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NEW FUNCTIONAL INEQUALITY AND ITS APPLICATION

B. AL TAKI

Abstract. In this short note, we prove by simple arguments a new kind of Logarithmic Sobolev inequalities

generalizing two known inequalities founded in some papers related to fluid dynamics models (see for instance

[6] and [3]). As a by product, we show how our inequality can help in obtaining some important a priori

estimates for the solution of the Navier-Stokes-Korteweg system.

Keywords. Logarithmic Sobolev inequalities, Navier-Stokes-Korteweg equations, Quantum Navier-Stokes

equations, A priori estimates.

AMS subject classification: 25A23, 35B45, 35Q30.

1. Introduction

Sobolev inequalities have played a fundamental role in the study of solution’s existence for different kinds of

partial differential equations. A distinguished type of these inequalities is the logarithmic type which can be

reads as follows (see [5])

(1.1)

∫
Ω

|∇%|2 dx ≥ C
∫

Ω

(
%2 log %− %2

)
dx

for % sufficiently smooth function and Ω is a bounded smooth domain. Notice that, logarithmic Sobolev

inequalities are amongst the most studied functional inequalities in Semigroups (see [5], [1]). They contain

much more information than Poincaré inequalities and are at the same time sufficiently general to be available

in numerous cases of interest, in particular in infinite dimensions (as limits of Sobolev inequalities on finite-

dimensional spaces). Here, we prove a kind of Logarithmic Sobolev inequality that has an important feature on

a mathematical model related to fluid dynamics. More precisely, the aim of this note is the following theorem1.

Theorem 1.1. Suppose that ρ is sufficiently smooth and n,m are two constants satisfy the following conditions

(1.2) n > 0 m > 0 γ1γ2(1 + n) + 2(γ1 + γ2)(cn − 1− n) > 0

where

γ1 =
4(m+ 1)

2n+m+ 1
γ2 =

4(2n−m+ 1)

2n+m+ 1

and

cn =
(1 + n)(d+ 2)(d(1− n) + 2n)− (d− 1)2(2n− 1)2

(d+ 2)2(1 + n)
,

then there exist two positive constants c1 and c2 such that

I =

∫
Ω

ρn+1∇∇ρn : ∇∇ρm dx+ n

∫
Ω

ρn+1∆ρn∆ρm dx

≥ c1
∫

Ω

∣∣∇∇ρ 2n+m+1
2

∣∣2 dx+ c2

∫
Ω

|∇ρ
2n+m+1

4 |4 dx.
(1.3)

Remark 1.1. Notice that this inequality can be viewed as a generalization of two known inequalities. The first

one was proved by A. Jüngel and D. Mattews in [6]

(1.4)

∫
Ω

ρ2∇∇ log ρ : ∇∇ρm dx &
∫

Ω

|∆ρ
m+2

2 |2 dx − 2 < m <
2d

d+ 2
.

Date: October 23, 2018.
1To see the link between Inequality (1.1) and our Inequality (1.3), reader is invited to consult Remark 1.3
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Indeed, using the fact that ∇ log ρα = α∇ log ρ, then we can write (r = ρ2)∫
Ω

ρ2∇∇ log ρ : ∇∇ρm dx =

∫
Ω

r∇∇ log r
1
2 : ∇∇rm

2 dx

=
1

2

∫
Ω

r∇∇ log r : ∇∇rm
2 dx.

(1.5)

Now, we can apply our Inequality (1.3) to deduce that2(we can view ∇ρn ' ρn−1∇ρ as ∇ log ρ for n = 0)∫
Ω

r∇∇ log r : ∇∇rm
2 dx &

∫
Ω

∣∣∇∇rm+2
4

∣∣2 dx+

∫
Ω

|∇r
m+2

8 |4 dx.

Therefore, using (1.5) and the fact that the domain is periodic, we can write∫
Ω

ρ2∇∇ log ρ : ∇∇ρm dx &
∫

Ω

∣∣∇∇ρm+2
2

∣∣2 dx+

∫
Ω

|∇ρ
m+2

4 |4 dx

=

∫
Ω

∣∣∆ρm+2
2

∣∣2 dx+

∫
Ω

|∇ρ
m+2

4 |4 dx.

Notice that the extra term in our inequality compared to inequality (1.4) comes from the fact that we use a

method different to that introduced in [6].

The second one was proved by D. Bresch, A. Vasseur and C. Yu in [3]

(1.6)

∫
Ω

ρn+1|∇∇ρn|2 dx &
∫

Ω

|∇∇ρ
3n+1

2 |2 dx+

∫
Ω

|∇ρ
3n+1

4 |4 dx 2

d
− 1 < n < 1

which corresponds to take n = m in our inequality (1.3).

Remark 1.2. Unfortunately, it seems complicated to interpret the condition (1.2) algebraically. For that, in

Picture 1 below, we will show geometrically in which zone inequality (1.3) holds.

dimension 2 dimension 3

Figure 1

Remark 1.3. In order to make the link between the well known Logarithmic Sobolev inequality (1.1) and our

Inequality (1.3), let us see that if we take take for example n = m = 0 in (1.3), we get (taking in mind that

∇ρn ∼ ∇ log ρ when n = 0)∫
Ω

ρ|∇∇ log ρ|2 dx &
∫

Ω

|∇(
√
ρ∇ log ρ)|2 dx+

∫
Ω

ρ|∇ log ρ|4 dx

2we pay no attention on the constant here
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which is can be view as higher version of (1.1) (taking % :=
√
ρ in (1.1))∫

Ω

ρ|∇ log ρ|2 dx &
∫

Ω

(
ρ log

√
ρ− ρ

)
dx.

Before proving our main theorem, we shall firstly prove the following Lemma.

Lemma 1.1. Suppose that ρ is sufficiently smooth, n > −1 and the positive constant c = c(n, d) is such that

0 < c ≤ (1 + n)(d+ 2)(d(1− n) + 2n)− (d− 1)2(2n− 1)2

(d+ 2)2(1 + n)
,

then we have

(1.7) J =

∫
Ω

ρ2|∇2 log ρ|2 dx+ n

∫
Ω

ρ2|∆ log ρ|2 dx ≥ c

∫
Ω

|2∇√ρ|4 dx.

Proof. The proof is inspired by the extension of the entropy construction method introduced in [6]. To simplify

the computations, we keep the same notation introduced in [6]

θ =
|∇ρ|
ρ

, λ =
1

d

∆ρ

ρ
, (λ+ ξ)θ2 =

1

ρ3
∇2ρ : (∇ρ)2,

and η ≥ 0 by

||∇2ρ||2 = (dλ2 +
d

d− 1
µ2 + η2)ρ2.

We compute J using the above notation to obtain

J =

∫
Ω

ρ2
(

(1 + nd)dλ2 +
d

d− 1
ξ2 + η2 − 2λθ2(1 + nd)− 2ξθ2 + (1 + n)θ4

)
dx

We need to compare J to

K = 16

∫
Ω

|∇√ρ|4 dx =

∫
Ω

ρ2θ4 dx.

We shall rely on the following two dummy integral expressions:

F1 =

∫
Ω

div((∇2ρ−∆ρ I) · ∇ρ) dx,

F2 =

∫
Ω

div(ρ−1|∇ρ|2∇ρ) dx,

where I is the unit matrix in Rd×Rd. Obviously, in view of the boundary conditions, F1 = F2 = 0. Our purpose

now is to find constants c0, c1 and c2 such that J − c0K = J − c0K + c1F1 + c2F2 ≥ 0. The computation in [6]

yields

F1 =

∫
Ω

ρ2
(
− d(d− 1)λ2 +

d

d− 1
ξ2 + η2

)
dx,

F2 =

∫
Ω

v2γ
(

(d+ 2)λθ2 + 2ξθ2 − θ4
)
dx.

After simple calculation, we obtain that

J − c0K + c1J1 + c2J2 =

∫
Ω

[
((1 + nd)− c1(d− 1))dλ2 +

d

d− 1
(1 + c1)ξ2 + η2(1 + c1)

+ λθ2(−2(1 + nd) + c2(d+ 2)) + 2ξθ2(c2 − 1) + θ4(1 + n− c0 − c2)
]
dx.

We tend to eliminate λ from the above integrand by defining c1 and c2 appropriately. The linear system

(1 + nd)− c1(d− 1) = 0,

−2(1 + nd) + c2(d+ 2) = 0,

has the solution

c1 =
(1 + nd)

d− 1
, c2 = 2

(1 + nd)

d+ 2
.

Therefore we deduce that

J =

∫
Ω

ρ2(b1ξ
2 + 2b2ξθ

2 + b3θ
4 + b4η

2) dx



4 B. AL TAKI

where we defined b1, b2, b3 and b4 as follows

b1 =
d2

(d− 1)2
(1 + n) b2 =

d

(d+ 2)
(2n− 1) b3 =

d− nd+ 2n

d+ 2
− c0 b4 =

d

d− 1
(1 + n).

This integral is non negative if the integrand is pointwise non negative. This is the case if and only if

b1 > 0 b4 > 0 and b1b3 − b22 ≥ 0,

which is equivalent to

c0 ≤
(1 + n)(d+ 2)(d(1− n) + 2n)− (d− 1)2(2n− 1)2

(d+ 2)2(1 + n)
. 2

Now we are able to prove our main result, namely Theorem 1.1. Notice that, the procedure of proof

introduced here is new and simple compared to that used by A. Jüngel and D. Matthes in [6].

Proof of Theorem 1.1. First, we denote

J1 :=

∫
Ω

ρn+1∇∇ρn : ∇∇ρm dx J2 :=

∫
Ω

∆ρn ∆ρm dx.

Below, we shall perform some computations on J1 and J2. Indeed, we have

J1 =

∫
Ω

ρn+1∇∇ρn : ∇∇ρm dx

=

∫
Ω

ρn+1∇
(n
θ
ρn−θ∇ρθ

)
: ∇
(m
θ
ρm−θ∇ρθ

)
dx

=
nm

θ

[ ∫
Ω

ρ2n+m−2θ+1|∇∇ρθ|2 dx+

∫
Ω

ρ2n+1−θ∇∇ρθ : ∇ρm−θ ⊗∇ρθ dx

+

∫
Ω

ρn+1+m−θ∇∇ρθ : ∇ρn−θ ⊗∇ρθ dx+

∫
Ω

ρn+1∇ρn−θ ⊗∇ρθ : ∇ρm−θ ⊗∇ρθ dx
]

=
nm

θ2

[ ∫
Ω

ρ2n+m−2θ+1|∇∇ρθ|2 dx− γ1

∫
Ω

ρ2n+m+1−θ∇∇ρθ : ∇ρθ/2 ⊗∇ρθ/2 dx

− γ2

∫
Ω

ρ2n+1+m−θ∇∇ρθ : ∇ρθ/2 ⊗∇ρθ/2 dx+ γ1 γ2

∫
Ω

ρ2n+m+1−θ(∇ρθ/2)4 dx
]

where γ1 and γ2 are two constants defined by

γ1 =
4(θ −m)

θ
γ2 =

4(θ − n)

θ
.

Now, let us choose θ such that

θ =
2n+m+ 1

2
.

Thus the integral J1 becomes

J1 =
nm

θ2

[ ∫
Ω

|∇∇ρθ|2 dx− (γ1 + γ2)

∫
Ω

∇∇ρθ : ∇ρθ/2 ⊗∇ρθ/2 dx+ γ1γ2

∫
Ω

(∇ρθ/2)4 dx
]
.

A similar computation on J2 yields

J2 =

∫
Ω

ρn+1∆ρn ∆ρm dx

=
nm

θ2

[ ∫
Ω

|∆ρθ|2 dx− (γ1 + γ2)

∫
Ω

∆ρθ (∇ρθ/2)2 dx+ γ1γ2

∫
Ω

(∇ρθ/2)4 dx
]
.

Gathering J1 and J2 together and minding that for a periodic domain the following identity holds∫
Ω

|∇∇ρθ|2 dx =

∫
Ω

|∆ρθ|2 dx,

we infer that

I = J1 + nJ2

=
nm

θ2

[
(1 + n)

∫
Ω

|∇∇ρθ|2 dx+ γ1γ2(1 + n)

∫
Ω

(∇ρθ/2)4 dx

− (γ1 + γ2)
(∫

Ω

∇∇ρθ : ∇ρθ/2 ⊗∇ρθ/2 dx+ n

∫
Ω

∆ρθ (∇ρθ/2)2 dx
)]
.

(1.8)
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In the sequel, we want to establish an estimate of

−(γ1 + γ2)
(∫

Ω

∇∇ρθ : ∇ρθ/2 ⊗∇ρθ/2 dx+ n

∫
Ω

∆ρθ (∇ρθ/2)2 dx
)
.

To this purpose let us in the first place observe that the two following equalities hold

ρ∇∇ log ρ = ∇∇ρ− 4∇√ρ⊗∇√ρ, ρ∆ log ρ = ∆ρ− 4(∇√ρ)2.

This implies that∫
Ω

ρ2|∇∇ log ρ|2 dx =

∫
Ω

|∇∇ρ|2 dx+

∫
Ω

|2∇√ρ|4 dx− 8

∫
Ω

∇∇ρ : ∇√ρ⊗∇√ρ dx∫
Ω

ρ2|∆ log ρ|2 dx =

∫
Ω

|∆ρ|2 dx+

∫
Ω

|2∇√ρ|4 dx− 8

∫
Ω

∆ρ (∇√ρ)2 dx.

Therefore

− 8
(∫

Ω

∇∇ρ : ∇√ρ⊗∇√ρ dx+ n

∫
Ω

∆ρ (∇√ρ)2 dx
)

=

∫
Ω

ρ2|∇∇ log ρ|2 dx+ n

∫
Ω

ρ2|∆ log ρ|2 dx− (1 + n)

∫
Ω

|∇∇ρ|2 dx− (1 + n)

∫
Ω

|2∇√ρ|4 dx.

Now using Lemma 1.1, we deduce that

− 8

∫
Ω

(
∇∇ρ : ∇√ρ⊗∇√ρ dx+ n

∫
Ω

∆ρ (∇√ρ)2 dx
)

≥ cn

∫
Ω

|2∇√ρ|4 dx− (1 + n)

∫
Ω

|∇∇ρ|2 dx− (1 + n)

∫
Ω

|2∇√ρ|4 dx
(1.9)

where cn is given by

cn =
(1 + n)(d+ 2)(d(1− n) + 2n)− (d− 1)2(2n− 1)2

(d+ 2)2(1 + n)
.

Hence assuming ρ = ρθ in inequality (1.9), we obtain

−
[ ∫

Ω

∇∇ρθ : ∇ρθ/2 ⊗∇ρθ/2 dx+ n

∫
Ω

∆ρθ (∇ρθ/2)2 dx
]

≥ 2
(
cn − 1− n)

∫
Ω

|∇ρθ/2|4 dx− (1 + n)

8

∫
Ω

|∇∇ρθ|2 dx.
(1.10)

Again assume that γ1 + γ2 > 0, substituting inequality (1.10) into (1.8), we obtain

I ≥ nm

θ2

[
(1 + n)

(
1− γ1 + γ2

8

) ∫
Ω

|∇∇ρθ|2 dx+
(
γ1γ2(1 + n) + 2(γ1 + γ2)(cn − 1− n)

) ∫
Ω

|2∇ρθ/2|4 dx.
]

Thus, contemplating the following constraints on the coefficients

0 < γ1 + γ2 < 8 γ1γ2(1 + n) + 2(γ1 + γ2)(cn − 1− n) > 0,

we finish the proof of inequality (1.3).

2. Application to fluid dynamics systems

In this section, we show how our functional inequality proved in the previous section can help us establish

some important estimates on the solution of Navier-Stokes-Korteweg system. We point out here that we are

not interested in the question of well posedness of such system since it needs more work (this will be the subject

for a forthcoming paper). However, these estimates established here will be the main ingredient to treat this

question. On the other hand, as we shall see, despite our fairly functional inequality, we are obliged to take a

particular case of capillarity term and viscosity coefficient. We emphasize that we cover a more general case

than that considered by many authors: see for instance the recent wotk of A. Vasseur and I. L. Violet in

[7] for more details. Indeed, the Navier-Stokes-Korteweg system is defined as:

(2.1)
∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u)− div(2µ(ρ) D(u) + λ(ρ) div u I) +∇p = div(S)
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where div(S) is the capillary tensor which reads as follows

(2.2) S =
(
ρdiv(K(ρ)∇ρ) +

1

2
(K(ρ)− ρK ′(ρ)|∇ρ|2

)
I−K(ρ)∇ρ⊗∇ρ,

with K : (0,∞)→ (0,∞) is a smooth function, u stands for the velocity of fluid, and D(u) = 1
2 (∇u+∇tu) is

the strain tensor. The function p(ρ) is a general increasing pressure that we assume in the sequel under the

form p(ρ) = aργ where a > 0, γ > 0. The viscosity coefficients µ and λ are the Lamé coefficients that should

obey two mathematical restrictions3 (d is the dimension of spaces)

(2.3) (i)µ(ρ) > 0 µ(ρ) + dλ(ρ) > 0 (ii)λ(ρ) = 2(ρµ′(ρ)− µ(ρ)).

Notice that, as mentioned in [4], the Korteweg tensor can be written in the form

(2.4) div(S) = ρ∇
(√

K(ρ) ∆
( ∫ ρ

0

√
K(s) ds

))
.

The global existence of the solution of system (2.1) for a general Korteweg tensor is as far as we know an open

problem. The main difficulties of such models is twofold: the first one goes back to the difficulty of establishing

the necessary a priori estimates. The second one lies in the strongly non linear third-order differential operator

and the dispersive structure of the momentum equation. For these reasons, the only known result around this

system is limited to the so called quantum Navier-Stokes system which corresponds to the case when (see for

instance [7])

(2.5) µ(ρ) = ρ λ(ρ) = 0 K(ρ) = ρ−1.

By virtue of our Inequality (1.3), we are able to prove that under more general case of capillarity and viscosity

coefficients

µ(ρ) = ρn+1 λ(ρ) = 2nρn+1 K(ρ) = ρ2m−1

where n and m should satisfy the constraint (1.2), the Navier-Stokes-Korteweg system has the following two

inequalities. The first one is the classical energy estimate while the second one is the so-called B-D entropy.

Lemma 2.1. For ρ and u sufficiently smooth, we have

1

2

d

dt

∫
Ω

ρ|u|2 dx+ 2

∫
Ω

ρn+1|D(u)|2 dx+ 2n

∫
Ω

ρn+1|div u|2 dx

+
d

dt

∫
Ω

a

γ − 1
ργ dx+

1

2

d

dt

∫
Ω

∣∣∇( ∫ ρ

0

√
s2m−1 ds

)∣∣2 dx ≤ 0

d

dt

∫
Ω

ρ
∣∣u+

2∇ρn

ρ
| dx+ 2

∫
Ω

ρn+1|A(u)|2 dx+
d

dt

∫
Ω

a

γ − 1
ργ dx+ 2aγ(n+ 1)

∫
Ω

ρn+γ−2|∇ρ|2 dx

+
1

2

d

dt

∫
Ω

∣∣∇( ∫ ρ

0

√
s2m−1 ds

)∣∣2 dx+ α

∫
Ω

∣∣∇∇ρ 2n+m+1
2

∣∣2 + β

∫
Ω

|∇ρ
2n+m+1

4 |4 dx ≤ 0.

where α and β are two positive constants and A(u) = 1
2 (∇u−∇tu).

Before starting the proof of Lemma 2.1, let us prove the following identity which will be used later.

Lemma 2.2. For any smooth function ρ(x), we have

(2.6) ρ∇
(√

ρ2m−1∆
( ∫ ρ

0

√
s2m−1ds

))
=

1

m(m+ 1)
[div(ρm+1∇∇ρm) +m∇(ρm+1∆ρm)].

3(i) is a cosequence of physical restriction however (ii) is called the Bresch-Desjardins relation introduced in [2] for compressible

Navier-Stokes equations
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Proof. By straightforward computation, we can write

ρ∂j
(
ρm−1/2∂2

i

( ∫ ρ

0

sm−1/2
))

=
1

m
ρ∂j

(
ρm−1/2∂i(ρ

1/2∂iρ
m)
)

=
1

m
ρ∂j

(
ρm∂2

i ρ
m +

1

2
ρm−1∂iρ ∂iρ

m
)

=
1

m
∂j
(
ρm+1∂2

i ρ
m
)
− 1

m
ρm∂jρ ∂

2
i ρ
m +

1

2m2
ρ ∂j

(
(∂iρ

m)2
)

=
1

m
∂j
(
ρm+1∂2

i ρ
m
)
− 1

m(m+ 1)
∂jρ

m+1 ∂2
i ρ
m +

1

m(m+ 1)
∂iρ

m+1∂j∂iρ
m

=
1

m(m+ 1)
[(m+ 1)∂j(ρ

m+1∂2
i ρ
m)− ∂jρm+1∂2

i ρ
m + ∂i(ρ

m+1∂i∂jρ
m)− ρm+1∂j∂

2
i ρ
m]

=
1

m(m+ 1)
[∂i(ρ

m+1∂i∂jρ
m) +m∂j(ρ

m+1∂2
i ρ
m)].

Proof of Lemma 2.1 The proof of the first inequality is too classical. It sufficient to multiply the equation of

conservation of momentum (2.1)2 by u, integrate by parts and use the mass conservation equation. For the

second one, we start by multiplying the mass conservation by (n+ 1)ρn to obtain

∂tρ
n+1 + div(ρn+1u) + nρn+1 div u = 0.

Now, differentiating with respect to x, we get

∂t∇ρn+1 + div(u⊗∇ρn+1) + div(ρn+1∇tu) + n∇(ρn+1 div u) = 0.

Multiplying the above equation by 2 and adding it to (2.1)2, we obtain

(2.7) ∂t

(
ρ
(
u+

2∇ρn

ρ

))
+div

(
ρu⊗

(
u+

2∇ρn

ρ

))
−2 div

(
ρn+1A(u)

)
+a∇ργ = ρ∇

(√
ρ2m−1∆

( ∫ ρ

0

√
s2m−1 ds

))
Now, multiplying Equation (2.7) by

(
u+ 2∇ρn

ρ

)
and integrating by parts, we deduce

d

dt

∫
Ω

ρ
∣∣u+

2∇ρn

ρ

∣∣2 dx+ 2

∫
Ω

ρn+1|A(u)|2 dx+
d

dt

∫
Ω

aργ

γ − 1
dx+ 2aγ(n+ 1)

∫
Ω

ρn+γ−2|∇ρ|2 dx = I,

where we denote

I :=

∫
Ω

ρ∇
(√

ρ2m−1∆
( ∫ ρ

0

√
s2m−1ds

))
·
(
u+

2∇ρn

ρ

)
dx

Now, using the mass conservation equation and identity (2.6), we have

I =
1

2

d

dt

∫
Ω

∣∣∇( ∫ ρ

0

√
s2m−1 ds

)∣∣2 dx+
2(n+ 1)

n(m+ 1)

[ ∫
Ω

ρm+1∇∇ρm : ∇∇ρn dx+m

∫
Ω

ρm∆ρm ·∆ρn dx
]
.

By virtue of our Inequality (1.3), the proof of Lemma 2.1 is finished.
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