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Internal rapid stabilization of a 1-D linear transport equation

with a scalar feedback

Christophe Zhang

November 18, 2019

Abstract

We use the backstepping method to study the stabilization of a 1-D linear transport equation on

the interval (0, L), by controlling the scalar amplitude of a piecewise regular function of the space

variable in the source term. We prove that if the system is controllable in a periodic Sobolev space of

order greater than 1, then the system can be stabilized exponentially in that space and, for any given

decay rate, we give an explicit feedback law that achieves that decay rate.

Keywords. Backstepping, transport equation, Fredholm transformations, stabilization, rapid stabi-
lization, internal control.

1 Introduction

We study the linear 1-D hyperbolic equation

{

yt + yx + a(x)y = u(t)ϕ̃(x), x ∈ [0, L],

y(t, 0) = y(t, L), ∀t ≥ 0,
(1)

where a is continuous, real-valued, ϕ̃ is a given real-valued function that will have to satisfy certain
conditions, and at time t, y(t, ·) is the state and u(t) is the control. As the system can be transformed
into

{

αt + αx + µα = u(t)ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,
(2)

through the state transformation
α(t, x) := e

∫
x

0
a(s)ds−µxy(x, t),

where µ =

∫ L

0

a(s)ds, and with

ϕ(x) := e
∫

x

0
a(s)ds−µxϕ̃(x),

we will focus on systems of the form (2) in this article.
These systems are an example of linear hyperbolic systems with a distributed scalar input. Such

systems appear naturally in physical problems. For example, as is mentioned in [32], a linear wave
equation which can be rewritten as a 2 × 2 first order hyperbolic system, the problem of a vibrating
damped string, or the plucking of a string, can be modelled thus. In a different field altogether, chemical
tubular reactors, in particular plug flow reactors (see [27, 30]), are modeled by hyperbolic systems with a
distributed scalar input (the temperature of the reactor jacket), albeit with a boundary input instead of
proportional boundary conditions. Let us cite also the water tank system, introduced by François Dubois,
Nicolas Petit and Pierre Rouchon in [16]. It models a 1-D tank containing an inviscid, incompressible,
irrotational fluid, in the approximation that its acceleration is small compared with the gravitational
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constant, and that the height of the liquid is small compared with the length of the tank. In this
setting, the motion of the fluid can be modelled by the Saint-Venant equations on the interval [0, L] with
impermeable boundary conditions (which correspond to proportional boundary conditions after a variable
change), and the control is the force applied to the tank itself, which takes the form of a distributed scalar
input.

1.1 Notations and definitions

We note ℓ2 the space of summable square series ℓ2(Z). To simplify the notations, we will note L2 the
space L2(0, L) of complex-valued L2 functions, with its hermitian product

〈f, g〉 =
∫ L

0

f(x)g(x)dx, ∀f, g ∈ L2, (3)

and the associated norm ‖ · ‖. We also use the following notation

en(x) =
1√
L
e

2iπ
L

nx, ∀n ∈ Z, (4)

the usual Hilbert basis for L2. For a function f ∈ L2, we will note (fn) ∈ ℓ2 its coefficients in this basis:

f =
∑

n∈Z

fnen.

Note that with this notation, we have

f̄ =
∑

n∈Z

f−nen,

so that, in particular, if f is real-valued:

f−n = fn, ∀n ∈ Z.

Functions of L2 can also be seen as L-periodic functions on R, by the usual L-periodic continuation:
in this article, for any f ∈ L2 we will also note f its L-periodic continuation on R.

We will use the following definition of the convolution product on L-periodic functions:

f ⋆ g =
∑

n∈Z

fngnen =

∫ L

0

f(s)g(· − s)ds ∈ L2, ∀f, g ∈ L2, (5)

where g(x− s) should be understood as the value taken in x− s by the L-periodic continuation of g.
Let us now note E the space of finite linear combinations of the (en)n∈Z. Then, any sequence (fn)n∈Z

defines an element f of E ′:
〈en, f〉 = fn.

On this space of linear forms, derivation can be defined by duality:

f ′ =

(

2iπn

L
fn

)

n∈Z

, ∀f ∈ E ′.

We also define the following spaces:

Definition 1.1. Let m ∈ N. We note Hm the usual Sobolev spaces on the interval (0, L), equipped with
the Hermitian product

〈f, g〉m =

∫ L

0

∂mf∂mg + fg, ∀f, g ∈ Hm,
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and the associated norm ‖ · ‖m.
For m ≥ 1 we also define Hm

(pw) the space of piecewise Hm functions, that is, f ∈ Hm
(pw) if there exists

a finite number d of points (σj)1≤j≤d ∈ [0, L] such that, noting σ0 := 0 and σd+1 := L, f is Hm on every
[σj , σj+1] for 0 ≤ j ≤ d. This space can be equipped with the norm

‖f‖m,pw :=

d
∑

j=0

‖f|[σj,σj+1]‖Hm(σj ,σj+1).

For s > 0, we also define the periodic Sobolev space Hs
per as the subspace of L2 functions f =

∑

n∈Z

fnen

such that
∑

n∈Z

(

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2s
)

|fn|2 < ∞.

Hs is a Hilbert space, equipped with the Hermitian product

〈f, g〉s =
∑

n∈Z

(

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2s
)

fngn, ∀f, g ∈ Hs,

and the associated norm ‖ · ‖s, as well as the Hilbert basis

(esn) :=





en
√

1 +
∣

∣

2iπn
L

∣

∣

2s



 .

Note that for m ∈ N, Hm
per is a closed subspace of Hm, with the same scalar product and norm, thanks

to the Parseval identity. Moreover,

Hm
per =

{

f ∈ Hm, f (i)(0) = f (i)(L), ∀i ∈ {0, · · · ,m− 1}
}

.

1.2 Main result

To stabilize (2), we will be considering linear feedbacks of the form

〈α(t), F 〉 =
∑

n∈Z

Fnαn(t) =

∫ L

0

F̄ (s)α(s)ds

where F ∈ E ′ and (Fn) ∈ C
Z are its Fourier coefficients, and F is real-valued, that is,

F−n = Fn, ∀n ∈ Z.

In fact, the integral notation will appear as purely formal, as the (Fn) will have a prescribed growth, so
that F /∈ L2. The associated closed-loop system now writes

{

αt + αx + µα = 〈α(t), F 〉ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0.
(6)

This is a linear transport equation, which we seek to stabilize with an internal, scalar feedback, given by
a real-valued feedback law. This article aims at proving the following class of stabilization results:

Theorem 1.1 (Rapid stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ Hm
(pw) ∩Hm−1

per such that

c
√

1 +
∣

∣

2iπn
L

∣

∣

2m
≤ |ϕn| ≤

C
√

1 +
∣

∣

2iπn
L

∣

∣

2m
, ∀n ∈ Z, (7)
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where c, C > 0 are the optimal constants for these inequalities. Then, for every λ>0, for all α0 ∈ Hm
per

the closed-loop system (6) with the stationary feedback law F ∈ E ′ given by

〈en, F 〉 := − 1− eλL

1 + e−λL

2

Lϕn
, ∀n ∈ Z,

has a solution α(t) which satisfies the estimate

‖α(t)‖m ≤
(

C

c

)2

e(µ+λ)Le−λt‖α0‖m, ∀t ≥ 0. (8)

Note that the estimate (8) is constructive, as it only depends on c, C, µ and λ. Though it is not
necessarily sharp for a given controller ϕ and the corresponding feedback law F , it is the “least worse” a
priori estimate one can get, in a sense that we will elaborate further on. The growth restriction (7) on
the Fourier coefficients of ϕ can be written, more intuitively, and for some other constants c′, C′ > 0,

c′

1 +
∣

∣

2iπn
L

∣

∣

m ≤ |ϕn| ≤
C′

1 +
∣

∣

2iπn
L

∣

∣

m , ∀n ∈ Z,

and corresponds to the necessary and sufficient condition for the controllability of system (2) in Hm
per, in

time T ≥ L, with L2(0, T ) controls. This is obtained using the moments method, and we refer to [33,
Equation (2.19) and pages 199-200] for more details. The controllability of system (2), in turn, will allow
us to use a form of backstepping method to stabilize it.

On the other hand, the additional regularity ϕ ∈ Hm
(pw) gives us the following equality, first using

the fact that ϕ ∈ Hm−1
per , then by integration by parts on each interval [σj , σj+1], using the fact that

∂m−1ϕ ∈ H1
(pw):

ϕn =
(−1)m−1

(

2iπn
L

)m−1 〈ϕ, ∂
m−1en〉

=
1

(

2iπn
L

)m−1 〈∂
m−1ϕ, en〉

= − τϕn
(

2iπ
L n

)m +
1

(

2iπ
L n

)m

d
∑

j=0

〈

χ[σj ,σj+1]∂
mϕ, en

〉

, ∀n ∈ Z
∗,

(9)

where

τϕn :=
1√
L



∂m−1ϕ(L)− ∂m−1ϕ(0) +
d
∑

j=1

e−
2iπ
L

nσj (∂m−1ϕ(σ−
j )− ∂m−1ϕ(σ+

j ))



 , ∀n ∈ Z.

Note that, thanks to condition (7), there exists C1, C2 > 0 such that

C1 ≤ |τϕn | ≤ C2, n ∈ Z,

so that these numbers are the eigenvalues of a diagonal isomorphism of any periodic Sobolev space into
itself, which we note τϕ. Moreover, it is clear from the definition of its coefficients that τϕ is a sum of
translations. Also, note that τϕn 6= 0, and thus, ϕ /∈ Hm

per. Finally, note that





d
∑

j=0

〈

χ[σj ,σj+1]∂
mϕ, en

〉



 ∈ ℓ2. (10)
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1.3 Related results

To investigate the stabilization of infinite-dimensional systems, there are four main types of approaches.
The first type of approach relies on abstract methods, such as the Gramian approach and the Riccati

equations (see for example [39, 38, 22]). In these works, rapid stabilization was achieved thanks to
a generalization of the well-known Gramian method in finite dimension (see [28, 20]). However, the
feedback laws that are provided involve the solution to an algebraic Riccati equation, and the inversion
of an infinite-dimensional Gramian operator, which makes them difficult to compute in practice.

The second approach relies on Lyapunov functions. Many results on the boundary stabilization of first-
order hyperbolic systems, linear and nonlinear, have been obtained using this approach: see for example
the book [2], and the recent results in [17, 18]. However, this approach can be limited, as it is sometimes
impossible to obtain an arbitrary decay rate using Lyapunov functions (see [13, Remark 12.9, page 318]
for a finite dimensional example).

The third approach is related to pole-shifting results in finite dimension. Indeed, it is well-known
that if a linear finite-dimensional system is controllable, than its poles can be arbitrarily reassigned
(shifted) with an appropriate linear feedback law (see [13]). There have been some generalizations of this
powerful property to infinite-dimensional systems, notably hyperbolic systems. Let us cite [33], in which
the author uses a sort of canonical form to prove a pole-shifting result for a class of hyperbolic systems
with a distributed scalar control. In this paper, the feedback laws under consideration are bounded and
pole-shifting property is not as strong as in finite dimension. This is actually inevitable, as was proved
in [36], in a very general setting: bounded feedback laws can only achieve weak pole-shifting, which is
not sufficient for exponential stabilization. However, if one allows for unbounded feedback laws, it is
possible to obtain stronger pole-shifting, and in particular exponential stabilization in some cases. This
is extensively studied in [31], in which the author gives a formula for a feedback law that achieves the
desired pole placement. However, this formula requires to know a cardinal function for which the poles
coincide with the initial spectrum, which might be difficult in practice.

The fourth approach, which we will be using in this article, is the backstepping method. This name
originally refers to a way of designing feedbacks for finite-dimensional stabilizable systems with an added
chain of integrators (see [13, 35, 24], and [6] or [25] for some applications to partial differential equations).
Another way of applying this approach to partial differential equations was then developed in [3] and [1]:
when applied to the discretization of the heat equation, the backstepping approach yielded a change of
coordinates which was equivalent to a Volterra transform of the second kind. Backstepping then took
yet another successful form, consisting in mapping the system to stable target system, using a Volterra
transformation of the second kind (see [23] for a comprehensive introduction to the method):

f(t, x) 7→ f(t, x)−
∫ x

0

k(x, y)f(t, y)dy.

This was used to prove a host of results on the boundary stabilization of partial differential equations:
let us cite for example [21] and [34] for the wave equation, [41, 42] for the Korteweg-de Vries equation,
[2, chapter 7] for an application to first-order hyperbolic systems, and also [15], which combines the
backstepping method with Lyapunov functions to prove finite-time stabilization in H2 for a quasilinear
2× 2 hyperbolic system.

The backstepping method has the advantage of providing explicit feedback laws, which makes it
a powerful tool to prove other related results, such as null-controllability or small-time stabilization
(stabilization in an arbitrarily small time). This is done in [12], where the authors give an explicit
control to bring a heat equation to 0, then a time-varying, periodic feedback to stabilize the equation in
small time. In [42], the author obtains the same kind of results for the Korteweg-de Vries equation.

In some cases, the method was used to obtain stabilization with an internal feedback. This was done
in [37] and [40] for parabolic systems, and [43] for first-order hyperbolic systems. The strategy in these
works is to first apply a Volterra transformation as usual, which still leaves an unstable source term in
the target, and then apply a second invertible transformation to reach a stable target system. Let us note
that in the latter reference, the authors study a linear transport equation and get finite-time stabilization.
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However, their controller takes a different form than ours, and several hypotheses are made on the space
component of the controller so that a Volterra transform can be successfully applied to the system. This is
in contrast with the method in this article, where the assumption we make on the controller corresponds
to the exact null-controllability of the system.

In this paper, we use another application of the backstepping method, which uses another type of
linear transformations, namely, Fredholm transformations:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy.

These are more general than Volterra transformations, but they require more work: indeed, Volterra
transformations are always invertible, but the invertibility of a Fredholm transform is harder to check.
Even though it is sometimes more involved and technical, the use of a Fredholm transformation proves
more effective for certain types of control: for example, in [11] for the Korteweg-de Vries equation and
[10] for a Kuramoto-Sivashinsky, the position of the control makes it more appropriate to use a Fredholm
transformation. Other boundary stabilization results using a Fredholm transformation can be found in
[8] for integro-differential hyperbolic systems, and in [9] for general hyperbolic balance laws.

Fredholm transformations have also been used in [7], where the authors prove the rapid stabilization of
the Schrödinger equation with an internal feedback. Their method of proof relies on the assumption that
the system is controllable, and the technical developments are quite different from the work in previous
references. This is a new development in the evolution of the backstepping method. Indeed, the original
form of the backstepping method, and the backstepping method with Volterra transformations of the
second kind, could be applied to uncontrollable systems. Hence, a controllability assumption makes for
potentially powerful additional information, for example when one considers the more general Fredholm
transformations instead of Volterra transformations of the second kind. It is interesting to note that the
role played by controllability is also a feature of the pole-shifting approach and the Gramian method,
although in this setting it leads to an explicit feedback law given by its Fourier coefficients, instead of the
inverse of the Gramian operator, or, in the case of Richard Rebarber’s result in [31], a cardinal function.

1.4 The backstepping method revisited: a finite-dimensional example

Let us now give a finite-dimensional example to illustrate the role controllability can play in the back-
stepping method for PDEs. Consider the finite-dimensional control system

ẋ = Ax+Bu(t), x ∈ C
n, A ∈ Mn(C), B ∈ Mn,1(C). (11)

Assume that (A,B) is controllable. Suppose that x(t) is a solution of system (11) with u(t) = Kx(t).
Now, in the spirit of PDE backstepping, let us try to invertibly transform the resulting closed-loop system
into another controllable system, namely

ẋ = Ãx, (12)

which can be exponentially stable if Ã is well chosen.
Such a transformation T would map the closed loop system to

˙(Tx) = T ẋ = T (A+BK)x.

In order for Tx to be a solution of (12), we would need

T (A+BK) = ÃT. (13)

One can see quite clearly that this matrix equation is not well-posed, in that if it has a solution, it has
an infinity of solutions. Moreover, the variables T and K are not separated because of the TBK term,
and as a result the equation is nonlinear. Hence, we can add the following constraint to equation (13), to
separate the variables, make the equation linear in (T,K), and get a uniqueness property:

TB = B. (14)
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Injecting the above equation into (13), we get the following equations:

TA+BK = ÃT,

TB = B,
(15)

Now for this set of equations, one can prove the following theorem, using the Brunovski normal form (or
canonical form):

Theorem 1.2. If (A,B) and (Ã, B) are controllable, then there exists a unique pair (T,K) satisfying
conditions (15).

This shows that controllability can be very useful when one wants to transform systems into other
systems. In the finite-dimensional case, using the canonical form is the most efficient way of writing it.
However, in order to gain some insight on the infinite-dimensional case, there is a different proof, relying
on the spectral properties of A and Ã, which can be found in [7]. The idea is that the controllability of
A allows to build a basis for the space state, in which T can then be constructed. Indeed, suppose A is
diagonalizable with eigenvectors (en, λn)1≤n≤N , and suppose that Ã and A have no mutual eigenvalues.
Then, let us project (15) on en:

λnTen + (Ken)B = ÃT en, (16)

from which we get the following relationship

Ten = (Ken)(Ã − λnI)
−1B, ∀n ∈ {1, · · · , N}. (17)

Then, using the Kalman rank condition on the pair (Ã, B), one can prove that the fn := ((Ã−λnI)
−1B)

form a basis of RN .
Knowing this, write

B =

N
∑

n=1

bnen,

B =
N
∑

n=1

b̃nfn,

(18)

and TB is written naturally in this basis:

TB =

N
∑

n=1

(Ken)bnfn, (19)

so that the second equation of (15) becomes

N
∑

n=1

(Ken)bnfn =

N
∑

n=1

b̃nfn. (20)

Using the Kalman rank condition on (A,B), one can prove that bn 6= 0 so that the (Ken) are uniquely
determined. The only thing that remains to prove is the invertibility of T , as the (Ken) could be 0. In
the end the invertibility is proven thanks to the Hautus test on the pair (Ã, B), and the uniqueness is
given by the TB = B condition.

Remark 1.1. In this finite-dimensional example, one can see a relationship between the Gramian method
and our variant of the backstepping method. Indeed, the Gramian matrix, defined by

C∞
ω :=

∫ ∞

0

e−2ωte−tABB∗e−tA∗

dt,
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is the solution of the Lyapunov equation:

C∞
ω (A+ ωI)∗ + (A+ ωI)C∞

ω = BB∗.

Now, injecting the feedback law K := −B∗(C∞
ω )−1 given by the Gramian method, this equation becomes:

C∞
ω (A+ ωI)∗ + (A+ ωI)C∞

ω = −BKC∞
ω ,

which becomes, after multiplication by (C∞
ω )−1 on the left and on the right,

(C∞
ω )−1(A+BK) = (−A∗ − 2ωI)(C∞

ω )−1,

which is of the form (13), with Ã = −A∗−2ωI and T = (C∞
ω )−1. The fundamental difference then comes

from the fact that in the Gramian method, this backstepping-type equation is coupled with the definition
of the feedback law

B∗(C∞
ω )−1 = −K,

whereas in the backstepping method, the backstepping-type equation (13) is coupled with the TB = B
condition, which can be recast as

B∗T ∗ = B∗.

The former leads to a Lyapunov-type analysis of stability, whereas the latter allows us to use Fourier
analysis to give explicit coefficients for the feedback law.

1.5 Structure of the article

The structure of this article follows the outline of the proof given above: in Section 2, we look for candidates
for the backstepping transformation in the form of Fredholm transformations. Formal calculations (and
a formal TB = B condition) lead to a PDE analogous to (16) which we solve, which is analogous to
the derivation of (17). Using the properties of Riesz bases and the controllability assumption, we prove
that such candidates are indeed invertible, under some conditions on the feedback coefficients (Fn). For
consistency, we then determine the feedback law (Fn) such that the corresponding transformation indeed
satisfies a weak form of the TB = B condition. Then, in Section 3, we check that the corresponding
transformation indeed satisfies an operator equality analogous to (15), making it a valid backstepping
transformation. We check the well-posedness of the closed-loop system for the feedback law obtained in
Section 2, which allows us to prove the stability result. Finally, Section 4 gives a few remarks on the
result, as well as further questions on this stabilization problem.

2 Definition and properties of the transformation

Let λ′ > 0 be such that λ′ − µ > 0, and m ≥ 1. Let ϕ ∈ Hm ∩Hm−1
per be a real-valued function satisfying

(7). We consider the following target system:

{

zt + zx + λ′z = 0, x ∈ (0, L),

z(t, 0) = z(t, L), t ≥ 0.
(21)

Then it is well-known that, taking α0 ∈ L2, the solution to (21) with initial condition α0 writes

z(t, x) = e−λ′tα0(x − t), ∀(t, x) ∈ R
+ × (0, L).

Hence,

Proposition 2.1. For all s ≥ 0, the system (21) is exponentially stable for ‖ · ‖s, for initial conditions
in Hs

per.
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2.1 Kernel equations

As mentioned in the introduction, we want to build backstepping transformations T as a kernel operator
of the Fredholm type:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy.

To have an idea of what this kernel looks like, we can do the following formal computation for some
Fredholm operator T : first the boundary conditions

(

∫ L

0

k(0, y)α(y)dy

)

=

(

∫ L

0

k(L, y)α(y)dy

)

,

then the equation of the target system, for x ∈ [0, L]:

0 =

(

∫ L

0

k(x, y)α(y)dy

)

t

+

(

∫ L

0

k(x, y)α(y)dy

)

x

+ λ′

(

∫ L

0

k(x, y)α(y)dy

)

=

(

∫ L

0

k(x, y)αt(y)dy

)

+

(

∫ L

0

kx(x, y)α(y)dy

)

+ λ′

(

∫ L

0

k(x, y)α(y)dy

)

=

(

∫ L

0

k(x, y)(−αx(y)− µα(y) + 〈α, F 〉ϕ(y))dy
)

+

(

∫ L

0

(kx(x, y) + λ′k(x, y))α(y)dy

)

=

(

∫ L

0

ky(x, y)α(y)dy

)

− (k(x, L)α(L)− k(x, 0)α(0)) +

(

∫ L

0

k(x, y)〈α, F 〉ϕ(y))dy
)

+

(

∫ L

0

(kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)

=

(

∫ L

0

k(x, y)

(

∫ L

0

F̄ (s)α(s)ds

)

ϕ(y))dy

)

− (k(x, L)α(L)− k(x, 0)α(0))

+

(

∫ L

0

(ky(x, y) + kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)

=

(

∫ L

0

F̄ (s)

(

∫ L

0

k(x, y)ϕ(y)dy

)

α(s)ds

)

− (k(x, L)α(L) − k(x, 0)α(0))

+

(

∫ L

0

(ky(x, y) + kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)

.

Now, suppose we have the formal TB = B condition

∫ L

0

k(x, y)ϕ(y)dy = ϕ(x), ∀x ∈ [0, L].

Then, we get, noting λ := λ′ − µ> 0,

(

∫ L

0

(

ky(x, y) + kx(x, y) + λk(x, y) + ϕ(x)F̄ (y)
)

α(y)dy

)

− (k(x, L)α(L)− k(x, 0)α(0)) = 0.

9



Hence the kernel equation:










kx + ky + λk = −ϕ(x)F̄ (y),

k(0, y) = k(L, y),

k(x, 0) = k(x, L),

(22)

together with the TB = B condition

〈k(x, ·), ϕ(·)〉 = ϕ(x), ∀x ∈ [0, L]. (23)

2.2 Construction of Riesz bases for Sobolev spaces

To study the solution to the kernel equation, we project it along the variable y. Let us write heuristically

k(x, y) =
∑

n∈Z

kn(x)en(y),

so that
∫ L

0

k(x, y)α(y)dy =
∑

n∈Z

αnk−n(x).

Projecting the kernel equations (22), we get

k′n + λnkn = −F−nϕ, (24)

where

λn = λ+
2iπ

L
n. (25)

Note that
2iπp

L

1

λn+p
+ λn

1

λn+p
= 1, ∀n, p ∈ Z. (26)

Now consider the L2 function given by

Λλ
n(x) =

√
L

1− e−λL
e−λnx, ∀n ∈ Z, ∀x ∈ [0, L). (27)

Then, for all m ≥ 0, Λλ
n ∈ Hm, and we have

〈Λλ
n, ep〉 =

1√
L

∫ L

0

√
L

1− e−λL
e−λnxe−

2iπp

L
xdx =

1

1− e−λL

∫ L

0

e−λn+pxdx =
1

λn+p
, ∀n, p ∈ Z,

so that, using (26),

(Λλ
n)

′ + λnΛ
λ
n =

∑

p∈Z

ep in E ′.

Remark 2.1. In E ′,
∑

p∈Z

ep is the equivalent of the Dirac comb, or the “Dirac distribution” on the space

of functions on [0, L]. So, in a sense, Λλ
n is the elementary solution of (24).

Let us now define, in analogy with the elementary solution method,

kn,λ = −F−nΛ
λ
n ⋆ ϕ ∈ Hm

per, ∀n ∈ Z. (28)

The regularity comes from the definition of the convolution product, (7) and (25), and one can check,
using (26), that kn,λ is a solution of (24).

The next step to build an invertible transformation is to find conditions under which (kn,λ) is some
sort of basis. More precisely we use the notion of Riesz basis (see [5, Chapter 4])

10



Definition 2.1. A Riesz basis in a Hilbert space H is the image of an orthonormal basis of H by an
isomorphism.

Proposition 2.2. Let H be a Hilbert space. A family of vectors (fk)k∈N ∈ H is a Riesz basis if and
only if it is complete (i.e., Span(fk) = H) and there exists constants C1, C2 > 0 such that, for any scalar
sequence (ak) with finite support,

C1

∑

|ak|2 ≤
∥

∥

∥

∑

akfk

∥

∥

∥

2

H
≤ C2

∑

|ak|2. (29)

Let us now introduce the following growth condition:

Definition 2.2. Let s ≥ 0, (un) ∈ C
Z (or u ∈ E ′) . We say that (un) (or u) has s-growth if

c

√

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2s

≤ |un| ≤ C

√

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2s

, ∀n ∈ Z, (30)

for some c, C > 0. The optimal constants for these inequalities are called growth constants.

Remark 2.2. The inequalities (30) can also be written, more intuitively, and for some other positive
constants,

c (1 + |n|s) ≤ |un| ≤ C (1 + |n|s) , ∀n ∈ Z. (31)

We can now establish the following Riesz basis properties for the (kn,λ):

Proposition 2.3. Let s ≥ 0. If (Fn) has s-growth, then the family of functions

(ksn,λ) :=





kn,λ
√

1 +
∣

∣

2iπn
L

∣

∣

2s





is a Riesz basis for Hm
per.

Proof. We use the characterization of Riesz bases given in Proposition 2.2. First, let us prove the com-
pleteness of (ksn,λ). Let f ∈ Hm

per be such that

〈f, ksn,λ〉m = 0, ∀n ∈ Z.

Then for all n ∈ Z we get

0 = 〈Λλ
n ⋆ ϕ, f〉m =

∑

p∈Z

fpϕp

λn+p

(

1 +

∣

∣

∣

∣

2iπp

L

∣

∣

∣

∣

2m
)

=

〈

Λλ
n,
∑

p∈Z

(

1 +

∣

∣

∣

∣

2iπp

L

∣

∣

∣

∣

2m
)

fpϕpep

〉

,

as, thanks to (7), and using the fact that f ∈ Hm
per ,

∑

p∈Z

(

1 +

∣

∣

∣

∣

2iπp

L

∣

∣

∣

∣

2m
)

fpϕpep ∈ L2.

Now, (Λλ
n) is a complete family of L2, as it is a Riesz basis, so that

fpϕp = 0, ∀p ∈ Z.

Recalling condition (7), this yields
fp = 0, ∀p ∈ Z,

which proves the completeness of (ksn,λ).
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Now let I ⊂ Z be a finite set, and (an) ∈ C
I . Then,

∥

∥

∥

∥

∥

∑

n∈I

ank
s
n,λ

∥

∥

∥

∥

∥

2

m

=

∥

∥

∥

∥

∥

∥

∑

n∈I

−an
F−n

√

1 +
∣

∣

2iπn
L

∣

∣

2s
Λλ
n ⋆ ϕ

∥

∥

∥

∥

∥

∥

2

m

=

∥

∥

∥

∥

∥

∥

∑

n∈I

an
F−n

√

1 +
∣

∣

2iπn
L

∣

∣

2s

∑

p∈Z

ϕp

λn+p
ep

∥

∥

∥

∥

∥

∥

2

m

=

∥

∥

∥

∥

∥

∥

∑

p∈Z

ϕp

∑

n∈I

anF−n

λn+p

√

1 +
∣

∣

2iπn
L

∣

∣

2s
ep

∥

∥

∥

∥

∥

∥

2

m

=
∑

p∈Z

(

1 +

∣

∣

∣

∣

2πp

L

∣

∣

∣

∣

2m
)

|ϕp|2
∣

∣

∣

∣

∣

∣

∑

n∈I

anF−n

λn+p

√

1 +
∣

∣

2iπn
L

∣

∣

2s

∣

∣

∣

∣

∣

∣

2

.

Now, using condition (7), we have

c2
∑

p∈Z

∣

∣

∣

∣

∣

∣

∑

n∈I

anF−n

λn+p

√

1 +
∣

∣

2iπn
L

∣

∣

2s

∣

∣

∣

∣

∣

∣

2

≤
∥

∥

∥

∥

∥

∑

n∈I

ank
s
n,λ

∥

∥

∥

∥

∥

2

m

≤ C2
∑

p∈Z

∣

∣

∣

∣

∣

∣

∑

n∈I

anF−n

λn+p

√

1 +
∣

∣

2iπn
L

∣

∣

2s

∣

∣

∣

∣

∣

∣

2

,

where c, C > 0 are the decay constants in condition (7).
This last inequality can be rewritten

c2

∥

∥

∥

∥

∥

∥

∑

n∈I

anF−n
√

1 +
∣

∣

2iπn
L

∣

∣

2s
Λλ
n

∥

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

∑

n∈I

ank
s
n,λ

∥

∥

∥

∥

∥

2

m

≤ C2

∥

∥

∥

∥

∥

∥

∑

n∈I

anF−n
√

1 +
∣

∣

2iπn
L

∣

∣

2s
Λλ
n

∥

∥

∥

∥

∥

∥

2

,

as

Λλ
n =

∑

p∈Z

1

λn+p
ep.

We now use the fact that (Λλ
n) is a Riesz basis of L2: indeed, it is the image of the Hilbert basis (en) by

the isomorphism
Λλ : f ∈ L2 7→ Λλ

0f.

The norms of Λλ and its inverse are rather straightforward to compute using piecewise constant functions,
we have

|||Λλ||| =
√
L

1− e−λL
,

|||(Λλ)−1||| = 1− e−λL

√
L

eλL,

so that

1

|||(Λλ)−1|||2
∑

n∈I

∣

∣

∣

∣

∣

∣

anF−n
√

1 +
∣

∣

2iπn
L

∣

∣

2s

∣

∣

∣

∣

∣

∣

2

≤

∥

∥

∥

∥

∥

∥

∑

n∈I

anF−n
√

1 +
∣

∣

2iπn
L

∣

∣

2s
Λλ
n

∥

∥

∥

∥

∥

∥

2

≤ |||Λλ|||2
∑

n∈I

∣

∣

∣

∣

∣

∣

anF−n
√

1 +
∣

∣

2iπn
L

∣

∣

2s

∣

∣

∣

∣

∣

∣

2

,

and we finally get, using the fact that (Fn) has s-growth,

c2C2
1

1

|||(Λλ)−1|||2
∑

n∈I

|an|2 ≤
∥

∥

∥

∥

∥

∑

n∈I

ank
s
n,λ

∥

∥

∥

∥

∥

2

m

≤ C2C2
2 |||Λλ|||2

∑

n∈I

|an|2.
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where C1, C2 > 0 are the growth constants of (Fn), so that the constants in the inequalities above are
optimal. Hence, using again point 2. of Proposition 2.2, (ksn,λ) is a Riesz basis of Hm

per.

We now have candidates for the backstepping transformation, under some conditions on F :

Corollary 2.1. Let m ∈ N
∗, and F such that (Fn) has m-growth, with growth constants C1, C2 > 0.

Define

T λα :=
∑

n∈Z

√

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2m

αnk
m
−n,λ =

∑

n∈Z

αnk−n,λ ∈ Hm
per , ∀α ∈ Hm

per, (32)

where α =
∑

n∈Z

αnen. Then, T λ : Hm
per → Hm

per is an isomorphism. Moreover,

|||T λ|||≤ CC2

√
L

1− e−λL
,

|||(T λ)−1|||≤1− e−λL

cC1

√
L

eλL.

(33)

Proof. The invertibility of T λ is clear thanks to the Riesz basis property of (km−n,λ), and (33) comes from
the above calculations.

2.3 Definition of the feedback law

In order to further determine the feedback law, and define our final candidate for the backstepping
transformation, the idea is now to return to the TB = B condition (23), as we have used it in the formal
computations of section 2.1, in the equation (23). However, in this case, ϕ /∈ Hm

per, and so it is not clear

whether T λϕ is well-defined.
We can nonetheless obtain a TB = B condition in some weak sense: indeed, let us set

ϕ(N) :=

N
∑

n=−N

ϕnen ∈ Hm
per , ∀N ∈ N.

Then,

ϕ(N) Hm−1

−−−−→
N→∞

ϕ

and

T λϕ(N) =

N
∑

n=−N

−ϕnFnΛ
λ
−n ⋆ ϕ

=

N
∑

n=−N

∑

p∈Z

−ϕnFnϕp

λ−n+p
ep

=
∑

p∈Z

ϕp

(

N
∑

n=−N

−ϕnFn

λ−n+p

)

ep.

Now, notice that one can apply the Dirichlet convergence theorem for Fourier series (see for example [19])
to Λλ

p , p ∈ Z at 0:

N
∑

n=−N

1

λ−n+p
=

N
∑

n=−N

1

λn+p
−−−−→
N→∞

√
L
Λλ
p(0) + Λλ

p (L)

2
=

L

1− e−λL

1 + e−λL

2
.

Let us note

K(λ) :=
2

L

1− e−λL

1 + e−λL
,

13



and set

Fn := −K(λ)

ϕn
, ∀n ∈ Z. (34)

This defines a feedback law F ∈ E ′ which is real-valued, as ϕ is real-valued, and which has m-growth
thanks to condition (7), so that T λ is a valid backstepping transformation. Moreover,

〈T λϕ(N), ep〉 = ϕpK(λ)

N
∑

n=−N

1

λ−n+p
−−−−→
N→∞

ϕp, ∀p ∈ Z, (35)

which corresponds to the TB = B condition in some weak sense.
With this feedback law, the backstepping transformation now writes

T λα =
∑

n∈Z

αnk−n,λ, ∀α ∈ Hm
per , (36)

and

|||T λ|||≤ CK(λ)
√
L

c(1− e−λL)
,

|||(T λ)−1|||≤C(1− e−λL)

cK(λ)
√
L

eλL.

(37)

2.4 Regularity of the feedback law

Finally, in order to study the well-posedness of the closed-loop system corresponding to (34), we need
some information on the regularity of F .

Let us first begin by a general lemma for linear forms with coefficients that have m-growth:

Lemma 2.1. Let m ≥ 0, and G ∈ E ′ with m-growth.
Then, for all s > 1/2, G is defined on Hm+s

per , is continuous for ‖ · ‖m+s, but not for ‖ · ‖m+σ, for
−m ≤ σ < 1/2.

In particular, the feedback law F ∈ E ′ defined by (34) defines a linear form on Hm+1
per which is contin-

uous for ‖ · ‖m+1 but not for ‖ · ‖m.

Proof. Let s > 1/2, and let α ∈ Hm+s
per . Using the growth conditions (30), we can do the following

computations for α ∈ Hm+s
per :

∑

n∈Z

|Gn||αn| ≤ C
∑

n∈Z

√

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2m

|αn|

≤ C′
∑

n∈Z

1

1 + |n|s

√

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2m+2s

|αn|

≤ C′





√

∑

n∈Z

1

(1 + |n|s)2



 ‖α‖m+s

where C,C′ > 0 are constants that do not depend on α, and where the last inequality is obtained using
the Cauchy-Schwarz inequality. Thus G is defined on Hm+s

per by

〈α,G〉 :=
∑

n∈Z

Gnαn, ∀α ∈ Hm+s
per ,

and G is continuous on Hm+s
per .
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On the other hand, let −m ≤ σ < 1/2, and consider, for N ≥ 1,

γ(N) :=
∑

|n|≥N

1

Gn (1 + |n|1+s)
en ∈ Hm+s

per .

We have

‖γ(N)‖2m+σ =
∑

|n|≥N

(

1 +
∣

∣

2iπn
L

∣

∣

2m+2σ
)

|Gn|2
1

(1 + |n|1+s)
2 ≤ C

∑

|n|≥N

1

1 + |n|2+2s−2σ

for some constant C > 0. Then,

|〈γ(N), G〉| =
∑

|n|≥N

1

1 + |n|1+s

≥ c
∑

|n|≥N

|n|1+s−2σ 1

1 + |n|2+2s−2σ

≥ cN1+s−2σ
∑

|n|≥N

1

1 + |n|2+2s−2σ

≥ c′N1+s−2σ

√

√

√

√

∑

|n|≥N

1

1 + |n|2+2s−2σ
‖γ(N)‖m+σ

for some constants c, c′ > 0. Now, we know that there exists constants c′′, C′′ > 0 such that

c′′

N1+2s−2σ
≤
∑

|n|≥N

1

1 + |n|2+2s−2σ
≤ C′′

N1+2s−2σ
,

So that

N1+s−2σ

√

√

√

√

∑

|n|≥N

1

1 + |n|2+2s−2σ
≥ c′′N

1
2
−σ −−−−→

N→∞
∞.

This proves that G is not continuous for‖ · ‖m+σ.

Let us now give a more precise description of the domain of definition and regularity of F . Recalling
the identity (9), we can derive the following identity for Fn from (34):

Fn = (−1)m
K(λ)

τϕ−n

(

2iπn

L

)m

+ (−1)m
K(λ)

τϕ−n

(

2iπn

L

)m

d
∑

j=0

〈

χ[σj ,σj+1]∂
mϕ, en

〉

τϕ−n −
d
∑

j=0

〈

χ[σj ,σj+1 ]∂
mϕ, en

〉

, ∀n ∈ Z
∗, (38)

so that
(

1
(

2iπn
L

)m

(

Fn − (−1)m
K(λ)

τϕ−n

(

2iπn

L

)m)
)

n∈Z∗

∈ ℓ2. (39)

Let us then note

hn := (−1)m
K(λ)

τϕ−n

(

2iπn

L

)m

, ∀n ∈ Z,

and h the associated linear form in E ′.
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Proposition 2.4. The linear form h defines the following linear form on τϕ(Hm+1
(pw) ), continuous for

‖ · ‖m+1,pw:

〈α, h〉 =
√
L
K(λ)

2

(

∂m
(

(τϕ)−1α
)

(0) + ∂m
(

(τϕ)−1α
)

(L)
)

, ∀α ∈ τϕ(Hm+1
(pw) ). (40)

Moreover, F̃ := F −h is continuous for ‖·‖m, so that F is defined on τϕ(Hm+1
(pw) )∩Hm

per, and is continuous

for ‖ · ‖m+1,pw, but not ‖ · ‖m.

Proof. It is clear, by definition of Hm
per , and using (39), that for α ∈ Hm

per , the expression:

〈α, F − h〉 =
∑

n∈Z

αn(Fn − hn) =
K(λ)α0

ϕ0
+
∑

n6=0

(

2iπn

L

)m

αn
1

(

2iπn
L

)m (Fn−hn) (41)

defines a continuous linear form on Hm
per .

On the other hand, let α ∈ τϕ(Hm+2
(pw) ), then

N
∑

n=−N

αnhn =
√
LK(λ)

N
∑

n=−N

(

2iπn

L

)m
αn

τϕn

1√
L

we can use the Dirichlet convergence theorem (see [19]) on ∂m
(

(τϕ)−1α
)

∈ H2
(pw) at 0, so that

N
∑

n=−N

αnhn =
√
LK(λ)

N
∑

n=−N

(

2iπn

L

)m
αn

τϕn

1√
L

−−−−→
N→∞

√
L
K(λ)

2

(

∂m
(

(τϕ)−1α
)

(0) + ∂m
(

(τϕ)−1α
)

(L)
)

.

Now, we know that Hm+2
(pw) is dense in Hm+1

(pw) for the Hm+1
(pw) norm. As τϕ is a sum of translations, it is

continuous for ‖ · ‖m+1,pw, so that τϕ(Hm+2
(pw) ) is dense in τϕ(Hm+1

(pw) ) for ‖ · ‖m+1,pw.

Moreover, using the Sobolev inequality for H1 and L∞ (see for example [4, Chapter 8, Theorem 8.8]),
we get the continuity of h for ‖ · ‖m+1,pw, so that we can extend it from τϕ(Hm+2

(pw) ) to τϕ(Hm+1
(pw) ) by

density. We also get that h is not continuous for ‖ · ‖m, as α ∈ Hm 7→ ∂mα(0) and α ∈ Hm 7→ ∂mα(L)
are not continuous for ‖ · ‖m.

Thus, F = F̃ + h is defined on τϕ(Hm+1
(pw) ) ∩Hm

per, is continuous for ‖ · ‖m+1 but not for ‖ · ‖m.

3 Well-posedness and stability of the closed-loop system

Let m ≥ 1, ϕ ∈ Hm
(pw)∩Hm−1

per satisfying growth condition (7). Let the feedback law F be defined by (34).

3.1 Operator equality

Now that we have completely defined the feedback F and the transformation T λ, let us check that we
have indeed built a backstepping tranformation. As in the finite dimensional example of subsection 1.4,
this corresponds to the formal operator equality

T (A+BK) = (A− λI)T.

Let us define the following domain:

Dm :=
{

α ∈ τϕ(Hm+1
(pw) ) ∩Hm

per, −αx − µα+ 〈α, F 〉ϕ ∈ Hm
per

}

. (42)

Notice that, as ϕ ∈ Hm
(pw), the condition α ∈ Hm+1

(pw) ⊃ τϕ(Hm+1
(pw) ) is necessary for −αx − µα+ 〈α, F 〉ϕ

to be in Hm
per . Let us first check the following property:
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Proposition 3.1. For m ≥ 1, Dm is dense in Hm
per for ‖ · ‖m.

Proof. It is clear that Hm+1
per ⊂ τϕ

(

Hm+1
(pw)

)

, so that

Km :=
{

α ∈ Hm+1
per , 〈α, F 〉 = 0

}

⊂ Dm.

Now, by Lemma 2.1, as F has m-growth, Km is dense in Hm+1
per for ‖ · ‖m, as the kernel of the linear form

F which is not continuous for ‖ · ‖m. As Hm+1
per is dense in Hm

per, then Dm is dense in Hm
per for ‖ · ‖m.

Now, on this dense domain, let us establish the operator equality:

Proposition 3.2.

T λ(−∂x − µI + 〈·, F 〉ϕ)α = (−∂x − λ′I)T λα in Hm
per , ∀α ∈ Dm. (43)

Proof. First let us rewrite (43) in terms of λ:

T λ(−∂x + 〈·, F 〉ϕ)α = (−∂x − λI)T λα in Hm
per , ∀α ∈ Dm(F ).

Let α ∈ Dm. By definition of the domain Dm, the left-hand side of (43) is a function of Hm
per ⊂ E ′,

and by construction of T λ, the right-hand side of (43) is a function of Hm−1
per ⊂ E ′. To prove that these

functions are equal, it is thus sufficient to prove their equality in E ′. Let us then write each term of the
equality against en for n ∈ Z. One has

〈

(−∂x − λI)T λα, en
〉

=

〈

T λα,
2iπn

L
en

〉

− λ
〈

T λα, en
〉

= −λn〈T λα, en〉.

Let us now prove that

〈T λ(−αx + 〈α, F 〉ϕ), en〉 = −λn〈T λα, en〉, ∀n ∈ Z. (44)

Now, as we only have αx ∈ Hm−1
per , T λαx is not defined a priori. In order to allow for more computa-

tions, let us define

α(N) :=

N
∑

n=−N

αnen, ∀N ∈ N,

ϕ(N) :=

N
∑

n=−N

ϕnen,

so that we have, by property of the partial Fourier sum of a Hm
per function,

−α(N)
x + 〈α, F 〉ϕ(N) Hm

−−−−→
N→∞

−αx + 〈α, F 〉ϕ,

so that in particular,

〈T λ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 −−−−→

N→∞
〈T λ(−αx + 〈α, F 〉ϕ), en〉 (45)

Let N ∈ N. We can now write

〈T λ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 = −〈T λα(N)

x , en〉+ 〈α, F 〉〈T λϕ(N), en〉

= −
〈

N
∑

p=−N

2iπp

L
αpk−p,λ, en

〉

+ 〈α, F 〉〈T λϕ(N), en〉.

17



Now, using (24), we get
2iπp

L
k−p,λ = (k−p,λ)x + λk−p,λ + Fpϕ,

so that

−T λα(N)
x =

N
∑

p=−N

αp

(

(k−p,λ)x + λk−p,λ + Fpϕ
)

.

Hence
−〈T λα(N)

x , en〉 = −
〈(

T λα(N)
)

x
, en

〉

− λ
〈

T λα(N), en

〉

− 〈α(N), F 〉ϕn,

and finally,

〈T λ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 = −λn

〈

T λα(N), en

〉

+
(

〈α− α(N), F 〉
)

ϕn

+ 〈α, F 〉
(〈

T λϕ(N) − ϕ, en

〉)

.
(46)

To deal with the third term of the right-hand side of this equality, recall that we have chosen a feedback
law so that the TB = B condition (23) holds. Thus,

〈

T λϕ(N) − ϕ, en

〉

−−−−→
N→∞

0. (47)

To deal with the second term, recall that F is the sum of a regular part F̃ and a singular part h:

〈α− α(N), F 〉 =
〈

α− α(N), F̃
〉

+ 〈α − α(N), h〉.

Now, by definition of α(N) and continuity of F̃ for ‖ · ‖m,

〈

α− α(N), F̃
〉

−−−−→
N→∞

0. (48)

On the other hand, for all N ∈ N,

〈α(N), h〉 = K(λ)
N
∑

n=−N

αn

τϕn

(

2iπn

L

)m

=
K(λ)

2

N
∑

n=−N

(

αn

τϕn
+ (−1)m

α−n

τϕ−n

)(

2iπn

L

)m

.

=
√
L
K(λ)

2
∂m−1τ̃ϕα(N)

x (0),

(49)

where

τ̃ϕf =
∑

n∈Z

(

fn
τϕn

+ (−1)m−1 f−n

τϕ−n

)

en, ∀f ∈ L2.

Now, notice that, by definition of τϕ and Dm,

τ̃ϕ (−αx − µα+ 〈α, F 〉ϕ) ∈ Hm
per . (50)
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Moreover, using (9), we have for n ∈ Z
∗:

ϕn

τϕn
+ (−1)m−1ϕ−n

τϕ−n

=
ϕn

τϕn
+ (−1)m−1ϕn

τϕn

=
−1− (−1)m−1(−1)m

(

2iπ
L n
)m +

rn
(

2iπ
L n

)m

=
rn

(

2iπ
L n
)m ,

where rn ∈ ℓ2. Hence, τ̃ϕϕ ∈ Hm
per . This, together with (50), yields

τ̃ϕαx ∈ Hm
per.

This implies that

τ̃ϕα(N)
x

Hm

−−−−→
N→∞

τ̃ϕαx,

as τ̃ϕα(N)
x is the partial sum of τ̃ϕαx.

Hence, by continuity of α 7→ ∂m−1α(0) for ‖ · ‖m, (49) implies that

〈

α− α(N), h
〉

−−−−→
N→∞

0. (51)

Finally, (46), (47), (48), (51), and the continuity of T λ yield

〈T λ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 −−−−→

N→∞
−λn

〈

T λα, en
〉

.

This, put together with (45), gives (44) by uniqueness of the limit, which in turn proves (43).

Remark 3.1. When ϕ ∈ Hm, τϕ is simply (1/
√
L)(∂m−1ϕ(L)− ∂m−1ϕ(0))Id, F is defined on Hm+1 ∩

Hm
per, and τ̃ϕα is simply, up to a constant factor, the symmetrisation α+(−1)m−1α(L−·), which is Hm

per

if α ∈ Hm ∩Hm−1
per .

3.2 Well-posedness of the closed-loop system

The operator equality we have established in the previous section means that T λ transforms, if they exist,
solutions of the closed-loop system with a well-chosen feedback into solutions of the target system. Let
us now check that the closed-loop system in question is indeed well-posed in some sense.

Proposition 3.3. The operator A+BK := −∂x − µα+ 〈·, F 〉ϕ defined on Dm is a dense restriction of
the infinitesimal generator of a C0-semigroup on Hm

per.

Proof. We know from Lemma 3.1 that A+BK is densely defined on Dm ⊂ Hm
per.

Now, define the following semigroup on Hm
per :

Sλ′(t)α := e−λ′tα(· − t), ∀α ∈ Hm
per, t ≥ 0, (52)

which corresponds to the target system (21). Its infinitesimal is given by

Dλ′

:= Hm+1
p er,

−∂x − λ′I.
(53)
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Now, define a second semigroup on Hm
per :

S(t)α := (T λ)−1Sλ′(t)T λα, ∀α ∈ Hm
per, t ≥ 0. (54)

The infinitesimal generator of S(t) is given, when it exists, by the limit of

S(t)α− α

t
= (T λ)−1Sλ′(t)T λα− T λα

t
, (55)

so, by (53), the domain of the infinitesimal generator of S(t) is (T λ)−1(Hm+1
per ), and the infinitesimal

generator itself is given by
S(t)α − α

t

Hm

−−−−→
t→0+

(T λ)−1(−∂x − λ′I)T λα. (56)

In particular, by (43),

(T λ)−1(−∂x − λ′I)T λα = (−∂x − µI + 〈·, F 〉ϕ)α = (A+BK)α, (57)

which proves the proposition.

3.3 Stability of the closed-loop system

We can now prove Theorem 1.1.
Let S(t) the semigroup defined by (54), α ∈ Hm

per.
By definition of S(t), and using (37), we then get, for t ≥ 0,

‖S(t)α‖m ≤ |||(T λ)−1|||‖Sλ′(t)T λα‖m
≤ |||(T λ)−1||| e−λ′t‖T λα‖m
≤ |||(T λ)−1||||||T λ|||e−λ′t‖α‖m

≤
(

C

c

)2

eλLe−λ′t‖α‖m,

which proves the exponential stability of the semigroup S(t).

Now consider the particular case where C = c > 0, and µ = 0 to simplify notations, together with:

ϕn :=
C

√

1 +
∣

∣

2iπn
L

∣

∣

2m
, ∀n ∈ Z, (58)

so that

‖α ⋆ ϕ‖m = C‖α‖, ∀α ∈ L2, ‖α ⋆ F‖ =
1

C
‖α‖m, ∀α ∈ Hm

per . (59)

Now let ε > 0. Keeping in mind that (χ[0,1/n])n>0 and (χ[L−1/n,L])n>0 are maximizing sequences for Λλ

and
(

Λλ
)−1

respectively, and using (32), (34), (52), we get for tn := L− 1/n:

S(tn)(χ[0,1/n] ⋆ ϕ) = (T λ)−1Sλ′(tn)T
λ(χ[0,1/n] ⋆ ϕ)

= −K(λ)(T λ)−1Sλ′ (tn)
(

ϕ ⋆
(

Λλ(χ[0,1/n])
))

= −K(λ)
e−λtn

√
L

1− e−λL
(T λ)−1ϕ ⋆

(

χ[L−1/n,L]e
−λ(·−tn)

)

= −e−λtneλ(L−1/n)(χ[L−1/n,L] ⋆ ϕ)

= −e−λtneλ(L−1/n)(χ[0,1/n] ⋆ ϕ)(· − tn), ∀n > 0,

(60)
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so that
∥

∥S (tn) (χ[0,1/n] ⋆ ϕ)
∥

∥

m
= e−λtneλ(L−1/n)‖χ[0,1/n] ⋆ ϕ‖m, ∀n > 0. (61)

Then, there exists n > 0 such that

∥

∥S (tn) (χ[0,1/n] ⋆ ϕ)
∥

∥

m
> e−λtn(eλL − ε)‖χ[0,1/n] ⋆ ϕ‖m. (62)

This shows that estimate (8) can be critical in some cases.

3.4 Application

Let m = 1, λ > 0, and let us suppose, to simplify the computations, that a ≡ 0. Define

ϕ(x) = L− x, ∀x ∈ (0, L), (63)

so that ϕ ∈ H1 but is not periodic, and satisfies (7), with

ϕn = − iL
3
2

2πn
, ∀n ∈ Z

∗,

ϕ0 =
L

3
2

2
.

Then,

〈α, F 〉 = −2K(λ)

L
3
2

α0 −K(λ)
αx(0) + αx(L)

2
, ∀α ∈ H2 ∩H1

per, (64)

and

D1 =

{

α ∈ H2 ∩H1
per,

2K(λ)

L
3
2

α0 +

(

1

L
−K(λ)

)

αx(0)−
1

L
αx(L) = 0

}

,

so that










αt + αx =

(

−2K(λ)

L
3
2

α0 −K(λ)
αx(0) + αx(L)

2

)

ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,

(65)

has a unique solution for initial conditions in D1.
The backstepping transformation can be written as:

T λα =

√
L

1− e−λL

(

e−λx

(

−K(λ)√
L

αx − 2K(λ)

L2
α0

))

⋆ ϕ, ∀α ∈ H1
per . (66)

Let α(t) ∈ D1 be the solution of the closed loop system (65) with initial condition α0 ∈ D1, and let us
note z(t) := T λα(t), then

zt =

√
L

1− e−λL

(

e−λx

(

−K(λ)√
L

αxt −
2K(λ)

L2
α′
0

))

⋆ ϕ.

=

√
L

1− e−λL

(

e−λx

(

−K(λ)√
L

(−αxx + 〈α, F 〉ϕx)−
2K(λ)

L2
α′
0

))

⋆ ϕ.

=

√
L

1− e−λL

(

e−λx

(

−K(λ)√
L

(−αxx − 〈α, F 〉) − 2K(λ)

L2
α′
0

))

⋆ ϕ.

zx =

√
L

1− e−λL

(

−e−λxK(λ)√
L

αxx

)

⋆ ϕ− λz

zt + zx + λz =

√
L

1− e−λL

(

e−λx

(

K(λ)√
L

〈α, F 〉 − 2K(λ)

L2
α′
0

))

⋆ ϕ.
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By projecting the closed loop system on e0, we get

α′
0 = 〈α, F 〉ϕ0 = 〈α, F 〉L

3
2

2

so that
zt + zx + λz = 0.

In particular,
d

dt
‖z‖21 = −2λ‖z‖21. (67)

Let us now set
V (α) := ‖z‖21, ∀α ∈ H1

per.

Now, notice that

‖T λα‖21 =
L

(1 − e−λL)2

∑

n∈Z

(

1 +

∣

∣

∣

∣

2iπn

L

∣

∣

∣

∣

2
)

|ϕn|2
∣

∣

∣

∣

〈

e−λx

(

−K(λ)√
L

αx − 2K(λ)

L2
α0

)

, en

〉∣

∣

∣

∣

2

≥ C

∥

∥

∥

∥

e−λx

(

−K(λ)√
L

αx − 2K(λ)

L2
α0

)∥

∥

∥

∥

2

≥ Ce2λL
∥

∥

∥

∥

−K(λ)√
L

αx − 2K(λ)

L2
α0

∥

∥

∥

∥

2

≥ C′K(λ)2e2λL‖α‖21.

Together with (67), this shows that V is a Lyapunov function, and (65) is exponentially stable.

4 Further remarks and questions

4.1 Controllability and the TB = B condition

In the introduction we have mentioned that the growth constraint on the Fourier coefficients of ϕ
actually corresponds to the exact null controllability condition in some Sobolev space for the control
system (2). As we have mentioned in the finite dimensional example, the controllability condition is
essential to solve the operator equation: in our case, formal computations lead to a family of functions
that turns out to be a Riesz basis precisely thanks to that rate of growth. Moreover, that rate of growth
is essential for the compatibility of the TB = B condition and the invertibility of the backstepping
transformation. Indeed, as the transformation is constructed formally using a formal TB = B condition,
that same TB = B condition fixes the value of the coefficients of Fn, giving them the right rate of growth
for T λ to be an isomorphism.

In that spirit, it would be interesting to investigate if a backstepping approach is still valid if the
conditions on ϕ are weakened. For example, if we suppose approximate controllability instead of exact
controllability, i.e.

ϕn 6= 0, ∀n ∈ Z,

then F can still be defined using a weak TB = B condition. However, it seems delicate to prove, in the
same direct way as we have done, that T λ is an isomorphism, as we only get the completeness of the
corresponding (kn,λ), but not the Riesz basis property.
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Finally, it should be noted that, while in [7] the TB = B condition is well-defined, in our case, it
only holds in a rather weak sense. This is probably because of a lack of regularization, indeed in [7] the
backstepping transformation has nice properties, as it can be decomposed in Fredholm form, i.e. as the
sum of a isomorphism and a compact operator. Accordingly, the Riesz basis in that case is quadratically
close to the orthonormal basis given by the eigenvectors of the Laplacian operator. That is not the case
for our backstepping transformation, as it is closely linked to the operator Λλ, which does not have any
nice spectral properties.

Nonetheless, it appears that thanks to some information on the regularity of F , a weak sense is
sufficient and allows us to prove the operator equality by convergence.

4.2 Regularity of the feedback law

As we have pointed out in Section 2.4, if ϕ is such that system (2) is controllable in Hm
per , then the

feedback law F defined by (34) is continuous for ‖ · ‖m+1 but not for ‖ · ‖m. This was actually to be
expected, as we have mentioned in the introduction that Shun Hua Sun proved that bounded feedback
laws can only achieve “compact” perturbations of the spectrum, which is not enough to get exponential
stabilization. More precisely, it would be possible to get exponential stabilization only with very singular
controllers. With a distributed control such as ours, it is necessary to consider unbounded feedback laws.

Moreover, the application in Section 3.4 shows that even though the feedback is not continuous, and
is given by its Fourier coefficients, in practice it can be expressed quite simply for some controllers.

4.3 Null-controllability and finite-time stabilization

As we have mentioned in the introduction, one of the advantages of the backstepping method is that
it can provide an explicit expression for feedbacks, thus allowing the construction of explicit controls for
null controllability, as well as time-varying feedbacks that stabilize the system in finite time T > 0.

The general strategy (as is done in [12], [41]) is to divide the interval [0, T ] in smaller intervals [tn, tn+1],
the length of which tends to 0, and on which one applies feedbacks to get exponential stabilization with
decay rates λn, with λn → ∞. Then, for well-chosen tn, λn, the trajectory thus obtained reaches 0 in
time T . Though this provides an explicit control to steer the system to 0, the norm of the operators
applied successively to obtain the control tends to infinity. As such, it does not provide a reasonably
regular feedback. However, the previous construction of the control can be used, with some adequate
modifications (see [12] and [42]) to design a time-varying, periodic feedback, with some regularity in the
state variable, which stabilizes the system in finite time.

Let us first note that, due to the hyperbolic nature of the system, there is a minimal control time,
and thus small-time stabilization cannot be expected. Moreover, even for T > L, the estimates we have
established on the backstepping transforms prevent us from applying the strategy we have described
above: indeed, for any sequences (tn) → T , λn → ∞, we have

‖α(t)‖m ≤
n
∏

k=0

(

C

c

)2n

enµLexp

(

n
∑

k=0

−λk(tk+1 − tk − L)

)

‖α0‖m, ∀t ∈ [tn, tn+1],

where c, C are the decay constants in (7). Moreover, as tk+1 − tk → 0, we have

exp

(

n
∑

k=0

−λk(tk+1 − tk − L)

)

−−−−→
n→∞

∞.

Another approach could be to draw from [9] and apply a second transformation to design a more
efficient feedback law. It would also be interesting to adapt the strategy in [43], inspired from [37], to our
setting.
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4.4 Nonlinear systems

Finally, another prospect, having obtained explicit feedbacks that stabilize the linear system, is to
investigate the stabilization of nonlinear transport equations. This has been done in [10], where the
authors show that the feedback law obtained for the linear Korteweg-de Vries equation also stabilize the
nonlinear equation. However, as in [7], the feedback law we have obtained is not continuous in the norm
for which the system is stabilize. This would require some nonlinear modifications to the feedback law in
order to stabilize the nonlinear system.
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