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Abstract. This paper derives the boundary equations of the workspace
of a manipulator made of two crossed four-bar mechanisms in series. The
boundaries are determined with the discriminant of the characteristic
polynomial derived for the inverse kinematics.
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1 Introduction

A crossed four-bar mechanism, referred to as X-mechanism, is a four-bar mech-
anism assembled in a X-shape configuration, see figure 1. Because of a variable
instantaneous center of rotation (ICR), this mechanism has a large range of
motion. Moreover, tendon driven actuation can be easily implemented and a
lightweight manipulator with remote actuation can be designed by stacking sev-
eral such mechanisms [1]. Eventually, lateral springs can be added on each side of
the mechanism, thus defining a X-shape Snelson tensegrity mechanism [2], suit-
able for variable stiffness and natural interaction with the environment [3],[9].
This work is part of the AVINECK project involving biologists and roboticists
with the main goal to model and design bird necks. Accordingly, a class of planar
tensegrity manipulators made of a series assembly of several Snelson’s X-shape
mechanisms has been chosen as a suitable candidate for a preliminary planar
model of a bird neck. A planar two-degree-of-freedom manipulator is obtained
with a series assembly of two such mechanisms. First investigations on the kine-
matics of such manipulators have proven more challenging than expected, in
particular for the solution of the inverse kinematics [10]. This paper derives the
boundary equations of the workspace of a manipulator made of two crossed four-
bar mechanisms in series. The boundaries are determined with the discriminant
of the characteristic polynomial derived for the inverse kinematics. It is found
that internal boundary curves may exist with cusp points [11], showing that the
manipulator at hand is cuspidal ([15], [16]).

2 Manipulator modelling and Kinematic equations

The manipulators studied consist of a series assembly of two identical X-mecha-
nisms as shown in figure 2. Both the base bar and the upper bar are of length
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Fig. 1: Snelson’s X-shape mechanism made of a crossed four-bar mechanism with
lateral springs

b and the two crossed links are of length L with L>b. Thus, each X-mechanism
defines a so-called anti-parallelgramm joint. A line segment of length li is defined
that links the middle points of the top and base bars of each mechanism i (shown
in red dotted line in figure 2). The angle between this line and the direction
orthogonal to the base bar, referred to as θi, is used to define the configuration
of mechanism i without ambiguity, assuming that it remains always in its crossed-
bar assembly mode [10]. Accordingly, the manipulator configuration can be fully
defined with (θ1, θ2). To avoid any self collisions, the bars should be assembled
in different layers or suitable joint limits should be defined. The base frame is
centered at the middle point of the base bar of the first X-mechanism with the
x-axis aligned along this bar. The reference point (x, y) is chosen as the middle
point of the top-bar of the second X-mechanism (figure 2). Since the sides of

θ1

θ2

l1

l2
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Fig. 2: Manipulator description

each mechanism define an isosceles trapezoid, the length li of the line segment
that links the middle points of the top and base bars can be expressed as follows
[10]:

li(θi) =
√
L2 − b2 cos2(θi) (1)



Derivation of a polynomial equation for the boundaries of 2-X manipulators 3

The direct kinematic equations of the 2-X manipulator can be put in the follow-
ing form : {

x = −l1(θ1) sin(θ1)− l2(θ2) sin(2θ1 + θ2)

y = l1(θ1) cos(θ1) + l2(θ2) cos(2θ1 + θ2)
(2)

where l1 and l2 are defined in (1). Note that these equations assume that each
mechanism remains in its crossed-bar assembly-mode.

The inverse kinematics is much more challenging to establish and cannot be
obtained from (2) easily. A methodology was proposed in [10], which makes it
possible to derive a characteristic polynomial of degree four and it was shown
that the manipulator may have up to four solutions.

3 Workspace boundary equations

The manipulator workspace is determined by means of its boundaries. These
boundaries can be obtained from the discriminant of the 4th-order characteristic
polynomial derived for the inverse kinematics. This characteristic polynomial in
t=tan(φ1/2) was derived in [10] and is recalled below, where L has been set to
1 without loss of generality:

a4t
4 + a3t

3 + a2t
2 + a1t+ a0 = 0 (3)

where :

a4 = (b+ 1)2(b2y2 + x4 + 2x2y2 + y4 + 4x3 + 4xy2 + 5x2 + y2 + 2x) (4)

a3 = 4y(b+ 1)(2b2x+ b2 − 2x2 − 2y2 − 4x− 1) (5)

a2 = 2(b4y2+b2x4+2b2x2y2+b2y4+b2x2−10b2y2+x4+2x2y2+y4−3x2+9y2)
(6)

a1 = 4y(b− 1)(2b2x− b2 + 2x2 + 2y2 − 4x+ 1) (7)

a0 = (b− 1)2(b2y2 + x4 + 2x2y2 + y4 − 4x3 − 4xy2 + 5x2 + y2 − 2x) (8)

The discriminant of this polynomial is derived with the help of a symbolic
computing software. Accordingly, a polynomial equation of degree 16 in x and y
is obtained as shown below.

4 b14y6+12 b12x4y4+28 b12x2y6+17 b12y8+12 b10x8y2+60 b10x6y4+112 b10x4y6+
92 b10x2y8+28 b10y10+4 b8x12+36 b8x10y2+126 b8x8y4+224 b8x6y6+216 b8x4y8+
108 b8x2y10+22 b8y12+4 b6x14+32 b6x12y2+108 b6x10y4+200 b6x8y6+220 b6x6y8+
144 b6x4y10+52 b6x2y12+8 b6y14+ b4x16+8 b4x14y2+28 b4x12y4+56 b4x10y6+
70 b4x8y8 +56 b4x6y10 +28 b4x4y12 +8 b4x2y14 + b4y16 − 24 b12x2y4 − 36 b12y6 −
48 b10x6y2 − 204 b10x4y4 − 276 b10x2y6 − 120 b10y8 − 24 b8x10 − 204 b8x8y2 −
612 b8x6y4−852 b8x4y6−564 b8x2y8−144 b8y10−36 b6x12−252 b6x10y2−720 b6x8y4−
1080 b6x6y6−900 b6x4y8−396 b6x2y10−72 b6y12−12 b4x14−84 b4x12y2−252 b4x10y4−
420 b4x8y6−420 b4x6y8−252 b4x4y10−84 b4x2y12−12 b4y14−8 b12y4+32 b10x4y2+
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126 b10x2y4+102 b10y6+40 b8x8+332 b8x6y2+826 b8x4y4+816 b8x2y6+282 b8y8+
110 b6x10 + 666 b6x8y2 + 1564 b6x6y4 + 1796 b6x4y6 + 1014 b6x2y8 + 226 b6y10 +
54 b4x12 + 324 b4x10y2 + 810 b4x8y4 + 1080 b4x6y6 + 810 b4x4y8 + 324 b4x2y10 +
54 b4y12 − 4 b10x2y2 + 56 b10y4 − 36 b8x6 − 164 b8x4y2 − 228 b8x2y4 − 92 b8y6 −
148 b6x8−716 b6x6y2−1244 b6x4y4−932 b6x2y6−256 b6y8−116 b4x10−572 b4x8y2−
1128 b4x6y4−1112 b4x4y6−548 b4x2y8−108 b4y10+4 b10y2+17 b8x4+14 b8x2y2−
143 b8y4+126 b6x6+294 b6x4y2+136 b6x2y4− 36 b6y6+141 b4x8+492 b4x6y2+
622 b4x4y4 + 332 b4x2y6 + 61 b4y8 + 2 b2x10 + 6 b2x8y2 + 4 b2x6y4 − 4 b2x4y6 −
6 b2x2y8− 2 b2y10− 4 b8x2− 20 b8y2− 60 b6x4− 20 b6x2y2+172 b6y4− 132 b4x6−
200 b4x4y2 + 28 b4x2y4 + 96 b4y6 − 16 b2x8 − 32 b2x6y2 + 32 b2x2y6 + 16 b2y8 +
16 b6x2+40 b6y2+70 b4x4+16 b4x2y2−98 b4y4+38 b2x6+38 b2x4y2−38 b2x2y4−
38 b2y6 − 24 b4x2 − 40 b4y2 − 28 b2x4 − 8 b2x2y2 + 20 b2y4 + 16 b2x2 + 20 b2y2 +
x4 + 2 y2x2 + y4 − 4x2 − 4 y2 = 0

Figure 3 shows the plot of these boundary curves for three cases. In the
second and third cases, they divide the workspace into three regions. In the
largest one, the manipulator admits two inverse kinematic solutions. In the two
smaller regions (filled in grey), there are four solutions. Figure 4 shows the four
inverse kinematic solutions for the manipulator defined by L = 1 and b = 9/10,
at x = 0, y = 1.
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Fig. 3: Workspace boundaries when L = 1 and b = 2/5 (left), b = 2/3 (center),
b = 9/10 (right)
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Fig. 4: The four inverse solutions at x = 0 and y = 1 (L = 1 and b = 9/10)
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4 Conclusion

The equation of the boundary curves of the workspace of a 2-X manipulator
was derived using the discriminant of the characteristic polynomial derived for
the inverse kinematics. The resulting polynomial is of degree 16 and, under
some geometric conditions, reveals regions with four inverse kinematic solutions.
Moreover, the boundary curves of the 4-solution regions feature two cusp points
and one node.
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