemingites 0 0 0 1 0 0 1	Wyomingites 0 0 0 0 0 0 1	Paranannites aspenensis 0 0 0 1 0 1 0 1 0	Invoites sp. 0 0 0 0 1 1 1 1 1	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge WIL 9/14 Wood Canyon	Parussuria compressa 1 1 1 1 1 0 1 1 1 0	Dieneroceras dieneri 1 1 1 0 1 0 1 1 1 1 1	Dieneroceras knechti 0 0 0 1 0 1 0 1 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0	Owenites carpenteri 1 1 1 0 0 0 1 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 1 1 0 0 0 0 0	Proharpoceras carinatitabulatum 0 0 1 1 0 1 0 0 0 0	Pseudosageceras multilobatum 1 1 0 1 0 1 0 1 1 0	Arctoceras tuberculatum 0 0 0 1 1 1 1 0	Submeekoceras mushbachanum 0 1 0 0 0 0 0 1 0 0	Flemingites 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	Euflemingites 0 0 0 1 0 0 1 0 0	Wyomingites 0 0 0 0 0 0 0 1 0	Paranannites aspenensis 0 0 0 1 1 0 1 0 0 0 0	Inyoites sp. 0 0 0 1 1 1 1 0	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge WiL 9/14 Wood Canyon Grizzly Creek	Parussuria compressa 1 1 1 1 1 1 0 1 1 0 0	Dieneroceras dieneri 1 1 1 0 1 0 1 1 1 1 0	Dieneroceras knechti 0 0 0 1 0 1 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0	Owenites carpenteri 1 1 0 0 0 1 0 0 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 1 1 0 0 0 0 0 0 0 0 0	Proharpoceras carinatitabulatum 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 1 0 0 1 1 1 1 0 1	Arctoceras tuberculatum 0 0 0 1 1 1 1 1 0 0	Submeekoceras mushbachanum 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	Flemingites 0 1 0 0 0 0 0 0 0 0 1 1 1	Euflemingites 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0	Wyomingites 0 0 0 0 0 0 0 1 0 1	Paranannites aspenensis 0 0 0 1 1 0 1 0 0 0 0	Invoites sp. 0 0 0 1 1 1 1 0 0 0	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge WiL 9/14 Wood Canyon Grizzly Creek Hot Springs	Parussuria compressa 1 1 1 1 1 0 1 1 0 0 1	Dieneroceras dieneri 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1	Dieneroceras knechti 0 0 0 1 0 1 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Owenites carpenteri 1 1 0 0 0 1 0 0 0 1 0 0 0 1	Juvenites 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	Proharpoceras carinatitabulatum 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 0 0 1 1 0 1 1 0 1 1 1	Arctoceras tuberculatum 0 0 0 1 1 1 1 0 0 1 1	Submeekoceras mushbachanum 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0	Flemingites 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0	Euflemingites 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0	Wyomingites 0 0 0 0 0 0 1 0 1 0 0	Paranannites aspenensis 0 0 0 1 0 1 0 1 0 0 0 0 1	Inyoites sp. 0 0 0 1 1 1 1 1 0 0 0	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge Will 9/14 Wood Canyon Grizzly Creek Hot Springs Schmid Ridge	Parussuria compressa 1 1 1 1 1 0 1 1 1 0 0 0 1 1	Dieneroceras dieneri 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1	Dieneroceras knechti 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Owenites carpenteri 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 1 0 0 0 0 0 0 0 0 0 1	Proharpoceros carinalitabulatum 0 0 0 1 1 0 1 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 0 0 1 1 0 1 1 1 1 1 1 1	Arctoceras tuberculatum 0 0 0 1 1 1 1 1 0 0 1 1	Submeekoceras mushbachanum 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1	Flemingites 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0	Euflemingites 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0	Wyomingites 0 0 0 0 0 0 1 0 1 0 1 1 1	Paranannites aspenensis 0 0 0 1 1 0 1 0 0 0 0 1 1	Inyoites \$p. 0 0 0 1 1 1 1 0 0 0 0 0 0 0	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge WIL 9/14 Wood Canyon Grizzly Creek Hot Springs Schmid Ridge 25	Parussuria compressa 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1	Dieneroceras dieneri 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1	Dieneroceras knechti 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	Owenites carpenteri 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1	Proharpoceros corinatitabulatum 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1	Arctoceras tuberculatum 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1	Submeekoceras mushbachanum 0 1 1 0 0 0 1 1 0 0 0 0 1 1	Flemingites 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0	Euflemingites 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0	Wyomingites 0 0 0 0 0 0 1 1 0 1 1 1	Paranannites aspenensis 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0	Inyoites sp. 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0	
Confusion Range Pahvant Range Mineral Moutains Torrey Area Crittenden Springs CS 23 Palomino Ridge WiL9/14 Wood Canyon Grizzly Creek Hot Springs Schmid Ridge 25 The Pond	Parussuria compressa 1 1 1 1 1 1 1 0 0 1 1 1 1 1	Dieneroceras dieneri 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0	Dieneroceras knechti 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	Owenites carpenteri 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudaspidites silberlingi 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1	Proharpoceras carinatitabulatum 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Arctoceras tuberculatum 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1	Submeekoceras mushbachanum 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1	Flemingites 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0	Euflemingites 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0	Wyomingites 0 0 0 0 0 0 1 0 1 0 1 1 1 1	Paranannites aspenensis 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0	Inyoites sp. 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1	
Confusion Range Pahvant Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge Will 9/14 Wood Canyon Grizzly Creek Hot Springs Schmid Ridge 25 The Pond Georgetown Canyon	Parussuria compressa 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1	Dieneroceras dieneri 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dieneroceras knechti 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	Owenites carpenteri 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudospidites silberlingi 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1	Proharpoceros carinatitabulatum 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arctoceras tuberculatum 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1	Submeekoceras mushbachanum 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1	Flemingites 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1	Euflemingites 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0	Wyomingites 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0	Paranannites aspenensis 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0	Inyoites sp. 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0	
Confusion Range Pahvan Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge WIL 9/14 Wood Canyon Griztly Creek Hot Springs Schmid Ridge ZS The Pond Georgetown Canyon Georgetown	Parussuria compressa 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1	Dieneroceras dieneri 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dieneroceras knechti 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0	Owenites carpenteri 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudospidites silberlingi 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1	Proharpoceras carinatitabulatum 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arctoceras tuberculatum 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1	Submeekoceras mushbachanum 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1	Flemingites 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0	Euflemingites 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0	Wyomingites 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0	Paranannites aspenensis 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0	Inyoites sp. 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0	
Confusion Range Pahvan Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Bidge WIL 9/14 Wood Canyon Griztly Creek Hot Springs Schmid Ridge ZS The Pond Georgetown Canyon Georgetown Canyon	Parussuria compressa 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0	Dieneroceras dieneri 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0	Dieneroceras knechti 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	Owenites carpenteri 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudospidites silberlingi 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0	Proharpoceras carinatitabulatum 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arctoceras tuberculatum 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1	Submeekoceras mushbachanum 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1	Flemingites 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0	Euflemingites 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	Wyomingites 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0	Paranannites aspenensis 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	Invoites sp. 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
Confusion Range Pahvant Range Minor Arab Arab Arabana Crittenden Springs CS 23 Palomino Ridge Will 9/14 Wood Canyon Griszly Creek Hot Springs Schmid Ridge 25 The Pond Georgetown Canyon Georgetown Sage Creek Reservoir Mountain	Parussuria compressa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dieneroceras dieneri 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0	Dieneroceras knechti 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	Owenites carpenteri 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudospidites silberlingi 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	Proharpoceras carinatitabulatum 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobatum 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arctoceras tuberculatum 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1	Submeekoceras mushbachanum 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1	Flemingites 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0	Euflemingites 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0	Wyomingites 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0	Paranannites aspenensis 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0	Invoites sp. 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	
Confusion Range Pahvarit Range Mineral Mountains Torrey Area Crittenden Springs CS 23 Palomino Ridge Will 9/14 Wood Canyon Gritzly Creek Hot Springs Schmid Ridge 23 Schmid Ridge 24 Cangetown Canyon Georgetown Canyon Georgetown Canyon Georgetown Canyon Georgetown Canyon Georgetown Canyon Georgetown Canyon	Parussuria compressa 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Dieneroceras dieneri 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0	Dieneroceras knechti 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	"Dagnoceras" 0 0 0 0 0 0 0 0 0 0 0 0 0	Owenites carpenteri 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	Juvenites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pseudospidites silberlingi 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1	Proharpoceras carinatitabulatum 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Pseudosageceras multilobotum 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arctoceros tuberculatum 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Submeekoceras mushbachanum 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1	Flemingites 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0	Euflemingites 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1	Wyomingites 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0	Paranannites aspenensis 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0	Invoites sp. 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	

Late Smithian	Pseudosageceras	Anasibirites	Anasibirites	Wasatchites	Hemiprionites	Hemiprionites	Arctoprionites	Prionitidae	Xenoceltites
	augustum	kingianus	multiformis	perrini	walcotti	typus	resseri	indet.	subevolutus
Confusion Range	0	0	1	1	1	1	0	0	1
Crittenden Springs	1	1	1	1	1	1	1	0	1
Palomino Ridge	1	1	1	1	1	1	1	1	1
Black Rock Canyon	0	1	1	1	1	1	1	0	0
Lower Weber Canyon	0	1	1	1	1	1	1	0	1
WIL 4	0	1	1	1	1	1	1	0	0
WIL 6	0	1	1	0	1	1	1	1	1

	Total nb. of	Meekoceras	Total - M.	% M.	Guaduniter	Total -	% Guaduaiter	Queniter	Total - Oweniter	% Ouveniter	Anofleminaites	Total -	%	?К.	Total - ?K.	% ?Kashmirites	lunanites	Total -	% hoveniter
	specimens	gracilitatis	gracilitatis	gracilitatis	Guobanites	Guodunites	// Gubbannes	Owennes	Total - Owennes	<i>howenies</i>	Andjiennigites	Anaflemingites	Anaflemingites	cordilleranus	cordilleranus	cordilleranus	Juvenites	Juvenites	70 Juvenites
Confusion Range	172	3	169	1.7	47	125	27.3	6	166	3.5	1	171	0.6	23	149	13.4	7	165	4.1
Pahvant Range	138	5	133	3.6	46	92	33.3	3	135	2.2	1	137	0.7	15	123	10.9	3	135	2.2
Palomino Ridge	326	122	204	37.4	39	287	12.0	16	310	4.9	34	292	10.4	11	315	3.4	30	296	9.2
WIL 9/14	205	80	125	39.0	0	205	0.0	6	199	2.9	11	194	5.4	6	199	2.9	22	183	10.7
CS 23	120	2	118	1.7	0	120	0.0	0	120	0.0	3	117	2.5	0	120	0.0	100	20	83.3
Crittenden Springs	968	175	793	18.1	1	967	0.1	162	806	16.7	24	944	2.5	2	966	0.2	329	639	34.0
Hot Springs	789	11	778	1.4	0	789	0.0	200	589	25.3	71	718	9.0	0	789	0.0	500	289	63.4
Schmid Ridge	255	140	115	54.9	0	255	0.0	0	255	0.0	6	249	2.4	5	250	2.0	50	205	19.6
25	309	155	154	50.2	0	309	0.0	0	309	0.0	23	286	7.4	0	309	0.0	48	261	15.5
The Pond	192	100	92	52.1	0	192	0.0	0	192	0.0	7	185	3.6	0	192	0.0	25	167	13.0
Stewart Canyon	119	45	74	37.8	0	119	0.0	0	119	0.0	0	119	0.0	0	119	0.0	55	64	46.2
Monsanto	74	35	39	47.3	0	74	0.0	0	74	0.0	8	66	10.8	0	74	0.0	20	54	27.0
Grizzly Creek	88	15	73	17.0	0	88	0.0	0	88	0.0	5	83	5.7	0	88	0.0	65	23	73.9
Georgetown Canyon	77	22	55	28.6	0	77	0.0	2	75	2.6	4	73	5.2	0	77	0.0	45	32	58.4
Georgetown	63	14	49	22.2	0	63	0.0	8	55	12.7	12	51	19.0	0	63	0.0	18	45	28.6
Chi-2 test result		chi ² :	= 784.5; p = 2×	10-155	chi ³	^t = 858.1; p =	4×10 ⁻¹⁷⁴	ct	ni ² = 414.1; p = 1×10 ⁻	7	chi	² = 110.5; p = 4×:	10.11	ch	i ² = 278.9; p = 3×10	¹ ¹	chi ²	= 906.9; p = 1>	(10-354
																-			
	Wyominaites	Total -	%	Arctoceras	Total -	%	Invoites	Total - Involtes	% invoites	Dieneroceras	Total -	% Dieneroceras	Submeekoceras	Total - S.	% Submeekoceras				
	,	Wyomingites	Wyomingites		Arctoceras	Arctoceras	,		,		Dieneroceras		mushbachanum	mushbachanum	mushbachanum	_			
Confusion Range	0	172	0.0	0	172	0.0	50	122	29.1	35	137	20.3	0	172	0.0				
Pahvant Range	0	138	0.0	0	138	0.0	40	98	29.0	25	113	18.1	0	138	0.0				
Palomino Ridge	0	326	0.0	25	301	7.7	20	306	6.1	29	297	8.9	0	326	0.0				
WIL 9/14	3	202	1.5	54	151	26.3	5	200	2.4	12	193	5.9	6	199	2.9				
CS 23	0	120	0.0	1	119	0.8	14	106	11.7	0	120	0.0	0	120	0.0				
Crittenden Springs	0	968	0.0	76	892	7.9	2	966	0.2	197	771	20.4	0	968	0.0				
Hot Springs	0	789	0.0	3	786	0.4	0	789	0.0	4	785	0.5	0	789	0.0				
Schmid Ridge	21	234	8.2	15	240	5.9	0	255	0.0	2	253	0.8	16	239	6.3				
25	39	270	12.6	17	292	5.5	0	309	0.0	1	308	0.3	26	283	8.4				
The Pond	22	170	11.5	7	185	3.6	1	191	0.5	0	192	0.0	30	162	15.6				
Stewart Canyon	0	119	0.0	9	110	7.6	0	119	0.0	0	119	0.0	10	109	8.4				
Monsanto	0	74	0.0	1	73	1.4	0	74	0.0	0	74	0.0	10	64	13.5				
Grizzly Creek	3	85	3.4	0	88	0.0	0	88	0.0	0	88	0.0	0	88	0.0				
Georgetown Canyon	0	77	0.0	1	76	1.3	0	77	0.0	1	76	1.3	2	75	2.6				
Georgetown	0	63	0.0	2	61	3.2	0	63	0.0	8	55	12.7	1	62	1.6	-			
Chi-2 test result	chi ²	= 332.0; p = 2>	10 ⁻⁹²	chi ² =	264.3; p = 3>	<10 ⁻⁶⁸	c	hi² = 752.8; p = 1×	10-131	chi	i ² = 415.3; p = 8×10	0.40	c	hi² = 304.7; p = 1×	10.58				

Total = total de spécimens pour la liste d'espèces sélectionnées

Main facies associations	Biota	Other components	Sedimentary structures	Preservation	Depositional environments	Basin position
A Ammonoid-rich floatstones in a mud-to wackestone matrix	Ammonoids, thin-shell bivalves, gastropods and echinoderms	siltites (fine to very fine subrounded quartz) organized in mm-thick layers	Planar laminations, storm-induced deposits (HCS and bioaccumulations with erosional base); Cm- thick siltites layers alternating with pluri- Cm and dm-thick bioclastic-rich layers	Complete and oriented ammonoids with poorly preserved and fragmented phragmocone and infilled by a micritic matrix; bivalves and gastropods reworked	Upper to lower Offshore with storm-induced deposits; mud dominated outer platform	Confusion Range, Pahvant Range and Palomino Ridge
B Altenance of ammonoid (1) in a peloidal wackestone to packstone matrix and bioclastic- rich (2) floatstones in a wackestone matrix	(1) Ammonoids, thin- shell bivalves and gastropods; (2) bivalves, gastropods and echinoderms	-	Storm-induced deposits with grading and erosion base (amalgamated storms composed of ammonoids and bivalves, respectively)	 (1) Complete and oriented ammonoids with poorly preserved and fragmented phragmocone and infilled by a peloidal and microbial matrix; desarticulated thin bivalves and gastropods; (2) Desarticulated thin bivalves and reworked gastropodes and bivalves (with dark micritic matrix) 	Upper Offshore with amalgamated storm-induced deposits; mud dominated outer platform	CS23 and WIL9
C Ammonoid and bioclastic- rich floatstones in a mud-to wackestone matrix	Ammonoids, thick-shell bivalves, gastropods and echinoderms	-	Proximal storm- induced deposits (bioaccumulations with erosional base); Dm-thick bioaccumulations	Complete and oriented ammonoids with poorly preserved and fragmented phragmocone and infilled by a micritic matrix; bivalves and gastropods reworked	Upper Offshore (deep shoal domain); mid platform	Schmid Ridge, 2S, The Pond, Monsanto, Stewart Canyon, Georgetown and Crittenden Springs
D Bioclastic and ammonoid-rich (Juvenites) packstone	Thick-shell bivalves, ammonoids, serpulids, gastropods and ostracods	Very are clastics (quartz, phosphate and oxide grains)	Trough cross-bedding, planar to oblique laminations, bioturbations	Small and ball-shaped complete ammonoids infilled by a packstone matrix; fragments and micritized bivalves, gastropodes and other bioclasts	High energy subtidal shoals; inner platform	Hot Springs, Grizzly Creek, Stewart Canyon and Georgetown Canyon

	WIL 9/14	Palomino Ridge	Crittenden Springs
mSm1	43	55.66	48.76
mSm3	54.05	39.86	46.88

R \ <i>p</i>	mSm3	mSm2	mSm1
mSm3		0.0583	0.0007
mSm2	0.0583		0.052
mSm1	0.0007	0.052	R = 0.54

Taxon	Av. dissim	Contrib. %	Cumulative 9	Mean South	Mean Inter	Mean North
Anaflemingites russelli	2.902	5.38	5.38	0	0.333	0.923
Guodunites hooveri	2.852	5.288	10.67	1	0.333	0
Inyoites oweni	2.649	4.912	15.58	0.75	1	0.0769
Arctoceras tuberculatum	2.382	4.416	20	0	1	0.846
Hedenstroemia kossmati	2.262	4.194	24.19	0.75	0.667	0.231
?Kashmirites cordilleranus	2.213	4.104	28.29	0.5	1	0.0769
Owenites carpenteri	2.099	3.891	32.18	0.75	0.333	0.0769
Churkites noblei	2.095	3.884	36.07	1	1	0.462
Aspenites acutus	2.035	3.773	39.84	0.25	1	0.923
Owenites koeneni	1.985	3.68	43.52	0.5	1	0.385
Submeekoceras mushbachanum	1.95	3.615	47.14	0.25	0.333	0.615
Dieneroceras dieneri	1.939	3.595	50.73	0.75	1	0.462
Euflemingites	1.915	3.551	54.28	0	0.667	0.538
Guodunites monneti	1.841	3.413	57.7	0.5	0.667	0
Pseudosageceras multilobatum	1.758	3.259	60.95	0.5	1	0.692
Lanceolites compactus	1.744	3.234	64.19	0.75	0.667	0.615
Lanceolites bicarinatus	1.694	3.141	67.33	0.5	0	0.462
Inyoites sp. indet.	1.662	3.081	70.41	0	1	0.154
Pseudaspidites silberlingi	1.55	2.874	73.29	0	0.333	0.462
Parussuria compressa	1.474	2.733	76.02	1	1	0.615
Flemingites sp. indet.	1.467	2.72	78.74	0.25	0	0.385
Paranannites aspenensis	1.451	2.691	81.43	0	0.667	0.308
Meekoceras cristatum	1.346	2.495	83.92	0	0	0.462
Wyomingites	1.209	2.241	86.17	0	0.333	0.308
Preflorianites toulai	1.167	2.163	88.33	0	0.667	0.0769
Preflorianites cf. radians	1.042	1.932	90.26	0	0.667	0
Palominoceras nevadanum	1.013	1.877	92.14	0	0.667	0
Proharpoceras carinatitabulatum	0.9792	1.815	93.95	0	0.667	0
Dieneroceras knechti	0.9792	1.815	95.77	0	0.667	0
Dagnoceras	0.8924	1.654	97.42	0	0	0.308
Juvenites	0.7485	1.388	98.81	0.75	1	1
Anaflemingites cf. silberlingi	0.6412	1.189	100	0	0.333	0.0769
Meekoceras gracilitatis	0	0	100	1	1	1

R = 0.35, P = 0.014	А	В	С	D
А	-	0.1991	0.0335	0.0263
В	0.1991	-	0.464	0.4751
С	0.0335	0.464	-	0.1957
D	0.0263	0.4751	0.1957	-

Taxon	Av. dissim	Contrib. %	Cumulative %	Mean A	Mean C	Mean B	Mean D
Juvenites	18.12	25.91	25.91	13.3	81.7	61	166
Meekoceras	15.77	22.55	48.46	43.3	103	41	23.3
Dieneroceras	5.642	8.067	56.53	29.7	34.7	6	1.25
Guodunites	5.436	7.773	64.3	44	0.167	0	0
Inyoites	5.271	7.538	71.84	36.7	0.5	9.5	0
Owenites	5.133	7.339	79.18	8.33	28.3	3	50.5
A. tuberculat	4.173	5.968	85.14	8.33	19.7	27.5	3.25
Anaflemingit	3.249	4.646	89.79	12	13.3	7	20
S. mushbach	2.644	3.78	93.57	0	13.8	3	3
Wyomingites	2.279	3.259	96.83	0	13.7	1.5	0.75
?Kashmirites	2.217	3.17	100	16.3	1.17	3	0