
HAL Id: hal-01905172
https://hal.science/hal-01905172

Submitted on 25 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning about sequences of memory states
Rémi Brochenin, Stephane Demri, Etienne Lozes

To cite this version:
Rémi Brochenin, Stephane Demri, Etienne Lozes. Reasoning about sequences of memory states.
Annals of Pure and Applied Logic, 2009, �10.1016/j.apal.2009.07.004�. �hal-01905172�

https://hal.science/hal-01905172
https://hal.archives-ouvertes.fr

Reasoning about sequences of memory states✩

Rémi Brochenina, Stéphane Demria, Etienne Lozesa

aLSV, ENS Cachan, CNRS, INRIA Saclay, France

Abstract

Motivated by the verification of programs with pointer variables, we introduce a temporal logic LTLmem

whose underlying assertion language is the quantifier-free fragment of separation logic and the temporal
logic on the top of it is the standard linear-time temporal logic LTL. We analyze the complexity of various
model-checking and satisfiability problems for LTLmem, considering various fragments of separation logic
(including pointer arithmetic), various classes of models (with or without constant heap), and the influence
of fixing the initial memory state. We provide a complete picture based on these criteria. Our main
decidability result is pspace-completeness of the satisfiability problems on the record fragment and on a
classical fragment allowing pointer arithmetic. Σ0

1-completeness or Σ1
1-completeness results are established

for various problems by reducing standard problems for Minsky machines, and underline the tightness of
our decidability results.

Key words: separation logic, temporal logic, Büchi automaton, computational complexity

1. Introduction

Verification of programs with pointers. Model-checking of infinite-state systems is a very active area of formal
verification [1] even though in full generality, simple reachability questions are undecidable. Nevertheless,
many classes of infinite-state systems can be analyzed, such as Petri nets, timed automata, etc. Programs
with pointer variables suffer the same drawback since reachability problems are also undecidable, see e.g. [2,
3]. It is worth noting that specific properties need to be verified for such programs, such as the existence
of memory leaks, memory violation, or shape analysis. Prominent logics for analyzing such programs are
Separation Logic [4], pointer assertion logic PAL [5], TVLA [6] and alias logic [7], to quote a few examples.

Towards a temporal separation logic. Since [8], temporal logics are used as languages for formal specification
of programs. General and powerful automata-based techniques for verification have been developed, (see for
example the works [9, 10]). On the other hand, Separation Logic is a static logic for program annotation [4],
and more recently for symbolic computation [11]. Extending the scope of application of Separation Logic
to standard temporal logic-based verification techniques has many potential interests. First, it provides a
rich underlying assertion language where properties more complex than accessibility can be stated. Second,
this may open a new direction of investigation for the purely static Separation Logic extended with general
recursion, in the same spirit as [12]. For instance, if we write Xx to denote the next value of x (also sometimes
written x′), the formula (x →֒ Xx)U(x →֒ null), understood on a model with constant heap, characterises
the existence of a simple flat list, which is usually written µL(x). x →֒ null ∨ ∃x′.x →֒ x′ ∧ L(x′). Third,
temporal logics allow to work in the very convenient framework of ”programs-as-formulae” and decision
procedures for logical problems can be directly used for program verification. For instance, the previous
formula can be seen as a program traversing a list and, more generally, programs without destructive
updates can be expressed as formulae. Some programs with destructive updates that perform a simple pass

✩Work partially supported by the RNTL project “AVERILES”. The first author is supported by a fellowship from
CNRS/DGA.

Preprint submitted to Elsevier July 3, 2009

on the heap, have an input-output relation that may be described by a formula. For instance, the formula
(x →֒0 Xx∧Xx →֒1 x)Ux →֒0 null roughly expresses that the list in the initial heap h0 is reversed in the final
heap h1. Fourth, pointer arithmetic has been poorly studied until now, whereas arithmetical constraints
in temporal logics are known to easily lead to undecidability, see e.g. [13, 14, 15]. Actually, there is a
growing interest in understanding the interplay of pointer arithmetic, temporal reasoning, and non aliasing
properties.

Our contribution. We introduce a linear-time temporal logic LTLmem to specify sequences of memory states
with underlying assertion language based on quantifier-free Separation Logic [4]. From a logical perspec-
tive, the logic LTLmem can be viewed as a many-dimensional logic [16] since LTLmem contains a tem-
poral dimension and the spatial dimension for memory states. Other many-dimensional logics can be
found in [17, 18, 16, 19]. Our logic addresses a very general notion of models, including the aspects of
pointer arithmetic and recursive structures with records. We distinguish the satisfiability problems from
the model-checking problems, as well as distinct subclasses of interesting programs, like for instance the
programs without destructive update. The most promising result for future implementation is the pspace-
completeness of the satisfiability problems SAT(CL) and SAT(RF) where CL is the classical fragment with-
out separation connectives and RF is the record fragment with no pointer arithmetic but with separation
connectives. This result is very tight, as both propositional LTL and static Separation Logic are already
pspace-complete [20, 21]. These results are obtained by reduction to the nonemptiness problem for Büchi
automata on an alphabet made of symbolic memory states obtained by an abstraction that we show sound
and complete, see e.g. [22, 23]. Such abstractions are similar to resource graphs from [24, 25]. This is a
variant of the automata-based approach introduced in [9] for plain LTL and further developed with concrete
domains of interpretation in [19]. Surprisingly, the abstraction method used to establish these results does
not scale to the whole logic, due to a subtle interplay between separation connectives and pointer arithmetic.
Moreover, we provide new undecidability results for several problems, for instance SATct(LF) (satisfiability
with constant heap on the list fragment).

Related work. Previous temporal logics designed for pointer verification include Evolution Temporal Logic [26],
based on the three-valued logic abstraction method that made the success of TVLA [6], and Navigation tem-
poral logic [27], based on a tableau method quite similar to our automaton-based reduction. In these works,
the assertion language for states is quite rich, as it includes, for instance, list predicate, quantification over
adresses, and a freshness predicate. Because of this high expressive power, only incomplete abstractions are
proposed, whereas we stick to exact methods. More importantly, our work addresses models with constant
heaps and pointer arithmetic, which has not been done so far, and leads to a quite different perspective.

Structure of the paper. We define our logic LTLmem and several fragments and problems in Section 2. Sec-
tion 3 introduces the symbolic memory states (also useful in Section 4) and presents the pspace-completeness
of the satisfiability and model-checking problems for SL with pointer arithmetic. Section 4 is dedicated to
the decidability proof of satisfiability for various fragments and its consequences for other problems. In
Section 5, we mention several seemingly optimal undecidability results by encoding computations of Minsky
machines. Section 6 contains concluding remarks.

This paper is an extended version of [28].

2. Memory Model and Specification Language

In this section, we introduce a separation logic dealing with pointer arithmetic and record values, and a
temporal logic LTLmem. Unlike BI’s pointer logic from [29], we allow pointer arithmetic.

2

Expressions
e ::= x | null

Atomic formulae

π ::= e = e′ | x + i
l
→֒ e

State Formulae
A ::= π

| A ∗ B | A−∗B | emp (spatial fragment)
| A ∧ B | A → B | ⊥ (classical fragment)

Satisfaction
(s, h) |=SL e = e′ iff s(e) = s(e′)

(s, h) |=SL x + i
l
→֒ e iff s(x) 6= nil and h(s(x) + i)(l) = s(e)

(s, h) |=SL emp iff dom(h) = ∅
(s, h) |=SL A1 ∗ A2 iff ∃ h1, h2 s.t. h = h1 ∗ h2, (s, h1) |=SL A1 and (s, h2) |=SL A2

(s, h) |=SL A1−∗A2 iff for all h′, if h ⊥ h′ and (s, h′) |=SL A1 then (s, h ∗ h′) |=SL A2

(s, h) |=SL A1 ∧ A2 iff (s, h) |=SL A1 and (s, h) |=SL A2

(s, h) |=SL A1 → A2 iff (s, h) |=SL A1 implies (s, h) |=SL A2

(s, h) |=SL ⊥ never

Table 1: The syntax and semantics of SL with pointer arithmetic and records

2.1. A separation logic with pointer arithmetic

Memory states. Let us introduce our model of memory. It captures features of programs with pointer
variables that use pointer arithmetic and records. We assume a countably infinite set Var of variables (as
usual, for a fixed formula we need only a finite amount), and an infinite set Val of values containing the
set N of naturals, thought as address indexes, and a special value nil. For simplicity, we assume that
Val = N ⊎ {nil}. In order to model field selectors, we consider an infinite set Lab of labels. We will usually
range over values with u, v, over naturals with i, j, over labels with l, r, next, prev, and over variables with
x, y. In the remainder, we will assume a fixed injection (x, i) ∈ Var× N 7→ 〈x, i〉 ∈ Var.

We use the notation E ⇀fin F for the set of partial functions from E to F of finite domain, and ⇀fin+

the set of the ones of non-empty domain. The sets S of stores and H of heaps are then defined as follows:

S
def

≡ Var→ Val H
def

≡ N ⇀fin (Lab⇀fin+ Val).

We will range over a store with s, s′ and over a heap with h, h′, h1, h2. We call memory state a couple
(s, h) ∈ S ×H. Hence, a heap can be equivalently understood as a finite subset of N× Lab× Val.

We will refer to the domain of a heap h by dom(h) ⊂ N. Intuitively, in our memory model, each index
is thought as an entry point on some record cell containing several fields. Cells are either not allocated, or
allocated with some record stored in. In a memory state (s, h), the memory cell at index i is allocated if
i ∈ dom(h); in this case the stored record is h(i) = {l1 7→ v1, .., ln 7→ vn}.

Note that the size of the information held in a memory cell is neither fixed, nor bounded. Our models
could be more concrete considering labels as offsets and relying on pointer arithmetic. However, for our
classification of several problems, it will be useful to consider pointer arithmetic independently.

The size of the store s with respect to a finite set of variables X ⊆ Var, written sizeX(s), is defined as
card(X)×max(1+ log(1+ s(x)) : s(x) ∈ N, x ∈ X). Similarly, the size of the heap h with respect to a finite
set of labels Y ⊆ Lab, written sizeY (h), is defined as card(dom(h))× card(Y)×max(1 + log(1+ h(i)(l)) : i ∈
dom(h), h(i)(l) is defined and h(i)(l) ∈ N). The size of the memory state (s, h) with respect to X and Y ,
written sizeX,Y ((s, h)), is sizeX(s) + sizeY (h).

Separation Logic. We now introduce the separation logic (SL) on top of which we will define our temporal
logic. The syntax of the logic is given in Table 1.

In short, Separation logic is about reasoning on disjoint heaps, and we need to define what we mean by
“disjoint heaps” in our model. Our level of granularity implies that a record cell cannot be decomposed in

3

disjoint parts. Let h1 and h2 be two heaps; we say that h1 and h2 are disjoint, noted h1⊥h2, if dom(h1) ∩
dom(h2) = ∅. The operation h1 ∗ h2 is defined for disjoint heaps as the disjoint union of the two partial
functions. Semantics of formulae is defined by the satisfaction relation |=SL (see Table 1).

Formulae π are atomic formulae. The formula x+ i
l
→֒ e states that the value of the field l of the record

stored at the address pointed by x with offset i is equal to the value of the expression e. The formula e = e′

states the equality between the values of the two expressions, and emp means that the current heap has no
memory cell allocated. In Table 1 (as well as in the rest of the paper), we assume that a store s is also
defined for null with s(null) = nil. In some places, “null” is understood as a distinguished variable whose
interpretation is fixed to the value nil ∈ Val \ N.

Formulae A of SL are called state formulae. A formula A ∗ B with the separating conjunction states
that A holds on some portion of the memory heap and B holds on a disjoint portion. A formula A−∗B states
that the current heap, when extended with any disjoint heap verifying A, will verify B. Boolean operators
are understood as usual. Derivable connectives A ∨ B and ¬A are defined as usual. In the remainder, we
focus on several specific fragments of this separation logic. We say that a formula is in the record fragment

(RF) if all its subformulae of the form x + i
l
→֒ e use i = 0. In that case, we write x

l
→֒ e. We say that a

formula is in the classical fragment (CL) if it does not contain any of the connectives ∗ and −∗. Finally, we

say that a formula is in the list fragment (LF) if it is in the classical fragment and all subformulae x+ i
l
→֒ e

use i = 0 and l = next, and we may simply write x →֒ e. Clearly, the classical and record fragments are
incomparable, while the list fragment is included in both of them.

Let us illustrate the expressive power on simple examples. The formula ¬emp ∗¬emp means that at least

two memory cells are allocated. The formula x
l
7→ e, defined as ¬(¬emp ∗ ¬emp)∧ x

l
→֒ e, is the local version

of x
l
→֒ e: (s, h) |=SL x

l
7→ e iff dom(h) = {s(x)} and h(s(x))(l) = s(e). The formula (x

l
→֒ null)−∗⊥ is

satisfied by (s0, h0) whenever there is no heap h1 with h1⊥h0 that allocates the variable x to nil on l field.
In other words, the variable x is already allocated in the heap h0.

As usual, A is valid iff for every memory state (s, h), we have (s, h) |=SL A (written |=SL A). Satisfiability
is defined dually: A is satisfiable iff there is a memory state (s, h), such that (s, h) |=SL A.

The size of the state formula A, written |A|, is the length of the string A for some reasonably succinct
encoding of variables and integers with a binary representation. We will use the map | · | for other syntactic
objects such as LTLmem formulae.

2.2. Temporal extension

Memory states sequences. Models of the logic LTLmem are ω-sequences of memory states, which means
there are elements in (S ×H)ω and they are understood as infinite computations of programs with pointer
variables. We range over ρ for a given model, and its ith state ρ(i) will be noted (si, hi). In order to analyze
computations from programs without destructive update, we shall also consider models with constant heap,
that is elements in Sω ×H.

The logic LTLmem. Formulae of LTLmem are defined in Table 2. Atomic formulae of LTLmem are state
formulae from SL except that variables can be prefixed by the symbol “X”. For instance, Xx is interpreted

by the value of x at the next memory state. We use the notation X
i
x for

i times
︷ ︸︸ ︷

X . . .X x (but keep in mind that
encoding X

i
x requires memory space in O(i)). The temporal operators are the standard next-time operator

X and until operator U present in LTL, see e.g. [30, 20]. The satisfaction relation ρ, t |= φ, where ρ is a
model of LTLmem, t ∈ N and φ is a formula, is also defined in Table 2. We use standard abbreviations
such as Fφ for ⊤Uφ or Gφ for ¬F(¬φ). We freely use propositional variables p, q, having in mind that the
propositional variable p should be understood as xp = x⊤ for some fixed extra variables xp, xq, . . . , x⊤. In
the sequel, given an atomic formula A, we write A[Xu

x ← 〈x, u〉] to denote the SL state formula in which
every occurrence of a term of the form X

u
x is replaced by the variable 〈x, u〉. Similarly, given a state formula

A, we write A[x← 〈x, 0〉] to denote the state formula in which every occurrence of a variable x is replaced
by 〈x, 0〉.

4

Enriched expressions η ::= x | Xη ξ ::= η | null

Atomic formulae π ::= ξ = ξ′ | η + i
l
→֒ ξ

State formulae A ::= π | emp | A ∗ B | A−∗B | A ∧ B | A → B | ⊥

Temporal formulae φ ::= A | Xφ | φUψ | φ ∧ ψ | ¬φ

Semantics
ρ, t |= Xφ iff ρ, t+ 1 |= φ.
ρ, t |= φUψ iff there is t1 ≥ t s.t. ρ, t1 |= ψ and ρ, t′ |= φ for all t′ ∈ [t, t1[.

ρ, t |= φ ∧ ψ iff ρ, t |= φ and ρ, t |= ψ.

ρ, t |= φ→ ψ iff ρ, t |= φ implies ρ, t |= ψ.

ρ, t |= A iff s′t, ht |=SL A[Xk
x← 〈x, k〉] where ρ = (st, ht)t≥0 and

s′t is defined by s′t(〈x, k〉) = st+k(x).

Table 2: The syntax and semantics of LTLmem

Given a fragment Frag of SL, such as RF or LF, LTLmem(Frag) is the restriction of LTLmem to formulae
in which occur only state formulae built over Frag (with extended variables X

u
x), and we write SAT(Frag)

to denote the satisfiability problem for LTLmem(Frag): given a temporal formula φ in LTLmem(Frag), is
there a model ρ such that ρ, 0 |= φ? The variant problem in which we require that the model has a constant
heap [resp. that the initial memory state is fixed] is denoted by SATct(Frag) [resp. SATinit(Frag)]. The
problem SATct

init(Frag) is defined analogously.

2.3. Programs with pointer variables

In this section, we define the model-checking problems for programs with pointer variables over LTLmem

specifications. The set I of instructions used in the programs is defined by the grammar below:

instr ::= x := y | skip
| x := y→ l | x→ l := y | x := cons(l1 : x1, .., lk : xk) | free x

| x := y[i] | x[i] := y | x := malloc(i) | free x, i

The denotational semantics of an instruction instr is defined as a binary relation (S ×H)× (S ×H) ⊆
J instr K in order to deal with the nondeterministic allocation of new memory cells. We list in Table 3 the
formal denotational semantics of our instruction set. Observe that the instructions x := y[i], x := malloc(i)
and x[i] := y deal with the specific label next. Boolean combinations of equalities between expressions are
called guards and its set is denoted by G. A program is defined as a triple (Q, δ, qI) such that Q is a finite
set of control states, qI is the initial state and δ is the transition relation, a subset of Q×G × I ×Q. We

use q
g,instr
−−−→ q′ to denote a transition. We say that a program is without destructive update if transitions are

labeled only with instructions of the form x := y, x := y→ l, and x := y[i]. We write P to denote the set of
programs and Pct to denote the set of programs without destructive update.

A program is a finite object whose interpretation can be viewed as an infinite-state system. More precisely,
given a program p = (Q, δ, qI), the transition system Sp = (S,→) is defined as follows: S = Q× (S×H) (set

of configurations) and (q, (s, h)) → (q′, (s′, h′)) iff there is a transition q
g,instr
−−−→ q′ ∈ δ such that (s, h) |= g

and (s′, h′) ∈ J instr K(s, h). Note that Sp is not necessarily linear. A computation (or execution) of p is
defined as an infinite path in Sp starting with control state qI .

Computations of p can be viewed as LTLmem models, using propositional variables to encode the extra
information about the control states (details are omitted herein).

Model-checking aims at checking properties expressible in LTLmem along computations of programs. To
a logical fragment (SL, CL, RF, or LF), we associate a set of programs : all programs for SL and CL,
programs with instructions having i = 0 for RF, and moreover with only the label next for LF. Given one

5

J x := y K (s, h) ∋ (s[x 7→ s(y)], h).
J x := y→ l K (s, h ∗ {i 7→ {l 7→ v, . . . }}) ∋ (s[x 7→ v], h ∗ {i 7→ {l 7→ v, . . . }})

with s(y) = i
J x→ l := y K (s, h ∗ {i 7→ {l 7→ v, . . . }}) ∋ (s, h ∗ {i 7→ {l 7→ s(y), . . . }})

with s(x) = i

J x := cons(l1 : x1, . . . , lk : xk) K (s, h) ∋

(
s[x 7→ i], h ∗ {i 7→ {l1 7→ s(x1),
. . . , lk 7→ s(xk)}}

)

with i 6∈ dom(h)
J free x K (s, h ∗ {i 7→ {. . . }}) ∋ (s, h)

with s(x) = i
J skip K (s, h) ∋ (s, h)

J x := y[i] K (s, h ∗ {i+ i′ 7→ {next 7→ v}}) ∋ (s[x 7→ v], h ∗ {i+ i′ 7→ {next 7→ v}}))
with s(y) = i′

J x[i] := y K (s, h ∗ {i′ + i 7→ {next 7→ v}}) ∋ (s, h ∗ {i′ + i 7→ {next 7→ s(y)}})
with s(x) = i′

J x := malloc(i) K(s, h) ∋

(
s[x 7→ i′], h ∗ {i′ 7→ {next 7→ nil}, . . . ,
i′ + (i− 1) 7→ {next 7→ nil}}

)

with i′, . . . , i′ + (i− 1) 6∈ dom(h)
J free x, i K (s, h ∗ {i′ + i 7→ f}) ∋ (s, h)

with s(x) = i′

Table 3: Semantics for instructions

of these fragments Frag of SL, we write MC(Frag) to denote the model-checking problem for Frag: given a
temporal formula φ in LTLmem with state formulae built over Frag and a program p of the associated set
of programs, is there an infinite computation ρ of p such that ρ, 0 |= φ (which we write p |= φ)? This is the
existential variant of the problem. The variant problem in which we require that the program is without
destructive update [resp. that the initial memory state is fixed, say (s, h)] is denoted by MCct(Frag) [resp.
MCinit(Frag)]. The problem MCct

init(Frag) is defined analogously. We may write p, (s, h) |= φ to emphasize
what is the initial memory state.

Basic results. Using extended variables Xx, we may express some programs as formulae. This actually holds
only for programs without destructive update, for the semantics with constant heap. Intuitively, we express
the control of the program with propositional variables, and define a formula that encodes the transitions.
As a consequence, the following result can be derived.

Lemma 1. Let Frag be a fragment among SL, CL, RF, or LF. There is a logspace reduction from
MCct(Frag) to SATct(Frag) (resp. from MCct

init(Frag) to SATct
init(Frag)).

Proof. We adapt the proof in [20] for reducing LTL model-checking to LTL satisfiability. To a program
p = (Q, δ, qI), we associate the formula φp below built over the propositional variables in Q:

qI ∧ G

∧

q∈Q

(q ⇒ (
∧

q′∈Q\{q}

¬q′ ∧
∨

τ∈δ
+
q

φτ))

where φτ expresses that transition τ is fired between the current state and the next state and, δ+q is the set
of transitions starting at the state q. In order to define φτ , we need to translate instructions and guards into
the logic (remember that there are limitations on the instructions). We translate instructions of the form

• x := y into Xx = y,

6

• x := y→ l into y
l
→֒ Xx,

• x := y[i] into y + i
next
→֒ Xx.

Guards are translated accordingly. It is then standard to show that p |= φ iff φ ∧ φp is satisfiable. �

All the model-checking and satisfiability problems defined in this paper belong to Σ1
1 in the analytical

hierarchy. Indeed, the models and computations of programs can be viewed as functions f : N → N by
encoding memory states and configurations by natural numbers (details are tedious). Then, the satisfaction
relation between models and LTLmem formulae and the transition relations obtained from programs can be
encoded by a first-order formula. This guarantees that these problems are in Σ1

1. Additionally, all the prob-
lems can easily be shown pspace-hard since they all generalize LTL satisfiability and model-checking [20].

2.4. Discussion

Let us discuss few issues about the expressive power of this logical formalism. First, the interest of model-
checking programs with heap updates stems from early works on automata-based verification. Decision
procedures are obtained at the cost of limitations: to define approximations as done in [26, 27] or to restrict
the programming language, see e.g. [31]. However, with this approach, compositionality principles are lost,
which is a pity since they made the success of separation logic, as the frame rule and the composition rule.

Second, assuming that the heap is constant is subject to promising developments. Indeed, it is then
possible to define spatial operators at the same syntactic level as temporal operators, and write formulae as
e.g. [((x →֒ Xx)U(x →֒ null))] ∗ (y 7→ null). Observe that this formula does not belong to LTLmem. This
might be a way to model modularity in model-checking programs without destructive updates, but there
are other points of interest we will try to advocate now.

2.4.1. Recursion with local parameters

The constant heap semantics provides an original viewpoint for recursion with local parameters and
local quantification. The design of decision procedures in the presence of general recursive predicates was
introduced in [12], as well as incomplete methods of inference even though they are apparently good in
practice. Complete methods have been proposed for some standard recursive structures like trees, lists, or
doubly-linked lists [32]. But we are not aware of complete methods for a general form of recursive data
structures defined on top of Separation Logic, and we believed that our logic could give an alternative way
of specifying recursion, although we did not manage to characterize an interesting decidable fragment.

In order to be a bit more precise, let us consider the fragment of recursive separation logic where all
recursive formulae are of the form:

(1) µX(x1, .., xk). A(x1, .., xk) ∨ ∃x′1..x
′
k. B(x1, .., xk, x

′
1, .., x

′
k) ∧X(x′1, .., x

′
k)

This fragment is rich enough to express single lists, cyclic lists, and doubly-linked lists. However, we
conjecture that it is not expressive enough for trees and DAGs. We conjecture that deciding satisfiability in
the fragment of recursive separation logic mentioned above reduces to SATct(SL), and the model-checking
problem reduces to SATct

init, considering that (1) can be rewritten as:

(
B(x1, .., xk,Xx1, ..,Xxk)

)
U A(x1, .., xk).

In this perspective, our results could arise interesting decidability results for model-checking some of the
recursive separation logic with local quantifiers. For satisfiability, we expect to define decidable fragments for
SATct(SL), for instance considering the techniques for checking temporal properties of so-called flat programs
without destructive updates introduced in [33]. Another interesting fragment of recursive separation logic
is probably the one where recursion is guarded by the separation operator ∗, but we do not currently see
how to treat it in the temporal logic perspective.

7

2.4.2. Programs as formulae

Let us speculate a bit more. We may take advantage of expressing programs as formulae in order to
reduce model-checking to satisfiability, a known approach since [20]. For programs without destructive
update, we take advantage of Lemma 1. Moreover, we believe we can extend this result to programs with
updates, but with a slightly different perspective. The constant heap semantics can be helpful to define
the input-output relation of programs, even with destructive updates, provided some conditions on the way
the program read and write over the memory are satisfied. To do so, we consider the extension of LTLmem

with two predicates →֒0 and →֒1 instead of the single →֒, and models are couples of state sequences with
constant heap, that is tuples 〈(si)i≥0, h0, h1〉. Let us define the input-output relation IOp of a program p

as : for all (s0, h0), (s1, h1), (s0, h0)IOp(s1, h1) if there is a run of p that starts with (s0, h0) and ends with
(s1, h1). Then we conjecture that for an interesting class of programs, this relation is definable in LTLmem

extended with →֒0 and →֒1. Basically, the encoding of the control of the program will be the same as for
programs without destructive updates, but the encoding of the instructions will be different. For instance,

x→ l := y would be encoded by (Xx)
l
→֒1 y whereas x := y→ l would be encoded as y

l
→֒0 Xx.

3. Separation Logic: Complexity and Abstraction

After defining an abstraction for the fragment RF of SL, which will be proved sound, we will be able to
decide the complexity of model checking and satisfiability problems for SL.

3.1. Syntactic measures

The main approach to get decision procedures to verify infinite-state systems consists of introducing
a symbolic representation for infinite sets of configurations. The symbolic representation defined below is
motivated by a similar goal and it has similarities with symbolic heaps for Separation Logic in Smallfoot [11].
Let us start by some useful definitions. Following [22], we introduce the set of test formulae that are SL
formulae of the forms below:

• alloc(x + i)
def

≡ (x + i
next
7→ null)−∗⊥ (x + i is allocated).

• size ≥ k
def

≡

k times
︷ ︸︸ ︷
¬emp ∗ . . . ∗ ¬emp (at least k indices are allocated).

• x + i
l
→֒ e, e = e′ (see Table 1 for notations).

Given a formula φ of LTLmem, we define its measure µφ, understood as pieces of information about the
syntactic resources involved in φ. Indeed, forthcoming symbolic states are finite objects parameterized by
such syntactic measures. For a state formula A of LTLmem, the size of memory potentially examined by A,
written wA, is inductively defined as follows: wA is 1 for atomic formulae, max(wA1

, wA2
) for A1 ∧ A2 or

A1 → A2 or A1−∗A2, and wA1
+ wA2

for A1 ∗ A2. Observe that wA ≤ |A|. Other simple sets about the
syntactic resources of A need to be defined: LabA (∈ Pf (Lab)) is the set of labels from Lab occurring in A,
VarA (∈ Pf(Var)) is the set of variables from Var occurring in A, offsetsA (∈ Pf (N)) is the set of natural

numbers i such that X
u
x+ i

l
→֒ e occurs in A, where Pf (X) denotes the set of finite subsets of some set X .

Definition 2. A measure µ is defined as a tuple (offsetsµ, wµ, Labµ, Varµ) ∈ Pf (N) × N × Pf(Lab) ×
Pf(Var).

The set of measures has a natural lattice structure for the pointwise order, noted below µ ≤ µ′. We also
write µ[w ← 0] to denote the measure µ except that the second component w is 0. The measure for A,
written µA, is the tuple (offsetsA, wA, LabA, VarA). The measure of some formula φ of LTLmem, written
µφ, is sup{µA[X

u
x←〈x,u〉] : A occurs in φ}. We write size(µ) to denote the size of the measure µ in some

reasonable succinct encoding.

8

Definition 3. Given a measure µ = (offsets, w, Labµ, Varµ), we write Tµ to denote the finite set of test
formulae ψ defined as follows:

e ::= x | null f ::= x + i

ψ ::= f
l
→֒ e | alloc(f) | e = e′ | size ≥ k

with i ∈ offsets, l ∈ Labµ, k ∈ [0, w[and x ∈ Varµ.

Observe that the cardinal of Tµφ
is polynomial in |φ|. The variable 〈x, u〉 will be used in subsequent

developments to deal with the interpretation of the term X
u
x in the formulae of the temporal logic. Given a

measure µ = (offsets, w, Labµ, Varµ) and a memory state (s, h), we write Absµ(s, h) = {A ∈ Tµ : (s, h) |=SL

A} to denote the abstraction of (s, h) with respect to µ. Given a measure µ and two memory states (s, h)
and (s′, h′), we write (s, h) ≃µ (s′, h′) iff Absµ(s, h) = Absµ(s′, h′), that is, formulae in Tµ cannot distinguish
the two memory states.

The proof of Lemma 7 below is based on three technical lemmas. Before stating them and proving them,
in Lemmas 4-6, we assume that the measure has offsets = {0} since we are dealing with RF. Moreover,
we introduce the following definition: (offsets, w, Lab0, Var0) + (offsets, w′, Lab0, Var0) = (offsets, w+
w′, Lab0, Var0).

Lemma 4 (Distributivity). Let µ, µ1 and µ2 be measures with all sets of offsets equal to {0} and µ =
µ1 + µ2. Let (s, h) and (s′, h′) be memory states such that (s, h) ≃µ (s′, h′) and, h1, h2 be heaps such that
h = h1 ∗h2. Then, there exist heaps h′1 and h′2 with h′ = h′1 ∗h

′
2, (s, h1) ≃µ1

(s′, h′1) and (s, h2) ≃µ2
(s′, h′2).

Proof. Let (s, h), (s′, h′), h1, h2 and µ = (offsets, w, Lab0, Var0), µ1 = (offsets, w1, Lab0, Var0) and
µ2 = (offsets, w2, Lab0, Var0) satisfying the hypotheses of the lemma.

We shall define the disjoint heaps h′1 and h′2 by distinguishing the four disjoint sets of values S1, S2, A1

and A2 corresponding to the following sets:

• S1 = dom(h′1) ∩ Im(s
′), S2 = dom(h′2) ∩ Im(s

′),

• A1 = dom(h′1) \ Im(s
′), A2 = dom(h′2) \ Im(s

′).

Let us first separate dom(h′) ∩ Im(s′) into two parts S1 and S2. We define Si = s′(s−1(dom(hi)) ∩ Varµ),
and we need to show that S1, S2 are disjoint. Let us assume by contradiction that they are not, thus there
are some variables x, y ∈ Varµ such that s′(x) = s′(y) ∈ S1∩S2, and s(x) ∈ dom(h1) whereas s(y) ∈ dom(h2).
Since h1⊥h2, s(x) 6= s(y), so s, h |=SL x = y, but s′, h′ 6|=SL x = y, hence the contradiction.

Now, we shall separate the set dom(h′)\Im(s′) into two parts A1 and A2. Let B = dom(h)\Im(s),
B1 = dom(h1)\Im(s) and B2 = dom(h2)\Im(s). We have card(B1)+card(S1) = card(dom(h1)) and card(B2)+
card(S2) = card(dom(h2)). The sets A1 and A2 shall contain respectively card(A1) and card(A2) random
elements of dom(h′) \ Im(s′) so that card(Ai) = card(dom(hi)) − card(Si) if card(dom(h)) < w; otherwise
card(Ai) = min(wi, card(dom(hi)))− card(Si). In order to select the elements of A1 and A2, we distinguish
different cases depending on card(dom(h1)) and card(dom(h2)).

Case 1: card(dom(h)) < w.
Since (s, h) ≃µ (s′, h′), we have card(dom(h′)) = card(dom(h)). Hence, dom(h′) \ Im(s′) can be divided
into two parts A1, A2 such that A1 ⊎A2 = dom(h′) \ Im(s′), card(A1) = card(dom(h1))− card(S1) and
card(A2) = card(dom(h2))− card(S2).

Case 2: card(dom(h)) ≥ w.
Consequently card(dom(h′)) ≥ w.

Case 2.1: card(dom(h1)) ≥ w1 and card(dom(h2)) ≥ w2.
There exist A1, A2 such that A1 ⊎A2 = dom(h′) \ Im(s′), card(A1) = card(dom(h1))− card(S1) ≥
w1 − card(S1) and card(A2) = card(dom(h2))− card(S2) ≥ w2 − card(S2).

9

Case 2.2: For some i ∈ {1, 2}, card(dom(hi)) < wi and card(dom(h3−i)) ≥ w3−i.
There exist A1, A2 such that A1 ⊎ A2 = dom(h′) \ Im(s′), card(Ai) = card(dom(hi)) − card(Si).
Then card(A3−i) = card(dom(h3−i))− card(S3−i) ≥ w3−i − card(S3−i).

The heap h′1 is defined as h′|A1∪S1
and the heap h′2 is defined as h′|A2∪S2

. Since A1, A2, S1 and S2

are disjoint sets, we have that A1 ∪ S1 and A2 ∪ S2 are disjoint. Moreover, A1 ∪ A2 ∪ S1 ∪ S2 = dom(h′).
So h′ = h′1 ∗ h

′
2. Observe that for i ∈ {1, 2}, we have card(dom(hi)) ≥ wi iff card(dom(h′i)) ≥ wi and,

card(dom(hi)) < wi implies card(dom(hi)) = card(dom(h′i)).

It remains to show that (s, h1) ≃µ1
(s′, h′1) and (s, h2) ≃µ2

(s′, h′2). The above considerations about
cardinality entail that for all i ∈ {1, 2} and k < wi, we have size ≥ k ∈ Absµi

(s, hi) iff size ≥
k ∈ Absµi

(s′, h′i). It is also easy to check that for all e = e′, alloc(x) ∈ Tµi
, e = e′ ∈ Absµi

(s, hi) iff
e = e′ ∈ Absµi

(s′, h′i) and alloc(x) ∈ Absµi
(s, hi) iff alloc(x) ∈ Absµi

(s′, h′i).

It remains to consider test formulae of the form x
l
→֒ e. The following statements are equivalent:

• x
l
→֒ e ∈ Absµi

(s, hi),

• s(x) ∈ N and hi(s(x))(l) = s(e),

• s(x) ∈ N ∩ dom(hi) and h(s(x))(l) = s(e),

• s(x) ∈ dom(hi) ∩ Im(s) and x
l
→֒ e ∈ Absµ(s, h),

• s′(x) ∈ dom(h′i) ∩ Im(s
′) and x

l
→֒ e ∈ Absµ(s′, h′),

• x
l
→֒ e ∈ Absµi

(s′, h′i).

�

In the proof of Lemma 7, we need Lemma 5 below, which is indeed an instance of Lemma 9.

Lemma 5. Let µ be a measure such that offsetsµ = {0}. If (s, h) ≃µ (s′, h′), then for all h0⊥h, there is
h′0⊥h

′ such that (s, h0) ≃µ (s′, h′0).

Lemma 6 (Congruence). Let (s, h0), (s′, h′0), (s, h1), (s′, h′1) be memory states such that h0⊥h1, h
′
0⊥h

′
1.

Let µ be a measure such that offsetsµ = {0}, and assume that (s, h0) ≃µ (s′, h′0) and (s, h1) ≃µ (s′, h′1).
Then, (s, h0 ∗ h1) ≃µ (s′, h′0 ∗ h

′
1).

Proof. Let µ be the measure (offsets, w, Labµ, Varµ). We shall show that (s, h0∗h1) ≃µ (s′, h′0∗h
′
1). By

symmetry of ≃µ, it is sufficient to prove that Absµ(s, h0 ∗ h1) ⊆ Absµ(s′, h′0 ∗ h
′
1). Let A ∈ Absµ(s, h0 ∗ h1).

We make a case analysis according to A.

• If A = size ≥ k for some k < w, then k ≤ card(dom(h0 ∗ h1)). We want to show that k ≤
card(dom(h′0 ∗ h

′
1)) which implies that A ∈ Absµ(s, h′0 ∗ h

′
1).

– If card(dom(h1)) ≥ w or card(dom(h0)) ≥ w, then card(dom(h′1)) ≥ w or card(dom(h′0)) ≥ w,
respectively. So card(dom(h′0 ∗ h

′
1)) ≥ w and card(dom(h′0 ∗ h

′
1)) ≥ k as k < w.

– If card(dom(h1)) < w and card(dom(h0)) < w, then card(dom(h0 ∗ h1)) = card(dom(h1)) +
card(dom(h0)) = card(dom(h′1)) + card(dom(h′0)) = card(dom(h′0 ∗ h

′
1)). So k ≤ card(dom(h′0 ∗ h

′
1)).

• If A is e = e′, then s(e) = s(e′). Moreover, A ∈ Absµ(s, h1) iff A ∈ Absµ(s′, h′1). Therefore s′(e) =
s′(e′) and A ∈ Absµ(s′, h′0 ∗ h

′
1).

• If A = x
l
→֒ e then (h0 ∗ h1)(s(x))(l) = s(e). Hence, there is i ∈ {0, 1} such that hi(s(x))(l) = s(e).

Since (s, hi) ≃µ (s′, h′i), h
′
i(s
′(x))(l) = s′(e) and (h′0 ∗ h

′
1)(s

′(x))(l) = s′(e). So A ∈ Absµ(s, h′1 ∗ h
′
0).

• If A = alloc(x) then s(x) ∈ dom(h0 ∗ h1). Hence, there is i ∈ {0, 1} such that s(x) ∈ dom(hi). Since
(s, hi) ≃µ (s′, h′i), s

′(x) ∈ dom(h′i) and s′(x) ∈ dom(h′0 ∗ h
′
1), which entails A ∈ Absµ(s, h′0 ∗ h

′
1). �

10

Lemma 7 below states that our abstraction is correct for the fragments CL and RF.

Lemma 7 (Soundness of abstraction for SL). Let µ be a measure, (s, h) and (s′, h′) be two memory
states such that (s, h) ≃µ (s′, h′) [resp. (s, h) ≃µ[w←0] (s′, h′)]. For any SL formula A such that µA 6 µ and
A belongs to RF [resp. CL], we have (s, h) |=SL A iff (s′, h′) |=SL A.

Proof. The proof of Lemma 7 for the classical fragment is rather straightforward. Indeed, any CL
formula is a Boolean combination of test formulae. In order to deal with the record fragment, more efforts
are needed. Suppose that (s, h) ≃µ (s′, h′) and A ∈ RF with µA ≤ µ. By structural induction, we show

that (s, h) |=SL A iff (s′, h′) |=SL A. The base case when A has one of the forms e = e′, f
l
→֒ e and emp is

by an easy verification. Similarly, in the induction step, the cases when the outermost connective is Boolean
are straightforward.

• Assume that (s, h) |=SL A with A = B1 ∗ B2. There are heaps h1 and h2 such that h = h1 ∗ h2,
(s1, h1) |=SL B1 and (s2, h2) |=SL B2. As µ > µA and µA > µB1

+ µB2
, there are µ1 and µ2 such

that µ1 > µB1
, µ2 > µB2

and µ1 + µ2 = µ. By application of Lemma 4, there are heaps h′1 and h′2
verifying h′ = h′1 ∗ h

′
2, (s, h1) ≃µ1

(s′, h′1) and (s, h2) ≃µ2
(s′, h′2). By the induction hypothesis, we get

(s′, h′1) |=SL B1 and (s′, h′2) |=SL B2. Consequently, (s′, h′) |=SL A since h′ = h′1 ∗ h
′
2 and A = B1 ∗ B2.

• Finally, assume A = B1−∗B2. Let h′1⊥h
′ be such that (s′, h′1) |=SL B1. By Lemma 5, there is a heap

h1 such that (s, h1) ≃µ (s′, h′1) and h1⊥h, and so (s, h1) |=SL B1 by the induction hypothesis. Then
(s, h ∗ h1) |=SL B2, and by Lemma 6, (s′, h′ ∗ h′1) |=SL B2. Hence (s′, h′) |=SL B1−∗B2.

�

Note that we can extend this result to the whole SL by considering test formulae of the form x+i = x′+i′.

3.2. Complexity of reasoning tasks for SL

In this section, we show that model-checking, satisfiability, and validity, for SL, are pspace-complete.
We use the abbreviations mc(SL), sat(SL) and val(SL) for the respective problems. These abbreviations are
extended to any fragment of separation logic, for instance sat(RF) denotes the satisfiability problem for the
record fragment.

pspace-hardness of mc(LF) and sat(LF) is a consequence of [21, Sect. 5.2]. As SL strictly contains
LF, this entails the pspace-hardness of mc(SL) and sat(SL). Since SL is closed under negation, pspace-
completeness of val(SL) will follow from pspace-completeness of sat(SL).

In order to show that mc(SL) and sat(SL) are in pspace, we establish the lemmas below. Lemma 8
establishes a reduction from mc(SL) to mc(RF), so that we only need to consider RF in order to find the
complexity of model-checking. Then, in Lemma 9, we will provide a small model property for RF, leading
to the pspace-easiness of mc(RF) (see Lemma 10). Finally, we characterize the computational complexity
of the satisfiability problem thanks to Lemma 12, which entails a reduction from sat(SL) to mc(SL).

Lemma 8. There is a logspace reduction from mc(SL) to mc(RF).

Proof. Let t(A) be the formula obtained from A in SL by replacing each occurrence of x + i
l
→֒ e by

〈x, i〉
l
→֒ e. The formula t(A) belong to RF. Given a store s, we write t(s) to denote the store such that

t(s)(〈x, i〉) = s(x)+ i. One can show that for every heap h, we have (s, h) |=SL A iff (t(s), h) |=SL t(A). The
proof is by structural induction on A. �

We need to establish a quite technical lemma. Given a heap h, let Im2(h) be the set of natural numbers
i such that there are i′ and l for which h(i′)(l) = i.

Lemma 9. Let µ = ({0}, w, Labµ, Varµ) be a measure, and l0 be a label that does not belong to the finite
set of labels Labµ. If (s, h) ≃µ (s′, h′) and h0⊥h is a heap, then there is a heap h′0 such that

• h′0 ⊥ h
′,

11

• (s, h0) ≃µ (s′, h′0),

• card(dom(h′0)) ≤ max(w, card(Varµ)),

• max(dom(h′0) ∪ Im2(h′0)) ≤ max((s′(Varµ) ∩ N) ∪ dom(h′)) + w,

• for all n ∈ dom(h′0), {l : h′0(n)(l) is defined} ⊆ Labµ ⊎ {l0}.

The heap h′0 is said to be a small disjoint heap with respect to µ and (s′, h′) and it can be represented in
polynomial space in size(µ) + sizeLabµ

(h0) + sizeLabµbis,Labµ
((s′, h′)).

Proof. Assume that (s, h) ≃µ (s′, h′) and h0⊥h. We introduce two disjoint heaps h01 and h02 such that
dom(h01) = Im(s) ∩ dom(h0), dom(h02) = dom(h0)\Im(s) and h0 = h01 ∗ h02. We define the heap h′0 as the
disjoint union h′01 ∗ h

′
02 where h′01 and h′02 are defined so as to satisfy dom(h′01) = Im(s′) ∩ dom(h′0) and

dom(h′02) = dom(h′0)\Im(s
′).

In the sequel, the constant null will be viewed as a distinguished variable always interpreted by nil. We
write V to denote the set of “variables” Varµ ∪ {null}.

• In order to define h′01, let V1, . . . , Va be the equivalence classes over the set V for the relation ∼s

defined by x ∼s y if s(x) = s(y). Since (s, h) ≃µ (s′, h′), the relation ∼s′ defines the same set of
equivalence classes. For each class Vk, let ik be the image of the variables of Vk through s, and i′k
through s′. Then, for each k ∈ [1, a] and l ∈ dom(h01(ik)), the heap h′01 is defined as follows:

– if l /∈ Labµ, then h′01(i
′
k)(l0) = nil and h′01(i

′
k)(l) is undefined,

– if l ∈ Labµ and h01(ik)(l) = in for some n, then h′01(i
′
k)(l) = i′n,

– if l ∈ Labµ and h01(ik)(l) 6= in for all n, then h′01(i
′
k)(l) = nil (in that case, nil 6∈ {i′1, . . . , i

′
a}).

The domain of h′01 is included in Im(s′), since Im(s′|V) = {i′1, . . . , i
′
a}.

• In order to define h′02, let b = max(0,min{card(dom(h02)), w−card(dom(h01))}) and j′1, . . . , j
′
b be the b

smallest natural numbers disjoint from {i′1, . . . , i
′
a} ∪ dom(h

′). Hence, when card(dom(h01)) ≥ w, b = 0
and therefore there are no such natural numbers. Otherwise, dom(h′02) = {j′1, . . . , j

′
b} and for each

k ∈ [1, b], we define h′02(j
′
k)(l0) = nil (which is an arbitrary value).

As announced, we define h′0 as the heap h′01∗h
′
02. Let us show that the heap h′0 has all the desired properties.

• Let us check that h′⊥h′0. First, h′⊥h′01 since h⊥h01. Second, h′⊥h′02 by construction.

• Let us check that (s, h0) ≃µ (s′, h′0). We proceed by a case analysis on the form of the test formulae.

(e = e′) Since (s, h) ≃µ (s′, h′), s(e) = s(e′) iff s′(e) = s′(e′).

(alloc(x)) We have equivalences between the propositions below:

– alloc(x) ∈ Absµ(s, h0),
– s(x) ∈ dom(h0),
– there is k such that x ∈ Vk and ik ∈ dom(h0),
– there is k such that x ∈ Vk and i′k ∈ dom(h′01),
– alloc(x) ∈ Absµ(s′, h′0).

(size ≥ k) First, observe that card(dom(h01)) = card(dom(h′01)). Moreover, by construction, if
card(dom(h0)) < w, then card(dom(h0)) = card(dom(h′0)). When card(dom(h0)) ≥ w, the con-
struction of h′0 guarantees that card(dom(h′0)) ≥ w. So, for all formulae size ≥ k with k < w,
size ≥ k ∈ Absµ(s, h0) iff size ≥ k ∈ Absµ(s′, h′0).

(x
l
→֒ e) We have the following implications:

– x
l
→֒ e ∈ Absµ(s, h0),

– there is k such that x ∈ Vk and h0(ik)(l) = s(e),
– there are k, k′ such that h0(ik)(l) = ik′ ,

12

function MC((s, h),A, µ)

(base-cases) If A is atomic, then return (s, h) |=SL A;

(Boolean-cases) If A = A1 ∧ A2, then return (MC((s, h),A1, µ) and MC((s, h),A2, µ));
Other Boolean operators are treated analogously.

(∗ case) If A = A1 ∗ A2, then return ⊥ if there are no h1, h2 such that h = h1 ∗ h2 and MC((s, h1),A1, µ)
and MC((s, h2),A2, µ));

(−∗ case) If A = A1−∗A2, then return ⊥ if for some small disjoint heap h′ with respect to µ and (s, h)
verifying MC((s, h′),A1, µ), we have not MC((s, h ∗ h′),A2, µ);

Return ⊤;

Figure 1: Model-checking algorithm

– there are k, k′ such that x ∈ Vk and h′01(i
′
k)(l) = i′k′ ,

– x
l
→֒ e ∈ Absµ(s′, h′0).

Now suppose that not x
l
→֒ e ∈ Absµ(s, h0). We distinguish 3 cases.

1. s(x) 6∈ dom(h0).

From the above case with alloc(x), s′(x) 6∈ dom(h′0) and therefore x
l
→֒ e 6∈ Absµ(s′, h′0).

2. s(x) ∈ dom(h0) (with ik = s(x)), l ∈ dom(h0(ik)) and h0(ik)(l) 6= s(e).
If h0(ik)(l) = ik′ for some k′ ∈ [1, a], then s′(e) 6= i′k′ . If for all k′ ∈ [1, a], ik′ 6= h0(ik)(l)
(in particular h0(ik)(l) 6= nil), then by construction, h′01(i

′
k)(l) 6∈ {i′1, . . . , i

′
a}. In both cases,

x
l
→֒ e 6∈ Absµ(s′, h′0).

3. s(x) ∈ dom(h0) (with ik = s(x)) and l 6∈ dom(h0(ik)). Consequently, l 6∈ dom(h′0(i
′
k)) and

therefore x
l
→֒ e 6∈ Absµ(s′, h′0).

Therefore (s, h0) and (s′, h′0) have the same abstraction.

• Let us check that card(dom(h′0)) ≤ max(w, card(Varµ)). We already know that a ≤ card(Varµ). If
card(dom(h′01)) ≥ w, then h′02 is the empty heap and therefore card(dom(h′0)) ≤ a. Otherwise, by con-
struction card(dom(h′01)) + card(dom(h′02)) ≤ w. Consequently, card(dom(h′0)) ≤ max(w, card(Varµ)).

• Let us check that max(dom(h′0) ∪ Im2(h′0)) ≤ max({s′(x) : x ∈ Varµ, s
′(x) ∈ N} ∪ dom(h′)) + w. We

have chosen the domain and image of h′01 to be included in the image of s′ plus nil, and therefore
dom(h′01) satisfies the above condition. The image of h′02 is {nil}. The domain of h′02 is composed of the
smallest natural numbers which neither belong to s′(Varµ), nor to dom(h′). As dom(h′02) has less than
w elements, it is bounded by the wth such natural number, which is bounded by w+ max((s′(Varµ)∩
N) ∪ dom(h′)).

• Let us check that for every n ∈ dom(h′0), {l : h′0(n)(l) is defined} ⊆ Labµ ⊎ {l0}. This condition is
satisfied by construction of h′01 and h′02.

�

Lemma 10. mc(RF) is in pspace.

Proof. The algorithm is described in Figure 1. First of all, the algorithm can be implemented in
polynomial space since the quantifications are over sets of exponential size in |A|+sizeVarµ,Labµ

((s, h)) where
µA = (. . . , Labµ, Varµ), and the recursion depth is linear in |A|. Hence, all the heaps considered in the
algorithm are of polynomial-size in |A| + sizeVarµ,Labµ

((s, h)). It remains to be shown that the algorithm
is correct: given A with µA ≤ µ and (s, h) |=SL A iff MC((s, h),A, µ) returns ⊤. The only point to

13

check in the proof by structural induction is the case when the outermost connective is the operator −∗.
Whenever (s, h) 6|=SL A1−∗A2, there is a heap h0 ⊥ h such that (s, h0) |=SL A1 and (s, h ∗ h0) 6|=SL A2.
By Lemma 9 with (s′, h′) = (s, h), there is a small disjoint heap h′0 with respect to µ and (s, h) such that
(s, h′0) ≃µ (s, h0). Since the measure of A1 is less than µ, Lemma 7 entails (s, h′0) |=SL A1. Moreover,
by Lemma 6, (s, h ∗ h′0) 6|=SL A2. Consequently, (s, h) 6|=SL A1−∗A2 iff there is a small heap h′0 such that
(s, h′0) |=SL A1 and (s, h ∗ h′0) 6|=SL A2.

�

The rest of the section is dedicated to the characterization of the complexity of decision problems for
SL. To do so, we need another technical lemma. Given a permutation σ : Val→ Val with σ(nil) = nil and
a heap h, we write σ ·h to denote the partial function which maps i to the partial function σ ◦ (h(i)). When
viewing heaps as finite subsets of N× Lab× Val, σ · h is equal to {(i, l, σ(j)) : (i, l, j) ∈ h}. We write σ • h
to denote the heap σ · (h ◦ σ−1), which corresponds to {(σ(i), l, σ(j)) : (i, l, j) ∈ h}. For instance, given a
label l and an address i, we have (σ • h)(i)(l) = σ(h(σ−1(i))(l)). This operation allows us to rename all the
addresses according to the permutation: the memory graph keeps the same shape, but vertices are placed
on different addresses. We shall use the properties below that can be easily checked:

• For all permutations σ and disjoint heaps h1 and h2, σ • (h1 ∗ h2) = (σ • h1) ∗ (σ • h2).

• For all permutations σ and heaps h, we have σ−1 • (σ • h) = h.

Lemma 11. Let A be a state formula of SL with measure µ = (0, offsets, w, Labµ, Varµ) and (s, h) be
a memory state. For all permutations σ : Val → Val with σ(nil) = nil such that for all x ∈ Varµ and
i ∈ offsets, σ(s(x) + i) = σ(s(x)) + i, we have (s, h) |=SL A iff (σ ◦ s, σ • h) |=SL A.

Proof. Let A be an SL formula, µ be a measure greater than µA, s be a store and h be a heap. It
is sufficient to show one direction of the equivalence since the other direction is obtained by application
of the first one with the store σ ◦ s and the well-defined inverse bijection σ−1. Indeed, for all x ∈ Varµ,
σ−1((σ ◦ s)(x) + u) = σ−1((σ ◦ s)(x)) + u. Assume that (s, h) |=SL A. We show that (σ ◦ s, σ • h) |=SL A.
We are going to prove this by induction on A. The cases with boolean operators are trivial and are omitted
herein. If A is an atomic formula, then we proceed by a case analysis.

e = e′ s(e) = s(e′) iff σ(s(e)) = σ(s(e′)) since σ is a bijection on Val.

A is x + i
l
→֒ e: h(s(x)+i)(l) = s(e), and σ•h(σ◦s(x)+i)(l) = σ ·h(σ−1(σ(s(x))+i))(l) = σ ·h(σ−1(σ(s(x)+

i)))(l) = σ · h(s(x) + i)(l) = σ(h(s(x) + i)(l)) = σ(s(y)) = σ ◦ s(e),

A is emp: dom(σ • h) is empty iff dom(h) is empty.

If A = A1 ∗ A2, then there are h1 and h2 such that h = h1 ∗ h2 and (s, h1) |=SL A1 and (s, h2) |=SL A2.
For each measure µAi

, we have µAi
6 µA 6 µ. Then, by induction, (σ ◦ s, σ • hi) |=SL Ai. Since

σ • h = σ • (h1 ∗ h2) = (σ • h1) ∗ (σ • h2), we can conclude that (σ ◦ s, σ • h) |=SL A.
If A = A1−∗A2, then let h0 be a heap which is orthogonal to σ•h. Assume that (σ◦s, h0) |=SL A1. Then

by induction, (σ−1 ◦ (σ ◦ s), σ−1 • h0) |=SL A1, that is (s, σ−1 • h0) |=SL A1. So (s, h ∗ (σ−1 • h0)) |=SL A2,
and by induction (σ ◦ s, σ • (h ∗ (σ−1 • h0))) |=SL A2, that is (σ ◦ s, (σ • h) ∗ (σ • (σ−1 • h0))) |=SL A2, and
finally (σ ◦ s, (σ • h) ∗ h0) |=SL A2. So, (σ ◦ s, σ • h) |=SL A.

�

We state below a small memory state property that happens to be central to establish the results about
the forthcoming pspace upper bounds.

Lemma 12 (Small memory state property). A state formula A in SL is satisfiable iff there is a store
s such that (s, ∅) |=SL ¬(A−∗ ⊥) and for each variable x ∈ VarA, s(x) ≤ (card(VarA) + 1) × (1 +
max(offsetsA)), where ∅ stands for the heap with empty domain, VarA is the set of variables occuring
in A, and offsetsA is the set of indices i such that x + i occurs in A for some variable x. If offsetsA is
empty, we can replace max(offsetsA) by 0.

14

Proof. First, it is straightforward to show that A in SL is satisfiable iff there is a store s such that
(s, ∅) |=SL ¬(A−∗ ⊥), where ∅ is the heap with empty domain. So, we only have to prove that given an SL
state formula A and a store s such that (s, ∅) |=SL A, there is a store s′ such that (s′, ∅) |=SL A and for
each x ∈ VarA, s′(x) ≤ (card(VarA) + 1) × (1 + max(offsetsA)) (the interpretation of other variables is
irrelevant). In order to obtain this small store, we are going to decrease the value of the variables in several
steps. Each step consists of applying a permutation to the memory graph.

Assume that (s, ∅) |=SL A and let MAX = 1 + max(offsetsA). Let x0 be a dummy variable such that
s(x0) = 0, and x1, . . . xn be an ordering of the variables occuring in A such that for j ∈ [0, n− 1], s(xj) ≤
s(xj+1). If there is no k such that s(xk+1) ≥ s(xk) + MAX, then for all x ∈ VarA, s(x) ≤ (n+ 1)× (1 + MAX).

Otherwise, let k be the smallest index such that s(xk+1) ≥ s(xk)+MAX. Let α = s(xk+1)− (s(xk)+MAX).
Let us define the permutation σ based on α:

• If j ≤ s(xk) + MAX then σ(j) = j;

• If s(xk+1) ≤ j ≤ s(xn) + MAX, then σ(j) = j − α;

• If j ≥ s(xn) + MAX then σ(j) = j;

• If s(xk) + MAX < j < s(xk+1) then we have to complete this function so as to obtain a bijection,
σ(j) = j − (s(xk) + MAX) + (s(xn) + MAX− α).

Observe that for all x ∈ VarA and i ∈ offsetsA, σ(s(x) + i) = σ(s(x)) + i. This permutation satisfies
the hypotheses of Lemma 11, and thus may be applied to (s, ∅), which then still satisfies A. We apply this
type of permutation until there is no k such that s(xk+1) ≥ s(xk) + MAX. So, by simple multiplication, for
all x ∈ VarA, s(x) ≤ (n+ 1)× MAX.

�

Proposition 13. The model-checking, satisfiability, and validity problems for SL are pspace-complete.

Proof. pspace-hardness results are consequences of [21, Sect. 5.2]. The pspace upper bound for mc(SL)
is a consequence of Lemmas 8 and 10. The pspace upper bound for sat(SL) is obtained by enumerating the
small memory states of ¬(A−∗ ⊥) with empty heap (see Lemma 12) and then using Lemma 10. �

Decidable fragments of first-order SL can be found in [25, 34, 35].

4. Decidable Satisfiability Problems by Abstracting Computations

In this section, we establish the pspace-completeness of the problems SAT(CL) and SAT(RF). To do so,
we abstract memory states whose size is a priori unbounded by finite symbolic memory states. As usual with
linear temporal logic, temporal infinity in models is handled by Büchi automata recognizing ω-sequences.
We propose below an abstraction that is correct for CL (allowing pointer arithmetic) and for RF (allowing
all operators from Separation Logic) taken separately but that is not exact for the full language SL.

4.1. Symbolic models

Definitions. An important aspect of the method consists in defining a symbolic satisfiability relation. Here
are the details. Given a measure µ, we write Σµ to denote the powerset of Tµ; Σµ is thought of as an alphabet,
and elements a ∈ Σµ are called letters. A symbolic model with respect to µ is defined as an infinite sequence
σ ∈ Σω

µ . Symbolic models are abstractions of models from LTLmem: given a model ρ : N → S × H and a
measure µ, we write Absµ(ρ) : N→ Σµ to denote the symbolic model with respect to µ such that for every

t ∈ N, Absµ(ρ)(t)
def

= {A ∈ Tµ : ρ, t |= A[〈x, u〉 ← X
u
x]}.

To a letter a, we associate the formula TF [a] =
∧

A∈aA ∧
∧

A∈(Tµ\a) ¬A. For all symbolic models σ

and formulae φ such that µφ ≤ µ, we define the symbolic satisfaction relation σ, t |=µ φ as the satisfaction
relation for models except for the clause about atomic subformulae is updated as follows: σ, t |=µ A iff
|=SL TF [σ(t)]⇒ A[Xu

x← 〈x, u〉]. We write Lµ(φ) to denote the set of symbolic models σ with respect to µ
such that σ, 0 |=µ φ. As a corollary of Lemma 7, we get a soundness result for our abstraction:

15

Proposition 14. Let φ be a formula of LTLmem(RF) [resp. of LTLmem(CL)] and µφ ≤ µ. For any model
ρ, we have ρ |= φ iff Absµ(ρ) |=µ φ [resp. Absµ[w←0](ρ) |=µ φ].

Proof. We treat the case φ ∈ LTLmem(RF) (for the case φ ∈ LTLmem(CL), replace below µ by µ[w ← 0]).
The induction step for the cases with Boolean and temporal operators is by an easy verification. Let us check
the base case, for a state formula. Suppose that ρ, t |= B for an atomic formula B of LTLmem. By definition,

Absµ(ρ)(t)
def

= {A ∈ Tµ : ρ, t |= A[〈x, u〉 ← X
u
x]}. Let us show that |=SL TF [Absµ(ρ)(t)] ⇒ B[Xu

x← 〈x, u〉].
If for some memory state (s, h) |=SL TF [Absµ(ρ)(t)], then by Lemma 7, (s, h) |=SL B[Xu

x← 〈x, u〉].
Suppose now that Absµ(ρ), t |=µ B. Hence, |=SL TF [Absµ(ρ)(t)] ⇒ B[Xu

x ← 〈x, u〉]. Since ρ, t |=SL

TF [Absµ(ρ)(t)][〈x, u〉 ← X
u
x], we have ρ, t |= (B[Xu

x← 〈x, u〉])[〈x, u〉 ← X
u
x]. This entails that ρ, t |= B.

�

Note that Absµ is not surjective; we note Lµ
sat the set of symbolic models with respect to µ that are

abstractions of some model for LTLmem. Consequently, φ in LTLmem(RF) is satisfiable iff Lµφ(φ) ∩ L
µφ

sat is
nonempty.

4.2. ω-regularity and pspace upper bound

In order to show that SAT(RF) and SAT(CL) are in pspace we shall explain why testing the nonempti-
ness of Lµφ(φ) ∩ L

µφ

sat can be done in pspace. Below we always treat the case for RF. For CL, replace
every occurrence of µφ by µφ[w ← 0] and every occurrence of µ by µ[w ← 0]. To do so, we show that
each language can be recognized by an exponential-size Büchi automaton satisfying the good properties to
establish the pspace upper bound. If A is a Büchi automaton, we note L(A) the language recognized by
A. Following [9, 19], let A be the generalized Büchi automaton defined by the structure (Σ, Q, δ, I,F) such
that (µ ≥ µφ):

• Q is the set of so-called atoms of φ, that are sets of temporal formulae included in the so-called closure
set cl(φ) (see [9]). Let us briefly recall that the closure set cl(φ) is the smallest set containing φ, closed
under subformulae, negations (double negations are eliminated) and such that if ψUψ′ ∈ cl(φ), then
X(ψUψ′) ∈ cl(φ). A set X ⊆ cl(φ) is an atom whenever it satisfies the usual conditions for subformulae
whose outermost connective is Boolean and, we have ψUψ′ ∈ X iff (ψ′ ∈ X or (ψ, (ψUψ′) ∈ X))
whenever ψUψ′ ∈ cl(φ).

• I = {X ∈ Q : φ ∈ X}.

• Σ = Σµ.

•
X

a
−→ Y iff 1. for every atomic formula A of X , |=SL TF [a]⇒ A[Xu

x← 〈x, u〉].
2. for every Xφ′ ∈ cl(φ), Xφ′ ∈ X iff φ′ ∈ Y .

• Let {φ1Uφ
′
1, . . . , φnUφ′n} be the set of until formulae in cl(φ). Let F be equal to {F1, . . . , Fn} where

Fi = {X ∈ Q : φiUφ
′
i 6∈ X or φ′i ∈ X} for i ∈ {1, . . . , n}.

Let A
µ
φ be the Büchi automaton equivalent to the generalized Büchi automaton A. It is easy to observe

that A
µφ

φ has an exponential amount of states in the size of φ and its transition relation can be checked in
polynomial space in the size of φ. Moreover,

Lemma 15. Let φ in LTLmem(RF) [resp. LTLmem(CL)] and µ ≥ µφ [resp. µ[w ← 0] ≥ µφ[w← 0]]. Then,

L(Aµ
φ) = Lµ(φ) [resp. L(A

µ[w←0]
φ) = Lµ[w←0](φ)].

We can also build a Büchi automaton A
µ
sat such that L(Aµ

sat) = Lµ
sat. A

µ
sat is defined as (Σ, Q, δ, I, F),

where Σ = Σµ, Q = Σµ, F = I = Q and a
a′

−→ a′′ iff:

1. TF [a], TF [a′′] are satisfiable, and a = a′,

2. for every formula 〈x, u〉 = 〈x′, u′〉 ∈ Tµ with u, u′ ≥ 1, 〈x, u〉 = 〈x′, u′〉 ∈ a iff 〈x, u−1〉 = 〈x′, u′−1〉 ∈ a′′,

3. for every formula 〈x, u〉 = null ∈ Tµ with u ≥ 1, 〈x, u〉 = null ∈ a iff 〈x, u− 1〉 = null ∈ a′′,

16

If µ = µφ, then A
µ
sat is of exponential-size in the size of φ and the transition relation can be checked in

polynomial space in the size of φ. More importantly, this automaton recognizes satisfiable symbolic models.

Lemma 16. Let φ in LTLmem(RF) [resp. LTLmem(CL)] and µ = µφ [resp. µ = µφ[w ← 0]]. Then,
L(Aµ

sat) = Lµ
sat.

Proof. It is immediate that the abstraction of any model with respect to µ belongs to L(Aµ
sat). Therefore,

the set of abstractions of memory states with respect to µ is included in L(Aµ
sat).

The other inclusion is shown by induction. Let µ = (offsets, w, Lab0, Var0) be the measure µφ, m
be max{u : there is x ∈ Var such that X

u
x occurs in φ} and MAXI be max(offsets) + 1. Let (ai)i∈N

be an ω-sequence of symbolic memory states in L(Aµ
sat). We shall build a sequence (si, hi)i∈N such that

Absµ((si, hi)i∈N) = (ai)i∈N. So, for t ∈ N, at = {A ∈ Tµ : ρ, t |= A[〈x, u〉 ← X
u
x]}. The construction is by

induction on the position t ∈ N.
Let us study the base case of the induction that will provide a value for s0, . . . , sm, h0. Since (ai)i∈N ∈

L(Aµ
sat), TF [a0] is satisfiable. There are s′0 and h′0 satisfying (s′0, h

′
0) |=SL TF [a0]. When dealing with

the record fragment (offsets = {0}), the objects are appropriate for the initialization: h0 = h′0 and for
u ∈ [0,m] and x ∈ Var0, we set su(x) = s′0(〈x, u〉). When offsets 6= {0} (w = 0 and we are dealing
with the fragment CL), there is no constraint on the size of the heap. We apply a permutation σ which
maps all the images of variables to multiples of MAXI. For u ∈ [0,m], we consider the store su such that for

x ∈ Var0, su(x) = σ(s′0(〈x, u〉)). The heap h0 is defined by enumerating the test formulae 〈x, u〉+j
l
→֒ 〈x′, u′〉,

〈x, u〉 + j
l
→֒ null and alloc(〈x, u〉 + j) of a0, and by defining the heap accordingly. When 〈x, u〉 + j

l
→֒

〈x′, u′〉 ∈ a0, h0(su(x) + j)(l) = su′(x′); when 〈x, u〉 + j
l
→֒ null ∈ a0, h0(su(x) + j)(l) = nil; when

alloc(〈x, u〉+ j) ∈ a0, we define h0(su(x) + j)(l0) = nil, for some l0 /∈ Lab0. Thanks to the distance MAXI

imposed between the values of variables, test formulae about the heap which are not in a0 are not satisfied.
Equalities e = e′ are preserved since the store has only been modified by a permutation.

For the inductive step, suppose that we have already defined the stores s0, . . . , sk+m and heaps h0, . . . , hk

for some position k ≥ 0 satisfying the conditions below: for every t ≤ k,

• for all A ∈ Tµ, (s⋆
t , ht) |=SL A iff A ∈ at, where s⋆

t : 〈x, u〉 7→ st+u(x);

• Im(s⋆
t) ⊆ MAXIN ∪ {nil}.

Let us build the store sk+m+1 and the heap hk+1. Since (ai)i∈N ∈ L(Aµ
sat), TF [ak+1] is satisfiable. There

exist a memory state (s′, h′) satisfying (s′, h′) |=SL TF [ak+1] and for all x ∈ Var and u ∈ [0,m − 1],
s′(〈x, u〉) = sk+1+u(x). By definition of A

µ
sat, (〈x, u + 1〉 = 〈x′, u′ + 1〉 ∈ ak iff 〈x, u〉 = 〈x′, u′〉 ∈ ak+1)

and (〈x, u + 1〉 = null ∈ ak iff 〈x, u〉 = null ∈ ak+1) for all u, u′ ∈ [0,m − 1]. Consequently, for all
u, u′ ∈ [0,m− 1], sk+1+u(x) = sk+1+u′ (x′) iff s′(〈x, u〉) = s′(〈x′, u′〉). So, there is a permutation σ identical
for the variables 〈x, u〉 with u ∈ [0,m − 1] such that Im(σ ◦ s′) ⊆ MAXIN ∪ {nil}. By construction, for
〈x, u〉 ∈ Vµ, σ(s′(〈x, u〉)) ∈ MAXIN ∪ {nil}. For x ∈ Var0, we set sk+1+m(x) = σ(s′(〈x,m〉)).

If we consider RF, this permutation satisfies the prerequisites of Lemma 11, since offsets = {0}. We
can define hk+1 = σ • h′. Thanks to Lemma 11, we know that both of these models satisfy the same test
formulae, which are exactly those in ak+1.

If we are dealing with CL, then the definition of sk+m+1 ensures that the equalities satisfied are exactly
those of ak+1. This time the prerequisites of Lemma 11 are not satisfied unless offsets = {0}. We know
that w = 0, which means that the only test formula about size in ak+1 is size ≥ 0; therefore there is
no constraint on the size of the heap. The heap is defined by enumerating the test formulae of the form

〈x, u〉+ j
l
→֒ 〈x′, u′〉 of ak+1, and defining for each of them hk+1(sk+1+u(x)+ j)(l) = sk+1+u′(x′) (idem when

〈x, u〉 + j
l
→֒ null ∈ ak+1, hk+1(sk+1+u(x) + j)(l) = nil); and then for each of the test formulae of the

form alloc(〈x, u〉+ j) of ak+1, we define hk+1(sk+1+u(x) + j)(l0) = nil, for some l0 /∈ Lab0. Thanks to the
distance MAXI between variables, the test formulae about the heap which are not in ak+1 are not satisfied.
Equalities e = e′ are preserved since the store has only been modified by a permutation.

17

�

This lemma is essential and it is not possible to extend it to the whole logic LTLmem even by allowing
test formulae of the form x + i = y + j : we would then need automata with counters. Now, we can state
our main complexity result.

Theorem 17. SAT(RF) and SAT(CL) are pspace-complete.

Proof. The lower bound is from LTL [20]. Let φ be an instance formula of SAT(RF) (for SAT(CL)
replace below µφ by µφ[w ← 0]). As seen earlier, φ is satisfiable iff Lµφ(φ) ∩ L

µφ

sat is nonempty. Hence,
φ is satisfiable iff L(A

µφ

φ) ∩ L(A
µφ

sat) 6= ∅. The intersection automaton is of exponential size in the size of
φ and can be checked nonempty by a nondeterministic on-the-fly algorithm. Since this algorithm, for the
nonemptiness problem of Büchi automata, is in nlogspace and the transition relation in the intersection
automaton can be checked in polynomial space in the size of φ, we obtain a nondeterministic polynomial
space algorithm for testing satisfiability of φ. As usual, by Savitch’s theorem, we get the pspace upper
bound. �

4.3. Other problems in pspace

Let Frag be either the classical fragment or the record fragment. Lemma 1 provides a reduction from
MCct

init(Frag) to SATct
init(Frag) based on a program-as-formula encoding. As we will see now, we may also

reduce SATct
init(Frag) to SAT(Frag) internalizing an approximation of the initial memory state which the

logical language cannot distinguish from the initial memory state. As a consequence, the pspace upper
bound for SAT(Frag) entails the pspace upper bound for both SATct

init(Frag) and MCct
init(Frag).

Proposition 18. Each of the problems SATct
init(RF), MCct

init(RF), SATct
init(CL) and MCct

init(CL) is pspace-
complete.

Proof. We begin with the fragment RF. By Lemma 1 and since SATct
init(RF) is known to be pspace-hard,

it remains to establish the pspace upper bound for SATct
init(RF).

Given a formula φ and an initial memory state (s, h), we shall build in polynomial-time a formula φct
s,h

in SAT(RF) such that φ is satisfiable in a model with initial memory state (s, h) and constant heap iff φct
s,h

is satisfiable by a general model. Since we have shown that SAT(RF) is in pspace, this guarantees that
SATct

init(RF) is in pspace. The idea of the proof is to internalize the initial memory state and the fact that
the heap is constant in the logic SAT(RF). Actually, we will not exactly express that the heap is constant
but the approximation we use will be sufficient for our purpose.

Apart from the variables of φ, the formula φct
s,h is built over additional variables in V = {xi : i ∈

dom(h)∪Im(s)}∪{xi,l : i ∈ dom(h), l ∈ dom(h(i))}. The formula φct
s,h is of the form G(ψ1 ∧ψ2 ∧ψ3)∧ψs ∧ψ′,

where the subformulae are defined as follows.

• ψ1 states that the heap is almost equal to h since we cannot forbid additional labels in the logical
language (dom(h) = {i1, . . . , ik}):

ψ1
def

= (
∧

l∈dom(h(i1)) xi1
l
7→ xi1,l) ∗ . . . ∗ (

∧

l∈dom(h(ik)) xik

l
7→ xik,l).

• ψ2 states which variables are equal and which ones are not, depending on the initial memory state.
It is a conjunction of simple formulae. As an example, for i 6= j ∈ dom(h), a simple formula of ψ2 is
xi 6= xj. Similarly, if h(i)(l) = j and j ∈ dom(h), then xi,l = xj is a simple formula of ψ2. Details are
omitted.

• ψ3 states that the additional variables remain constant:
∧

x∈V x = Xx.

• The formula ψ′ is obtained from φ by replacing each occurrence of x
l
→֒ e by

x
l
→֒ e ∧

∧

i∈dom(h),l 6∈dom(h(i))

x 6= xi.

The additional conjunction is useful because our logical language cannot state that a label is not in
the domain of some allocated address.

18

• ψs states constraints about the initial store s: ψs
def

=
∧

x∈φ x = xs(x).

It is then easy to check that φ is satisfiable by a model with initial memory state (s, h) and constant
heap iff φct

s,h is satisfiable by a general model.
As far as the results for the classical fragment are concerned, by Lemma 1, there is a logspace reduction

from MCct
init(CL) to SATct

init(CL) and as done above, one can reduce SATct
init(CL) to SAT(CL). �

Proposition 19. MCct
init(SL) is pspace-complete.

Proof. As MCct
init(RF) is a subproblem of MCct

init(SL), Proposition 18 entails the pspace-hardness. It
remains to prove the pspace upper bound. The proof goes by designing a polynomial space reduction to
the model-checking problem for propositional LTL. Let (p, s0, h0, φ) be an instance of MCct

init(RF), where
p = (Q, δ, qinit) is a program without destructive updates, (s0, h0) is an initial memory state, and φ is a
temporal formula in LTLmem(SL). Let Σ be the finite set of stores {s : Im(s) ⊆ Im(s0)∪Im(h0)} restricted to
variables occurring in p and φ. Its cardinality is bounded by (card(Im(s0)∪ Im(h0)))

|φ|+|p|. All the memory
states in the transition system Sp restricted to the configurations reachable from the initial memory state
(s0, h0) are in Σ× {h0}, since p is without destructive updates.

Let wdw be one plus the maximal natural number j such that X
j
x appears in φ (size of the window

made of consecutive states that need to be considered simultaneously). We define the transition graph
G = (QG,→, Qinit) such that: QG = Q × Σwdw, Qinit is the set of tuples (qinit, s1, s2, .., swdw) such that
(s1, h0), .., (swdw, h0) is a prefix of a run of p with initial memory state (s0, h0), and the transition relation
→ is defined as follows:

(q, s1, .., swdw) → (q′, s′1, .., s
′
wdw) iff

{

sk+1 = s′k, k = 1, .., wdw − 1, and ∃q
g,instr
−−−→ q′ ∈ δ

such that (s1, h0) |= g and (s2, h0) ∈ J instr K(s1, h0).

We now define the propositional LTL model by associating to each vertex of the transition graph a set of
propositional variables that are true. We define Prop to be the set of atomic formulae occurring in φ, so
that φ can be seen as a propositional LTL formula over Prop. Then the LTL model is the vertex-labeled
transition graph M = (G, λ), with

λ : QG → P(Prop), (q, s1, .., swdw) 7→ {A ∈ Prop : s1, .., swdw, h0 |=SL A}.

By construction, M, (qinit, s1, s2, .., swdw) |= φ in LTL for some (qinit, s1, s2, .., swdw) ∈ Qinit (existential
version) if and only if p, (s0, h0) |= φ. The model M can be computed in polynomial space in the size
of (p, s0, h0, φ) in the sense that the (nondeterministic) transition function and the labelling function are
computable in polynomial space. M has an exponential size in the size of (p, s0, h0, φ), but let us explain now
why the existence of (qinit, s1, s2, .., swdw) ∈ Qinit such that M, (qinit, s1, s2, .., swdw) |= φ can be checked in
polynomial space. Let Aφ be the automaton recognizing the models of φ over the set Prop of propositions:
it has an exponential size in the size of (p, s0, h0, φ), and so is the product with M . Now the existence of
(qinit, s1, s2, .., swdw) ∈ Qinit such that M, (qinit, s1, s2, .., swdw) |= φ reduces to check the non-emptiness of
Aφ ∩M , which is decidable in space O(log(|Aφ|) + log(|M |)) by a nondeterministic on-the-fly algorithm.
The problem can therefore be solved in polynomial space in the size of (p, s0, h0, φ) by a non-deterministic
algorithm, and by Savitch’s theorem this can be turned into a deterministic polynomial space algorithm. �

Proposition 20. SATct
init(SL \ {−∗}) is pspace-complete.

Proof. pspace-hardness is a consequence of the pspace-hardness of SATct
init(CL) since CL is a fragment

of SL\{−∗}. In order to get the pspace upper bound, we are going to reduce the problem SATct
init(SL\{−∗})

to SATct
init(RF). Let (s0, h), φ be an instance of SATct

init(SL\{−∗}). We shall build an instance (s′0, h), φ
′ of

SATct
init(RF).

Let E = dom(h) ∪ {k− i ∈ N : k ∈ dom(h) and X
u
x+ i occurs in φ}. We modify the set Var by adding a

new variable var(k) for each k ∈ E, and a variable var(x, i) for all x and i occuring in φ in an expression of
the form X

u
x + i (possibly u or i is equal to zero). These variables do not occur in φ.

19

The initial store s′0 is the extension of s0 which maps var(k) to k, and var(x, i) to s0(x) + i. Finally:

φ′ = φ[Xu
x + i← X

u var(x, i)]

∧G
∧

k∈E

(var(k) = X var(k))

∧G
∧

x+i∈φ

∧

(k+i)∈dom(h)

(x = var(k)⇔ var(x, i) = var(k + i))

s′0 and φ′ have a polynomial size in the size of the instance (s0, h), φ.
Assume that (s0, h), φ is accepted by SATct

init(SL\{−∗}). Then there is (si)i∈N such that (si, h)i∈N |= φ.
Let s′i be si extended so as to map var(k) to k and var(x, j) to si(x) + j. Clearly (s′i, h)i∈N |= φ[Xu

x+ i←
X

uvar(x, i)]. Our definition of eachs′i also ensures that (s′i, h)i∈N |= G
∧

k∈E(var(k) = X var(k)) since
the value of a variable var(k) is constantly equal to k, and that (s′i, h)i∈N |= G

∧

x+i∈φ

∧

(k+i)∈dom(h)(x =

var(k) ⇔ var(x, i) = var(k + i)) since for all positions, the value of var(k + i) is that of var(k) plus i
and the value of var(x, i) is that of x plus i. So (s′i, h)i∈N |= φ′, and therefore (s′0, h), φ

′ is accepted by
SATct

init(RF).
Now, assume that (s′0, h), φ

′ is accepted by SATct
init(RF). Then there is a sequence (s′i)i∈N such that

(s′i, h)i∈N |= φ′. Then (s′i, h)i∈N |= G
∧

k∈E(var(k) = X var(k)), and so, at each time state t, we have
s′t(var(k)) = s′0(var(k)) = k. Moreover, (s′i, h)i∈N |= G

∧

x+i∈φ

∧

(k+i)∈dom(h)(x = var(k) ⇔ var(x, i) =

var(k+ i), and so, if k ∈ dom(h) and X
u
x+ i occurs in φ, we have s′t+u(x) = k− i iff s′t+u(var(x, i)) = k (I).

We write h′ ≤ h when there is another heap h′′ for which h = h′ ∗ h′′. Let us prove by induction on
subformulae φ0 of φ that for all t ∈ N and h′ ≤ h, we have (s′i, h

′)i∈N, t |= φ0 iff (s′i, h
′)i∈N, t |= φ0[X

u
x+ i←

X
uvar(x, i)]. This will ensure that (s′i, h)i∈N, 0 |= φ, so that (s′0, h), φ is accepted by SATct

init(SL\{−∗}), from
which we will conclude that (s0, h), φ is also accepted. Indeed, if V0 is the set of variables occurring in φ,
the restriction s′0|V0

is s0|V0
. Here is the proof by induction:

• If φ0 is X
u
x + i

l
→֒ X

u′

y, let k = s′t+u(var(x, i)) (the proof with X
u
x + i

l
→֒ null is analogous and

omitted below).

– Suppose that k /∈ dom(h). We are going to prove that neither (s′i, h
′)i∈N, t |= φ0[X

u
x + i ←

X
u var(x, i)], nor (s′i, h

′)i∈N, t |= φ0. First, it is clear that (s′i, h
′)i∈N, t 6|= φ0[X

u
x + i ←

X
u var(x, i)]. Second, assume there is k′ ∈ dom(h) such that k′ = s′t+u(x) + i. Thanks to

the property (I), from s′t+u(x) = k′− i, we get s′t+u(var(x, i)) = k′, and so k = k′ ∈ dom(h), which
leads to a contradiction. So there is no such k′, and not (s′i, h

′)i∈N, t |= φ0.

– Now suppose that k ∈ dom(h). We have s′t+u(x) = k = s′t+u(var(x, i)) − i thanks to property
(I). Consequently, h′(s′t+u(x) + i)(l) = s′t+u′(y) iff h′(s′t+u(var(x, i)))(l) = s′t+u(var(y, 0)), and
(s′i, h

′)i∈N, t |= φ0 iff (s′i, h
′)i∈N, t |= φ0[X

u
x + i← X

uvar(x, i)].

• If φ0 = A1 ∗A2, then there are h′1 and h′2 such that (s′i, h
′
1)i∈N, t |= A1 and (s′i, h

′
2)i∈N, t |= A2. By the

induction hypothesis, since h = (h′1 ∗ h
′
2) ∗ h

′′ = h′1 ∗ (h′2 ∗ h
′′), we have (s′i, h

′
1)i∈N, t |= A1[X

u
x + i←

X
u var(x, i)] iff (s′i, h

′
1)i∈N, t |= A1; and the same equivalence is true for h′2. From the two equivalences

for h′1 and h′2, we can conclude the same equivalence for h′ = h′1 ∗ h
′
2.

• Other cases are straightforward.

�

If we allow the operator −∗ in the above proposition, the current proof may not be adapted, since we
would have to deal with heaps which are not sub-heaps of h in the induction step.

5. Undecidability Results

In this section, we show several undecidability results by using reduction from problems for Minsky
machines. So, first we recall that a Minsky machine M consists of two counters C1 and C2, and a sequence
of n ≥ 1 instructions of one of the forms below:

20

1
(⊤, y := z)

(y 6= null, y := y→ next)

(y == null, skip)

Figure 2: Checking that z points to a list

l: Ci := Ci + 1 ; goto l′ l: if Ci = 0 then goto l′ else Ci := Ci − 1; goto l′′.

In a nondeterministic machine, after an incrementation or a decrementation, a nondeterministic choice of
the form “goto l1 or goto l2” is performed. The configurations of M are triples (l, c1, c2), where l ∈ [1, n]
and c1, c2 ≥ 0 are the current values of the location counter and the two counters C1 and C2, respectively.
The consecution relation on configurations is defined in the obvious way. A computation of M is a sequence
of related configurations, starting with the initial configuration (1, 0, 0).

Different encodings of counters are used here as for instance the one in [31] for which a counter C with
value l is represented by a list of length l pointed to by an x dedicated to C. The same idea is used in
the proof of Proposition 21 below. In order to show undecidability of SAT(SL), we alternatively encode
counters by relying on pointer arithmetic and properties of heaps. Programs without destructive updates
can simulate finite computations of Minsky machines on counters bounded by the size of some parts of the
heap (the length of a list). In problems with an existential quantification on the initial heap, the maximal
value of the counters can be guessed as shown to prove the results below.

Proposition 21. SATct(LF) and MCct(LF) are Σ0
1-complete.

Proof. By Proposition 18, SATct
init(LF) is decidable in polynomial space using a finite abstraction ar-

gument. Hence, SATct(LF) is in Σ0
1 by adding an existential quantification over the initial memory state.

Similarly, by Proposition 18, MCct
init(LF) is decidable in polynomial space. Hence, MCct(LF) is also in Σ0

1.
By Lemma 1, we only need to show that MCct(LF) is Σ0

1-hard. We reduce the Σ0
1-complete halting

problem for Minsky machines to it. The halting problem consists of determining whether M can reach a
configuration with location counter n.

Let us build a formula φ and a program p in Pct such that the existence of some memory state (s0, h0)
for which p, (s0, h0) |= φ is equivalent to the fact that the machine M reaches a configuration with location
counter n. In order to encode the values of counters, we consider a variable z pointing to a list (as shown
below) in the initial memory state (s0, h0):

z�
next
−−→ �

next
−−→ · · ·�

next
−−→ �

next
−−→ nil

The variable z remains constant along any execution of p and the length of the list is greater than the
maximal value of the counters in some finite computation (hopefully ending at the instruction corresponding
to location n). We consider also the variables x1 and x2 and along any execution of p, each variable xi points
to a cell of the above sequence: the length of the list starting at xi encodes the value of the counter Ci.
Hence, in p, each xi is initialized to null.

The program p is made of the following stages:

1. Check that z points to a list;

2. Initialize the variables;

3. Simulate M .

Figure 2 shows how to perform stage 1 with a simple “while” loop. Observe that checking whether a
counter is equal to zero corresponds in p to an equality test with null. In order to simulate M , its structure
can be embedded in the control graph of p. For instance, a decrementation instruction is encoded in p by

21

l

l′

l′′

(xi 6= null, xi := xi → next)

(xi == null, skip)

Figure 3: Simulating a decrementation

l l′
(⊤, y := z) (⊤, y′ := z)

(y′ 6= xi, y := y′) (⊤, y′ := y→ next)

(y′ == xi, xi := y)

Figure 4: Simulating an incrementation

the transitions shown in Figure 3. An incrementation instruction requires a bit more care and its encoding
in p is presented in Figure 4. Indeed, auxiliary variables y and y′ initialized to z visits the list until it meets
xi.

In the above encoding, every instruction l in M corresponds to a control state of p. Hence, the formula
φ is simply Fn (remember that we may encode propositional variable n by additional variables dedicated
only for this purpose, as stated earlier).

It is then easy to show that there is an initial memory state (s0, h0) such that p reaches the control n
starting with (s0, h0) iff the machine M reaches the location counter n. Observe that both p and M are
deterministic. �

By constrast, programs with destructive update can work with unbounded heaps, and by using the
representation of counters as above, they can faithfully simulate a Minsky machine, even if the initial heap
is an empty heap, without any bound on the counters. Then, as LTL can express repeated accessibility,
Σ1

1-hardness can be obtained.

Proposition 22. The problems MC(LF) and MCinit(LF) are Σ1
1-complete.

Proof. It is possible to reduce the recurring problem for nondeterministic Minsky machines to MC(LF)
and to MCinit(LF). This problem is Σ1

1-hard [36]. The question is whether the machine has a computation
with the location counter n repeated infinitely often; and this can be expressed by GFn in LTLmem.

The proof is quite similar to the proof of Proposition 21 except that there is no maximal value of the
counters, the initial heap is empty (which can be expressed in LTLmem), and the behavior of counters is
encoded by updating the memory states. For instance, incrementing Ci amounts to execute xi := cons(next :
xi) (the length of the list pointed by xi is incremented), decrementing Ci amounts to execute xi := xi → next.
Zero tests are encoded by null tests and the initial values of the variables is null. Details are omitted since
there are no technical difficulties. �

Now, let us explain how to encode incrementation and decrementation with separating connectives and
pointer arithmetic. Observe that expressions of the form x = y + 1 are not allowed in the logical language.
We repair this “defect” in two different ways: using non-aliasing expressed by the separating conjunction,

and using the precise pointing assertion x
next
7→ η stating that the heap contains only one cell, in conjunction

with the −∗ operator.

φ∗x++ = (Xx
next
→֒ null ∧ x + 1

next
→֒ null) ∧ ¬(Xx

next
→֒ null ∗ x + 1

next
→֒ null)

φ∗x−− = (Xx + 1
next
→֒ null∧ x

next
→֒ null) ∧ ¬(Xx + 1

next
→֒ null ∗ x

next
→֒ null)

φ−∗x++ = emp ∧
(
(Xx

next
7→ null)−∗x + 1

next
7→ null

)

φ−∗x−− = emp ∧
(
(x

next
7→ null)−∗Xx + 1

next
7→ null

)

22

The formulae based on the separating conjunction correctly express incrementation and decrementation
when the cells at indices x+ 1 and Xx are allocated, whereas formulae based on the operator −∗ work when
the heap is empty.

Let SAT?
?(SL) be any satisfiability problem among the four variants.

Proposition 23. SAT?
?(SL) is Σ1

1-complete.

Proof. We reduce the recurrence problem for nondeterministic Minsky machines [36] to SAT?
?(SL). Let

φ0 be the formula G(emp ∧
∧2

i=1(xi 6= null)). Incrementation and decrementation are performed thanks

to the formulae φ−∗x++ and φ−∗x−−, respectively. For any model ρ such that ρ, 0 |= φ0, and for any t, we

have ρ, t |= φ−∗xi++ iff st(xi) + 1 = st+1(xi). Hence, we have a means to encode incrementation. Similarly,

ρ, t |= φ−∗xi−− and st(xi) > 0 iff st(xi)− 1 = st+1(xi). The fact that a counter does not change is encoded by
xi = Xxi. Given that φ1 = G(xzero = Xxzero ∧ xzero 6= null) holds, zero tests are encoded by xi = xzero.

Given a nondeterministic Minsky machine M , we write ψl to denote the formula encoding instruction l.
For intance for the instruction “l: if C1 = 0 then goto l′ else C1 := C1 − 1; goto l′1 or goto l′2,” ψl is equal to
the formula below:

G((l ∧ x1 6= xzero)⇒ (x2 = Xx2 ∧ (Xl′1 ∨ Xl′2) ∧ φ
−∗
x1−−))∧

G((l ∧ x1 = xzero)⇒ (x1 = Xx1 ∧ x2 = Xx2 ∧ Xl′)).

Finally, let φ2 be a formula stating that each position corresponds to a unique configuration and the first
instruction is 1: φ2 = G(

∧

l(
∧

l′ 6=l(l → ¬l
′))) ∧ 1.

Hence, (x1 = x2 = xzero)∧φ0 ∧φ1 ∧∧
∧

l ψl ∧GFn is satisfiable iff M has a computation with instruction
n repeated infinitely often. �

Proposition 24. The problem SAT(SL \ {−∗}) is Σ1
1-complete.

The proof of Proposition 24 is similar to the proof of Theorem 23 except that incrementation and
decrementation are performed with the formulae φ∗x++ and φ∗x−− respectively, and the heap is not always
empty: at each increment or decrement, it has size precisely 1.

6. Conclusion

In the paper, we have introduced a temporal logic LTLmem for which assertion language is quantifier-free
separation logic. Figure 5 shows the reductions between problems. Curved lines represent reductions for
proving hardness in a class. Straight lines represent reductions for showing that a problem belongs to its
class. Figure 6 contains a summary of the complexity results about fragments of LTLmem.

Finally, extending LTLmem with a special propositional variable heap= stating that the current heap is
equal to the next one, can lead to undecidability (look at the problems of the form SATct

? (Frag)). However,
it is open whether satisfiability becomes decidable if we restrict the interplay between the “until” operator
U and heap=, for instance to forbid subformulae of the form G heap= with positive polarity.

References

[1] O. Burkart, D. Caucal, F. Moller, B. Steffen, Verification of infinite structures., in: Handbook of Process Algebra, Elsevier,
2001, pp. 545–623.

[2] S. Bardin, A. Finkel, D. Nowak, Toward symbolic verification of programs handling pointers, in: 3rd International Work-
shop on Automated Verification of Infinite-State Systems (AVIS’04), 2004.

[3] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, T. Vojnar, Programs with lists are counter automata, in:
CAV’06, Vol. 4144 of Lecture Notes in Computer Science, Springer, 2006, pp. 517–531.

[4] J. Reynolds, Separation logic: a logic for shared mutable data structures, in: LICS’02, IEEE, 2002, pp. 55–74.
[5] J. Jensen, M. Jorgensen, N. Klarlund, M. Schwartzbach, Automatic verification of pointer programs using monadic second-

order logic, in: PLDI’97, ACM, 1997, pp. 226–236.
[6] T. Lev-Ami, M. Sagiv, TVLA: A system for implementing static analyses, in: SAS’00, 2000, pp. 280–301.

23

SAT(LF) SATct

init(LF)

MCct

init(LF)

SATct(LF)

SATct

init(CL)

MCct

init(CL)

SATct

init(RF)

MCct

init(RF)

SATct(CL)

SATct(RF)

MCct(LF)

MCct(CL)

MCct(RF)

SAT(CL)

SAT(RF)

MCct

init(SL) SATct

init(SL\{−∗})

Prop. 21

Theo. 17

pspace-complete problems Σ0

1-complete problems

Figure 5: Reductions

MC MCct MCct
init MCinit SAT SATct SATct

init

LF Σ1
1-c. Σ0

1-c. pspace-c. Σ1
1-c. pspace-c. Σ0

1-c. pspace-c.
CL and RF Σ1

1-c. Σ0
1-c. pspace-c. Σ1

1-c. pspace-c. Σ0
1-c. pspace-c.

SL\{−∗} Σ1
1-c. Σ0

1-c. pspace-c Σ1
1-c. Σ1

1-c. Σ0
1-c. pspace-c

SL Σ1
1-c. Σ0

1-c. pspace-c Σ1
1-c. Σ1

1-c. Σ1
1-c. Σ1

1-c.

Figure 6: Complexity of reasoning about program with pointer variables

[7] M. Bozga, R. Iosif, Y. Lakhnech, On logics of aliasing, in: SAS’04, Vol. 3148 of Lecture Notes in Computer Science,
Springer, 2004, pp. 344–360.

[8] A. Pnueli, The temporal logic of programs, in: FOCS’77, IEEE, 1977, pp. 46–57.
[9] M. Vardi, P. Wolper, Reasoning about infinite computations, Information and Computation 115 (1994) 1–37.

[10] O. Kupferman, M. Y. Vardi, P. Wolper, An automata-theoretic approach to branching-time model checking, Journal of
the Association for Computing Machinery 47 (2) (2000) 312–360.

[11] J. Berdine, C. Calcagno, P. W. O’Hearn, Symbolic execution with separation logic, in: APLAS’05, Vol. 3780 of Lecture
Notes in Computer Science, Springer, 2005, pp. 52–68.

[12] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, H. Yang, Shape analysis for composite data
structures, in: W. Damm, H. Hermanns (Eds.), CAV, Vol. 4590 of Lecture Notes in Computer Science, Springer, 2007,
pp. 178–192.

[13] A. Bouajjani, R. Echahed, P. Habermehl, On the verification problem of nonregular properties for nonregular processes,
in: LICS’95, 1995, pp. 123–133.

[14] H. Comon, V. Cortier, Flatness is not a weakness, in: CSL’00, Vol. 1862 of Lecture Notes in Computer Science, Springer,
2000, pp. 262–276.

[15] S. Demri, R. Gascon, The effects of bounding syntactic resources on Presburger LTL, Journal of Logic and Computation
to appear.

[16] D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-dimensional modal logics: theory and applications, CUP,
2003.

[17] B. Bennett, F. Wolter, M. Zakharyaschev, Multi-dimensional modal logic as a framework for spatio-temporal reasoning,
Applied Intelligence 17 (3) (2002) 239–251.

[18] P. Balbiani, J. Condotta, Computational complexity of propositional linear temporal logics based on qualitative spatial
or temporal reasoning, in: FROCOS’02, Vol. 2309 of Lecture Notes in Artificial Intelligence, Springer, 2002, pp. 162–173.

[19] S. Demri, D. D’Souza, An automata-theoretic approach to constraint LTL, Information and Computation 205 (3) (2007)
380–415.

[20] A. Sistla, E. Clarke, The complexity of propositional linear temporal logic, Journal of the Association for Computing
Machinery 32 (3) (1985) 733–749.

[21] C. Calcagno, H. Yang, P. O’Hearn, Computability and complexity results for a spatial assertion language for data struc-
tures, in: FST&TCS’01, Vol. 2245 of Lecture Notes in Computer Science, Springer, 2001, pp. 108–119.

[22] E. Lozes, Expressivité des logiques spatiales, Ph.D. thesis, Laboratoire de l’Informatique du Parallélisme, ENS Lyon,

24

France (2004).
[23] C. Calcagno, P. Gardner, M. Hague, From separation logic to first-order logic, in: FOSSACS’05, Vol. 3441 of Lecture

Notes in Computer Science, Springer, 2005, pp. 395–409.
[24] D. Galmiche, D. Mery, Characterizing provability in BI’s pointer logic through resource graphs, in: LPAR’05, Vol. 3835

of Lecture Notes in Computer Science, Springer, 2005, pp. 459–473.
[25] D. Galmiche, D. Méry, Tableaux and resource graphs for separation logic, Journal of Logic and Computation to appear.
[26] E. Yahav, T. Reps, M. Sagiv, R. Wilhelm, Verifying temporal heap properties specified via evolution logic, in: ESOP’03,

Vol. 2618 of Lecture Notes in Computer Science, Springer, 2003, pp. 204–22.
[27] D. Distefano, J.-P. Katoen, A. Rensink, Who is pointing when to whom? on the automated verification of linked list

structures, in: FST&TCS’04, Vol. 3328 of Lecture Notes in Computer Science, Springer, 2004, pp. 250–262.
[28] R. Brochenin, S. Demri, E. Lozes, Reasoning about sequences of memory states, in: LFCS’07, Vol. 4514 of Lecture Notes

in Computer Science, Springer, 2007, pp. 100–114.
[29] S. Ishtiaq, P. O’Hearn, BI as an assertion language for mutable data structures, in: POPL’01, 2001, pp. 14–26.
[30] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, in: 7th Annual ACM Symposium on

Principles of Programming Languages, ACM Press, 1980, pp. 163–173.
[31] S. Bardin, A. Finkel, E. Lozes, A. Sangnier, From pointer systems to counter systems using shape analysis, 5th International

Workshop on Automated Verification of Infinite-State Systems (AVIS’06).
[32] J. Berdine, C. Calcagno, P. O’Hearn, Smallfoot: Modular automatic assertion checking with separation logic, in: FMCO’05,

Vol. 4111 of Lecture Notes in Computer Science, Springer, 2005, pp. 115–137.
[33] A. Finkel, E. Lozes, A. Sangnier, Towards model-checking programs with lists, in: Infinity in Logic and Computation,

Vol. 5489 of Lecture Notes in Artificial Intelligence, Springer, 2009, to appear.
[34] R. Brochenin, S. Demri, E. Lozes, On the almighty wand, in: CSL’08, Vol. 5213 of Lecture Notes in Computer Science,

Springer, 2008, pp. 322–337.
[35] K. Bansal, R. Brochenin, E. Lozes, Beyond shapes: Lists with ordered data, in: FOSSACS’09, Vol. 5504 of Lecture Notes

in Computer Science, Springer, 2009, pp. 425–439.
[36] R. Alur, T. Henzinger, A really temporal logic, Journal of the Association for Computing Machinery 41 (1994) 181–204.

25

