
HAL Id: hal-01905727
https://hal.science/hal-01905727

Submitted on 25 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

F-SED: Feature-Centric Social Event Detection
Elio Mansour, Gilbert Tekli, Philippe Arnould, Richard Chbeir, Yudith

Cardinale

To cite this version:
Elio Mansour, Gilbert Tekli, Philippe Arnould, Richard Chbeir, Yudith Cardinale. F-SED: Feature-
Centric Social Event Detection. 28th International Conference on Database and Expert Systems
Applications - DEXA 2017, Aug 2017, Lyon, France. �10.1007/978-3-319-64471-4_33�. �hal-01905727�

https://hal.science/hal-01905727
https://hal.archives-ouvertes.fr


F-SED: Feature-centric Social Event Detection

Elio MANSOUR1, Gilbert TEKLI2, Philippe ARNOULD1, Richard CHBEIR1,
and Yudith CARDINALE3

1 UNIV PAU & PAYS ADOUR, LIUPPA, EA3000, FRANCE
{elio.mansour, philippe.arnould, richard.chbeir} @univ-pau.fr

2 University of Balamand, Lebanon
gilberttekli@hotmail.com

3 Dept. de Computación, Universidad Simón Boĺıvar, Venezuela
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Abstract. In the context of social media, existent works offer social-
event-based organization of multimedia objects (e.g., photos, videos) by
mainly considering spatio-temporal data, while neglecting other user-
related information (e.g., people, user interests). In this paper we pro-
pose an automated, extensible, and incremental Feature-centric Social
Event Detection (F-SED) approach, based on Formal Concept Analysis
(FCA), to organize shared multimedia objects on social media platforms
and sharing applications. F-SED simultaneously considers various event
features (e.g., temporal, geographical, social (user related)), and uses
the latter to detect different feature-centric events (e.g., user-centric,
location-centric). Our experimental results show that detection accuracy
is improved when, besides spatio-temporal information, other features,
such as social, are considered. We also show that the performance of our
prototype is quasi-linear in most cases.

Keywords: Social Event Detection, Social Networks, Semantic Cluster-
ing, Multimedia Sharing, Formal Concept Analysis.

1 Introduction

With the rapid evolution of social media, more users are now connected to col-
laboration and information sharing platforms (e.g., Facebook, Google+) and
other sharing applications (e.g., Iphotos1). These platforms offer users the op-
portunity to share and manage various multimedia objects (e.g., photos, videos)
taken by different users, during life events [12]. Due to excessive sharing on these
platforms, the organization of the shared objects has become challenging. As a
result, many works, such as the ones on Social Event Detection (SED), have
evolved around the organization of shared data on social media platforms and
sharing applications. SED works propose an organization of the shared objects
by grouping them based on their related social events.
Currently, some online platforms, stand-alone applications, and other works [3,
4, 16, 20, 21] provide an organization of shared objects through event detection,
using clustering techniques. Some are based on metadata (e.g., Facebook or-
ganizes multimedia content based on publishing timestamps, Iphotos combines
photo creation timestamps and locations to organize a user's photo library).

1 http://www.apple.com/ios/photos



Others use the visual attributes of shared objects (e.g., textures, colors) coupled
with metadata [11, 13, 15] in order to detect several events.
Even-though these works offer automatic organization, they present limitations
related to: (i) no user-centric processing, these methods do not include user-
related features (e.g., social, interesting event topics) in the processing; (ii) lack
of extensibility, these methods heavily rely on spatio-temporal features and do
not allow the integration of various event features; (iii) the processing is based
on one data source, neglecting the consideration of multiple data sources (i.e.,
multiple publishers, users); (iv) incremental processing is only implemented in
recent applications, allowing a continuous integration of new data (e.g., photos
shared/published on different dates/times) in the set of already processed data.
Then, there is a need of providing a better event detection approach, considering
user-related features, in a more meaningful way for users.
To answer this need, we propose a Feature-centric Social Event Detection (F-
SED) approach, for automatic detection of ”feature-centric” social events. Our
method considers various features of an event (e.g., time, geo-location, social
(e.g., users), topics, etc.), and allows the user to choose at least one central
feature. Based on the chosen feature (or set of features) our approach detects
the corresponding feature-centric events (e.g., topic-centered events if the topic
feature is selected, user-centric events if the social feature is selected). F-SED's
clustering technique simultaneously considers the various features, objects shared
by different sources (several data publishers) on different dates/times, as well as
data from one user (i.e., to organize a user data library). In addition, by inte-
grating the user and his interests (social and topics features) in the clustering,
the user automatically receives the events that interest him the most. F-SED
is defined based on an adaptation of FCA (Formal Concept Analysis) [8, 22],
a backbone that provides an extensible and incremental clustering technique,
handles high dimensional data, and requires low human intervention. The com-
parative study on clustering techniques cannot be shown in this paper due to
space limitations. We implement F-SED as a desktop-based prototype in order
to evaluate the approach in real case scenarios with the ReSEED Dataset [18].
Our experimental results show that the event detection accuracy is improved
when the social feature is taken into consideration. In addition, our performance
results show quasi-linear behavior in most cases.
The rest of the paper is organized as follows. Section 2 reviews Social Event
Detection works. Section 3 introduces FCA. Section 4 details and formally de-
fines the F-SED approach. The implementation and evaluation are discussed in
Section 5. Finally, Section 6 concludes and highlights future perspectives.

2 Related Work

In the literature, several Social Event Detection (SED) approaches have emerged
for detecting events. Since most shared objects (e.g., photos, videos) on Social
Networks and sharing applications are uploaded randomly without prior knowl-
edge on the occurring events, these approaches mainly use unsupervised cluster-
ing techniques [3, 13, 15, 16, 21]. Since there are no commonly adopted criteria,
we propose the following set of criteria to compare the referenced works:



1. User-centric processing : This criterion measures if user related data (e.g.,
names, interesting event topics) is integrated in the detection process to
provide more meaningful and personalized results.

2. Extensibility : This criterion states if multiple event features are considered
(e.g., visual, social, topics) in addition to time and locations for improved
event detection.

3. Multi-source: This criterion indicates if multiple data sources (other pub-
lishers, participants) are considered, since various participants publish/share
event related data.

4. Incremental (continuous) processing : This criterion considers the possibil-
ity of processing newly published data without having to repeat the entire
processing, because participants could share event related data on different
dates/times.

5. Level of human intervention: This criterion measures how frequently users
participate in the event detection process; since huge amounts of data are
shared, it is important that user interventions become less frequent; we con-
sider low intervention if users provide data input and initial configuration;
moderate if users intervene in result correction/optimization; and high in-
tervention when users participate in the whole process.

SED approaches can be grouped into two categories: approaches that rely on
the metadata of shared objects [3, 16, 19, 21], denoted metadata-based, and ap-
proaches that rely on visual attributes (e.g., colors, shapes) and metadata [6, 7,
11, 13, 15], denoted hybrid. We could not find approaches that only rely on visual
attributes since grouping visually similar objects does not necessarily mean that
the latter belong to the same event.

Metadata-based approaches: In [16], the authors aim to detect social events
based on image metadata, using temporal, geo-location, and photo-creator infor-
mation. They perform a multi-level clustering for these features. A first clustering
separates photos into groups by distinct time values. A second one is executed
on the first level clusters based on geo-location information. Finally, a third clus-
tering based on the second level clusters is executed using the creator-names.
In [3], the authors use time and GPS data to cluster photos into events using
the mean-shift algorithm. First, the authors find baseline clusters based on time,
then GPS location attributes are integrated. In [19], the authors use time and lo-
cation information from twitter feeds to detect various events (e.g., earthquakes).
In [21], the authors rely on textual tags such as time, geo-location, image title,
descriptions, and user supplied tags to cluster photos into events, thus detect-
ing soccer matches that happened in Madrid. These approaches need moderate
human intervention. However, they are not incremental, user-centric, nor exten-
sible. Metadata is also used by stand-alone applications for photo management
to detect social events in a user's multimedia library. For example, Iphotos is an
iOS mobile application that clusters photos and videos based on time and geo-
location. These applications require no human intervention, they automatically
cluster objects found in a user's library. However, they do not consider other
event features (e.g., social), nor other photo sources (photos taken by other par-
ticipants/collaborators). They mainly focus on time and location, photos taken



at the same day and place of an event are merged with the event.

Hybrid approaches: Many hybrid approaches rely on both visual and meta-
data attributes. In [13] and [15], the authors combine visual object attributes
with temporal information, geo-locations, and user-supplied tags for their clus-
tering procedures. Visual and tag similarity graphs are combined in [13] for the
clustering. The tags used are crucial for event detection because they enable the
distinction between events and landmarks. The authors consider photos of land-
marks to have variant and distant photo capture timestamps because landmarks
are photographed at any given date of the year and by many users. They also
consider events to have a smaller distance separating timestamps while the num-
ber of users (participants) is also lower. They define an event based on time and
location. While in [15], although metadata information is used in a different way,
it is also crucial for distinguishing objects from events. The authors divide the
geographical map of the world into square tiles and then extract the photos of
each tile using geo-location metadata. They later use other metadata combined
with visual features to detect objects and events. In [11] and [7], the authors
combine temporal metadata with different sets of visual attributes for annota-
tion and event clustering purposes. In [7], they combine time with color, texture,
and facial (face detection) information. While in [11], the authors add to the pre-
viously mentioned attributes, aperture, exposure time, and focal length. In [6],
the author relies more on temporal metadata than visual attributes for correct
event detection, since he considers that photos/videos associated with one event
are often not visually similar. Hybrid approaches consider different types of ob-
ject attributes (visual, temporal information, geo-locations, tags, etc.). However,
regrouping visually similar objects does not imply that they belong to the same
event. Therefore, metadata is required to boost the accuracy of such approaches.
Since these methods process visual attributes (e.g., through photo/video process-
ing techniques), they end up having a higher processing cost than the approaches
that only process metadata. Some approaches require more human intervention,
because they prompt the user to correct/optimize the results.

Table 1: SED approaches comparison

Criteria
Metadata-Based Hybrid

[6][7][11][13][15][3][16][21] Stand-Alone Applications
The level of human intervention Low - Moderate Low Moderate - High

The incremental processing No Partially2 No
Extensibility No No No

Multi-source Partially2 Partially2 Partially2

User-centric processing No No No

Table 1 summarizes the evaluations of SED approaches based on the afore-
mentioned criteria. Metadata-based approaches [3, 16, 21] need low to moder-
ate human intervention and provide good event detection accuracy, since meta-
data describes data related to the events (e.g., dates, locations, tags). However,
these works lack the incremental processing needed to match the flow of pub-
lishing/sharing. Recently, incremental processing was integrated in some works
(e.g., stand-alone applications). Hybrid methods are costly computation-wise

2 Partially states that not all approaches of a category are multi-source or incremental



and require human intervention thus making continuous processing hard to im-
plement [14]. In contrast, hybrid methods [6, 7, 11, 13, 15] offer more event fea-
tures by combining visual attributes with metadata to improve accuracy. Finally,
the two categories of works do not fully consider the social feature in event de-
tection and lack the extensibility and user-centric processing needed to provide
more personalized, and therefore interesting, results to the user.

3 FCA Preliminaries & Definitions
After studying various clustering techniques [1, 2, 10, 17], we chose Formal Con-
cept Analysis (FCA) [8, 22] as the backbone for our F-SED approach. FCA is
incremental and extensible (criteria 4 and 2). It examines data through ob-
ject/attribute relationships, extracts formal concepts and orders the latter hier-
archically in a Concept Lattice which is generated through a four step process [5]:

Step 1: Defining a Formal Context (Def. 1) from the input data, based on
object/attribute relations represented in a cross-table.

Definition 1 A Formal Context: is a triplet 〈X, Y, I〉 where:
– X is a non-empty set of objects
– Y is a non-empty set of attributes
– I is a binary relation between X and Y mapping objects from X to attributes from

Y, i.e., I ⊆ X × Y.

Table 2 shows an example, where photos are objects and photo attributes
(locations, photo creator names, and dates) are attributes. The cross-joins rep-
resent the mapping of photos to their respective photo attributes, e.g., photo 1
was taken in Biarritz by John on 17/08/2016. �

Table 2: Formal Context example

Names Locations Dates
John Patrick Dana Ellen Biarritz Munich Paris 17/08/2016 12/12/2012 02/02/2016

P
h
o
t
o
s 1 x x x

2 x x x
3 x x x
4 x x x
5 x x x

Step 2: Adopting Concept Forming Operators to extract Formal Con-
cepts (Def. 2). FCA has two concept forming operators:

– ↑: 2X → 2Y (Operator mapping objects to attributes)
– ↓: 2Y → 2X (Operator mapping attributes to objects).

For example, from the cross-table shown in Table 2, we have {3}↑ = {Patrick,
Munich, 12/12/2012} and {02/02/2016}↓ = {5}.
Definition 2 A Formal Concept in 〈X,Y, I〉 is a pair 〈Ai, Bi〉 of Ai ⊆ X and Bi ⊆
Y such that: A↑i = Bi ∧B↓i = Ai.

Consider the set of photos A1={1, 2} and the set of attributes B1 = {John,

Biarritz, 17/08/2016}. A↑1 = {John, Biarritz, 17/08/2016} and B↓1 = {1, 2}.
Thus, since A↑1 = B1 and B↓1 = A1, the pair 〈A1, B1〉 is a Formal Concept. �



Step 3: Extracting a Subconcept/Superconcept Ordering relation for For-
mal Concept (cf. Def. 2) ordering by defining the most general concept and
the most specific concept for each pair. The ordering relation is denoted ≤.

For example, from Table 2, let A1 = {3}, B1 ={Patrick, Munich, 12/12/2012},
A2={3, 4}, and B2 ={Munich, 12/12/2012}. According to Def. 2, 〈A1, B1〉
and 〈A2, B2〉 are formal concepts. In addition, A1 ⊆ A2 therefore, 〈A1, B1〉 6
〈A2, B2〉. This means that formal concept 〈A1, B1〉 is a subconcept of formal
concept 〈A2, B2〉 (which is the superconcept).

Step 4: Generating the Concept Lattice, which represents the concepts from
the most general one (top) to the most specific (bottom). The lattice is defined
as the ordered set of all formal concepts extracted from the data (based on ≤).

For the example shown in Table 2, Fig. 1 illustrates the Concept Lattice.
The next section formally describes our F-SED approach and how these FCA four
steps are integrated and adapted for the clustering of shared objects (content).

Fig. 1: The Concept/ Galois Lattice

4 An approach for Feature-centric Social Event Detection
In this section, we propose F-SED, an approach to detect feature-centric social
events from a set of multimedia objects (e.g., photos, videos) shared by different
users. F-SED mainly relies on a modular framework (Fig. 2) that integrates FCA
as the backbone clustering technique, to provide an extensible and incremental
approach. F-SED aims to detect feature-centric social events which are defined by
at least three event features: (i) temporal feature (represented by a time interval),
(ii) geographical feature (represented by a location value), and (iii) social feature
(e.g., photo creator name). In order to focus more on the user's interests, F-SED
also supports additional features such as topics (based on tags or annotations)
and various levels of granularities for each feature. In order to organize a set of
shared objects according to feature-centric events, F-SED processing is split into
three main steps: (i) data pre-processing and extraction (executed by the Pre-
processor and Attribute Extractor modules); (ii) lattice construction (executed
by the Event Candidates Lattice Builder module); in this step we integrate
and adapt the FCA clustering technique (described in Section 3) for shared
objects clustering; (iii) event detection (carried out by the Feature-Centric Event
Detector and Rule Selector modules). The user interacts with the system through
the Front End. In the following, we detail each processing step and module.

4.1 Data pre-processing and extraction

Through the Front End, one or multiple user(s), when considering a multi-source
scenario (criterion 3), send(s) a set of shared objects (Def. 3). The purpose of this



Fig. 2: F-SED Architecture

step is to extract the attributes of each shared object. An attribute is defined as
a value associated with an attribute data type (Def. 4). We define a data type
function denoted dt, that returns the attribute data type of a value based on the
shared object attributes.

Definition 3 A Shared Object is defined as a 2-tuple, so : 〈id, V 〉, where:

– id is the unique identifier of a shared object
– V is a set of attribute values according to a given ADT, such that ∀ai ∈ ADT ∃vi ∈
V | dt(vi) = ai. �

Definition 4 ADT is a set of attribute data types defined in a metric space, such that
∀a ∈ ADT , a : 〈l, t, Ω, d, f〉, where:

– l is a label
– t denotes the primitive data type of the attribute where
t ∈ {Integer, F loat, Boolean,Date, T ime,Character, String}

– Ω is the domain (range) of the attribute values
– d is the function that returns the distance between any two values vi and vj of

attribute data type a
– f is the event feature mapped to the attribute data type. �

The Pre-processor checks the attributes of each object and based on the
data distribution, suggests event features (cf. Def. 5) and granularities to be
used in the clustering. For example, the Pre-processor suggests the following
features: temporal, geographical, social, and topics based on the availability of
photo creation timestamps, photo locations, photo creator names, and tags or
annotations respectively. The social feature can identify a single user (e.g., a
user name) or a group of users (e.g., family, colleagues, friends), thus allowing
the detection of user-centric events, or group-centric events (e.g., family events,
work-related events). In addition, considering photo tags and annotations (either
added manually by the user or detected by data inference or image processing
techniques [9]), it can integrate a fourth event feature related to topics. Regarding
granularities, the Pre-processor proposes for example to cluster time based on
day, if photo creation values include day values. Finally, the Pre-processor detects
the user's sharing space (cf. Def. 6), thus regrouping the collaborators, friends,
other participants, and users that created/shared objects.

Definition 5 Features F is a set of event features where ∀ f ∈ F, f : 〈label, G, interval,
gran〉, where:



– label is the feature label
– G is a set of granularities associated to the feature
– interval is a boolean value indicating if the feature is generated as an interval (true),

or not (false)
– gran is a function that converts any granularity gi to another gj where gi, gj ∈ G.

For example, the temporal event feature can be represented by:

f0 : (”T ime”, {year,month,week, day, hour,minute, second}, T rue, grantime).

grantime(1year) = 12 months. �

Definition 6 A Sharing Space for a user u0, denoted as SSu0 , is defined as a 3-tuple:
SSu0 : 〈U,USO, SO〉, where:

– U is the set of user names in the sharing space of the user u0 | u0 ∈ U
(U is used to extract the social feature)

– USO : U −→ SO is an association function mapping users to their respective
shared objects such that, USO(ui) =

⋃n
i=1 soi where soi is a shared object and n

is the number of objects shared by ui

– SO is a set of all shared objects in SSu0 | SO =
⋃|U|

i=1 USO(ui) �

Once the user(s) validate(s) the features and granularities proposed by the
Pre-processor, the Attribute Extractor extracts the object attributes. It also
stores the shared objects, attributes, and values related to the chosen features
for the lattice construction. In addition, the user specifies the feature (or set of
features) that he would like to consider as central for the feature-centric event
detection. No more human intervention is needed (low intervention-criterion 5).

4.2 Lattice Construction
In this step, we process the previously extracted object attributes, and shared
objects into lattice attributes and objects, in order to generate one output: the
lattice. The Feature-centric Event Lattice Builder is the FCA backbone. It in-
tegrates the four step process of FCA clustering described in Section 3. To do
so, we formally define lattice attribute types in Def.7. These types will be used
when defining the lattice attributes (cf. Def.8). Finally, for object/lattice at-
tribute mapping, we define a binary cross rule denoted BXR (cf. Def.9).

Definition 7 lat is a lattice attribute type representing an interval [a, b[ where lat :
〈a, b, T 〉, where:

– a is the lower boundary value
– b is the upper boundary value
– T is a value representing the period having a primitive data type of either integer

or float, such that:
• dt(a) = dt(b) ∈ ADT and
• b = a+ T . �

Definition 8 A lattice attribute, denoted la, is defined as a 4-tuple la : 〈f, SSu0, lat, y〉
where:

– f ∈ F is the event feature mapped to lattice attribute la
– SSu0 is the sharing space in which the detection will take place (cf. Def. 6)
– lat (cf. Def. 7) is the lattice attribute type
– y is a granularity | y ∈ f.G and

lat.T =

{
y if f.interval = True

0 Otherwise

lat.a = soi.vj, where:



• soi ∈ SSu0 .SO and
• (vj ∈ soi.V ) ∧ (dt(vj).f = f). �

Definition 9 A binary cross rule, denoted as BXR, is defined as a function that maps
a shared object x to its respective lattice attribute y where x.vi ∈ x.V :

BXR =


1 if (y.lat.T = 0 ∧ y.lat.a = x.vi)∨

(y.lat.T 6= 0 ∧ x.vi ∈ [y.lat.a, y.lat.b[)

0 Otherwise

�

Then the Feature-centric Event Lattice Builder constructs the F-SED formal
context, denoted ffc (cf. Def. 10). Once the ffc is created, formal concepts are
extracted and a lattice is generated. This process is described in steps 2-4 of
Section 3. This lattice is called an Event Candidate Lattice, where each node is
a potential feature-centric event.

Definition 10 A F-SED Formal Context, denoted ffc, is defined as a 6-tuple ffc :
〈SSu0, F, fLAG, X, Y, I〉, where

– SSu0 is the sharing space in which the detection takes place
– F is the set of event features
– fLAG is the function that generates the lattice attributes, described in Algorithm 1
– X = SSu0 .SO is the set of shared objects
– Y =

⋃|X.V |−1
i=0 {lai} is the set of lattice attributes | X.V =

⋃
∀so∈X{so.V } is the

union of all attribute values from the shared objects in SSu0

– I is a BXR(x,y) where x ∈ X ∧ y ∈ Y . �

Algorithm 1: Lattice Attribute Generation (cf. Def. 10 - fLAG)

1 Input: SSu0

2 Output: RES // List of all lattice attributes
3 VAL = new List() // Shared Objects attribute values list
4 PD = new List() // Processed event features list
5 foreach so ∈ SSu0 .SO do
6 foreach v ∈ so.V // This loop extracts all object attribute values

from all objects in SSu0
and stores them in the

VAL list
7 do
8 if (v /∈ VAL) then
9 VAL←v

10 end

11 end
12 foreach v ∈ VAL do
13 if (not dt(v).f.Interval) // If the value is not generated as an

interval14 then
15 lat ← LAT(v, lat.a + lat.T, 0)
16 la ← LA(dt(v).f, SSu0

, lat, dt(v).f.g) // Create la with lat.T=0

17

18 RES ← la

19 else
20 if (dt(v).f /∈ PD) then
21 RES ← (Create-Intervals(VAL,v,PD, SSu0 )) // Call

Create-Intervals
function

22

23 end

24 end
25 return RES

In Algorithm 1, we detail the lattice attribute generation process. This starts
by extracting all object attribute values (lines 5-11). If the value is mapped to
a feature that is generated as an interval (e.g., time), the algorithm calls the
Create-Intervals function (lines 19-23). If not (e.g., social), the algorithm gener-
ates a lattice attribute type having a null period and creates the corresponding



lattice attribute (lines 13-18). This step allows the creation of generic lattice
attributes from various features, thus providing extensibility (criterion 2). Al-
gorithm 2 details the Create-Intervals function. This process extracts all values
related to the same feature (lines 4-9), orders them (line 10), selects a minimum
and a maximum value (lines 11-12), and creates periodic intervals starting from
the minimum to the maximum value (lines 14-22). The period is calculated based
on the chosen feature granularity (line 15). This makes the detection more user-
centric (criterion 1). Finally, the result is added the the output of Algorithm 1.

Algorithm 2: Create-Intervals
1 Input: VAL, v, PD, SSu0

// Input provided by Algorithm 1, line 21

2 Output: LAI // Generated lattice attributes intervals
3 int i = 0
4 TEMP = new List() // Temporary object attribute list
5 foreach val ∈ VAL do
6 if (dt(val).f == dt(v).f) // Extract all object attribute

values having the same
feature as v and store them
in TEMP

7 then
8 TEMP ← val

9 end
10 Orderascending(TEMP ) // Order TEMP ascending
11 min ← TEMP.get(0) // min is the first element of TEMP
12 max ← TEMP.get(|TEMP | − 1) // max is the last element of TEMP
13 lat ← LAT()
14 while (lat.b < max) do
15 lat ← LAT(min, lat.a + (i+1) × lat.T, dt(v).f.g)
16 if (lat.b > max) // This loop creates

intervals of period
lat.T = f.g
(feature
granularity)

17 then
18 lat.b ← max
19 la ← LA(dt(v).f, SSu0, lat, dt(v).f.g)
20 LAI ← la
21 i++

22 end
23 PD ← dt(v).f // Add feature to the list of processed features
24 return LAI

Fig. 3: Default de-
tection rule

4.3 Event Detection
The Feature-centric Event Detector module uses the previously generated lattice,
an event detection rule, and the central features chosen by the user in order to
detect feature-centric events (cf. Def. 11). We define a default detection rule, as a
set of lattice attributes that comply with the two conditions mentioned in Def. 11.
The rule is extensible, thus allowing the integration of multiple event features
(e.g., Time, Geo-location, Social, Topic), each represented by the corresponding
lattice attribute. This rule uses the selected central features in order to target
the related feature-centric events. For example, the rules illustrated in Fig.3.(a),
3.(b), 3.(c), and 3.(d) detect user, geo, topic, and time-centric events respectively.
Finally, for testing purposes, users can change/add detection rules using the Rule
Selector module. Since the lattice is not affected by the rule change, only the
event detection step is repeated based on the new detection rule.
Definition 11 A feature-centric Event, denoted fce, is a Formal Concept defined as
a 4-tuple fce : 〈ffc, centralF , A,B〉, where:

– ffc is a F-SED Formal Context (Def. 10)
– centralF is the set of central features selected by the user |centralF ⊆ ffc.F
– A is a set of shared objects | A ⊆ ffc.X
– B is a set of lattice attributes | B ⊆ ffc.Y where ∀bi, bj ∈ B ∧ i 6= j:
• Condition 1: bi.f 6= bj .f



• Condition 2: if bi.f.label = cf .label|∀cf ∈ centralF , then d(bi.lat.a, soj .vk)=0
| ∀soj ∈ A ∧ ∀vk ∈ soj .V, dt(bi.lat.a) = dt(soj .vk). �

5 Implementation & Evaluation

In order to validate our approach, we developed a Java desktop prototype and
used the Colibri-java library for lattice generation. We evaluated the algorithm's
performance based on execution time and memory consumption, and the quality
of our detection process by measuring its accuracy. The objective of the exper-
imentation is to show that the approach is generic and accurate when given
optimal features/granularities. We do not aim at comparing accuracy results
with other works.

ReSEED Dataset: To evaluate the detection results, we used the ReSEED
Dataset, generated during the Social Event Detection of MediaEval 2013 [18]. It
contains real photos crawled from Flickr, that were captured during real social
events which are heterogeneous in size (cf. Fig. 4) and in topics (e.g., birth-
days, weddings). The dataset contains 437370 photos assigned to 21169 events.
In our evaluation, we used three event features: time, location, and social, since
ReSEED photos have time, geo, and social attributes. In ReSEED, 98.3% of
photos contain capture time, while only 45.9% of the photos have a location.
We had to select photos having these attributes from the dataset. This left us
with 60434 photos from the entire dataset. In ReSEED, the ground truth used

Fig. 4: ReSEED Photo distribution Fig. 5: Refactoring ReSEED ground truth

for result verification assigns photos to social events. Since, our approach is fo-
cused on feature-centric events (in this experimentation, user-centric events),
we modified the ground truth to split the social events into their corresponding
user-centric events. Since the splitting is based on the event features, we need
to specify the feature granularities during the process. The latter are not speci-
fied in ReSEED, therefore we chose the lowest granularity values: day for time,
street for geo, and photo creator name for social. The ground truth refactoring
process is described in Fig. 5. First, we extracted the photos of each event in the
ground truth. Second, we used the timestamps of photo capture to group pho-
tos by day. Third, we split the resulting clusters into distinct groups based on
street values. Finally, the result was further split based on distinct photo creators.



Performance Evaluation: The performance tests were conducted on a ma-
chine equipped with an Intel i7 2.60 GHZ processor and 16 GB of RAM. The
aim was to test the performance of our F-SED algorithm. We considered two
criteria for this task: (i) total execution time and (ii) memory overhead.

Use Cases The performance is highly affected by the number of photos, gen-
erated attributes, and clusters. We noticed that granularities day for time and
street for geo generate more clusters and attributes than any other granularity
combination. Therefore, we used day and street to test the prototype's perfor-
mance in three worst case scenarios:
– Case 1: We selected the biggest event (1400 photos) as input. We varied the

number of photos progressively from 1 to 1400. Since all photos are related
to one event, the number of detected clusters should be one.

– Case 2: We extracted 400 events each having exactly one photo. We varied
the number of photos from 100, 200, 300 to 400. The number of generated
clusters for each iteration should be 100, 200, 300, and 400 respectively.

– Case 3: The goal is to test with as many photos as possible related to different
events. We varied the number of photos from 15000, 30000, 45000 to 60434.
Since thousands of events contain only one or two photos per event (worst
case scenario), this case will generate the most clusters.

Results & Discussion In Cases 1 and 2 (Figures 6.a and 6.b), where the num-
ber of photos does not exceed 1400 and 400 respectively, the total execution time
is quasi-linear. However, in Case 3 (Figure 6.c), we clustered the entire dataset
(60434 photos). The total execution time tends to be exponential, in accordance
with the time complexity of FCA. When considering RAM usage, we noticed a
linear evolution for the three cases (Figures 6.d, 6.e, and 6.f). RAM consumption
is significantly higher in Case 2, where we generated 400 clusters, than in Case
1, where we generated one cluster. In Case 3, RAM consumption is the highest
because both the number of photos at the input, and the number of generated
clusters (detected events) were the highest. Other tests were conducted, Fig.7
(left) shows that low granularities (e.g., day) consume more execution time than
high ones (e.g., year). This is due to the generation of more lattice attributes
and clusters. In addition, Fig.7 (right), shows that considering more features in
the processing is also more time consuming. Nonetheless, the evolution from one
to three features remains quasi-linear, making the process extensible.
Accuracy Evaluation: We chose to consider the criteria proposed by Medi-
aEval for clustering quality evaluation. We calculated the F-score, based on the
Recall (R) and Precision (PR), and the Normalized Mutual Information (NMI)
using ReSEED's evaluation tool. These criteria are commonly adopted in in-
formation retrieval and social event detection. A high F-score indicates a high
quality of photo to user-centric event assignment while NMI will be used to mea-
sure the information overlap between our clustering result and the ground truth
data. Therefore, a high NMI indicates accurate clustering result.

Use Cases: Since we considered the time, geo, and social features, we identified
all possible combinations of the detection rule (see Table 3). In order to test
granularity impacts, Table 4 sums up the different granularity combinations.



Fig. 6: Performance Results

Fig. 7: Granularity and Extensibility Impact

When applying detection rules to granularity combinations, we get 63 use cases.
We measured for each one the NMI and F-Score.

Table 3: Detection Rule

Combination
Number

of
Features

Features
Considered in

the Detection Rule
1 3 Time, Geo, Social
2

2
Time, Geo

3 Time, Social
4 Geo, Social
5 1 Time
6 1 Geo
7 1 Social

Table 4: Granularity Combinations

Combination Granularities: Time / Geo
1 Year / Country
2 Year / City
3 Year / Street
4 Month / Country
5 Month / City
6 Month / Street
7 Day / Country
8 Day / City
9 Day / Street

Results & Discussion: Results shown in Table 5, highlight the following:
(i) Detection rule/features impact: Our detection rule (based on time, geo, and
social features) generates the highest NMI and F-score (NMI: 0.9999 and F-
Score: 0.9995). It also exceeds all other detection rules (e.g., the one including
solely time and geo features) in every granularity combination. This underlines
the importance of the social feature in the detection task. Moreover, it highlights
F-SED's extensibility, which allows the integration of additional features and the
accurate detection of user-centric events. Nonetheless, accuracy can still be im-
proved, few photos were assigned to the wrong clusters, due to the closeness in
time and space of the latter.
(ii) Granularity impact: The results improve, when the clustering is based on
granularities closer to the ones used in the ground truth. For example, in the



case of granularities year, country, the F-Score achieved based on time and geo
features is 0.1911, but for the detection rule that considers only the social fea-
ture the F-Score is higher: 0.5376. This is because the granularities for time
and geo are the most general (year and country). Therefore, the impact factor
of granularities is more important than that of the number of features consid-
ered in the detection rule. Some rules can exceed others for specific granularity
combinations (e.g., Time Geo exceeds Time Social and Geo Social for granular-
ities Year/Month/Day-Street while Time Social exceeds the other two rules for
Year/Month/Day-Country). The best result can be achieved by considering the
maximal number of features having correct granularities. This indicates that the
granularities should not be fixed for all scenarios. When given the best granu-
larities, our approach detects the user-centric events very accurately. With these
results, we find it interesting to study the user data distribution to deduce the
granularities that boost his detection results the most or the possibility of dis-
regarding certain features with non optimal (result-wise) granularities. This can
become an advantage for reducing processing costs. In addition, we would also
like to investigate inter user-centric event distances for time and geo essentially.

6 Conclusion & Future Work

Social Event Detection (SED) has become essential towards automatic, semantic
organization of photo collections and other multimedia objects on the web. In
this paper, we propose a generic framework for Feature-centric Social Event De-
tection (F-SED) based on Formal Concept Analysis (FCA). Our approach aims
at integrating various features (e.g., social, topics), making the detection task
more user-centric, extensible, incremental, and as automated as possible, thus
reducing human intervention. We developed a prototype for testing purposes.
The results show that our approach achieved high accuracy in most cases, espe-
cially when the social feature is considered. As future work, we are investigating
the detection of optimal granularities based on the user's data distribution and
sharing frequency and the impact of other features. We would also like to im-
prove our accuracy by considering spatio-temporal distances between clusters
and noise handling techniques. In addition, we aim at testing the incremental
processing of our algorithm. Finally, we want to extend our work in order to
detect social events based on existent ties between feature-centric events.

Table 5: Clustering Results

Detection Rule Measure
Granularities

Year Month Day
Country City Street Country City Street Country City Street

Time Geo Social
F-Score 0.6399 0.8180 0.8662 0.7964 0.8619 0.8948 0.9535 0.9742 0.9995
NMI 0.9181 0.9602 0.9729 0.9549 0.9703 0.9789 0.9880 0.9938 0.9999

Time Geo
F-Score 0.1911 0.7678 0.8473 0.4943 0.8367 0.8821 0.8854 0.9542 0.9892
NMI 0.7113 0.9475 0.9684 0.8707 0.9637 0.9759 0.9729 0.9894 0.9977

Time Social
F-Score 0.6245 0.6245 0.6245 0.7939 0.7939 0.7939 0.9534 0.9534 0.9534
NMI 0.9143 0.9143 0.9143 0.9544 0.9544 0.9544 0.9879 0.9879 0.9879

Geo Social
F-Score 0.5085 0.7718 0.8357 0.5085 0.7718 0.8357 0.5085 0.7718 0.8357
NMI 0.8742 0.9470 0.9653 0.8742 0.9470 0.9653 0.8742 0.9470 0.9653

Time
F-Score 0.0220 0.0220 0.0220 0.1399 0.1399 0.1399 0.7278 0.7278 0.7278
NMI 0.3971 0.3971 0.3971 0.7069 0.7069 0.7069 0.9392 0.9392 0.9392

Geo
F-Score 0.0559 0.6958 0.8343 0.0559 0.6958 0.8343 0.0559 0.6958 0.8343
NMI 0.5084 0.9241 0.9646 0.5084 0.9241 0.9646 0.5084 0.9241 0.9646

Social
F-Score 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376 0.5376
NMI 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755
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