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•An active �eld in today medical research : prediction from high-dimensional genomic data

→Number of samples relatively small compared to the number of covariates

→ Collinear measurements

⇒ Use of reduction dimension methods

� Traditional approach : Principal Component Regression (PCR) [10]

�Most useful : Partial Least Square (PLS) [6]

•Most of this studies included clinical data in addition to genomic data

�However most of the proposed prediction methods used only genomic data

�Recent studies consider situations combining both type of covariates improving predictions

→Development of Clinico-genomic models

→ For survival prediction with Cox model's [3], for classi�cation of patients [2]

⇒ Few of them used dimension reduction or applied dimension reduction only to the high-dimensional
genomic variables

•Recently, prediction method have been proposed to combine both type of covariates [7]

�Developed only in regression Gaussian context

∗Method based on combination of PLS and ordinary least square (OLS)=> LS-PLS

⇒More information from the experiment

⇒ Lower variance in the parameter estimates

•Adaptation to logistic regression model

�Not relevant to combine both type of variables without reduction dimension

�An alternative → compress the information from genomic data into new few components before
modelling

∗ Partial Least Squares (PLS) adapted to logistic regression [11, 9, 4, 1]

INTRODUCTION
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•To adapt LS-PLS to combine clinical and genomic variables for logistic regression model

•To perform a comparison by simulation of the performance of these approaches

OBJECTIVES
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• Linear Logistic Discrimination

�Y : binary response variable {0, 1}n

�D : matrix of clinical variables of size n× q
�X : design matrix for expression levels of the p genes for the n microarray samples

∗X =
(
xij
)
, 1 ≤ i ≤ n, 1 ≤ j ≤ p

�General statistical model

∗ The conditional expectation of yi given Di·, given by πi = P (yi = 1|Di· = di)

∗Related to linear predictor ηi = [1; di]γ

· with γ ∈ Rq+1 and the non-linear relation πi = h(ηi)

· where h(ηi) = 1/(1 + exp(−ηi))
� Estimation of γ by maximum likelihood (ML) estimation method

�Use of Iteratively Reweighted Least Squares (IRLS) algorithm [5]

z(t) = D̃γ(t) +
[
W (γ(t))(t)

]−1 (
y − π(t)

)
, (1)

γ(t+1) ⇐ weighted regression by W (γ(t))(t) of z(t) on D̃ (2)

where D̃ = [1n D], 1n = (1, · · · , 1)T

W (γ(t)) the diagonal n× n matrix with entries Wi,i(γ) = πk(1− πk).

• LS-PLS in Gaussian context [7]

� Iterative procedure

1. Perform ordinary least squares regression of Y on (D̃) and estimate the regression coe�cients β
and calculate residuals.

2. Perform PLS regression of the residuals on centred X and combine the design (D̃)

3. Perform OLS regression on the combined matrix design (D̃) and the score T to predict Y .

4. Calculate the predicted ŷ based on (D̃) and calculate new residuals.

5. Repeat steps 2 to 4 until convergence.

⇒ Method denoted LS-PLS(y,D,X, κ) where κ the PLS component number

• Some extensions for logistic regression

�NGUYEN and ROCKE's APPROACH [11]

∗ Extension of PLS to logistic regression substituting X by a n× κ matrix T

· Columns of which are the �rst κ PLS-scores given by PLS regression of y on X

· Estimation of the parameter with ML with IRLS(y, T ).

⇒ Replace PLS by LS-PLS

⇒ κ obtained by cross-validation

⇒ Method denoted LS-PLS.

�MARX's APPROACH [9]

∗ Estimation of the parameter γ with ML using IRLS(y, T ) algorithm

∗Where T de�ned by IRPLS, an algorithm that extends PLS to generalized linear models

∗Matrix T collects the �rst κ components �at convergence� of IRPLS

⇒Replace PLS by LS-PLS to adopt this approach for LS-PLS

⇒ κ obtained by cross-validation

⇒ Method denoted LS-PLS-irls.

� RIDGE PARTIAL LEAST SQUARES APPROACH [4]

∗Replace binary by a pseudo-response variable z inf ←− linear relationship with the covariates

·At convergence of IRLS algorithm : z inf = Xγ̂R + ε

· γ̂R : the true value of the parameter

· ε a centered vector of covariance matrix (W inf)−1.

∗When n << p → Regularisation methods as Ridge Penalty withλ the shrinkage parameter [8]

∗ Extension with LS-PLS

⇒ Method called R-LS-PLS

⇒ R-LS-PLS depends on two parameters : λ and κ obtained by cross-validation.

� BASTIEN's APPROACH [1]

∗Not developed at the moment

LS-PLS FOR LOGISTIC REGRESSION
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•Methods

� Simulation framework (R software)

∗ Simulation of 100 data sets of size n (learning set=100 and test set = 100)

∗ Statistical model

· For an individual i (i = 1, ..., n), yi ∼ B(πi)

· βX = {{0}8, {2}8} and βD = {0.5}4 (p = 16 and q = 4)

·X such as X = (X1, X2, X3, X4) where Xk ∼ N(04,Σ
k
X) with Σki,j = ckρ|i−j|

with k = 1, ...4, i = 1, ..., 4, j = 1, ..., 4
where c1 = 8, c2 = 4, c3 = 2, c4 = 1 and ρ = 0.9999

·D ∼ N(0q,ΣD) with ΣD = ρ{|i−j| with i = 1, ..., q and j = 1, ..., q and ρ = 0.5

� Comparison of the di�erent prediction methods to analyse both X and D matrices :

∗ 1) GLM 2) PCR on X then GLM on [DXPCR] 3) LS-PLS 4) LS-PLS-irls 5) R-LS-PLS

∗ Choice for hyperparameters :

· κ (for all approaches) obtained by cross-validation over a grid 1 to κmax (for κmax =2,4, 8)

· λ (for R-LS-PLS) obtained by cross-validation

∗ n = 50, 200

∗ Criterion of comparison

· Computation of AUC and Missclassi�cation rate errror for each method

•Results
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�No optimal conditions for PCR → Poor performance especially when n increase

� Similar comportment for GLM only when n=50

⇒Relevance of method using reduction

� Closed distribution of Missclassi�cation rate and AUC for new approaches and GLM when n = 200

GLM PCR LS−PLS R−LS−PLS LS−PLS−irls

0.
0

0.
3

κmax=4; n=50

M
is

cl
as

si
fic

at
io

n 
ra

te

GLM PCR LS−PLS R−LS−PLS LS−PLS−irls

0.
0

0.
6

κmax=4; n=50

A
U

C

GLM PCR LS−PLS R−LS−PLS LS−PLS−irls

0.
0

0.
3

κmax=4; n=200

M
is

cl
as

si
fic

at
io

n 
ra

te

GLM PCR LS−PLS R−LS−PLS LS−PLS−irls

0.
0

0.
6

κmax=4; n=200
A

U
C

� Slightly poor performance of GLM when n = 50

�⇒ Correct and closed distribution of missclassi�cation rate and AUC when n and κ increase

⇒Relevance of all the approaches as well as PCR

SIMULATION STUDY - A �STANDARD� EXAMPLE
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• Comparison by simulation of prediction methods developed for logistic regression model to analyse
both clinical and genomic data based on LS-PLS approach

� Poor performance of GLM compared to other approaches especially n small

� Similar relevance for proposed extensions of LS-PLS and PCR with ideal number of components

⇒ Interest of reduction even if reasonable case of �high dimensional� case

⇒Need of extensive simulations to explore high-dimensional situations

• Some applications of these approaches to real data without relevant results

⇒Need further exploration

• Extension of LS-PLS approach to survival prediction model Cox'models

CONCLUSION
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