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Theoretical Assessment of the Impact of Climatic 

Factors in a Vibrio Cholerae Model

G. Kolaye1,2  · I. Damakoa2 · S. Bowong3,5,6 · R. Houe1,4 · D. Békollè2

Abstract A mathematical model for Vibrio Cholerae (V. Cholerae) in a closed 

environment is considered, with the aim of investigating the impact of climatic fac-

tors which exerts a direct influence on the bacterial metabolism and on the bacterial 

reservoir capacity. We first propose a V. Cholerae mathematical model in a closed 

environment. A sensitivity analysis using the eFast method was performed to show 

the most important parameters of the model. After, we extend this V. cholerae 

model by taking account climatic factors that influence the bacterial reservoir 

capacity. We present the theoretical analysis of the model. More precisely, we 

compute equilib-ria and study their stabilities. The stability of equilibria was 

investigated using the theory of periodic cooperative systems with a concave 

nonlinearity. Theoretical results are supported by numerical simulations which 

further suggest the necessity to implement sanitation campaigns of aquatic 

environments by using suitable prod-ucts against the bacteria during the periods of 

growth of aquatic reservoirs.
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1 Introduction

Vibrio Cholerae (V. Cholerae) is a Gram-negative, comma-shaped bacterium that 

causes cholera in humans. Cholera is an acute intestinal infection caused by the inges-

tion of contaminated foods and water with V. Cholerae bacterium. There are 200 sero-

groups of V. Cholerae but only the V. Cholerae O1 and O139 are responsible of epi-

demics (WHO 2017). The etiological agent passes through and survives the gastric 

acid barrier of the stomach and then penetrates the mucus lining that coats the intesti-

nal epithelial (Reidl and Karl Klose 2002). Once they colonise the intestinal gut, they 

produce enterotoxin (which stimulates water and electrolyte secretion by the endothe-

lial cells of the small intestine) that leads to watery diarrhea. Vibrio Cholerae has been 

reported to be associated with a variety of living organisms, including animals with an 

exoskeleton of chitin, aquatic plants, protozoa, bivalves, waterbirds, as well as abiotic 

substrates (e.g. sediments). Most of these are well-known or putative environmental 

reservoirs for the bacterium, defined as places where the pathogen lives over time, 

with the potential to be released and to cause human infection. These bacteria are then 

associated with these environmental reservoirs forming commensal relationships (Huq 

et  al. 1984). In many mathematical model of cholera (Copasso and Paveri-Fontana 

1979; Cláudia 2001; Pascual et al. 2002; Hartley et al. 2005) and recently (Mushaya-

basa and Bhunu 2012; Mwasa and Tchuenche 2011), bacteria dynamic are generally 

simplified using one linear differential equation with constant parameters. From the 

mathematical point of view, the constant parameter assumption has the advantage of 

simplifying the models and analysis, and facilitating the use of some well-known the-

ory in autonomous dynamical systems. But it is important for mathematical cholera 

studies to incorporate these seasonal factors that modify the metabolism of bacteria, 

their density and the number of their environmental reservoirs along a year.

The aim of this paper is to improve our understanding on the impact of cli-

matic factors of the dynamics of V. Cholerae. We first formulate and analyze 

a mathematical model of V. Cholerae in a closed environment. The sensitivity 

analysis of the model is carried out to show the most important parameters of 

the model. After, we extend this model by taking into account the variation of cli-

matic factors. Threshold and equilibria are obtained and global stabilities exam-

ined. Numerical simulations are presented to support the theory and to get insight 

on the role of climatic factors on the dynamics of the population of V. Cholerae.

The rest of the paper is organized as follows. In Sect.  2, we introduced and 

studied a minimalistic V. Cholerae model. After, this model was extended by con-

sidering the seasonality of climatic factors on the bacterial reservoir capacity in 

Sect. 3. We present a qualitative analysis of the model. More precisely, we com-

pute equilibria and study their stabilities. Numerical simulations are presented to 

illustrate and confirm theoretical results. We conclude the paper on Sect. 4.



2  A Minimalistic V. Cholerae Model

2.1  The Model

We consider two distinct population of bacteria according to their infectiouness statut: 

Hyperinfectious bacteria (HI) and latent or Non-Hyperinfectious bacteria (Non-HI) 

denoted by B
H

 and B
L
 , respectively. The carrying capacity of V. Cholerae in environ-

ment is denoted by K. For the population of hyperinfectious bacteria, we assume that 

the growth rate rB
L
 could limited due to a plausible limitation of shared resources in the 

medium where they live 1 − B
H
∕K , that is, the growth rate in the HI compartment is 

modeled by the logistic term rB
L
(1 − B

H
∕K) . Hyperinfectious bacteria become Non-

Hyperinfectious bacteria at constant rate � . Hyperinfectious and Non-Hyperinfectious 

bacteria die at constant rates �
H

 and �
L
 , respectively. Then, the dynamics of the popula-

tion of V. Cholerae in a closed environment can be modeled by the following system of 

differential equations:

Biological significance and values of parameters of model (1) are given in Table 1.

2.2  Theoretical Analysis

We first study the basic properties of the model’s solutions (1), which are essential in 

the proofs of stability results. The right-hand side of model (1) is a continuously differ-

entiable map (C1) . Model system (1) is biologically well posed: if the initial data are in 

ℝ
2

+
 , then the solution stays in ℝ2

+
 : indeed, it is straightforward to show that the compact:

(1)

⎧
⎪⎨⎪⎩

Ḃ
H

= rB
L

(
1 −

B
H

K

)
− (�

H
+ �)B

H
,

Ḃ
L

= �B
H
− �

L
B

L
.

(2)Ω =

{

(B
H

, B
L
) ∈ ℝ

2

+
∶ B

H
≤ K, B

L
≤

�

�
L

K

}

,

Table 1  Numerical values for the parameters of model (1)

Definition Symbol Estimated Source

Growth rate of V. Cholerae r 1∕7 day−1 Rosa et al. (2003)

Daily death-rate of HI bacteria �
H 1∕60 day−1 Kaper and Morris (1995)

Daily death-rate of Non-HI bacteria �
L 1∕30 day−1 Tudor and Strati (1977)

Transition rate from HI to Non-HI state � 1∕30 day−1 Yibeltal (2009)

V. Cholerae capacity of the environment K 10
6

cell∕ml Assumed



is a global attractor and positively invariant set for model (1). Then, by the Cauchy 

Lipschitz theorem, model (1) provides a unique maximal solution for every initial 

condition given.

To derive some qualitative results from our model (1), we compute equilibria 

and study their stabilities. Let � be a threshold that represents the mean number 

of Non-HI bacteria produced by one Non-HI bacteria over its lifespan:

The threshold (3) is sometimes called the basic offspring number. We have the fol-

lowing result.

Lemma 1 : Model system (1) has two possible equilibria:

(i)  a trivial equilibrium E0 = (0, 0);

(ii)  a positive equilibrium E∗ = (B∗
H

, B
∗
L
) when � > 1 defined as follows:

The stability of equilibria of model (1) is summarized in Proposition 1.

Proposition 1 Assume that the initial condition (B
H
(0), B

L
(0)) ∈ Ω . 

1  When � < 1 , the trivial equilibrium E0 is globally asymptotically stable (GAS), 

which implies that the population of V. Cholerae will go until extinction, what-

ever the initial population.

2  When � > 1 , the trivial equilibrium is unstable and the positive equilibrium E∗ 

is globally asymptotically stable, that is the population of V. cholerae persists in 

the environment.

Proof To prove Proposition 1, we will use some results related to cooperative 

systems (Smith 2008). These kind of systems are very important and well-known 

in Biology and Ecology, and have been studied extensively, see Smith (2008). 

For reader’s convenience, we recall the following general definition. Consider a 

n-dimensional autonomous differential system:

where f is a given vector function, i.e. f = (f )i , with fi ∶ ℝ
n
⟶ ℝ. Then, we 

recall the following

(3)� =
r�

(�
H
+ �)�

L

.

(4)B
∗

H
=

(

1 −
1

�

)

K and B
∗

L
=

�

�
L

(

1 −
1

�

)

K.

(5)ẋ = f (x), x(0) = x0,



Definition 1 (Smith 2008) System (5) is called cooperative if for every i, j 

∈ {1, 2, 3,… , n} such that i ≠ j the function fi(x1,… , xn) is monotone increasing 

with respect to xj.

It is easy to verify that model (1) is a cooperative system in Ω . In the following, 

we consider the basins of attraction represented as n-dimensional intervals: given a, 

b ∈ ℝ
n with a ≤ b then [a, b] = {x ∈ ℝ

n ∶ a ≤ x ≤ b} . To show GAS, we will use 

the following theorem:

Theorem 1 (Anguelov et al. 2012) Let a, b ∈ Ω be such that a < b , ]a;b[⊂ Ω and 

f (b) ≤ 0 ≤ f (a) . Then, system (5) defines a (positive) dynamical system on [a, b]. 

Moreover, if [a, b] contains a unique equilibrium p then p is globally asymptotically 

stable on [a, b].

We are now be able to prove Proposition 1.

• When � ≤ 1 , model (1) has only the trivial equilibrium E0 . Thus, taking a = E0

and b =

(

K,

�

�
L

K

)

 we have that f (a) = 0 and f (b) ≤ 0 . It then follows from The-

orem 6 (Anguelov et al. 2012), that the trivial E0 is globally asymptotically stable 

on [a, b], hence on Ω , when � < 1

• When � > 1 , there exists � > 0 such that � > 1 + � . Let H
�
 sufficiently small

such that: H
�
< � and L� =

�(1+�)

�
L
�

H� < � . Let a
�
= (H

�
, L

�
)T . Then, from the

right-hand side of model (1) and the fact that � > 1 + � and K ≫ 1 , we can

deduce that

 Hence, it follows from Theorem  6 (Anguelov et  al. 2012) that the nontrivial 

equilibrium E
∗ = (B∗

H
, B

∗
L
) is globally asymptotically stable on [a

�
, b] . Since a

�
 

can be selected to be smaller than any x > 0 , we have that E∗ is asymptotically 

stable on Ω with basin of attraction Ω′ = Ω∖
{

E
0

}

 which implies that E
0
 is unsta-

ble. This concludes the proof.

□

2.3  Sensitivity Analysis

Let us recall that the basic offspring number is defined as follows:

(6)f (a
�
) ≥

⎛⎜⎜⎝
(� + �L)�

(
1 −

1 + �

�

)
H

�

�

(
1 −

1 + �

�

)
H

�

⎞
⎟⎟⎠
≥ 0.

(7)� =
r�

(�
H
+ �)�

L

.



The relevance of the basic offspring number is due to the Proposition 1. In fact, it is 

the key parameter for the existence of a non-trivial equilibrium. It is important to 

know the relative impact of different parameters of the model (1) on � . To do this, 

we estimate the sensitivity index of � with respect to a parameter p is 
��

�p
 . Another

measure is the elasticity index p (Chitnis et  al. 2008) that measures the relative 

change of � with respect to p, defined as follows:

In fact, straightforward computations lead to the following result:

Clearly r and �
L
 have the strongest impact on � . However, it is slightly different 

when we focus on the variables B
H

 and B
L
 . Now, we perform the sensitivity analy-

sis in order to detect the most sensitive parameters, that is the parameters that most 

influence the output variable of the model. This can help predict the effect of each 

parameter on the model results and classify them according to their degree of sensi-

tivity. To do so, we use the eFast1 sensitivity method which is described in (Marino 

et al. 2008). Figure 1 presents the sensitivity analysis obtained with the eFast method 

that highlights first-order effects (main effects) and total effects (main and all inter-

action effects) of the parameters on the Model Outputs, B
H

 and B
L
 . According to the 

result obtained in Fig. 1, the parameter �
L
 has the strongest impact both on B

H
 and 

B
L
 . This means that elimination of Latent Bacteria (Non-HI) have the most impact 

bacteria density. These kind of bacteria are usually found in wetlands, rivers, sewage 

(8)Υ
�

p
=

��

�p
.

p

�
.

(9)

Υ
�

r
= 1, Υ

�

�
L

= −1, Υ
�

�
=

�
H

�
H
+ �

and Υ
�

�
H

= −
�

H

�
H
+ �

.

Fig. 1  eFast sensitivity analysis for the a Hyperinfectious and b Non-Hyperinfectious bacteria. White 

bar: first-order effects; sum of white and grey bars: total effect

1 Is a variance decomposition method (analogous to ANOVA): input parameters are varied, caus-

ing variation in model output. This variation is quantified using the statistical notion of variance 

s2 =
∑N

i=1
(yi − ȳ)∕N − 1 . where N  =  sample size (or equivalently, total number of model runs), yi ith 

ymodel output, and ̄ sample mean. The algorithm then partitions the output variance, determining what 
fraction of the variance can be explained by variation in each input parameter (i.e. partial variance).



and water sources contaminated by human excrements (Xu 1982). Therefore, sen-

sitivity analysis results suggest that effective control strategy to reduce bacteria 

density would be the implementation of a serious sanitation campaigns of aquatic 

environments (wetlands, rivers, sewage and water sources contaminated by human 

excrements) by using suitable products during the periods of growth of aquatic res-

ervoirs and also during cholera epidemic periods. These sanitation actions could be 

initiated and organized by the public health agents. In Haïti for example, the new 

solution implemented by United Nation Organization to eradicate Cholera concerns 

improving access to drinking water and sanitation (Guillaume et al. 2012).

3  A V. Cholerae Model in a Periodic Environment

3.1  The Model

Climatic factors such as water temperature may explain the seasonality of the dis-

ease either by exerting a direct influence on the bacterial reservoir capacity (the 

value of K) or even on parameters affecting their growing (r), their survival ( �
H

 and 

�
L
 ) and their metabolism ( � ) (Colwell 1996; Islam et al. 1999). But the bacterial res-

ervoir capacity (K) have an important role on persistence and resurgences of chol-

era disease. In fact bacteria are strongly associated with both phytoplanktonous and 

zooplanktonous organisms forming commensal or symbiotic relationships. When 

V. Cholerae bacteria are associated with such reservoirs, they generally have an 

advanced survival (Xu 1982). Their environmental adaptation will lead to metabolic 

and phenotypic changes that will condition their survival; This can be compared to a 

phenomenon of dormancy. Cells are considered “viable but non-culturable” (VNC) 

because the main effect of this change is the loss of ability live on bacteriological 

culture media (Roszak and Colwell 1987). Changing for a cultivable state is pos-

sibleparticularly when the factors that cause stress become favorable to the develop-

ment and growth of the bacterial population. The variation of these climatic factors 

are such all the parameters excepted C must be time-dependent and strictly bounded 

by positive values (Colwell 1996; Islam et al. 1999; Xu 1982; Roszak and Colwell 

1987; Huq et al. 1984). The model (1) becomes :

where C is a minimal constant bacterial capacity value. Notice that the model in (10) 

belongs to the family of periodic cooperative systems with a concave nonlinearity 

(Smith 2008; Jifa 1993). Let us define a periodic cooperative system of n differential 

equations:

(10)

⎧
⎪
⎨
⎪
⎩

Ḃ
H

= r(t)B
L
(1 −

B
H

K(t) + C
) − (�

H
(t) + �(t))B

H
,

Ḃ
L

= �(t)B
H
− �

L
(t)B

L
,

(11)ẋ = f (t, x),



where f ∶ ℝ
+
×ℝ

n
⟶ ℝ

n , with concave non-linearities. Let A(t) be a n × n con-

tinuous matrix in ℝ , �-periodic in t, we denote:

and set

Then,

Set P
0
 and Q

0
 in ℝ

+
 . For reader’s convenience, let us recall Theorem 5.5, p. 230 of 

(Smith 2008).

Theorem 2 Let F(t, x) be continuous in ℝ × [0, P0] × [0, Q0] , �-periodic in t for a 

fixed x and assume D
x
F(t, x) exists and is continuous in ℝ × [0, P0] × [0, Q0] . Assume 

also that all solutions are bounded in [0, P0] × [0, Q0] and F(t, 0) = 0 . Assume

(a) 
�Fi

�xj

≥ 0, (t, x) ∈ ℝ × [0, P0] × [0, Q0],

(b)  A(t) = D
x
F(t, 0) is irreducible for any t ∈ ℝ,

(c)  if 0 < x < y , then DxF(t, x) > DxF(t, y).

Then

1.  If all principal minors of −Ā are non-negative, then lim
x⟶∞ x(t) = 0 for every 

solution of system (11) in [0, P0] × [0, Q0]

2.  If −A has at least one negative principal minor, then system (11) possesses a 

unique positive �-periodic solution which attracts all initial conditions in

[0, P0] × [0, Q0].

In this case, we can take P
0
= Q

0
= K̄ + C . Let x = (BH , BL) ∈ [0, P0] × [0, Q0] . 

Without losing to the generality we can suppose B
H
≤ K + C and B

L
≤ K + C . One 

has

(12)āi,j = max
0≤t≤�

ai,j(t) and a
i,j
= min

0≤t≤�
ai,j(t),

(13)Ā = (āi,j) and A = (a
i,j
).

(14)A ≤ A(t) ≤ Ā for 0 ≤ t ≤ �.

F(t, x) =

⎛
⎜
⎜
⎝

r(t)B
L
(1 −

B
H

K(t) + C
) − (�

H
(t) + �(t))B

H

�(t)B
H
− �

L
(t)B

L

⎞
⎟
⎟
⎠
.



Clearly, F is continuous and �-periodic. We also have F(t, 0) ≡ 0 . Moreover,

which implies that D
x
F(t, x) is continuous and 

�Fi

�xj

≥ 0 for all (B
H

, B
L
) ∈ ℝ

2

+
 . When 

0 < x < y , we have obviously DxF(t, y) > DxF(t, x) . Finally, we have

Clearly, A is irreducible for all t. One notes pmin ≤ p(t) ≤ pmax for all t ≥ 0 and for 

p = r, �,�H ,�L, K . Using the fact that all time-dependent parameters have positive 

lower and upper bounds, we can deduce that

First, according to Theorem 2, we need to study all principal minors of −Ā . Diago-

nal terms are positive, and a straightforward computation shows that det(−Ā) ≥ 0 if 

the following inequality is verified

From Theorem 2, since all diagonal terms of −A are positive, it remains to verify 

that det(−A) < 0 . A simple computation gives

Then, applying Theorem 2, we have the following result.

Theorem 3 Let

Now, let us assume all parameters to be time-dependent. Then,

(15)D
x
F(t, x) =

⎛⎜⎜⎝
−(�

H
(t) + �(t)) −

r(t)B
L

K(t) + C
r(t)

(
1 −

B
H

K(t) + C

)

�(t) − �
L
(t)

⎞⎟⎟⎠
,

(16)A = D
x
F(t, 0) =

(

−(�
H
(t) + �(t)) r(t)

�(t) − �
L
(t)

)

.

(17)

−A =

(

�
Hmax

+ �
max

− r
min

−�
min

�
Lmax

)

and − Ā =

(

�
Hmin

+ �
min

− r
max

−�
max

�
Lmin

)

.

r
max

�
max

(�
Hmin

+ �
min

)�
Lmin

≤ 1.

r
min

�
min

(�
Hmax

+ �
max

)�
Lmax

< 1.

(18)�
min

=
r

min
�

min

(�
Hmax

+ �
max

)�
Lmax

and �
max

=
r

max
�

max

(�
Hmin

+ �
min

)�
Lmin

.



(i)  If �
min

> 1 , model (10) has a unique periodic solution which attracts all initial 

conditions in Ω.

(ii)  If �
max

≤ 1 , the solution of model (10) converges to the trivial equilibrium E
0
.

Indeed, the above result is related to the time dependent basic offspring number 

�(t):

which satisfies

Assume now, that all parameters are constant except K, then −A = −Ā and thus 

�
min

= �
max

 , then we have the following result.

Theorem 4 Assume that all parameters are constant, except. Then,

(i) If � > 1 , model (10) has a unique periodic solution which attracts all initial 

conditions in Ω.

(ii) if � ≤ 1 , the solution of model (10) converges to the trivial equilibrium E
0
.

We stress that this result is similar to the one with constant parameters, except 

that the nontrivial equilibrium is now periodic.

3.2  Numerical Simulation

Herein, numerical simulations are presented to illustrate Theorem  4. We used 

the parameter values given in Table 1. The carrying capacity K of V. Cholerae 

is 

(19)�(t) =
r(t)�(t)

(�
H
(t) + �(t))�

L
(t)

,

(20)�
min

≤ �(t) ≤ �
max

.
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Fig. 2  Simulation of model (10) using four various initial conditions in ℝ2

+
 when r = 1∕40 day−1 (so that 

� = 0.5 ). All other parameter values are given in Table 1



periodic, while all other parameter constant. Several type of functions for K could be 

chosen. Among them, we choose one of the simplest:

The function K(t) is a periodic function with a period T = 365 days , 

K
mean

= 10
6

cell/ml and k̃ = 0.99 . The Fig.  2 illustrates the model (10) dynamics 

when � < 1 . As expected, the population decays until extinction. However, when 

� > 1 bacteria are maintained in the environment with a periodic density as shown

in Fig. 3.

Another simulation (see Fig. 4) illustrates how dynamics depend on climatic fac-

tors that affect a direct influence on either the bacteria reservoir capacities (K
mean

) or 

the bacteria mortality ( �
L
).

Figure 4 shows density variations of bacteria when K is considered periodic and 

when K
mean

 and �
L
 have two different values. The Fig. 4a shows clearly how reser-

voirs can play important role on persistence of bacteria in environment.

(21)K(t) = K
mean

(

1 + k̃ sin(
2�

T
t)

)

.
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Fig. 3  Simulation of model (10) using four various initial conditions in ℝ2

+
 when r = 1∕7 day−1 (so that 

� = 2.8571 ). All other parameter values are given in Table 1
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4  Conclusion

In this work, we proposed a model of V. Cholerae populations growing in a closed envi-

ronment and qualitatively analyzed their dynamics. The aim was to evaluate the impact 

of climatic factors on the growth of V. Cholerae populations. We first considered a V. 

Cholerae model in a closed environment with all parameters constant. The theoretical 

analysis of the model has been presented. The sensitivity analysis of the model has been 

also investigated. We found that the best control action would be preventive sanitation. 

So it is recommended to use suitable products against V. Cholerae during the periods 

of growth of aquatic reservoirs and also during cholera epidemic periods. After, the 

climatic variations have been incorporated in this V. cholera model by using periodic 

functions. Critical periods generally correspond to periods where climatic and environ-

mental factors are favorable to the growth and to the propagation of aquatic reservoirs. 

We presented a qualitative analysis of the model. More precisely, existence, positivity 

and boundedness of solutions are presented. Threshold and equilibria are obtained and 

global stabilities examined. We shown that the model can present one or two biologi-

cally meaningful equilibria when the basic offspring number � is lower or greater than 

1 respectively. Equilibrium stabilities were examined. Numerical simulations have been 

presented to illustrate and confirm theoretical results. Through numerical simulations, 

we found that the aquatic reservoirs are playing a significant role among the factors 

explaining the causes of endemicity of these disease.
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