
HAL Id: hal-01905204
https://hal.science/hal-01905204

Submitted on 25 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elimination of spatial connectives in static spatial logics
Etienne Lozes

To cite this version:
Etienne Lozes. Elimination of spatial connectives in static spatial logics. Theoretical Computer
Science, 2005. �hal-01905204�

https://hal.science/hal-01905204
https://hal.archives-ouvertes.fr

EXPRESS 2003 Preliminary Version

Elimination of spatial connectives
in static spatial logics

Étienne LOZES1

LIP, ENS Lyon – France

Abstract

The recent interest for specification on resources yields so-calledspatial logics, that is
specification languages offering spatial connectives: a separation into two subcomponents
of the considered structure, (∗,or |), and its adjunct, the guarantee respect to the extension
of the structure (−∗ , .).

We consider two resource models and their related logics:

• the Static Ambient (SA), proposed as a model of semistructured data [4], with the Static
Ambient Logic (SAL) that was proposed as a request language, both obtained restricting
the Mobile Ambient calculus [5] and logic [6] to their purely static aspects.

• the shared mutable data structures adressed by the Separation Logic (SL), as it has been
defined in [15] as an adequate assertion language for Hoare style reasoning on imperative
programs manipulating pointers.

We raise the questions of the expressiveness and the minimality of these logics. Our
main contributions are the elimination of adjuncts for SAL, the minimality of the adjunct-
free fragment (SALint), and the elimination of both spatial connectives∗ and−∗ for SL.

Key words: Spatial logics, Separation logic, Mobile Ambients,
Minimality.

1 Introduction

The Mobile Ambients calculus (MA) [5] is a proposal for a new paradigm in the
field of concurrency models. Its originality is to set as data the notion ofloca-
tion, and as notion of computation the reconfiguration of the hierarchy of locations.
The calculus has a spatial part expressing the topology of locations as a labelled
unordered tree with binders, and a dynamic part describing the evolution of this
topology. The basic connectives for the spatial part are0, defining the empty tree,

1 Email: elozes@ens-lyon.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

LOZES

a[P], defining the tree rooted ata with subtreeP, P | Q for the tree consisting of
the two subtreesP andQ in parallel, and (νn)P for the treeP in which the label (or
name)n has been hidden. Leaving out from MA all capabilities, we get rid of the
dynamics of the calculus, working with what we callstatic ambients, SA.

Type systems are commonly used to express basic requirements on programs.
In the case of SA, the (static) Ambient Logic (SAL) [6] provides a very flexible
descriptive framework. Seeing SAL as a request language, one may ask a structure
P to match some specificationA, written

P |= A .

The SAL approach is however much more intensional than it is the case for standard
type systems. Indeed, the whole spatial structure of the calculus is reflected in the
logic. For instance, the formulan[A] is satisfied by structures of the formn[P]
with P |= A. Finally, AL includesadjunct connectivesfor every spatial construct.
For instance, theguaranteeoperator

A . B

specifies that a process is able to satisfyB when it is extended by any process
satisfyingA. SA, associated to SAL, has appeared to be an interesting model for
semistructured data[4]. Datas are modeled by unordered labelled trees, where the
binders may represent pointers [3], and the logic is used as the basis for a language
for queries involving such data. For instance, the process

(νptr)(Cardelli[Ambients[ptr[text[0]]]] |Gordon[Ambients[ptr[0]]])

represents a database containing the two authors Cardelli and Gordon with one
copy of their paper about Ambients stored at Cardelli’s and linked to Gordon’s.
Query

Iptr. ptrr (Cardelli[>] | >)

asks whether the database contains some author named Cardelli.

Separation Logic [15] is a proposal for a new assertion language in Hoare’s
approach of imperative programs verification. Indeed, imperative programming
languages manipulating pointers allow one to change the value a variable refers to
without explictly mentioning this variable. Such multiple accesses to data make
the axiomatic semantics [13] of these programs difficult to handle using classical
logic as an assertion language [14]. Separation Logic nicely handles the subtleties
of pointer manipulation. providing two new connectives: a separative conjunction
P∗Q asserting thatP andQ hold in separate parts of the memory, and a separating
implicationP−∗Q allowing one to introduce ‘spatial hypotheses’ about the memory.
For instance, the judgement

{(x 7→ −) ∗ ((x 7→ e) −∗ φ)} x := e {φ}

2

LOZES

is the transposition of the classical backward reasoning{φ[e/x]} x := e {φ} in Hoare
logic.

Both specification languages rely on classical logic reasoning extended by two
non-standard operations: splitting of the resource space and separated assertions
(|, ∗) on each subspace, and extension of the resource space assuming some hy-
pothesis (.,−∗). These two aspects are the main novelties of the so-calledspatial
logics. The interest of these connectives has been illustrated in several ways. For
Mobile Ambients, it is known that the connective. coupled witĥ can express the
action modalities [17], persistency, and other strong properties [12]. For Separa-
tion Logic, the proof of an in-place reversal of a list turns out to require complex
invariants in the standard classical logic, whereas it has a simple formulation in SL
using∗, as one of the many examples presented in [14].

Althought spatial connectives evidently brings a real ease to the formulation of
complex properties of the structures, their actual contribution to the expressiveness
of the logic is not so clear. For instance, the formulax ↪→ nil ∗ y ↪→ nil expresses
that bothx andy points tonil, but from distinct locations, which can also be ex-
pressed asx ↪→ nil ∧ y ↪→ nil ∧ x , y without requiring∗; the formulan[0] . n[0]
tells that after extension of the structure addingn[0], one exactly hasn[0], which
means that the structure was initially empty, hence this formula is equivalent to 0.
On the other hand, it has been established for the Mobile Ambient case, i.e in a
dynamic setting, that guarantee brings some extra expressive power [12].

This paper studies the contribution of spatial connectives in the expressiveness
of static spatial logics. This question is important since spatial connectives intro-
duces a lot of complication from the model-checking point of view. Indeed, sepa-
rated conjunctions∗ and| forces to try all the splitting of the structure, which may
be costly for wide structures. Even worst, the spatial implications−∗ and. consid-
erably complicate the model-checking introducing the need to seek a representative
testing set [2,8], when it is not an undecidable problem [2,11]. The expressiveness
of spatial connectives is also important from theoretical issues. For instance, the
proof of an in-place reversal of a list is derivable, through heavy formulations, in
classical Hoare logic as well, and the question is open wether Separation Logic can
prove programs on which classical reasoning would fail.

Several kinds of quantification can be taken under consideration for our spatial
logics:

• absence of quantification, as it is the case for SL (in this work).
• classical quantification (∀,∃), which defines the logic SAL∀.
• fresh quantification [10], (In.A), which is the way SAL handles name gen-

eration. This quantification is related toα conversion of bound names. It is
complementary to the spatial connectivenrA that forces the process to reveal a
hidden name by calling itn.

We establish that the contribution of spatial connectives depends on the forms of
quantification supported by the logic.

3

LOZES

Indeed, in quantifier-free logics, adjuncts do not increase the expressiveness of
the logic (Theorem 4.4). Neither does the separated conjunction (∗) for SL, since
it only expresses separation, so that SL assertions can be translated into a classi-
cal logic (Theorem 8.1). In a different way,| brings extra expressiveness to SAL,
namely the power of counting, so it cannot be eliminated, and actually the adjunct-
free fragment of SAL is minimal (Theorem 7.1). The proof of these elimination
results goes through the intensive use of intensional partial equivalences on mod-
els; such equivalences are common for the study of the expressiveness of a logic
(see [17,12] for spatial logic cases), but were also exploited for decidability issues
in [2,8]. Two properties justify the encoding: a property we callprecompactness,
which expresses finiteness of behaviours, and the existence ofcharacteristic for-
mulasfor the classes of partial intensional equivalence.

When classical quantifiers are taken under consideration, more complex prop-
erties can be expressed through adjuncts, and they cannot be taken out freely (The-
orem 6.1). This difference of nature of the logic was already observed from the
decidability aspect [2,9,8], which implied the absence of an effective adjuncts elim-
ination. Our result shows that the adjuncts elimination is impossible even theoreti-
cally.

Finally, we establish the quite surprising result that adjuncts elimination is still
possible in presence of fresh quantification (Theorem 5.4), essentially due to prenex
forms for I (Proposition 5.3). This result underlines the fundamental difference
between classical quantification and fresh quantification. Actually, in our setting,
fresh quantification is strictly weaker than classical quantification, since the for-
mulaIn.A can be expressed in SAL∀ as

∀n.
(
nr> ∧

∧
m∈fn(A)−{n}

n , m
)
→A,

and admit more regular properties than∀,∃.

Related work.
Apart from [16], this is, to our knowledge, the first results studying precisely the

expressiveness and minimality of spatial logics. Other works about expressiveness
only give some hints. A first result about the separation power of AL is presented
in [17]. Other examples of expressive formulas for AL are shown in [12], such as
formulas for persistence and finiteness.

A compilation result has been derived for a spatial logic for trees without quan-
tification and private names [16]. In that work, the target logic includes some new
features such as Presburger arithmetic, and the source logic includes a form of
Kleene star.

The setting in which we obtain our encoding is rather different in the dynamic
case (see [12]). There, the presence of adjuncts considerably increases the ex-
pressive power of the logic. For instance,. allows one to construct formulas to
characterise processes of the formopen n. P, and, using the @ connective, we may

4

LOZES

define a formula to capture processes of the formout n. P.
The use of a partial intensional equivalence and the notion of precompactness is

original. Intensional bisimilarity plays an important role in the characterisation of
the separation power of the logic [17]. Our proof suggests that it is also a powerful
and meaningful concept for the study of expressiveness.

The presence of the. connective in the logic is crucial with respect to decid-
ability issues. The undecidability of the model-checking of SAL with classical
quantification has been established in [9]. Quite unexpected decidability results for
spatial logics with. and without quantification were then established in [2] and [8].
these work are closely related to the present study; roughly, the decidability result
of [8] relies on finiteness ofprocesses, whereas our encoding exploits finiteness of
observations. For this reason, our approach is more general and cut out decidabil-
ity issues. Actually, the undecidability of the model-checking problem for SAL has
been recently established [11]. This last work studies many variations around SAL,
derives decidability results with. andI, and presents a prenex form result similar
to ours.

Outline.
We introduce SA, SAL and its adjunct-free fragment (SALint) in Sec. 2. We

prove adjunct elimination for quantifier-free formulas in Sec. 4, based on the notion
of intensional bisimilarity, discussed in Sec. 3. The general result for SAL is then
established in Sec. 5, based on prenex forms. We discuss the adjunct elimination
for SAL∀ in Sec. 6, and show minimality of SALint in Sec. 7; in Sec. 8, we introduce
SL and a classical fragment of it (CL), which we prove to be as expressive as SL.
Sec. 9 gives concluding remarks.

2 Background

In this section we define the model of static ambients (SA) and its logic SAL. We
also define the intensional fragment (SALint) of SA.

In all what follows we assume an infinite setN of names, ranged over byn,m.
Tree terms are defined by the following grammar:

P ::= P | P | n[P] | (νn)P | 0 .

The set fn(P) ⊂ N of free names ofP is defined by saying thatν is the only binder
on trees. We callstatic ambientstree terms quotiented by the smallest congruence
≡ (calledstructural congruence) satisfying the axioms of Fig 1. Formulas, ranged
over withA,B, . . ., are defined in Fig 2 . These formulas formthe static ambient
logic, and we callintensional fragmentthe subset of the formulas not using the
connectives., @, andW (ajduncts). We note them respectively SAL and SALint.

We will say thatA is quantifier-freeif A does not contain anyI quantification.
The set of free names of a formulaA, written fn(A) is the set of names appearing

5

LOZES

P | 0 ≡ P (νn) 0 ≡ 0

(P | Q) | R ≡ P | (Q | R) (νn) m[P] ≡ m[(νn)P] (n , m)

P | Q ≡ Q | P (νn)P | Q ≡ (νn)(P | Q) (n < fn(Q))

Fig. 1. Structural congruence on SA

A ::= A∧A | ¬A | In.A | 0 | A | A | n[A] | nrA (intensional fragment)

| A .A |A@n | A W n (adjuncts)

Fig. 2. SAL and the intensional fragment SALint

in A that are not bound by aI quantification.A(n ↔ n′) is the formulaA in
which namesn andn′ are swapped.

Definition 2.1 (Satisfaction) We define the relation|=⊂ (S A× SAL) by induction
on the formula as follows:

• P |= A1 ∧A2 if P |= A1 and P |= A2

• P |= ¬A if P 6|=A
• P |= In.A if ∀n′ ∈ N − (fn(P) ∪ fn(A)), P |= A(n↔ n′)
• P |= A1 | A2 if there is P1,P2 s.t. P≡ P1 | P2 and Pi |= Ai for i = 1,2
• P |= 0 if P ≡ 0
• P |= n[A] if there is P′ such that P≡ n[P′] and P′ |= A
• P |= nrA if there is P′ such that P≡ (νn)P′ and P′ |= A
• P |= A1 .A2 if for all Q such that Q |= A1, P | Q |= A2

• P |= A@n if n[P] |= A
• P |= A W n if (νn)P |= A

We noteA a` B if for all P ∈ S A, P |= A iff P |= B. A context is a formula con-
taining ahole; if C is a context,C[A] stands for the formula obtained by replacing
the hole withA in C. The following property stresses a first difference between
SAL and the∀/∃ version of the logic:

Lemma 2.2 For all A,B, and all contextC, if A a` B, thenC[A] a` C[B].

Remark 2.3

• The formula⊥, that no process satisfies, can be defined as 0∧¬0. As e.g. in [6],
other derived connectors include∨, andI: P satisfiesA I B iff there existsQ
satisfyingA such thatP | Q satisfiesB.

• If P |= A andP ≡ Q, thenQ |= A. Moreover,|= is equivariant, that isP |= A iff
P(n↔ n′) |= A(n↔ n′) for anyn,n′.

• For anyP, there is a characteristic formula (for≡) AP, using the same tree rep-

6

LOZES

resentation, such that for allQ, Q |= AP iff Q ≡ P. In particular, two static
ambients are logically equivalent if and only if they are structurally congruent.

3 Intensional bisimilarity

In this section, we define a notion of partial observation over trees corresponding to
logical testing with a bound on the formulas’ size and on free names. This notion
is an incremental version of the intensional bisimilarity presented in [17]. We then
derive two key results:

• the congruence of the intensional bisimilarity, which roughly says that SALint is
as separative as SAL; as an important consequence, the bisimilarity is proved to
be correct with respect to logical equivalence.

• a construction of symbolic sets that represent the classes of bisimilarity by col-
lecting all the necessary information, which will be used in the proofs of the next
section.

We assume in the remainder some fixed setN ⊂ N .

3.1 Definition

We now introduce the intensional bisimilarity. Intuitively,'i,N equates processes
that may not be distinguished by logical tests involving at mosti steps where the
names used for the tests are picked inN.

Definition 3.1 (Intensional bisimilarity) We define the family('i,N)i∈N of symmet-

ric relations overSA by induction on i:'0,N
def
= SA× SA, and for any i≥ 1, 'i,N is

the greatest relation such that if P'i,N Q, then the following conditions hold:

(i) if P ≡ 0 then Q ≡ 0

(ii) for all P1,P2, if P ≡ P1 | P2 then there is Q1,Q2 such that Q≡ Q1 | Q2 with
Pε 'i−1,N Qε, ε = 1,2.

(iii) for all n ∈ N and for all P′, if P ≡ n[P′], then there is Q′ such that Q≡ n[Q′]
and P′ 'i−1,N Q′.

(iv) for all n ∈ N and for all P′, if P ≡ (νn)P′, then there is Q′ such that Q≡ (νn)Q′

and P′ 'i−1,N Q′.

Lemma 3.2 For all i, 'i,N is an equivalence relation.

We shall write SA/'i,N for the quotient of SA induced by'i,N, and range over
equivalence classes withC,C1,C2.

We may observe that the bisimilarities define a stratification of observations
on terms, namely'i′,N′ ⊆'i,N for i ≤ i′ andN ⊆ N′. This may be understood in
a topological setting. Given a fixedN, we consider the ultrametric distance over
models defined byd(P,Q) = 2−i if i is the smallest natural for whichP 6'i,N Q,
andd(P,Q) = 0 if P 'ω,N Q where'ω,N=

⋂
i∈N 'i,N. We call it theN-topology. It

7

LOZES

somehow captures the granularity of the logical observations with respect to their
cost.

3.2 Correction

The key step in proving correction of the intensional bisimilarities with respect to
the logic is their congruence properties for the connectives admittting an adjunct.

Lemma 3.3 If P 'i,N Q, then:

• for all R, P | R'i,N Q | R;
• for all n ∈ N , n[P] 'i,N n[Q];
• for all n ∈ N, (νn)P 'i,N (νn)Q.

Proof. By induction oni. �

Note that the last point cannot be improved: considerN = {n}, P ≡ m1[0],
Q ≡ m2[0]. ThenP '2,N Q, but (νm1)P 6'2,N (νm1)Q. For this reason,'i,N is not a
pure congruence.

We notes(A) the size ofA, defined as the number of its connectives.

Proposition 3.4 (Correction) For all P,Q, i such that P'i,N Q, for all quantifier
free formulaA such that s(A) ≤ i and fn(A) ⊆ N,

P |= A iff Q |= A.

Proof. By induction onA. For the adjuncts, apply the congruence properties of
Lemma 3.3, and for the other connectives use the definition of'i,N. �

3.3 Signature functions

Definition 3.5 (Signature) For i ≥ 1, we set:

(i) zN
i (P) = 0 if P ≡ 0, otherwise¬0

(ii) pN
i (P) = {(C1,C2) ∈ (SA/'i−1,N)2 : P ≡ P1 | P2 and Pi ∈ Ci}

(iii) aN
i (P) = [n,C] if there is P′ s.t. P≡ n[P′], n ∈ N and P∈ C, C ∈ SA/'i−1,N ,

otherwise aNi (P) = noobs, wherenoobs is a special constant.

(iv) rN
i (P) = {(n,C) ∈ N × SA/'i−1,N : ∃P′. P ≡ (νn)P′ and P′ ∈ C}

We callsignature ofPat (i,N) the quadrupletχN
i (P) = [zN

i (P), pN
i (P),aN

i (P), rN
i (P)].

The following lemma says that the signature actually collects all the information
that may be obtained from the bisimilarity tests.

Lemma 3.6 Assume i≥ 1. Then P'i,N Q iff χN
i (P) = χN

i (Q).

8

LOZES

4 Adjuncts elimination on quantifier-free formulas

In this section, we show that the quantifier free formulas of SAL have equivalent
formulas in SALint. This result is then extended to all formulas of SAL in the next
section.

In all what follows, we will assumeN is a finitesubset ofN ; it is intended to
bound the free names of the considered formulas. The encoding result is based on
two key properties:

• Precompactness of theN-topology. In other words, wheni,N are fixed, only a
finite number of scenari may be observed.

• Existence of intensional characteristic formulas for the classes of'i,N.

Lemma 4.1 The codomain ofχN
i is finite.

Proof. We reason by induction oni. First notice that the codomain ofχN
i is:

codomχN
i = {0,¬0} × (SA/'i−1,N)2

× ({noobs}+N×SA/'i−1,N) × P(N×SA/'i−1,N)

hencecodomχN
i is finite iff SA/'i−1,N is finite too (here we use thatN is finite). For

i = 1, SA/'0,N = {SA}, henceχN
0 is finite, and so iscodomχN

1 . For i ≥ 2, we have by
inductioncodomχN

i−1 finite. By Lemma 3.6, there is an injection of SA/'i−1,N into
codomχN

i−1, so SA/'i−1,N is finite, and so iscodomχN
i . �

Here is an immediate consequence of Lemma 4.1:

Proposition 4.2 (Precompactness)For all i, the number of classes of'i,N is finite.

These results roughly say that there is only a finite amount of information is
needed to capture a given bisimilarity class. The next result makes it more precise:
this information may be collected in a single formula of SALint.

Proposition 4.3 (Characteristic formulas) For any i ∈ N and for any process P,
there is a formulaAi,N

P ∈ SALint such that

∀Q Q |= Ai,N
P ⇔ Q 'i,N P .

Proof. By induction oni. For i = 0, we may takeAi,N
P = >. Then assumei ≥ 1,

and we have formulasAi−1,N
P for all P. This obviously gives a characteristic formula

9

LOZES

A
i−1,N
C for any classC of SA/'i−1,N . Let us consider some fixedP. We set

Az = 0 if zN
i (P) = 0, otherwise¬0

Ap =
∧

(C1,C2)∈pN
i (P)A

i−1,N
C1
| A

i−1,N
C2

∧ ¬
∨

(C1,C2)<pN
i (P)A

i−1,N
C1
| A

i−1,N
C2

Aa =


∧

n∈N ¬n[>] if aN
i (P) = noobs

n[Ai−1,N
C] if aN

i (P) = [n,C]

Ar =
∧

[n,C]∈rN
i (P) nrAi−1,N

C ∧ ¬
∨

[n,C]<rN
i (P) nrAi−1,N

C

A
i,N
P = Az ∧ Ap ∧ Aa ∧ Ar

where the finiteness of the conjunctions and disjunctions is ensured by Lemma 4.1.
ThenQ |= Ai,N

P iff χN
i (Q) = χN

i (P), hence the result. �

The precompactness property says that if we bound the granularity of the ob-
servations, only finitely many distinct situations may occur. The characteristic for-
mula property says that each of these situations is expressible in the intensional
fragment. The idea of the encoding is then just to logically enumerate all these
possible situations.

Theorem 4.4 For all quantifier-free formulaA ∈ SAL, there is a formula[A] ∈
SALint such that

A a` [A].

Proof. We define [A] as follows:

[A]
def
=
∨
A

i,N
C for C ∈ SA/'i,N ,C |= A

for i = s(A) andN = fn(A). The disjunction is finite by Proposition 4.2.P |= [A]
iff there isQ such thatQ |= A andP 'i,N Q, that is, by Proposition 3.4,P |= A. �

Effectiveness of the encoding:
Due to its finiteness, the construction of our proof could seem to be effective. How-
ever, this cannot be the case due to an undecidability result for the model-checking
problem on SAL [11]. This is quite surprising, since only an effective enumeration
of the bisimilarity classes is missing to make the proof constructive. Moreover,
such an enumeration exists forS Awithout name restriction, via testing sets as de-
fined in [8]. This reveals an unexpected richness ofS Acompared to pure trees.

5 Adjuncts elimination and fresh quantifier

In this section we establish the adjunct elimination for the full SAL. The essential
result that entails this extension is the existence of prenex forms for the fresh quan-
tifier. Intuitively, the fresh quantifier may “float” on the formula without changing
its meaning.

10

LOZES

Proposition 5.1 (Correction of) The term rewriting system defined by the
rules of Fig. 3 preserves the semantics: for anyA,B ∈ SAL, if A B, then
A a` B.

(∧) (In.A1) ∧ A2 In. (A1 ∧A2) (n < fn(A2))

(¬) ¬In.A1 In.¬A1

(|) (In.A1) | A2 In. (A1 | A2) (n < fn(A2))

(.L) (In.A1) . A2 In.
(
(nr> ∧ A1) .A2

)
(n < fn(A2))

(.R) A1 . (In.A2) In.
(
(nr> ∧ A1) .A2) (n < fn(A1))

(Amb) m[In.A] In.m[A] (m, n)

(@) (In.A)@m In. (A@m) (m, n)

(r) mrIn.A In.mrA (m, n)

(W) (In.A) Wm In. (A Wm) (m, n)

Fig. 3. Term rewriting system for prenexation

Proof. (sketched) We only detail the proof for rule (.L).

P |= (In.A1) .A2

⇔ ∀Q,∀n′ < fn(A1) ∪ fn(Q). Q |= A1(n↔ n′) ⇒ P | Q |= A2

⇔ ∀Q,∀n′ < fn(A1 .A2) ∪ fn(P | Q). Q |= A1(n↔ n′) ⇒ P | Q |= A2

⇔ ∀Q,∀n′ < fn(A1 .A2) ∪ fn(P | Q). Q |= A1(n↔ n′) ⇒ P | Q |= A2(n↔ n′)

⇔ ∀n′ < fn(A1 .A2) ∪ fn(P),

∀Q.n′ < fn(Q) ⇒ Q |= A1(n↔ n′) ⇒ P | Q |= A2(n↔ n′)

⇔ P |= In. (A1 ∧ nr>) .A2

�

Remark 5.2 Some of the rules above (such as (Amb), (¬), and a variant of (| L))
have already been presented in [7], under the form of equalities. The same result is
independently developped in [11].

We say that a formulaA is wellformedif every variable bound byI is dis-
tinct from all other (bound and free) variables inA. For such formulas, the side
conditions in are always satisfied.

It is easy to see that defines a terminating rewriting system, and that the
normal forms of wellformed formulas are formulas in prenex form. Confluence

11

LOZES

holds modulo permutation of consecutiveI quantifiers.

Proposition 5.3 (Prenex forms)For any formulaA, there arẽn,A′ such thatA a`
Iñ.A′ andA′ is quantifier free.

This result directly implies the following extension of Theorem 4.4:

Theorem 5.4 (Adjunct elimination) For any formulaA ∈ SAL, there is a for-
mula[A] ∈ SALint such that

A a` [A].

Proof. There isA′ quantifier free and ˜n such thatA a` Iñ.A′ by Proposition 5.3.
Then by Lemma 2.2 and Theorem 4.4, we may write

A a` Iñ.A′ a` Iñ. [A′] .

�

Example 5.5 : We show an example to illustrate how SALint formulas can capture
non trivial properties expressed using the adjuncts. Let

A ::=
(
Hm′.m′[>] I (Hn1.n1[0] | Hn2.n2[Hn3.n3[0]])

)
Wm@m

whereHn.A (H being thehidden name quantifier[1]) stands forIn.nrA. The
prenex form ofA is

Im′,n1,n2,n3.
(
(m′r>∧.m′rm′[>]) I (n1rn1[0] | n2rn2[n3r.n3[0]])

)
Wm@m

ThenP |= A iff there isQ such that

(νm) m[P] | (νm′) m′[Q] ≡ (νn1)(νn2)(νn3)(n1[0] | n2[n3[0]])

The only solutions of this equation areP ≡ 0 or P ≡ (νn3)n3[0]. In other words,A
is equivalent toB = 0∨ Hn3.n3[0].

6 Adjuncts elimination and classical quantifiers

In this section we consider a variant of SAL. Instead of fresh quantified formu-
las, we consider name quantification of the form∀x.A and∃x.A with the natural
semantics:

P |= ∀x.A if ∀n ∈ N . P |= A{n/x}

Let us note SAL
∀

int the intensional fragment with classical quantification. We
ask the question of adjuncts elimination for extensions of this logic. The unde-
cidability result of [9] implies that there is no effective adjunct elimination for
SAL

∀

int + {.}. We establish now a more precise result:

Theorem 6.1 (Expressiveness of adjuncts inSAL
∀

int) SAL
∀

int + {.}, SAL
∀

int + {@}
andSAL

∀

int + {W} are strictly more expressive thanSAL
∀

int.

12

LOZES

The proof of this theorem is based on the following observation. In any of the
extensions we consider, it is possible to define a formulaA such that

P |= A iff] fn(P) ≤ 1(1)

For the. and @ connectives, we may first encode the formulan = mas(n[>] ∧
¬m[>]) . ⊥ and (n[>])@m. Then (1) is satisfied by the formula

∃x. ∀y. (¬ yr>)→ x = y

For theW connective, there is a direct formula satisfying (1):

∃x. (∀y.yr>) W x

We are now interested in proving that such a property cannot be expressed in
SAL

∀

int. Our approach consists in studying the stability of|= respect substitutions.
Finding sufficient conditions so that substitutions can be applied both on the side
of the formula and on the side of the process while keeping satisfaction will endow
the stability of satisfaction collapsing names, which could not be the case for the
property we consider.

We callthread contexta contextC of the form

C[P] ≡ (νñ) n1[. . . nk[P] . . .]

with ñ ⊆ {n1, . . . ,nk}. We noten(C)
def
= {n1, . . . ,nk} andd(C)

def
= k. For a formulaA,

we noted(A) the number ofn[.] connectives inA.

Lemma 6.2 LetA be a formula ofSAL
∀

int, andC a thread context such that d(C) >
d(A). Let n,m be two names such that{n,m} ∩ n(C) = ∅, and

P
def
= C[n[0] | m[0]]

Then P |= A iff P |= A{n/m}.

Proof. By induction on the size ofA:

• the casesA = A1 ∧A2,A = ¬A1, andA = 0 are trivial.
• A = A1 | A2. Assume firstP |= A. Sinced(C) ≥ 1, we may assume by

symmetry that0 |= A2 and P |= A1. Then P |= A1{
n/m} by induction, and

P |= A{n/m}. The other direction is proved similarly.

• A = a[A1]. Assume firstP |= A. ThenC ≡ a[C′] andP′
def
= C′[n[0] | m[0]] |=

A1. By induction P′ |= A1{
n/m}. Since{n,m} ∩ n(C), a , m, soA{n/m} =

a[A1{
n/m}], andP |= A{n/m}.

Assume nowP |= A{n/m}. Let b = a{n/m}. ThenC ≡ b[C′] and P′
def
= C′[n[0] |

m[0]] |= A1{
n/m}. Thenb ∈ n(C), so b < {m,n}, andb = a. By induction

P′ |= A1, soP |= b[A1] = A.

• A = arA1. Assume firstP |= A. ThenC ≡ (νa)C′ andP′
def
= C′[n[0] | m[0]] |=

A1. Sincen,m are free inP, a , m anda , n. So {n,m} ∩ n(C′) = ∅, and by

13

LOZES

induction,P′ |= A1{
n/m}. A{n/m} = arA1{

n/m}, andP |= A{n/m}. The other
direction is proved similarly.

• A = ∀x.A1. Assume firstP |= A. Let takea ∈ N . ThenP |= A1{
a/x}, and by

inductionP |= A1{
a/x}{

n/m}. Fora , m, this is alsoP |= A1{
n/m}ax. Fora = m,

this requires a bit more. Consider thatP |= A1{
n/x}. ThenP |= A1{

n/x}{
n/m}

by induction. ButA1{
n/x}{

n/m} = (A1{
n/m}{

m/x}){n/m}, so by inductionP |=
A1{

n/m}{
m/x}. HenceP |= A1{

n/m}{
a/x} for all a, that is P |= ∀x.A1{

n/m} =
A{n/m}.
Assume now thatP |= A{n/m}. Let takea ∈ N . ThenP |= A1{

n/m}{
a/x}. If a , m,

this isP |= A1{
a/x}{

n/m}, so by inductionP |= A1{
a/x}. Fora = m, consider that

P |= A1{
n/m}{

n/x}, that is P |= A1{
m/x}{

n/m}, so by inductionP |= A1{
m/x}.

HenceP |= A1{
a/x} for all a, that isP |= A.

�

Lemma 6.3 LetA be a formula ofSAL
∀

int, andC a thread context such that d(C) >
d(A). Let n,m be two names such that{n,m} ∩ n(C) = ∅, and moreover m< fn(A).
Let

P1
def
= C[n[0] | m[0]] and P2

def
= C[n[0] | n[0]]

If P1 |= A, then P2 |= A.

Proof. By induction on the size ofA:

• the casesA = A1 ∧A2,A = A1 ∨A2,A = 0 andA = ¬0 are trivial.
• A = A1 | A2. Sinced(C) ≥ 1, we may assume by symmetry that0 |= A2 and

P1 |= A1. ThenP2 |= A1 by induction, andP2 |= A

• A = A1 || A2. Sinced(C) ≥ 1, P1 |= A1 ∧ A2, 0 |= A1 ∧ A2. By induction,
P2 |= A1 ∧A2, that isP2 |= A

• A = a[A1]. ThenC ≡ a[C′] andC′[n[0] | m[0]] |= A1. By inductionC′[n[0] |
n[0]] |= A1, that isP2 |= A.

• A = ¬a[A1]. Then eitherC is not of the formn[C′], andP2 |= ¬a[A1], or C ≡
n[C′] but C′[n[0] | m[0]] |= ¬A1. Then by inductionC′[n[0] | n[0]] |= ¬A1,
that isP2 6|=a[A1].

• A = arA1. ThenC ≡ (νa)C′ andC′[n[0] | m[0]] |= A1. Sincen,m are free in
P, a < {m,n}, son(C′) ∩ {m,n} = ∅. Then by induction,C′[n[0] | n[0]] |= A1,
andP2 |= A.

• A = ¬arA1. Assume first thata is free inP1. Thena , m sincem < fn(A) by
hypothesis. Soa is also free inP2 andP2 |= A. Assume nowa is fresh forP1

(andP2). Let C′ be such thatC ≡ (νa)C′. ThenC′[n[0] | n[0]] 6|=A1, otherwise
C′[n[0] | m[0]] |= A1 andP |= A. SoP2 6|=arA1.

• A = ∀x.A1. Let takea ∈ N . ThenP1 |= A1{
a/x}, and by inductionP2 |= A1{

a/x}
for a , m. Let take some freshm′. By equivariance,P1(m↔ m′) |= ∀x.A1, so
P1(m↔ m′) |= A1{

m/x}. Applying induction onP1 andA1{
m/x} for m′ instead

of m, we haveP2 |= A1{
m/x}. HenceP |= A1{

a/x} for all a, that isP2 |= ∀x.A1.
• A = ∃x.A1. Let a ∈ N be such thatP1 |= A1{

a/x}. If a , m, then we may

14

LOZES

apply induction onA1{
a/x}, and P2 |= A2{

a/x}, that is P2 |= A. Otherwise
P1 |= A1{

m/x}. By Lemma 6.2,P1 |= A1{
m/x}{

n/m} = A1{
n/x}{

n/m}, and again
P1 |= A1{

n/x}. Then by induction,P2 |= A1{
n/x}, that isP2 |= A.

�

This last result implies the desired property about SAL
∀

int:

Proposition 6.4 There is no formula inSAL
∀

int that satisfies (1).

Proof. Let assume by absurd we have someA such that

P |= A iff] fn(P) = 1

Then letC be the thread context of the form (νa)a[. . . a[.] . . .], andd(C) = d(A)+1.
Let m,n be two fresh names. ThenC[n[0] | m[0]] |= ¬A by definition ofA, so by
Lemma 6.3,C[n[0] | n[0]] |= ¬A. Moreover, by definition ofA, C[n[0] | n[0]] |=
A, so the contradiction. �

7 Minimality of SALint

In this section, we show minimality w.r.t. expressive power of SALint.

Theorem 7.1 (Minimality) SALint is a minimal logic, that is all fragments ofSALint

are less expressive.

This result is the consequence of several technical lemmas for each connective.
We may distinguish two forms of contribution to the expressiveness of the logic.
We will say that a connectiveκ is expressivewhen there is a property expressed by
a formula containingκ that cannot be expressed otherwise. As a consequence, this
connective must belong to any minimal fragment. We will also say that a connective
κ is separativewhen there exists two modelsP1,P2 and a formula containingκ
satisfied byP1 but notP2, such that allκ-free formulas equaly satisfyP1 andP2.
Separative connectives are expressive as well, but in a deeper way: removing them,
one reduces the separation power of the logic. For SALint, we will now establish
the following classification:

• connectives .|. ,nr. , andn[.] are separative,
• connectives 0,∧,¬ ,I are expressive but not separative.

In particular, SALint is minimal in terms of expressiveness, but as far as sepa-
ration power is concerned, the minimal fragment is SALint − {I,¬ ,∧,0}, since for
this fragment logical equivalence coincides with intensional bisimilarity.

Notice that we do not show that SALint is theuniqueminimal fragment of SAL.
This is far from being obvious. For instance, the fragment SAL−{∧} is surprisingly
quite expressive, as the formula

¬In.nr¬nr (Im1.m1rIm2.m2rm1[m2[0]]) W n1 W n2

15

LOZES

shows. This formula is equivalent ton1[n2[0]] ∨ n2[n1[0]], and hence the proof of
expressiveness of∧ (see below) must be carried out in a different way. We do not
know the exact expressiveness of this fragment, one could think that it captures any
finite set of processes. The interested reader may want to look for a formula for
n1[0] ∨ n2[n2[0]] in this fragment.

7.1 Separative connectives

We establish now that the connectives .|. ,nr. , andn[.] are separative. Intuitively,
| carries the ability of SALint to count, so without this connective it will not be pos-
sible to distinguishn[0] | n[0] from n[0] | n[0] | n[0]; in the same way,n[.] is
necessary to separaten1[n2[0]] from n2[n1[0]], and nr. is the only way of speci-
fying properties of hiden names, so it must be required to distinguish (νn)n[0] and
(νn)n[n[0]].

Lemma 7.2 If A ∈ SALint − {|}, then P1 = n[0] | n[0] |= A iff P2 = n[0] | n[0] |
n[0] |= A.

Proof. By absurd, suppose there exists a formulaA telling apartP1 from P2, take
a minimal suchA, and reason by case analysis onA.

• the casesA = A1 ∧A2,A = ¬A1 andA = ImA1 are straightforward.
• if A = 0, then none ofP1,P2 does satisfyA.
• A = mrA1: if m= n, then none of those processes do satisfyA, otherwise the

process satisfyingA does satisfyA1, andA1 is a smaller separating formula.
• A = m[A1]: none of the two processes do satisfyA.

�

Lemma 7.3 If A ∈ SALint−{n[.]}, then for any names n1,n2, we set P1 = n1[n2[0]]
and P2 = n2[n1[0]] . Then P1 |= A iff P2 |= A.

Proof. As above, by absurd and case analysis on a minimalA:

• the casesA = A1 ∧A2,A = ¬A1 andA = ImA1 are straightforward.
• if A = 0, then none ofP1,P2 do satisfyA.
• A = A1 | A2. We may assume by symmetry thatP1 |= A. Also by symmetry,

we may assumeP1 |= A1 and0 |= A2. If P2 6|=A, thenA1 separatesP1 from P2

and is a smaller formula: contradiction.
• A = mrA1: if m ∈ {n1,n2}, then none of the two processes do satisfyA, oth-

erwise the process satisfyingA also satisfiesA1, andA1 is a smaller separating
formula.

�

Lemma 7.4 AssumeA ∈ SALint − {n[.]}, We set P1 = (νn)n[n[0]] and P2 =

(νn)n[0]. Then P1 |= A iff P2 |= A.

Proof. Again, by absurd and case analysis on a minimalA:

16

LOZES

• the casesA = A1 ∧A2,A = ¬A1 andA = ImA1 are straightforward.
• if A = 0, then none ofP1,P2 do satisfyA.
• A = A1 | A2. We may assume by symmetry thatP1 |= A. Also by symmetry,

we may assumeP1 |= A1 and0 |= A2. If P2 6|=A, thenA1 separatesP1 from P2

and is a smaller formula: contradiction.
• A = m[A1]: none ofP1,P2 do satisfyA.

�

7.2 Expressive connectives

We show that the connectives∧,¬ ,I,0 are expressive. Expressiveness proofs are
more subtle than in the separability cases, since the loss of expressiveness is less
sensitive. The scheme of the proof that the connectiveκ is expressive is to find a
property (cardinality, stability by substitution, truncation...) common to all set of
models corresponding to any formula withoutκ, and a formula withκ whose set of
models does not have this property.

7.2.1 ∧ is expressive
By duality,∧ expresses disjunction; this is not so clear it is the only way to do so, in
particular going through adjuncts (see example before), however, for an intensional
logic, we may not expressn1[n2[0]] ∨ n2[n1[0]].

We noteP2(N) = {{n1,n2} : n1 , n2}. We noteKn = {{n,m} : m , n}. We say
thatK ⊆ P2(N) is cofinite if there isN ⊆ N , N finite, such that for alln1,n2 < N,
if n1 , n2 then{n1,n2} ∈ K. We may remark thatK1,K2 are cofinite iff K1 ∩ K2 is
cofinite, andK is cofinite iff K − Kn is cofinite.

Lemma 7.5 AssumeA is a formula ofSALint − {∧} such that06|=A. We set

KA
def
= { {n1,n2} : n1 , n2, n1[n2[0]] |= A and n2[n1[0]] |= A }.

Then either KA = ∅ or KA is cofinite.

Proof. By induction onA:

• A = In.A1. Then06|=A1, and for anyn1,n2 s.t. n1 , n,n2 , n andn1 , n2,
{n1,n2} ∈ KA1 iff {n1,n2} ∈ KA1. That isKA − Kn = KA1 − Kn.

• A = 0: 0 |= A.
• A = ¬0: thenKA = P2

• A = A1 | A2: since06|=A, we may assume by symmetry that06|=A1. If also
06|=A2, thenKA = ∅. Otherwise,KA = KA1.

• A = A1 || A2: since06|=A, 06|=A1 and06|=A2. thenKA = KA1 ∩ KA2.
• A = n[A1]: thenKA = ∅.
• A = ¬n[A1]: thenP2(N) − Kn ⊆ KA, soKA is cofinite.
• A = nrA1: then06|=A1, andKA − Kn = KA1 − Kn.

17

LOZES

• A = ¬nrA1: then06|=A1, andKA − Kn = K¬A1 − Kn.
�

Lemma 7.6 Let n1,n2 be two distinct names. Then there is no formulaA ∈
SALint − {∧} equivalent to n1[n2[0]] ∨ n2[n1[0]] .

Proof. By absurd: if there is such a formulaA, then06|=A. Then by Lemma 7.5
]KA , 1, and the contradiction. �

7.2.2 ¬ is expressive
¬ enrich the expressive power in several ways; here we consider the property that
the namen occurs free, expressed by¬nr>, and show that negation is necessary
to express it. To prove this, we remark that for a formulaA without negation, there
is a heighth such that for allP, if P |= A then so does the truncation ofP at height
h, so we may find a contradiction by considering a process having a occurrence of
n deep enough.

Definition 7.7 We define the truncation at heighth ∈ N ast0(P) = 0, and

th((νñ)(n1[P1] | . . . | nr [Pr])) = (νñ)(n1[th−1(P1)] | . . . | nr [th−1(Pr)]).

Note that fn(th(P)) ⊆ fn(P).

Lemma 7.8 If A is a formula without¬ , s(A) ≤ h and P|= A, then th(P) |= A.

Proof. By induction onA:

• A = A1 ∧A2: then by inductionth(P) |= A1, th(P) |= A2, soth(P) |= A1 ∧A2.
• A = In.A1: then there isn′ < fn(P) s.t. P |= A1(n ↔ n′). By induction

th(P) |= A1(n↔ n′), n′ < fn(th(P)), soth(P) |= In.A1.
• A = 0: thenth(P) ≡ P ≡ 0
• A = A1 | A2: thenP ≡ P1 | P2 with Pε |= Aε, and by inductionth(Pε) |= Aε, so

th(P) |= A.
• A = n[A1]: thenP ≡ n[P1] andP1 |= A1. By induction,th−1(P1) |= A1, and so

th(P) |= A.
• A = nrA1: thenP ≡ (νn)P1 with P1 |= A1. Then by inductionth(P1) |= A1, so

th(P) |= A.
�

Lemma 7.9 There is no formulaA ∈ SALint − {¬ } equivalent to¬nr⊥.

Proof. SupposeA exists, and takeh = s(A). We noteP ≡ m[m[. . .m[0] . . .]] and
Q ≡ m[m[. . .m[n[0]] . . .]] a nesting ofh ambientsm, for somem, n. ThenQ |= A,
P6|=A, andP ≡ th(Q), which contradicts Lemma 7.8 �

7.2.3 I is expressive
I is very usefull to deal with an hidden name without making any hypothesis on the
free names of processes (which revelation taken alone would do). Here we consider

18

LOZES

the property of having at least one hidden name, that is the model is congruent to
(νn)P′ with n ∈ fn(P′). This is expressed by the formulaIn.nr¬nr>. For
N = {n1, . . .nr} we considerPn

N = n[n1[0] | . . . | nr [0]] for somen < N.

Lemma 7.10 Assume some finite set of names N and a quantifier free formulaA

such thatfn(A) ⊂ N, and n< N. Then

Pn
N |= A iff (νn)Pn

N |= A

Proof. By induction onA:

• the casesA = A1 ∧A2, andA = ¬A1, are straightforward.
• if A = 0: then none of the two processes satisfiesA.
• if A = A1 | A2. Assume first thatPn

N |= A. By symmetry, we may assume
Pn

N |= A1 and0 |= A2. So (νn)Pn
N |= A1 by induction, and (νn)Pn

N |= A. If we
assume (νn)Pn

N |= A, we may do the same reasoning.
• A = m[A1]: none ofPn

N, (νn)Pn
N does satisfyA.

• A = mrA1: thenm ∈ fn(A) ⊆ N, hence none ofPn
N, (νn)Pn

N does satisfyA.
�

Lemma 7.11 There is no formulaA ∈ SALint − {I} equivalent toIn.nrnr⊥.

Proof. By absurd, letA be such a quantifier free formula, and{n1, . . . ,nr} = fn(A).
ThenPn

N 6|=A, so (νn)P6|=A, by Lemma 7.10, and the contradiction. �

7.2.4 0 is expressive
Here we assume we take> instead of 0 as a primitive formula. Then 0 is not
expressible. For this, we remark that for anyA without 0 and forn < fn(A), 0 |= A
iff n[0] |= A.

Lemma 7.12 LetA be a formula without0, and n< fn(A). Then

0 |= A iff n[0] |= A

Proof. We reason by induction onA

• A = >,A = A1 ∧A2,A = ¬A1 : straightforward.
• A = Im.A1 : We assume without loss of generalitym , n. If 0 |= Im.A1,

then 0 |= A1. n[0] |= A1 by induction, son[0] |= In.A1. Conversely, if
n[0] |= Im.A1, thenn[0] |= A1, so0 |= A1 by induction, and then0 |= In.A1.

• if A = A1 | A2. Assume first that0 |= A1 | A2. Then0 |= A1 ∧ A2, hence
by inductionn[0] |= A1, andn[0] |= A1 | A2. If 06|=A1 | A2, then we may
assume by symmetry that06|=A1. Assume by absurd thatn[0] |= A1 | A2. Then
n[0] |= A1 and0 |= A2. By induction0 |= A1 and the contradiction.

• if A = m[A1]. Thenm, n by hypothesis, and both06|=A andn[0] 6|=A.

19

LOZES

• if A = mrA1, m , n by hypothesis. If0 |= A, then0 |= A1, and by induction
n[0] |= A1 andn[0] |= A. Conversely, ifn[0] |= A, thenn[0] |= A1, and0 |= A1

so0 |= A by induction.
�

Lemma 7.13 There is no formulaA ∈ SALint − {0} equivalent to0.

Proof. By absurd, ifA is such a formula ann < fn(A), then by Lemma 7.12,
n[0] |= A and the contradiction. �

8 Separation logic and classical logic

In this section, we consider the assertion language presented in [2], refered as Sep-
aration Logic (SL). SL holds spatial connectives∗ and−∗ similar to| and. in SAL,
with a light but significant difference for∗: the composition requires a compatibil-
ity conditionh⊥h′ that is not always satisfied; in particular, this is not possible to
compose two copies of the same structure (h ∗ h). As a consequence, the expres-
siveness of∗ is quite restricted and essentially express the separation of resources,
which equality already expresses. For this reason, we can establish the elimination
of both∗ and−∗ . We define a classical fragment CL and prove it to be as expressive
as SL.

8.1 Definitions

We assume a countable set Var of variables, ranged over withx, y, and a set Loc of
locations such that Loc⊆ N. Expressions and assertions of SL are defined by the
following grammar: We writev(P) for the set of variables occuring inP. Assertions

e ::= x | nil | −

P ::= (x 7→ e1,e2) | x = y | emp | ⊥ | P⇒P

| P ∗ P | P−∗ P

Fig. 4. Separation logic (SL)

express properties of memory states, modelled as a pair consisting of a store and a
heap, as follows:

Val
def
= Loct {nil}

Store
def
= Var→ Val

Heap
def
= Loc ⇀ f in Val

State
def
= Stack× Heap

where⇀ f in stands for a partial function with finite domain. We range over stores
with s, over heaps withh, and over states withσ. We noteσ1⊥σ2 for s1 = s2 and

20

LOZES

dom(h1)∩dom(h2) = ∅, and, when this holds,σ1∗σ2 is the state defined by keeping
the same store and by settingh1 ∗ h2(x) = h1(x) or h2(x).

For a valuev, we notev |=σ e if either e = −, or v = e = nil, or e = x and
v = s(x). We then note (v1, v2) |=σ (e1,e2) if v1 |=σ e1 andv2 |=σ e2. The condition
for a stateσ to match an assertionP, writtenσ |= P, is inductively defined as:

σ |= ⊥ never

σ |= (x 7→ e1,e2) iff dom(h) = {s(x)} and

hs(x) |=σ (e1,e2)

σ |= x = ey iff s(x) = s(y)

σ |= emp iff dom(h) = ∅

σ |= P1⇒P2 iff σ |= P1 impliesσ |= P2

σ |= P1 ∗ P2 iff there existσ1 andσ2 such that

σ = σ1 ∗ σ2; σ1 |= P1 andσ2 |= P2

σ |= P1 −∗ P2 iff for all σ1 such thatσ⊥σ1,

σ1 |= P1 impliesσ ∗ σ1 |= P2

We may define as usual the connectives∧,∨,>,¬ ,⇔ in the obvious way. We
also introduce twomonotonic2 assertions (cf. Fig 5). Any assertion of this form,

monotonic assertion encoding in SL semantic

(x ↪→ e1,e2) (x 7→ e1,e2) ∗ > s(x) ∈ dom(h) andhs(x) |=σ (e1,e2)

size ≥ n ¬ emp ∗ . . . ∗ ¬ emp︸ ︷︷ ︸
n times

]dom(h) ≥ n

Fig. 5. Monotonic assertions from SL

or of the formx = y will be said to beatomic. In the remainder, we actually take
these as primitive, which ensure the encoding of (x 7→ e1,e2) andemp assertions
through boolean combinations3 . We callclassical logic(CL) the fragment of SL
defined by the grammar of Fig 6. We will notew(P) for the maximaln such that
size ≥ n is a subassertion ofP, andv(P) for the set of variables ofP.

Our main result is the following:

2 or intuitionistic, using the terminology of [15], that is assertionsP such thatσ |= P implies
σ′ |= P for all σ′ ≥ σ.
3 On the contrary, it is not possible to encode (x ↪→ e1,e2) andsize ≥ n from (x 7→ e1,e2) andemp
using only boolean combinations; this point is also discussed in conclusion.

21

LOZES

P ::= P⇒P | ⊥ | (x ↪→ e1,e2) | x = y | size ≥ n .

Fig. 6. Classical fragment (CL) of SL

Theorem 8.1 CL is as expressive as SL, i.e. for all assertion P of SL, there exists
a classical assertion P′ of CL such that|= P⇔ P′.

At the same time, we also prove the following result: the monotonic (indeed
atomic) fragment is as separative as the whole language, that is if two states satisfy
the same monotonic assertions, then they satisfy the same assertions.

8.2 Proof of the translation

Our proof proceeds in the same way as for SAL: we define an intensional equiva-
lence and prove that it has the precompactness and characteristic formula proper-
ties.

Let X be a finite set of variables, andw an integer. We say that two statesσ
andσ′ are intensionally equivalent forX,w, writtenσ ≈X,w σ

′, if for all classical
assertionP with v(P) ⊆ X andw(P) ≤ w, σ |= P iff σ′ |= P.
Remarks:

(i) This definition amounts to say thatσ andσ′ satisfy the same atomic classical
assertionsP with v(P) ⊆ X andw(P) ≤ w.

(ii) Let us writew(σ) =]dom(h). Given three natural numbersa,b,w, we write
a =w b if either a = b or a,b ≥ w. Then for anyσ,σ′ such thatσ ≈X,w σ

′,
w(σ) =w w(σ′).

(iii) Equality assertionsx = y only depend on the store. We notes =X s′ if these
stores satisfy the same equality assertions with variables inX. Then for any
σ,σ′ such thatσ ≈X,w σ

′, s=X s′.

(iv) Let V be some set of values. We notev =V v′ if eitherv = v′ or {v, v′} ∩V = ∅,
and (v1, v2) =V (v′1, v

′
2) if v1 =V v′1 andv2 =V v′2. Then for anys,h,h′ such that

(s,h) ≈X,w (s,h′), dom(h)∩ s(X) = dom(h′)∩ s(X) due to assertionsx ↪→ −,−,
and for alll ∈ s(X)∩ dom(h), h(l) =s(X)∪{nil} h′(l) due to assertionsx ↪→ e1,e2.

Let say more about store equivalence. Consider a stores0 and a stateσ = (s,h)
such thats0 =X s. Then we may define a new stateshifts0,Xσ of stores0 and heap
h′ defined such that

• dom(h) = s0(s−1(dom(h)) ∩ X) ∪ B with B some arbitrary set of locations such
that]dom(h) =]dom(h′) andB∩ s0(X) = ∅.

• for all l ∈ dom(h′), if l = s0(x) andhs(x) = (s(y), s(z)) for somex, y, z ∈ X,
h′s0(x) is set to be (s0(y), s0(z)), otherwiseh(l) is arbitralily defined out ofs(X).

This is easy to check thatσ andshifts0,Xσ satisfy the same atomic assertions
with variables inX.. Moreover, this transformation is compositional, in the sense
thatshifts0,X(σ∗σ′) = shifts0,Xσ ∗ shifts0,Xσ

′. This transformation is not completely
deterministic, but assuming that every choice of a “fresh” value is made different

22

LOZES

at each time and at each call toshift,X, σ⊥τ will imply shifts0,Xσ⊥shifts0,Xτ. We
actually have the following stronger result:

Lemma 8.2 For all assertion P∈ SL withv(P) ⊆ X,σ |= P iff shifts0,Xσ |= P.

The proof is straightforward by induction on the assertionP considering previ-
ous remarks.

We now recall the equivalence relation defined by Yang in [18] for the decid-
ability proof, and use it to derive the correction of≈X,w.

Definition 8.3 [∼s,n,X[18]] Given a stacks, a natural numbern and a setX of vari-
ables,∼s,n,X is the relation between heaps such thath ∼s,n,X h′ iff

(i) s(X) ∩ dom(h) = s(X) ∩ dom(h′);

(ii) for all l ∈ s(X) ∩ dom(h), h(l) =s(X) h′(l);

(iii)](dom(h) − s(X)) =n](dom(h′) − s(X)).

The first step of the correction proof is to factorize≈X,w in ∼s,n,X.

Lemma 8.4 For any X,w,n such that n+]X ≤ w, for anyσ,σ′, s,h,h′ such that
σ = (s,h), σ ≈X,w σ

′, andshifts,Xσ′ = (s,h′), it holds that h∼s,n,X h′.

Proof. By Lemma 8.2, (s,h) ≈X,w (s,h′). Then conditions i and ii in Definition 8.3
holds by Remark iv, so the proof follows from the verification of the condition iii
on the heap size.

Let assume first that](dom(h) − s(X)) < n; then]dom(h) = k < n+]X ≤ w, so
σ |= P = size ≥ k ∧ ¬ size ≥ k + 1, andw(P) = k + 1 ≤ w. By definition of≈X,w,
σ′ |= P, so]dom(h′) = k =]dom(h). Moreover,s(X) ∩ dom(h) = s(X) ∩ dom(h′),
so finaly](dom(h) − s(X)) =](dom(h′) − s(X)).

Let assume now that](dom(h) − s(X)) ≥ n; and setk = min(]dom(h),w),
so thatσ |= size ≥ k, and by definition of≈X,w, σ′ |= size ≥ k. Moreover,
dom(h) ≥ n+](dom(h)∩ s(X)), andw ≥ n+]X ≥≥ n+](dom(h)∩ s(X)), so finally
k ≥ n +](dom(h) ∩ s(X)). This givesdom(h′) ≥ k ≥ n +](dom(h′) ∩ s(X)) since
s(X) ∩ dom(h) = s(X) ∩ dom(h′), i.e.](dom(h′) − s(X)) ≥ n.
]dom(h) ≥ k ≥ n +](dom(h) ∩ s(X)), wherek = min(]dom(h),w). Soσ |=

size ≥ k, and by definition of≈X,w, σ′ |= size ≥ k, so that finaly]dom(h′) ≥
n+](dom(h′) ∩ s(X)). �

We recall now the correction result obtained by Yang and derive our correction
from it. First we recall the notion of formula’s size used by Yang:

| (e 7→ e1,e2) | = 1 | e1 = e2 | = 0 | emp | = 1

| P⇒Q | = max(| P |, | Q |) | ⊥ | = 0

| P ∗ Q | = | P | + | Q | | P−∗ Q | = | Q |

23

LOZES

Lemma 8.5 Take s,h,h′,n,X with h∼s,n,X h′. Then for all assertion P∈ SL such
that v(P) ⊆ X and| P |≤ n, (s,h) |= P iff (s,h′) |= P.

The proof of this result is detailed in [18].

Corollary 8.6 (Correction) Takeσ,σ′,w,X withσ ≈X,w σ
′. Then for all assertion

P ∈ SL such thatv(P) ⊆ X and| P | +]X ≤ w,σ |= P iff σ′ |= P.

Proof. By Lemma 8.4,h ≈s,n,X h′ with σ = (s,h), shifts,Xσ′ = (s,h′), andn =
w−]X. Thenσ |= P impliesshifts,Xσ′ |= P by Lemma 8.5, which impliesσ′ |= P
by Lemma 8.2. �

We may now end the proof establishing the properties of precompactness and
characteristic formula for≈X,w.

We writeΦX,w for the set of atomic assertionsP such thatv(P) ⊆ X andw(P) ≤
w. ForX finite,ΦX,w is finite as well. This has two important consequences:

Proposition 8.7 (Precompactness)For all w and all finite X,≈X,w has only finitely
many classes.

Proof. A class is represented by a subsetΦ ⊆ ΦX,w of atomic assertions that are
the ones satisfied by any state of the class. So there are less than 2]ΦX,w distinct
classes. �

Proposition 8.8 (Characteristic formula) For all statesσ, for all X,w, there is a
classical assertion F(X,w)

σ such that

∀σ′. σ′ |= F(X,w)
σ iff σ ≈X,w σ

′ .

Proof. Take ∧
σ|=P,P∈ΦX,w

P ∧
∧

σ 6|=P,P∈ΦX,w

¬P .

�

We may now establish Theorem 8.1 noticing that any assertionP of SL is equiv-
alent to the classical assertion: ∨

C∈State/≈X,w ,C|=P

F(X,n)
C ,

where finiteness of this disjunction is ensured by Proposition 8.7.

9 Conclusion

We have established the adjuncts elimination property for SAL, a logic for trees
with binders including the fresh quantifierI. This involves putting a formula in
prenex form and then doing the transformation on the quantifier-free formula. The
adjunct-free fragment SALint turns then to be aminimal logic.

24

LOZES

We established the absence of adjunct elimination for the same logic whereI
is replaced by the usual∀ quantifier, whichever adjunct is considered. This result,
together with the difference w.r.t. decidability of model-checking on pure trees,
illustrates the significant gap existing between the two forms of quantification.

Finally, we defined a classical fragment of the Separation Logic, excluding both
∗ and−∗ , and proved it to be as expressive as the full separation logic. Our approach
shows also that all the separative power of the logic lies in the monotonic fragment.
When defining our classical fragment, we had to move from the assertionsx 7→
e1,e2 andemp to x ↪→ e1,e2 andsize ≥ n in order to capture the∗ connective;
without that, this is probably possible to eliminate only the adjunct. Note that
the assertion (x 7→ 0,0) −∗ false would be translated in CL asx ↪→ −,−, which
underlines the importance of the special expression−.

In relation to our study, some observations can be made regarding the difference
between theI and the∀/∃ quantification. The congruence ofa`, the existence of
prenex forms, the decidability of the model-checking on pure trees, the adjuncts
elimination, are properties verified by the logic with the fresh quantifier, whereas
they fail for the universal quantifier.

Yang proposed a clever counterexample to the elimination of−∗ in a Sepa-
ration Logic with quantifiers; this example seems of deeper meaning than the one
presented in Sec. 6, but a better understanding of its implications is still lacking. In
the same way, we do not know wether∗ elimination remains true for the assertion
language without−∗ and with quantifiers.

The results we obtain for SAL and SL can be adapted to several other settings,
provided the logic follows the algebric structure of its models in the same way
as SAL and SL do. However, for the logics including the time modality^ [6,1],
adjuncts improve the expressiveness of the logic supporting an encoding of action
modalities [17,12]. One could think to take them as primitives in the same spirit
as for SL, and look for the adjunct elimination. However, even in the case of very
elementary concurrent languages, we do not know how to prove such a result.

Acknowledgement

This work has been supported by the european FET - Global Computing project
P, and by the Action IncitativeMéthodes Formelles pour la Mobilité-
CNRS.

I would like to thank M.J. Gabbay for enlightening discussions about Nominal
Sets theory. The anonymous referees, G. Ghelli, and H. Yang helped me signifi-
cantly to improve the previous versions of this presentation. I also want to thank D.
Sangiorgi, L. Monteiro, L. Caires, and D. Hirschkoff for their advice all along this
work.

25

LOZES

References

[1] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). InProc. of
TACS’01, LNCS. Springer Verlag, 2001.

[2] C. Calcagno, H. Yang, and P. O’Hearn. Computability and Complexity Results for
a Spatial Assertion Language for Data Structures. InProceedings of FSTTCS ’01,
volume 2245 ofLNCS. Springer Verlag, 2001.

[3] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. In
Foundations of Software Science and Computational Structures, 6th International
Conference, FOSSACS 2003, LNCS 2620, pages 216–232. Springer, 2003.

[4] L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic. InProc.
of ESOP’01, volume 2028 ofLNCS, pages 1–22. Springer Verlag, 2001. invited paper.

[5] L. Cardelli and A. Gordon. Mobile Ambients. InProc. of FOSSACS’98, volume 1378
of LNCS, pages 140–155. Springer Verlag, 1998.

[6] L. Cardelli and A. Gordon. Anytime, Anywhere, Modal Logics for Mobile Ambients.
In Proc. of POPL’00, pages 365–377. ACM Press, 2000.

[7] L. Cardelli and A. Gordon. Logical Properties of Name Restriction. InProc. of
TLCA’01, volume 2044 ofLNCS. Springer Verlag, 2001.

[8] C.Calcagno, L. Cardelli, and A. Gordon. Deciding Validity in a Spatial Logic for
Trees. InProc. of TLDI’03, pages 62–73. ACM, 2003.

[9] W. Charatonik and J-M. Talbot. The Decidability of Model Checking Mobile
Ambients. InProc. of CSL’01, LNCS. Springer LNCS, 2001.

[10] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders.
In 14th Annual Symposium on Logic in Computer Science, pages 214–224. IEEE
Computer Society Press, Washington, 1999.

[11] G. Ghelli and G. Conforti. Decidability of freshness, undecidability of revelation. In
Procs. of FOSSACS’04, march 2004.

[12] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and
Decidability in the Ambients Logic. In17th IEEE Symposium on Logic in Computer
Science, pages 423–432. IEEE Computer Society, 2002.

[13] C.A.R. Hoare. An axiomatic basis for computer programming.Communications of
the ACM, pages 12(10):576–580, october 1969.

[14] J. Reynolds. Intuitionistic reasoning about shared mutable data structure, 2000.

[15] J. Reynolds. Separation logic: a logic for shared mutable data structures - invited
paper. InProceedings of LICS ’02, 2002.

[16] D. Lugiez S. Dal-Zilio and C. Meyssonnier. A Logic You Can Count On. InProc. of
POPL’04, 2004.

26

LOZES

[17] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic. InProc. of
28th POPL, pages 4–17. ACM Press, 2001.

[18] Hongseok Yang.Local Reasoning for Stateful programs. PhD thesis, University of
Illinois at Urbana Champaign, 2001.

27

