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Elimination of spatial connectives
In static spatial logics

Etienne LOZES

LIP, ENS Lyon — France

Abstract

The recent interest for specification on resources yields so-cgflatial logics that is
specification languagedtering spatial connectives: a separation into two subcomponents
of the considered structures,¢r |), and its adjunct, the guarantee respect to the extension
of the structure« ,»).

We consider two resource models and their related logics:

« the Static Ambient (SA), proposed as a model of semistructured data [4], with the Static
Ambient Logic (SAL) that was proposed as a request language, both obtained restricting
the Mobile Ambient calculus [5] and logic [6] to their purely static aspects.

« the shared mutable data structures adressed by the Separation Logic (SL), as it has been
defined in [15] as an adequate assertion language for Hoare style reasoning on imperative
programs manipulating pointers.

We raise the questions of the expressiveness and the minimality of these logics. Our
main contributions are the elimination of adjuncts for SAL, the minimality of the adjunct-
free fragment (SAlx¢), and the elimination of both spatial connectivesnd - for SL.

Key words: Spatial logics, Separation logic, Mobile Ambients,
Minimality.

1 Introduction

The Mobile Ambients calculus (MA) [5] is a proposal for a new paradigm in the
field of concurrency models. Its originality is to set as data the notiolocH-

tion, and as notion of computation the reconfiguration of the hierarchy of locations.
The calculus has a spatial part expressing the topology of locations as a labelled
unordered tree with binders, and a dynamic part describing the evolution of this
topology. The basic connectives for the spatial partadefining the empty tree,
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a[P], defining the tree rooted atwith subtreeP, P | Q for the tree consisting of
the two subtreeP andQ in parallel, and ¥n)P for the treeP in which the label (or
name)n has been hidden. Leaving out from MA all capabilities, we get rid of the
dynamics of the calculus, working with what we cstihtic ambientsSA.

Type systems are commonly used to express basic requirements on programs.
In the case of SA, the (static) Ambient Logic (SAL) [6] provides a very flexible
descriptive framework. Seeing SAL as a request language, one may ask a structure
P to match some specificatiqr, written

PEA.

The SAL approach is however much more intensional than it is the case for standard
type systems. Indeed, the whole spatial structure of the calculus is reflected in the
logic. For instance, the formula[A] is satisfied by structures of the fornjP]

with P E A. Finally, AL includesadjunct connectivefor every spatial construct.

For instance, thguaranteeoperator

A> B

specifies that a process is able to sati8fyvhen it is extended by any process
satisfying.A. SA, associated to SAL, has appeared to be an interesting model for
semistructured datfd]. Datas are modeled by unordered labelled trees, where the
binders may represent pointers [3], and the logic is used as the basis for a language
for queries involving such data. For instance, the process

(vptr)(Cardellif Ambientptr[tex{0]]]] | Gordoq Ambient§ptr[Q]]])

represents a database containing the two authors Cardelli and Gordon with one
copy of their paper about Ambients stored at Cardelli's and linked to Gordon’s.
Query

Nptr. ptr® (Cardelli[ T] | T)

asks whether the database contains some author named Cardelli.

Separation Logic [15] is a proposal for a new assertion language in Hoare’s
approach of imperative programs verification. Indeed, imperative programming
languages manipulating pointers allow one to change the value a variable refers to
without explictly mentioning this variable. Such multiple accesses to data make
the axiomatic semantics [13] of these prograntidiilt to handle using classical
logic as an assertion languagel[14]. Separation Logic nicely handles the subtleties
of pointer manipulation. providing two new connectives: a separative conjunction
P« Q asserting thaP andQ hold in separate parts of the memory, and a separating
implicationP- Q allowing one to introduce ‘spatial hypotheses’ about the memory.
For instance, the judgement

(x> )« (x— € = ¢)} x:=e (¢}
2
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is the transposition of the classical backward reasof#fe) x]} x := e{¢} in Hoare
logic.

Both specification languages rely on classical logic reasoning extended by two
non-standard operations: splitting of the resource space and separated assertions
(I, *) on each subspace, and extension of the resource space assuming some hy-
pothesis«, - ). These two aspects are the main novelties of the so-cgiatial
logics The interest of these connectives has been illustrated in several ways. For
Mobile Ambients, it is known that the connectiwveoupled with¢> can express the
action modalities[[17], persistency, and other strong properties [12]. For Separa-
tion Logic, the proof of an in-place reversal of a list turns out to require complex
invariants in the standard classical logic, whereas it has a simple formulation in SL
using=, as one of the many examples presented.in [14].

Althought spatial connectives evidently brings a real ease to the formulation of
complex properties of the structures, their actual contribution to the expressiveness
of the logic is not so clear. For instance, the formxikas nil = y < nil expresses
that bothx andy points tonil, but from distinct locations, which can also be ex-
pressed ag < nil Ay < nil A X # y without requiring=; the formulan[0] > n[0]
tells that after extension of the structure addnfi@], one exactly has[0], which
means that the structure was initially empty, hence this formula is equivalent to 0.
On the other hand, it has been established for the Mobile Ambient case, i.e in a
dynamic setting, that guarantee brings some extra expressive power [12].

This paper studies the contribution of spatial connectives in the expressiveness
of static spatial logics. This question is important since spatial connectives intro-
duces a lot of complication from the model-checking point of view. Indeed, sepa-
rated conjunctions and| forces to try all the splitting of the structure, which may
be costly for wide structures. Even worst, the spatial implicatienand> consid-
erably complicate the model-checking introducing the need to seek a representative
testing setl[2,8], when it is not an undecidable problein]2,11]. The expressiveness
of spatial connectives is also important from theoretical issues. For instance, the
proof of an in-place reversal of a list is derivable, through heavy formulations, in
classical Hoare logic as well, and the question is open wether Separation Logic can
prove programs on which classical reasoning would fail.

Several kinds of quantification can be taken under consideration for our spatial
logics:

« absence of quantification, as it is the case for SL (in this work).
« classical quantificationy( 3), which defines the logic SAL

« fresh quantification [10], Yn. A), which is the way SAL handles name gen-
eration. This quantification is related toconversion of bound names. It is
complementary to the spatial connect® A that forces the process to reveal a
hidden name by calling .

We establish that the contribution of spatial connectives depends on the forms of
guantification supported by the logic.

3
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Indeed, in quantifier-free logics, adjuncts do not increase the expressiveness of
the logic (Theorem 4]4). Neither does the separated conjunct)dor(SL, since
it only expresses separation, so that SL assertions can be translated into a classi-
cal logic (Theoren 8]1). In a fferent way| brings extra expressiveness to SAL,
namely the power of counting, so it cannot be eliminated, and actually the adjunct-
free fragment of SAL is minimal (Theorem 7.1). The proof of these elimination
results goes through the intensive use of intensional partial equivalences on mod-
els; such equivalences are common for the study of the expressiveness of a logic
(seel[17,12] for spatial logic cases), but were also exploited for decidability issues
in [2/8]. Two properties justify the encoding: a property we gadicompactness
which expresses finiteness of behaviours, and the existendeacdcteristic for-
mulasfor the classes of partial intensional equivalence.

When classical quantifiers are taken under consideration, more complex prop-
erties can be expressed through adjuncts, and they cannot be taken out freely (The-
orem[6.1). This dference of nature of the logic was already observed from the
decidability aspect]2]9,8], which implied the absence offéective adjuncts elim-
ination. Our result shows that the adjuncts elimination is impossible even theoreti-
cally.

Finally, we establish the quite surprising result that adjuncts elimination is still
possible in presence of fresh quantification (Thedrein 5.4), essentially due to prenex
forms for 1 (Propositior{ 5.8). This result underlines the fundamentgiénce
between classical quantification and fresh quantification. Actually, in our setting,
fresh quantification is strictly weaker than classical quantification, since the for-
mulalin. A can be expressed in SAlas

vn. (n®T A /\ n#m) - A,
mefn(ﬂ)—{n}

and admit more regular properties than.

Related work.

Apart from [16], this is, to our knowledge, the first results studying precisely the
expressiveness and minimality of spatial logics. Other works about expressiveness
only give some hints. A first result about the separation power of AL is presented
in [17]. Other examples of expressive formulas for AL are shown in [12], such as
formulas for persistence and finiteness.

A compilation result has been derived for a spatial logic for trees without quan-
tification and private names [16]. In that work, the target logic includes some new
features such as Presburger arithmetic, and the source logic includes a form of
Kleene star.

The setting in which we obtain our encoding is rathdfedent in the dynamic
case (see [12]). There, the presence of adjuncts considerably increases the ex-
pressive power of the logic. For instaneeallows one to construct formulas to
characterise processes of the faypen n. P, and, using the @ connective, we may

4
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define a formula to capture processes of the foutm. P.

The use of a partial intensional equivalence and the notion of precompactness is
original. Intensional bisimilarity plays an important role in the characterisation of
the separation power of the logic [17]. Our proof suggests that it is also a powerful
and meaningful concept for the study of expressiveness.

The presence of the connective in the logic is crucial with respect to decid-
ability issues. The undecidability of the model-checking of SAL with classical
guantification has been established in [9]. Quite unexpected decidability results for
spatial logics with- and without quantification were then established in [2] and [8].
these work are closely related to the present study; roughly, the decidability result
of [8] relies on finiteness gbrocesseswhereas our encoding exploits finiteness of
observationsFor this reason, our approach is more general and cut out decidabil-
ity issues. Actually, the undecidability of the model-checking problem for SAL has
been recently established [11]. This last work studies many variations around SAL,
derives decidability results withandl/1, and presents a prenex form result similar
to ours.

Ouitline.

We introduce SA, SAL and its adjunct-free fragment (S#Lin Sec[2. We
prove adjunct elimination for quantifier-free formulas in $¢c. 4, based on the notion
of intensional bisimilarity, discussed in Sg¢. 3. The general result for SAL is then
established in Sef] 5, based on prenex forms. We discuss the adjunct elimination
for SAL” in Sec[ 6, and show minimality of SAkin Sec[7; in Se¢.|8, we introduce
SL and a classical fragment of it (CL), which we prove to be as expressive as SL.
Sec| 9 gives concluding remarks.

2 Background

In this section we define the model of static ambients (SA) and its logic SAL. We
also define the intensional fragment (SA)Lof SA.

In all what follows we assume an infinite s&tof names, ranged over oy m.
Tree terms are defined by the following grammar:

P = P|P|n[P]|()P]|O.

The set fnP) c N of free names oP is defined by saying thatis the only binder
on trees. We cabtatic ambientsree terms quotiented by the smallest congruence
= (calledstructural congruencesatisfying the axioms of Fig|1. Formulas, ranged
over withA, B, ..., are defined in Fi§]2 . These formulas fothe static ambient
logic, and we callintensional fragmenthe subset of the formulas not using the
connectives, @, ands (ajduncts). We note them respectively SAL and $SAL

We will say thatA is quantifier-freeif A does not contain ariyl quantification.
The set of free names of a formuf@, written fn(A) is the set of names appearing

5
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P|0=P (vn)0 =0
(PIQIR=PI(QIR (vn)m[P] = m[(vn)P] (n+m)
PIQ=QI|P (mP 1 Q = (v)(P | Q (n¢n(Q)

Fig. 1. Structural congruence on SA

A=ANA|-AIVNNA|O|A|A |NA] | n®A (intensional fragment)
| Ab A [A@N | ASON (adjuncts

Fig. 2. SAL and the intensional fragment SiL

in A that are not bound by Bl quantification. A(n < ') is the formulaA in
which names andn’ are swapped.

Definition 2.1 (Satisfaction) We define the relatiog c (S Ax SAL) by induction
on the formula as follows:

e PE ALNAITP E Arand P E A,

e PE-AIfPEA

e PE UnAIYN e N-(In(P)Ufn(A)), P E A(n < 1)

e PE A |AifthereisB,P,s.t. P=P;|P,and R E A fori=1,2

s PEOIfP =0

« P E n[A] ifthereis PsuchthatP= n[fPland P £ A

« P E n®Aifthereis P suchthat P= (vn)P and P A

e PE AvAsifforall Qsuchthat QF A, P|Q E A

« PE A@NIfN[P] E A

e PE Aconif(vn)P E A

We noteA 4+ Bifforall Pe SAP E Aiff P E B. A context is a formula con-
taining ahole if C is a contextC[A] stands for the formula obtained by replacing

the hole withA in C. The following property stresses a firsttdrence between
SAL and theY /3 version of the logic:

Lemma 2.2 For all A, B, and all context, if A 4+ B, thenC[A] 4+ C[B].
Remark 2.3

« The formulaL, that no process satisfies, can be defined/as 0. As e.g. in[[6],
other derived connectors include and»: P satisfiesA » B iff there existQ
satisfyingA such thatP | Q satisfiess.

e If PE AandP = Q, thenQ E A. Moreover = is equivariant that isP E A iff
P(n & n') E AN « ) foranyn, n'.

« For anyP, there is a characteristic formula (fa) Ap, using the same tree rep-
6
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resentation, such that for &), Q £ Ap iff Q = P. In particular, two static
ambients are logically equivalent if and only if they are structurally congruent.

3 Intensional bisimilarity

In this section, we define a notion of partial observation over trees corresponding to
logical testing with a bound on the formulas’ size and on free names. This notion
Is an incremental version of the intensional bisimilarity presented in [17]. We then

derive two key results:

« the congruence of the intensional bisimilarity, which roughly says thats&L
as separative as SAL; as an important consequence, the bisimilarity is proved to
be correct with respect to logical equivalence.

« a construction of symbolic sets that represent the classes of bisimilarity by col-
lecting all the necessary information, which will be used in the proofs of the next
section.

We assume in the remainder some fixedéet N.

3.1 Definition

We now introduce the intensional bisimilarity. Intuitively, y equates processes
that may not be distinguished by logical tests involving at mateps where the
names used for the tests are pickediin

Definition 3.1 (Intensional bisimilarity) We define the familig; )i Of Symmet-

ric relations overSA by induction on i::o,ng SAx SA, and forany i> 1, ~ IS

the greatest relation such that if 8 y Q, then the following conditions hold:
() ifP = 0thenQ= 0

(i) forall Py, Py, if P = Py | P,thenthereis @ Q, such that Q= Q; | Q, with
Pe =i—1N QE! €= 19 2.

(iii) foralln e N and for all P, if P = n[P’], then there is Qsuch that Q= n[Q’]
and P ~i_1N Q’.

(iv) foralln e Nandforall P, if P = (vn)P’, then there is Qsuch that Q= (vn)Q’
and P =i_1N Q’.

Lemma 3.2 For all i, =~ is an equivalence relation.

We shall write SA.,, for the quotient of SA induced by; n, and range over
equivalence classes wi@ C4, C,.

We may observe that the bisimilarities define a stratification of observations
on terms, namely; » S~y fori < i” andN € N’. This may be understood in
a topological setting. Given a fixeld, we consider the ultrametric distance over
models defined bg(P,Q) = 27" if i is the smallest natural for whicR #;y Q,

andd(P,Q) = 0if P ~,y Qwhere=, = Niay ~in. We call it theN-topology. It
7
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somehow captures the granularity of the logical observations with respect to their
cost.

3.2 Correction

The key step in proving correction of the intensional bisimilarities with respect to
the logic is their congruence properties for the connectives admittting an adjunct.
Lemma 3.3 If P ~;\ Q, then:

« forallR, PR~y Q| R;

« forallne N, n[P] = NQI;

« forallne N, (vn)P =y (vn)Q.

Proof. By induction oni. O

Note that the last point cannot be improved: considet {n}, P = my[0],
Q = my[0]. ThenP =, Q, but (ymy)P #,n (vmy)Q. For this reasons; y is not a
pure congruence.

We notes(A) the size ofA, defined as the number of its connectives.

Proposition 3.4 (Correction) For all P, Q,i such that P~;y Q, for all quantifier
free formulaA such that §A) <iandfn(A) C N,

PEA if QE®.

Proof. By induction onA. For the adjuncts, apply the congruence properties of
Lemmg 3.8, and for the other connectives use the definitien f O

3.3 Signature functions

Definition 3.5 (Signature) Fori > 1, we set:
(i) 2Y(P) = 0if P = 0, otherwise-0
(i) pM'(P)={(Cs.Co) € (SA)~,\)* : P=Pi| Pz and R € Cj}

(i) a¥(P) = [n,C]ifthereis Ps.t. P=n[P],ne Nand Pe C,C € SA. ,,,
otherwise &(P) = noobs, wherenoobs is a special constant.

(iv) rNP)={(n,C) e NxSA. ,, :3P. P=(vn)P’and P € C}
We callsignature oP at (i, N) the quadruplet'(P) = [2'(P), pM(P), a(P), rN(P)].

The following lemma says that the signature actually collects all the information
that may be obtained from the bisimilarity tests.

Lemma 3.6 Assume & 1. Then Py Q iff xN(P) = xN(Q).
8
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4  Adjuncts elimination on quantifier-free formulas

In this section, we show that the quantifier free formulas of SAL have equivalent
formulas in SAL,:. This result is then extended to all formulas of SAL in the next
section.

In all what follows, we will assum@® is a finitesubset ofV; it is intended to
bound the free names of the considered formulas. The encoding result is based on
two key properties:

« Precompactness of thé-topology. In other words, whenN are fixed, only a
finite number of scenari may be observed.

« Existence of intensional characteristic formulas for the classeg\of
Lemma 4.1 The codomain of! is finite.

Proof. We reason by induction ain First notice that the codomain gf is:

codomy! = {0,-0} x (SA/~ ,,)° X ({noobs}+NxSA,., ) X P(NXSA. )

i-1LN

hencecodomy! is finite iff SA,-, ,, is finite too (here we use that is finite). For
i =1, SA.,, = {SA}, henceyy is finite, and so isodomy)'. Fori > 2, we have by
inductioncodomy Y, finite. By Lemmg 3.5, there is an injection of SA | into
codomy',, so SA., ,, is finite, and so isodomy?\. o

Here is an immediate consequence of Lemima 4.1:
Proposition 4.2 (Precompactness}or all i, the number of classes ef \ is finite.

These results roughly say that there is only a finite amount of information is
needed to capture a given bisimilarity class. The next result makes it more precise:
this information may be collected in a single formula of SAL

Proposition 4.3 (Characteristic formulas) For any i € N and for any process P,
there is a formula?Z{'F’,N € SAL;, such that

VQ QFAY e  Q=nP.

Proof. By induction oni. Fori = 0, we may takeAy" = T. Then assume> 1,
and we have formulagl; ™" for all P. This obviously gives a characteristic formula

9
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ﬂic‘ N for any clas<C of SA,._,,,. Let us consider some fixeel We set

A, = 0if 2Y(P) = 0, otherwise-0
Ap = AcrcoepP) ﬂic_ll’N IﬂiC_Zl’N A = Vi) ﬂgll’N |?Iic_21’N
A, = {/\new - n[T] if a¥(P) = noobs
A" if a'(P) = [n.C]
A = Nincgerip) WOAS A = Vingpernip) NOAS
AN = A, A Ay A Aa A Ay

where the finiteness of the conjunctions and disjunctions is ensured by Lemima 4.1.
ThenQ E Ay iff yN(Q) = xN(P), hence the result. O

The precompactness property says that if we bound the granularity of the ob-
servations, only finitely many distinct situations may occur. The characteristic for-
mula property says that each of these situations is expressible in the intensional
fragment. The idea of the encoding is then just to logically enumerate all these
possible situations.

Theorem 4.4 For all quantifier-free formulaA € SAL, there is a formuld A] €
SAL;, such that
A A4 [A]

Proof. We define [A] as follows:
[A] & \/ A forCeSAL,.CEA

fori = s(A) andN = fn(A). The disjunction is finite by Propositipn 4.R.= [ A]
iff there isQ such thaQ | A andP ~;y Q, thatis, by Proposition 3£ A. O

Effectiveness of the encoding

Due to its finiteness, the construction of our proof could seem tdfbetare. How-

ever, this cannot be the case due to an undecidability result for the model-checking
problem on SALI[11]. This is quite surprising, since only d@feetive enumeration

of the bisimilarity classes is missing to make the proof constructive. Moreover,
such an enumeration exists 8rAwithout name restriction, via testing sets as de-
fined in [8]. This reveals an unexpected richnesS éfcompared to pure trees.

5 Adjuncts elimination and fresh quantifier

In this section we establish the adjunct elimination for the full SAL. The essential
result that entails this extension is the existence of prenex forms for the fresh quan-
tifier. Intuitively, the fresh quantifier may “float” on the formula without changing

its meaning.

10
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Proposition 5.1 (Correction of w) The term rewriting system» defined by the
rules of Fig.[3 preserves the semantics: for aflyB € SAL, if A ~ B, then
A - B.

(A (Un.A) A Ay ~ Un. (AL A Ay) (n ¢ fn(A))
(—|) -Nn. Ay » NIn. = Ay
() (n.A) | Az ~ UNn. (AL | A) (n ¢ fn(A))

GL) (A > FAp o VIn (M®T A A > Ap) (n ¢ In(A))
R Ars (n. Ay) ~ Un. ((n®T A A > Ay) (¢ fn(AL))

(Amb mn. A] ~ VIn. m[A] (m=#n)
(@) n. A)@m ~» Vn. (A@m) (m#n)
(®) mARNN. A ~ In.mRA (m#n)
() (Nn. A) oM ~» Un. (A S m) (m#n)

Fig. 3. Term rewriting system for prenexation

Proof. (sketched) We only detail the proof for ruke.{.

PE (n.A)> A,
o V¥,V ¢ in(A)UMN(Q). QF Ai(nen’) = P|QE Ay
o V¥V, ¢ in(A> A)UM(P| Q). QE Ai(ne-n) = PIQE A
o VO,V ¢ In(Ay> A)U(P| Q). QF Ai(lneon) = P|QE Axne n)
o V' ¢ fn(Ay > Ay) U fn(P),

Q. ¢fn(Q) = QEAi(neon) = P|QE A(n & 1)
o P E UN (A1 A N®T) > A,

mi

Remark 5.2 Some of the rules above (such #&s1b, (- ), and a variant of|(L))
have already been presentedin [7], under the form of equalities. The same result is
independently developped in11].

We say that a formulaA is wellformedif every variable bound byl is dis-
tinct from all other (bound and free) variablesd For such formulas, the side
conditions inw» are always satisfied.

It is easy to see that» defines a terminating rewriting system, and that the
normal forms of wellformed formulas are formulas in prenex form. Confluence

11
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holds modulo permutation of consecutidequantifiers.

Proposition 5.3 (Prenex forms) For any formulaA, there arei, A’ such thatA 4+
NA. A" and A’ is quantifier free.

This result directly implies the following extension of Theoren 4.4:

Theorem 5.4 (Adjunct elimination) For any formulaA € SAL, there is a for-
mula[A] € SAL;, such that
A A4 [A]

Proof. There isA’ quantifier free and Such thatA -+ NiA. A’ by Propositiof 5.3.
Then by Lemma 2]2 and Theorém|4.4, we may write
A 4 NALA 4 NR[A].

O

Example 5.5 : We show an example to illustrate how S@lformulas can capture
non trivial properties expressed using the adjuncts. Let

A = (HnY.nY[T] » (Hny.n¢[O] | HNy. ny[HN3. ng[O]]))®m@m

whereHn. A (H being thehidden name quantifigd]) stands fo/In. n®A. The
prenex form ofA is

M, ng, g, g ((M@T A M@M[T]) » (m®n[0] | N®no[Ns®. naf0]])) © m@m

ThenP E A iff there isQ such that

(vm)m{P] | M) m[Q] = (vn)(vn2)(vng)(m[O] | nz[N[O]])

The only solutions of this equation alre= 0 or P = (vn3)ng[0]. In other words,A
Is equivalent taB = 0 v Hns. n3[0].

6 Adjuncts elimination and classical quantifiers

In this section we consider a variant of SAL. Instead of fresh quantified formu-
las, we consider name quantification of the fofm A and3ax. A with the natural
semantics:

PE VXA if Yne N. P E A{("/y

Let us note SAI,\:1t the intensional fragment with classical quantification. We
ask the question of adjuncts elimination for extensions of this logic. The unde-
cidability result of [9] implies that there is noffective adjunct elimination for
SAL?nt + {»}. We establish now a more precise result:

Theorem 6.1 (Expressiveness of adjuncts iSAL?nt) SAL?nt + {>}, SAL;’nt +{@}
andSAL; . + {S} are strictly more expressive th&SAL;

int*
12
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The proof of this theorem is based on the following observation. In any of the
extensions we consider, it is possible to define a fornrfisuch that

(1) PEA iff #fP) <1

For the> and @ connectives, we may first encode the formutamas(n[T] A
-m[T])> L and Q[T])@m. Then (1) is satisfied by the formula

X Vy. (Ry®T) - x=Yy

For thes connective, there is a direct formula satisfyipg (1):
ax (VY. y®T) © X

We are now interested in proving that such a property cannot be expressed in
SAL;’m. Our approach consists in studying the stability=ofespect substitutions.
Finding suficient conditions so that substitutions can be applied both on the side
of the formula and on the side of the process while keeping satisfaction will endow
the stability of satisfaction collapsing names, which could not be the case for the
property we consider.

We callthread context contexiC of the form

C[P] = OA)mil...n P]...]

with i C {ny, ..., n}. We noten(C) aef {n,...,nJ andd(C) €'k Fora formula#,
we noted(A) the number ofi[. ] connectives inA.

Lemma 6.2 LetA be a formula oSAL; ., andC a thread context such tha{@) >
d(A). Let n m be two names such thi@t m} N n(C) = 0, and

P = Cn[0] | m{0]]
Then PE AIiffP E A{"/n).
Proof. By induction on the size ofd:

 the casesA = Ay A Ay, A = = Ay, andA = 0 are trivial.

e A = Ay | A,. Assume firstP E A. Sinced(C) > 1, we may assume by
symmetry thaD A, andP E A;. ThenP E A{"/m} by induction, and
P E A{"/m}. The other direction is proved similarly.

o« A = alA;]. Assume firstP = A. ThenC = a[C’] and P’ 4 C’'[n[0] | m[O]] E
Ai. By inductionP’ £ A"/m}. Since{n,m} N n(C), a # m, SOA{"/m} =
alA{"/m}], andP E A{"/ i}

Assume nowP E A{"/m}. Letb = a{"/,,}. ThenC = b[C’] and P’ & C’[n[0] |
m[0]] E A{"/m}. Thenb € n(C), sob ¢ {mn}, andb = a. By induction
P’ E Ay, SOP E b[A;] = A.

. A = a®A;. Assume firsP £ A. ThenC = (va)C’ andP’ = ¢'[n[0] | m[0]] k&
Aji. Sincen,mare free inP, a # manda # n. So{n,m} N n(C’) = 0, and by
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induction, P’ £ A{"/m}. A{"/m} = a®AL"/m}, andP E A{"/n}. The other
direction is proved similarly.

e A =VYXA;. Assume firsP  A. Let takea € N. ThenP E A,{?/«}, and by
inductionP E A1{?/,{"/m}. Fora # m, this is alsoP  A{"/mjax. Fora=m,
this requires a bit more. Consider tHatE A {"/x}. ThenP £ A {"/xH"/m}
by induction. ButA{"/xH{"/m} = (A" /mH™/x){"/m}, SO by inductionP
AL mH™/x}. HenceP E A" /m}{?/«} for all a, that isP E VX A" /m} =
A"/ m}.

Assume now thaP = A{"/}. Lettakea € N. ThenP E A" /mH?/x}. Ifa# m,
this isP E A{?/«{"/m}, SO by inductiorP = A{?/«}. Fora = m, consider that
P E A"/mi"/x}, that isP E A{"/xH"/m}, SO by inductionP | A {™/x}.
HenceP E A.{?/} for all a, that isP E A.

O

Lemma 6.3 LetA be a formula oSAL;’m, andC a thread context such tha{d) >
d(A). Let nm be two names such thigt m} N n(C) = 0, and moreover rg fn(A).
Let

P, = C[n[o]Im0]] and B = C[n[0]|n[0]]
If P, E A, then B E A.

Proof. By induction on the size ofd:

« the casesA = A1 A Ay, A= ALV Ay, A=0andA = =0 are trivial.

e A=A | A Sinced(C) > 1, we may assume by symmetry titaE A, and
P, E A;. ThenP; E A, by induction, and?, £ A

e A=A || Ay. Sinced(C) > 1,P1 E A A Ay, 0 E A A Ay. By induction,
P> E AL A Ay, that iSPz EA

« A = a[A;]. ThenC = a[C’] andC’'[n[0] | M[O]] E A;. By inductionC’[n[0] |
n[0]] E Aj, that isP, E A.

s A= -aA. Then eitherC is not of the forrn[C’], and P, - a[A,], or C =
n[C’] but C’[n[Q] | M[Q]] E —A;. Then by inductiorC’[n[0] | n[0]] E —Aq,
that |SP2|753.[\_(7711]

e A=a®A;. ThenC = (va)C’ andC’[n[0] | m[Q]] E A;. Sincen,mare free in
P,a ¢ {mn}, son(C’) n{mn} = 0. Then by inductionC’[n[0] | n[0]] E Aj,
andP; E A.

e A =-a®A;. Assume first thaa is free inP;. Thena # msincem ¢ fn(A) by
hypothesis. Sa is also free inP, andP, E A. Assume nowa is fresh forP;
(andPy). LetC’ be such thaC = (va)C’. ThenC’[n[0] | n[O]] A1, otherwise
C’[n[0] | M[O]] E A, andP E A. SoPa®A;.

e A=VYX.A;. Lettakea e N. ThenP; E A1{?/«}, and by inductiorP, £ A1{?/«}
for a # m. Let take some fresin'. By equivarianceP;(m < nv) E YX. Ay, SO
Pi(m & ) E A{"/«}. Applying induction onP; andA.{™/,} for M’ instead
of m, we haveP, £ A{"/,}. HenceP E A1{?/4} for all a, that isP, E YX. A;.

e A= 3AX.A;. Leta € N be such thaP; E A{?/}. If a # m, then we may
14
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apply induction on#A{?/4}, and P, E A{?/«}, that isP, E A. Otherwise
P: E A{"/x}. By Lemma6.2P1 E A"/ xH"/m} = Au{"/xH"/m}, @nd again
P: E A{"/«}. Then by inductionP, E A{"/«}, that isP,  A.

m|

This last result implies the desired property about é{e\L
Proposition 6.4 There is no formula irS:‘.AL;{nt that satisfies&]l).

Proof. Let assume by absurd we have sastsuch that
PEA iff gfn(P) = 1

Then letC be the thread context of the fore)a[. .. a[.] .. .], andd(C) = d(A)+1.
Let m, n be two fresh names. The{n[0] | m[0]] £ — A by definition of A, so by
Lemmd 6.BC[n[0] | n[0]] = —A. Moreover, by definition ofA, C[n[0] | n[0]]
A, so the contradiction. O

7 Minimality of SALint

In this section, we show minimality w.r.t. expressive power of SAL

Theorem 7.1 (Minimality) SAL;y is a minimal logic, that is all fragments &AL;y
are less expressive.

This result is the consequence of several technical lemmas for each connective.
We may distinguish two forms of contribution to the expressiveness of the logic.
We will say that a connectiveis expressivavhen there is a property expressed by
a formula containing that cannot be expressed otherwise. As a consequence, this
connective must belong to any minimal fragment. We will also say that a connective
k is separativewhen there exists two modeR;, P, and a formula containing
satisfied byP; but notP,, such that alk-free formulas equaly satisfly; and P,.
Separative connectives are expressive as well, but in a deeper way: removing them,
one reduces the separation power of the logic. For;gAle will now establish
the following classification:

¢ connectives|., n®., andn[.] are separative,
¢ connectives O, —, 1 are expressive but not separative.

In particular, SAly: is minimal in terms of expressiveness, but as far as sepa-
ration power is concerned, the minimal fragment is S&L {U1, =, A, 0}, since for
this fragment logical equivalence coincides with intensional bisimilarity.

Notice that we do not show that SALis theuniqueminimal fragment of SAL.
This is far from being obvious. For instance, the fragment SAL} is surprisingly
quite expressive, as the formula

= /n. n®-n® (Nm. m®&Wmy. me®my[mp[0]]) © np o ny
15
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shows. This formula is equivalent /g[n,[0]] Vv ny[ny[0]], and hence the proof of
expressiveness of (see below) must be carried out in dfdrent way. We do not
know the exact expressiveness of this fragment, one could think that it captures any
finite set of processes. The interested reader may want to look for a formula for
n.[0] V ny[ny[O]] in this fragment.

7.1 Separative connectives

We establish now that the connectivésn®., andn[. ] are separative. Intuitively,

| carries the ability of SAl, to count, so without this connective it will not be pos-
sible to distinguis[0] | n[0] from n[0] | n[O] | n[Q]; in the same wayn[.] is
necessary to separatg/n,[0]] from n,[ny[0]], and n®. is the only way of speci-
fying properties of hiden names, so it must be required to distinguigh[Q] and
(vmn[n[O]].

Lemma 7.2 If A € SALjn — {|}, then R = n[0] | n[0] E A iff P, = n[0] | n[Q] |
n[0] E A.

Proof. By absurd, suppose there exists a forméaelling apartP; from P,, take
a minimal suchA, and reason by case analysisd@n

the casesA = Ay A Ay, A = = Ay andA = ImA; are straightforward.
if A =0, then none oP,, P, does satisfyA.

« A =mRA;: if m=n, then none of those processes do sati@fyotherwise the
process satisfyingl does satisfyA;, andA, is a smaller separating formula.

A = M[A;1]: none of the two processes do satisiy

O

Lemma 7.3 If A € SALi, —{n[.]}, then for any names;m,, we set R = ny[n,[0]]
and B, = ny[ny[0Q]]. Then R E A iff P, E A.

Proof. As above, by absurd and case analysis on a minimal

 the casesA = Ay A Ay, A = = Ay, andA = VImA;, are straightforward.
« if A =0, then none oP,, P, do satisfyA.

s A=A | A,. We may assume by symmetry that = A. Also by symmetry,
we may assume;  A; and0 E A,. If Pyl A, thenA, separate®; from P,
and is a smaller formula: contradiction.

e A= mMRA; if me {ny, ny}, then none of the two processes do satigfyoth-
erwise the process satisfyitf also satisfiesA;, andA; is a smaller separating
formula.

O

Lemma 7.4 AssumeA € SALjy — {n[.]}, We set P = (vn)n[n[0]] and B, =
(vn)n[Q]. Then R E A iff P, E A.

Proof. Again, by absurd and case analysis on a miniial
16
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the casesA = Ay A Ay, A = = Ay andA = MImA; are straightforward.
if A =0, then none oP,, P, do satisfyA.

A = Ay | A, We may assume by symmetry thHat E A. Also by symmetry,
we may assum®; £ A; and0 E A,. If P.lEA, thenA, separate®; from P,
and is a smaller formula: contradiction.

A = M[A;]: none of Py, P, do satisfyA.

7.2 [EXxpressive connectives

We show that the connectives—, 1,0 are expressive. Expressiveness proofs are
more subtle than in the separability cases, since the loss of expressiveness is less
sensitive. The scheme of the proof that the conneatiigeexpressive is to find a
property (cardinality, stability by substitution, truncation...) common to all set of
models corresponding to any formula withayand a formula withk whose set of
models does not have this property.

7.2.1 A s expressive
By duality, A expresses disjunction; this is not so clear it is the only way to do so, in
particular going through adjuncts (see example before), however, for an intensional
logic, we may not express[n,[0]] v ny[n.[0]].

We noteP,(N) = {{n, o} : Ny # ny}. We noteK,, = {{n,m} : m # n}. We say
thatK c P,(N) is cofinite if there iSN € N, N finite, such that for alh;, n, ¢ N,
if ny # Ny then{ny, np} € K. We may remark thay, K, are cofinite ff K; N Ks is
cofinite, andK is cofinite {f K — K, is cofinite.

Lemma 7.5 AssumeA is a formula ofSAL;y — {A} such thaOfEA. We set

Ka € {{n,ng) g #n, mno[0]] £ A and n[m[0]] £ A .

Then either K; = 0 or K4 is cofinite.

Proof. By induction onA:

e A = Wn.A;. ThenOFEA,, and for anyny, np s.t. Ny # n,n, # nandng # ny,
{n1, o} € Kg, iff {ng, Ny} € Kg,. ThatisK4 — K, = Kg, — K.

A=0:0F A.
A ==0: thenKy = P>

A = Ay | Ay: sinceOFEA, we may assume by symmetry thgA;. If also
O Ay, thenK4 = 0. Otherwise K4 = Kg,.

A = Ay || Ay sinceOEA, OFEA; andOEA,. thenKg = Ka, N Ka,.
e A =n[Ay: thenK4 = 0.
A = = n[A]: thenP(N) — K € Kg, SOK4 is cofinite.
A = nN®A;: thenOEA;, andKg4 — K, = Kg, — K.
17
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« A=-n®A;: thenOFEA;, andK4 — K, = K. #, — K.
m]

Lemma 7.6 Let n, n, be two distinct names. Then there is no form#a e
SALi — {A} equivalent to ([ n,[0]] Vv ny[ny[0]].

Proof. By absurd: if there is such a formuld, thenO¢A. Then by Lemma 715
#K 4 # 1, and the contradiction. O

7.2.2 - is expressive

- enrich the expressive power in several ways; here we consider the property that
the namen occurs free, expressed byn® T, and show that negation is necessary

to express it. To prove this, we remark that for a formdlavithout negation, there

is a heighth such that for alP, if P = A then so does the truncationBfat height

h, so we may find a contradiction by considering a process having a occurrence of
n deep enough.

Definition 7.7 We define the truncation at heighe N asty(P) = 0, and
ta(OA)(Ne[P] ... I [P])) = (v)(Naftha(P)] |- | ne[th-a(Pr)]).

Note that fn{,(P)) c fn(P).
Lemma 7.8 If A is a formula without-, (A) < h and PE A, then {(P) E A.

Proof. By induction on#:
s A=A A Ay then by inductiony(P) E Ay, th(P) E A, soty(P) E Ay A As.

e A = VIn.A;: then there igY ¢ In(P) s.t. P E Ai(n < n’). By induction
th(P) E Ai(n < ), " ¢ in(t,(P)), soty(P) E Nn. A;.
A=0:thenty(P)=P=0

A = Ay | Ap: thenP = Py | P, with P, E A, and by inductioriy(P,) E A, so
th(P) E A.

A = n[A,]: thenP = n[P,] andP; E A;. By induction,t,_1(P;) E A, and so
ta(P)  A.

A = N®A;: thenP = (vn)P, with Py E A;. Then by inductiort,(P,) E Ay, SO
th(P) E A.

O
Lemma 7.9 There is no formulaA € SAL;, — {— } equivalent to- n® L.

Proof. SupposeA exists, and také = s(A). We noteP = m[m[...m[Q] ...]] and
Q= m[m[...m[n[Q]] ...]] a nesting oth ambientsm, for somem # n. ThenQ E A,
PEA, andP = ty(Q), which contradicts Lemnia 7.8 o

7.2.3 W is expressive
W is very usefull to deal with an hidden name without making any hypothesis on the
free names of processes (which revelation taken alone would do). Here we consider
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the property of having at least one hidden name, that is the model is congruent to
(vn)P" with n € fn(P’). This is expressed by the formuldn.n®—-n®T. For
N = {ny,...n} we consideiPy, = n[ny[Q] | ... | n;[O]] for somen ¢ N.

Lemma 7.10 Assume some finite set of names N and a quantifier free forfula
such thattn(A) c N, and n¢ N. Then

PR E A F (PR A

Proof. By induction on#A:
 the casesA = A; A A,, andA = - Ay, are straightforward.
« if A = 0: then none of the two processes satisites

o if A = A | A Assume first thaP = A. By symmetry, we may assume
PR E Ay and0 E A,. So ¢n)Py, E Ay by induction, andyn)Py, E A. If we
assumeyn)Py, E A, we may do the same reasoning.
A = m[A1]: none of Py, (vn) Py, does satisfyA.
« A =mRA;: thenme fn(A) € N, hence none oy, (vn)Py, does satisfyA.

m]

Lemma 7.11 There is no formulaA € SAL — {1} equivalent td/In. n®N® L.

Proof. By absurd, letA be such a quantifier free formula, afmd, . . ., n;} = fn(A).
ThenPL A, so ¢n)PEA, by Lemmd 7.10, and the contradiction. m|

7.2.4 0is expressive

Here we assume we take instead of O as a primitive formula. Then 0 is not
expressible. For this, we remark that for afiywithout O and fom ¢ fn(A), 0 E A
iff N[Q] E A.

Lemma 7.12 Let A be a formula withou®, and n¢ fn(A). Then
OEA Iff n[Ol A

Proof. We reason by induction ol
e A=T,A=A AN Ay A=-A; : straightforward.

e A = Vm.A; : We assume without loss of generality# n. If 0 £ im. Ay,
then0 E A;. n[0] E A; by induction, son[0] £ Vn.A;. Conversely, if
n[0] E m. Ay, thenn[0] E A,, so0 E A; by induction, and thef £ Vn. Aj;.

e if A=A | A. Assume first thad E A; | A. ThenO E A A Ay, hence
by inductionn[0] E Aj, andn[0] E A; | A, If OFEA; | Ay, then we may
assume by symmetry th@fA,. Assume by absurd thaf0] £ A; | A,. Then
n[0] £ A; and0 E A,. By induction0 | A; and the contradiction.

« if A =mA;]. Thenm % n by hypothesis, and bolliA andn[0]-A.

19



LOZES

« if A =mMRA;, m=# nby hypothesis. 1D E A, then0 E A3, and by induction
n[0] E A, andn[0] E A. Conversely, iin[0] E A, thenn[Q] E A;, and0 E A,
so0 E A by induction.

m|

Lemma 7.13 There is no formulaA € SAL;, — {0} equivalent tdD.

Proof. By absurd, ifA is such a formula am ¢ fn(A), then by Lemma 7.32,
n[0] £ A and the contradiction. O

8 Separation logic and classical logic

In this section, we consider the assertion language presented in [2], refered as Sep-
aration Logic (SL). SL holds spatial connectiveand-« similar to| and> in SAL,

with a light but significant dterence for:: the composition requires a compatibil-

ity conditionh.Lh’ that is not always satisfied; in particular, this is not possible to
compose two copies of the same structure ). As a consequence, the expres-
siveness ok is quite restricted and essentially express the separation of resources,
which equality already expresses. For this reason, we can establish the elimination
of bothx and-« . We define a classical fragment CL and prove it to be as expressive
as SL.

8.1 Definitions

We assume a countable set Var of variables, ranged ovenyyitfand a set Loc of
locations such that Loc N. Expressions and assertions of SL are defined by the
following grammar: We write(P) for the set of variables occuring it Assertions

X | nl| -
P:= (X e,e) | x=y|emp| L | P=P
| P«xP | PxP

Fig. 4. Separation logic (SL)

express properties of memory states, modelled as a pair consisting of a store and a
heap, as follows:
val €' Loc L {nil}
StoreZ' var — val
Heapd:ef Loc —;i, Val
State®™' Stackx Heap

where— i, stands for a partial function with finite domain. We range over stores
with s, over heaps witln, and over states witbr. We noteo; Lo, for s; = s, and
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domh;)ndom(h,) = 0, and, when this holds;; x o, is the state defined by keeping
the same store and by settihgs hy(X) = hy(X) or hy(X).

For a valuev, we notev ,, eif eithere = —, orv = e = nil, ore = x and
v = 5(X). We then note\, \,) =, (€1, &) if v; E, € andv;, £, . The condition
for a stater to match an assertidp, writteno = P, is inductively defined as:

ocE L never
o E (X e,e)iff domh) ={s(x)} and
hs(X) o (€1, &)
cEx=g iff sxX)=5{)
o E emp if domh)=0
o E Pi=P, iff ok Piimplieso E P,
ok P1xP, iff  there existr; ando, such that
o =01%0 o1 Prando; E P;
ok Pp=xP, iff  forall oy suchthatrLo,
o1 E Primplieso o1 E P2

We may define as usual the connectives, T, -, & in the obvious way. We
also introduce twamonotoni@ assertions (cf. F@S). Any assertion of this form,

monotonic assertion encoding in SL semantic
(X = ey, &) (X e, )« T |5(x) € dom(h) andhy(x) k. (&1, &)
size > n —emp x...*x —emp gdom(h) > n
ntimes

Fig. 5. Monotonic assertions from SL

or of the formx = y will be said to beatomic In the remainder, we actually take
these as primitive, which ensure the encodingxof« e;, &) andemp assertions
through boolean combinatic@s We callclassical logic(CL) the fragment of SL
defined by the grammar of Fjg 6. We will not&P) for the maximaln such that
size > nis a subassertion &, andv(P) for the set of variables d®.

Our main result is the following:

2 or intuitionistic, using the terminology of [15], that is assertioRssuch thatr £ P implies
o’ EPforallo’ > 0.

3 On the contrary, it is not possible to encode-f e, &) andsize > nfrom (x — ey, &) andemp
using only boolean combinations; this point is also discussed in conclusion.
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P.= P=2P| L |(X—>e,&) | X=Yy | size >n.

Fig. 6. Classical fragment (CL) of SL

Theorem 8.1 CL is as expressive as SL, i.e. for all assertion P of SL, there exists
a classical assertionRof CL such thaE P  P'.

At the same time, we also prove the following result: the monotonic (indeed
atomic) fragment is as separative as the whole language, that is if two states satisfy
the same monotonic assertions, then they satisfy the same assertions.

8.2 Proof of the translation

Our proof proceeds in the same way as for SAL: we define an intensional equiva-
lence and prove that it has the precompactness and characteristic formula proper-
ties.

Let X be a finite set of variables, amdan integer. We say that two states
ando’ are intensionally equivalent fof, w, written o= =x,, o, if for all classical
assertiorP with v(P) € X andw(P) <w, o E Piffo’ E P.

Remarks:

() This definition amounts to say thatando’ satisfy the same atomic classical
assertion® with v(P) € X andw(P) < w.

(i) Let us writew(c) = idonm(h). Given three natural numbeasb, w, we write
a =, bif eithera = borab > w. Then for anyo, ¢’ such thair ~x,, o',
w(o) =y W(o).

(i) Equality assertionx = y only depend on the store. We nate-x s if these
stores satisfy the same equality assertions with variables ifhen for any
0,0’ such thav =x,, 0/, S=x S.

(iv) LetV be some set of values. We note, V if eitherv =V or{v,v}nV =0,
and {1, v2) =y (v, V) if vi =y vj andv, =y v,. Then for anys, h, i’ such that
(s,h) =xw (s, 1), dom(h) N s(X) = dom(h’) N s(X) due to assertions — —, —,
and for alll € s(X) ndonth), h(l) =qouinil; h () due to assertions — e, &,.

Let say more about store equivalence. Consider a spaad a stater = (s h)

such thatsy =x s. Then we may define a new statiifts, xo of stores, and heap
h’ defined such that

« dom(h) = sp(st(dom(h)) N X) U B with B some arbitrary set of locations such
thatdom(h) = #dom(h’) andB N s5(X) = 0.

o for all | € domh), if | = s(X) andhgXx) = (s(y), S(2)) for somex,y,z € X,
h' s5(X) is set to be $(Y), S0(2), otherwiseh(l) is arbitralily defined out o8(X).

This is easy to check that andshifts, xo satisfy the same atomic assertions
with variables inX.. Moreover, this transformation is compositional, in the sense
thatshifts, x(o-* o) = shiftg, xo * shiftg xo”’. This transformation is not completely
deterministic, but assuming that every choice of a “fresh” value is matierelnt
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at each time and at each call dbift x, o L7 will imply shiftg, xoLshiftg, x7. We
actually have the following stronger result:

Lemma 8.2 For all assertion Pe SL withv(P) € X, o | P iff shifty, xo | P.

The proof is straightforward by induction on the assertoronsidering previ-
ous remarks.

We now recall the equivalence relation defined by Yand in [18] for the decid-
ability proof, and use it to derive the correctionsf,,.

Definition 8.3 [~snx[18]] Given a stacks, a natural numbem and a seX of vari-
ables,~s x is the relation between heaps such that, x h' iff

(1) s(X) ndom(h) = s(X) N dom(f);
(ii) for all I € (X) N dorr(h), h(l) =¢x I (1);
(i) #(don(h) — (X)) =n H(dom(h") — S(X)).

The first step of the correction proof is to factorizgy in ~snx.

Lemma 8.4 For any X w, n such that n+ X < w, for anyo, ¢, s, h,h such that
o = (s h), o =xw o', andshiftsxc’ = (s, '), it holds that h~¢,x I'.

Proof. By Lemmd 8.2, § h) =x (s IY). Then conditionf i and]ii in Definition 8.3
holds by Remark’iv, so the proof follows from the verification of the conditign iii
on the heap size.

Let assume first tha{don(h) — s(X)) < n; thenfdomh) = k < n+ §X < w, so
o E P =size > kA =size > k+ 1, andw(P) = k+ 1 < w. By definition ofxy,
o’ E P, sofidon(h’) = k = fdom(h). Moreover,s(X) N domh) = s(X) N don(h’),
so finalyfi(dom(h) — s(X)) = #(dom(h’) — §(X)).

Let assume now thal{dom(h) — s(X)) > n; and setk = min(domn(h), w),
so thato E size > k, and by definition of~yx,, o’ E size > k. Moreover,
dom(h) > n+ fi(domh) N (X)), andw > n+ #X >> n+ #(domh) N s(X)), so finally
k > n+ #(dom(h) N §(X)). This givesdon(h’) > k > n + #(dom(h’) N (X)) since
sS(X) ndom(h) = s(X) N dom(h’), i.e. f(dom(h’) — (X)) > n.

gdom(h) > k > n + #(donmh) n (X)), wherek = min(§dom(h),w). Soo E
size > k, and by definition ofvx,, 0’ E size > k, so that finalytdom’) >

n + #(dom(h) N s(X)). O

We recall now the correction result obtained by Yang and derive our correction
from it. First we recall the notion of formula’s size used by Yang:

le—e,e)]=1 lee=e|=0 lemp| =1
|P=Q|=max(Pl,|QJ) lL]=0
IPxQ[=|P|+]|Q] IP=xQ|=]Q]
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Lemma 8.5 Take sh,h, n, X with h~5,x h". Then for all assertion = SL such
thatv(P) c X and| P |< n, (s h) E Piff(sI) E P.

The proof of this result is detailed in [18].

Corollary 8.6 (Correction) Takeo, o, w, X witho ~x,, o’. Then for all assertion
P e SLsuchthav(P) c Xand| P | +§X <w,oc EPifo’ E P.

Proof. By Lemma[8.4h ~¢,x I with o = (s h), shiftsxe” = (s 1), andn =
w — #X. Theno E P impliesshiftsxo” = P by Lemmd 8.F, which implies’ = P
by Lemmg 8.P. m
We may now end the proof establishing the properties of precompactness and
characteristic formula foy,.

We write @y, for the set of atomic assertiossuch thaw/(P) € X andw(P) <
w. For X finite, @y, is finite as well. This has two important consequences:

Proposition 8.7 (Precompactness}or all w and all finite X ,~x,, has only finitely
many classes.

Proof. A class is represented by a subdett ®y,, of atomic assertions that are
the ones satisfied by any state of the class. So there are less*thamligtinct
classes. O

Proposition 8.8 (Characteristic formula) For all stateso, for all X, w, there is a
classical assertion B such that

Vo'. o EFMW iff o~y o

AN P A A -P

TEPPeOxw oEPPedy,,

Proof. Take

O

We may now establish Theor¢m B.1 noticing that any assePtimfiSL is equiv-
alent to the classical assertion:

(xn)
F&,
ceState., , .ckpP

where finiteness of this disjunction is ensured by Proposition 8.7.

9 Conclusion

We have established the adjuncts elimination property for SAL, a logic for trees
with binders including the fresh quantifiet. This involves putting a formula in
prenex form and then doing the transformation on the quantifier-free formula. The
adjunct-free fragment SAk turns then to be aninimallogic.
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We established the absence of adjunct elimination for the same logic Where
Is replaced by the usu#l quantifier, whichever adjunct is considered. This result,
together with the dierence w.r.t. decidability of model-checking on pure trees,
illustrates the significant gap existing between the two forms of quantification.

Finally, we defined a classical fragment of the Separation Logic, excluding both
x and- , and proved it to be as expressive as the full separation logic. Our approach
shows also that all the separative power of the logic lies in the monotonic fragment.
When defining our classical fragment, we had to move from the assexiens
e, e andemp to X — e;,€, andsize > n in order to capture the connective;
without that, this is probably possible to eliminate only the adjunct. Note that
the assertionX — 0,0) — false would be translated in CL as — —, —, which
underlines the importance of the special expression

In relation to our study, some observations can be made regardindféredce
between thé1 and theY /3 quantification. The congruence &f, the existence of
prenex forms, the decidability of the model-checking on pure trees, the adjuncts
elimination, are properties verified by the logic with the fresh quantifier, whereas
they fail for the universal quantifier.

Yang proposed a clever counterexample to the elimination-ofin a Sepa-
ration Logic with quantifiers; this example seems of deeper meaning than the one
presented in Sef| 6, but a better understanding of its implications is still lacking. In
the same way, we do not know wetheelimination remains true for the assertion
language without+ and with quantifiers.

The results we obtain for SAL and SL can be adapted to several other settings,
provided the logic follows the algebric structure of its models in the same way
as SAL and SL do. However, for the logics including the time modahitj6,1],
adjuncts improve the expressiveness of the logic supporting an encoding of action
modalities [1¥,12]. One could think to take them as primitives in the same spirit
as for SL, and look for the adjunct elimination. However, even in the case of very
elementary concurrent languages, we do not know how to prove such a result.
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