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This paper derives the boundary equations of the workspace of a manipulator made of two crossed four-bar mechanisms in series. The boundaries are determined with the discriminant of the characteristic polynomial derived for the inverse kinematics.

Introduction

A crossed four-bar mechanism, referred to as X-mechanism, is a four-bar mechanism assembled in a X-shape configuration, see figure 1. Because of a variable instantaneous center of rotation (ICR), this mechanism has a large range of motion. Moreover, tendon driven actuation can be easily implemented and a lightweight manipulator with remote actuation can be designed by stacking several such mechanisms [START_REF] Moored | Analytical predictions, optimization, and design of a tensegritybased artificial pectoral fin[END_REF]. Eventually, lateral springs can be added on each side of the mechanism, thus defining a X-shape Snelson tensegrity mechanism [START_REF] Snelson | Continuous Tension, Discontinuous Compression Structures[END_REF], suitable for variable stiffness and natural interaction with the environment [START_REF] Bakker | Design of an environmentally interactive continuum manipulator[END_REF], [START_REF] Wenger | Kinetostatic Analysis and Solution Classification of a Planar Tensegrity Mechanism[END_REF]. This work is part of the AVINECK project involving biologists and roboticists with the main goal to model and design bird necks. Accordingly, a class of planar tensegrity manipulators made of a series assembly of several Snelson's X-shape mechanisms has been chosen as a suitable candidate for a preliminary planar model of a bird neck. A planar two-degree-of-freedom manipulator is obtained with a series assembly of two such mechanisms. First investigations on the kinematics of such manipulators have proven more challenging than expected, in particular for the solution of the inverse kinematics [START_REF] Furet | Kinematic analysis of planar 2-X tensegrity manipulators[END_REF]. This paper derives the boundary equations of the workspace of a manipulator made of two crossed fourbar mechanisms in series. The boundaries are determined with the discriminant of the characteristic polynomial derived for the inverse kinematics. It is found that internal boundary curves may exist with cusp points [START_REF] Furet | Workspace and cuspidality analysis of a 2-X planar manipulator[END_REF], showing that the manipulator at hand is cuspidal ( [START_REF] Omri | How to recognize simply a non-singular posture changing manipulator[END_REF], [START_REF] Wenger | Cuspidal and noncuspidal robot manipulators[END_REF]).

Manipulator modelling and Kinematic equations

The manipulators studied consist of a series assembly of two identical X-mechanisms as shown in figure 2. Both the base bar and the upper bar are of length Fig. 1: Snelson's X-shape mechanism made of a crossed four-bar mechanism with lateral springs b and the two crossed links are of length L with L>b. Thus, each X-mechanism defines a so-called anti-parallelgramm joint. A line segment of length l i is defined that links the middle points of the top and base bars of each mechanism i (shown in red dotted line in figure 2). The angle between this line and the direction orthogonal to the base bar, referred to as θ i , is used to define the configuration of mechanism i without ambiguity, assuming that it remains always in its crossedbar assembly mode [START_REF] Furet | Kinematic analysis of planar 2-X tensegrity manipulators[END_REF]. Accordingly, the manipulator configuration can be fully defined with (θ 1 , θ 2 ). To avoid any self collisions, the bars should be assembled in different layers or suitable joint limits should be defined. The base frame is centered at the middle point of the base bar of the first X-mechanism with the x-axis aligned along this bar. The reference point (x, y) is chosen as the middle point of the top-bar of the second X-mechanism (figure 2). Since the sides of
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Fig. 2: Manipulator description each mechanism define an isosceles trapezoid, the length l i of the line segment that links the middle points of the top and base bars can be expressed as follows [START_REF] Furet | Kinematic analysis of planar 2-X tensegrity manipulators[END_REF]:

l i (θ i ) = L 2 -b 2 cos 2 (θ i ) (1) 
The direct kinematic equations of the 2-X manipulator can be put in the following form :

x = -l 1 (θ 1 ) sin(θ 1 ) -l 2 (θ 2 ) sin(2θ 1 + θ 2 ) y = l 1 (θ 1 ) cos(θ 1 ) + l 2 (θ 2 ) cos(2θ 1 + θ 2 ) (2) 
where l 1 and l 2 are defined in [START_REF] Moored | Analytical predictions, optimization, and design of a tensegritybased artificial pectoral fin[END_REF]. Note that these equations assume that each mechanism remains in its crossed-bar assembly-mode. The inverse kinematics is much more challenging to establish and cannot be obtained from (2) easily. A methodology was proposed in [START_REF] Furet | Kinematic analysis of planar 2-X tensegrity manipulators[END_REF], which makes it possible to derive a characteristic polynomial of degree four and it was shown that the manipulator may have up to four solutions.

Workspace boundary equations

The manipulator workspace is determined by means of its boundaries. These boundaries can be obtained from the discriminant of the 4th-order characteristic polynomial derived for the inverse kinematics. This characteristic polynomial in t=tan(φ 1 /2) was derived in [START_REF] Furet | Kinematic analysis of planar 2-X tensegrity manipulators[END_REF] and is recalled below, where L has been set to 1 without loss of generality:

a 4 t 4 + a 3 t 3 + a 2 t 2 + a 1 t + a 0 = 0 (3) 
where :

a 4 = (b + 1) 2 (b 2 y 2 + x 4 + 2x 2 y 2 + y 4 + 4x 3 + 4xy 2 + 5x 2 + y 2 + 2x) (4) 
a 3 = 4y(b + 1)(2b 2 x + b 2 -2x 2 -2y 2 -4x -1) (5) 
a 2 = 2(b 4 y 2 + b 2 x 4 + 2b 2 x 2 y 2 + b 2 y 4 + b 2 x 2 -10b 2 y 2 + x 4 + 2x 2 y 2 + y 4 -3x 2 + 9y 2 ) (6) a 1 = 4y(b -1)(2b 2 x -b 2 + 2x 2 + 2y 2 -4x + 1) (7) 
a 0 = (b -1) 2 (b 2 y 2 + x 4 + 2x 2 y 2 + y 4 -4x 3 -4xy 2 + 5x 2 + y 2 -2x) (8) 
The discriminant of this polynomial is derived with the help of a symbolic computing software. Accordingly, a polynomial equation of degree 16 in x and y is obtained as shown below. Figure 3 shows the plot of these boundary curves for three cases. In the second and third cases, they divide the workspace into three regions. In the largest one, the manipulator admits two inverse kinematic solutions. In the two smaller regions (filled in grey), there are four solutions. Figure 4 shows the four inverse kinematic solutions for the manipulator defined by L = 1 and b = 9/10, at x = 0, y = 1. 

Conclusion

The equation of the boundary curves of the workspace of a 2-X manipulator was derived using the discriminant of the characteristic polynomial derived for the inverse kinematics. The resulting polynomial is of degree 16 and, under some geometric conditions, reveals regions with four inverse kinematic solutions. Moreover, the boundary curves of the 4-solution regions feature two cusp points and one node.
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 34 Fig. 3: Workspace boundaries when L = 1 and b = 2/5 (left), b = 2/3 (center), b = 9/10 (right)
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