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Internal rapid stabilization of a 1-D linear transport equation
with a scalar feedback

Christophe Zhang

October 25, 2018

Abstract

We use the backstepping method to study the stabilization of a 1-D linear transport equation on
the interval (0, L), by controlling the scalar amplitude of a piecewise regular function of the space
variable in the source term. We prove that if the system is controllable in a periodic Sobolev space of
order greater than 1, then the system can be stabilized exponentially in that space and, for any given
decay rate, we give an explicit feedback law that achieves that decay rate.

Keywords. Backstepping, transport equation, Fredholm transformations, stabilization, rapid stabi-
lization, internal control.

1 Introduction
We study the linear 1-D hyperbolic equation{

yt + yx + a(x)y = u(t)ϕ̃(x), x ∈ [0, L],

y(t, 0) = y(t, L), ∀t ≥ 0,
(1)

where a is continuous, real-valued, ϕ̃ is a given real-valued function that will have to satisfy certain
conditions, and at time t, y(t, ·) is the state and u(t) is the control. As the system can be transformed
into {

αt + αx + µα = u(t)ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,
(2)

through the state transformation
α(t, x) := e

∫ x
0
a(s)ds−µxy(x, t),

where µ =

∫ L

0

a(s)ds, and with

ϕ(x) := e
∫ x
0
a(s)ds−µxϕ̃(x),

we will focus on systems of the form (2) in this article.

1.1 Notations and definitions
We note `2 the space of summable square series `2(Z). To simplify the notations, we will note L2 the
space L2(0, L) of complex-valued L2 functions, with its hermitian product

〈f, g〉 =

∫ L

0

f(x)g(x)dx, ∀f, g ∈ L2, (3)
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and the associated norm ‖ · ‖. We also use the following notation

en(x) =
1√
L
e

2iπ
L nx, ∀n ∈ Z, (4)

the usual Hilbert basis for L2. For a function f ∈ L2, we will note (fn) ∈ `2 its coefficients in this basis:

f =
∑
n∈Z

fnen.

Note that with this notation, we have

f̄ =
∑
n∈Z

f−nen,

so that, in particular, if f is real-valued:

f−n = fn, ∀n ∈ Z.

Functions of L2 can also be seen as L-periodic functions on R, by the usual L-periodic continuation:
in this article, for any f ∈ L2 we will also note f its L-periodic continuation on R.

We will use the following definition of the convolution product on L-periodic functions:

f ? g =
∑
n∈Z

fngnen =

∫ L

0

f(s)g(· − s)ds ∈ L2, ∀f, g ∈ L2, (5)

where g(x− s) should be understood as the value taken in x− s by the L-periodic continuation of g.
Let us now note E the space of finite linear combinations of the (en)n∈Z. Then, any sequence (fn)n∈Z

defines an element f of E ′:
〈en, f〉 = fn.

On this space of linear forms, derivation can be defined by duality:

f ′ =

(
2iπn

L
fn

)
, ∀f ∈ E ′.

We also define the following spaces:

Definition 1.1. Let m ∈ N. We note Hm the usual Sobolev spaces on the interval (0, L), equipped with
the Hermitian product

〈f, g〉m =

∫ L

0

∂mf∂mg, ∀f, g ∈ Hm,

and the associated norm ‖ · ‖m.
For m ≥ 1 we also define Hm

(pw) the space of piecewise Hm functions, that is, f ∈ Hm
(pw) if there exists

a finite number d of points (σj)1≤j≤d ∈ [0, L] such that, noting σ0 := 0 and σd+1 := L, f is Hm on every
[σj , σj+1] for 0 ≤ j ≤ d. This space can be equipped with the norm

‖f‖m,pw :=

d∑
j=0

‖f|[σj ,σj+1]‖Hm(σj ,σj+1).

For s > 0, we also define the periodic Sobolev space Hs
per as the subspace of L2 functions f =

∑
n∈Z

fnen

such that ∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
|fn|2 <∞.
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Hs is a Hilbert space, equipped with the Hermitian product

〈f, g〉s =
∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2s
)
fngn, ∀f, g ∈ Hs,

and the associated norm ‖ · ‖s, as well as the Hilbert basis

(esn) :=

 en√
1 +

∣∣ 2iπn
L

∣∣2s
 .

Note that for m ∈ N, Hm
per is a closed subspace of Hm, with the same scalar product and norm, thanks

to the Parseval identity. Moreover,

Hm
per =

{
f ∈ Hm, f (i)(0) = f (i)(L),∀i ∈ {0, · · · ,m}

}
.

1.2 Main result
To stabilize (2), we will be considering linear feedbacks of the form

〈α(t), F 〉 =
∑
n∈Z

Fnαn(t) =

∫ L

0

F̄ (s)α(s)ds

where F ∈ E ′ and (Fn) ∈ CZ are its Fourier coefficients, and F is real-valued, that is,

F−n = Fn, ∀n ∈ Z.

In fact, the integral notation will appear as purely formal, as the (Fn) will have a prescribed growth, so
that F /∈ L2. The associated closed-loop system now writes{

αt + αx + µα = 〈α(t), F 〉ϕ(x), x ∈ [0, 1],

α(t, 0) = α(t, L), ∀t ≥ 0.
(6)

This is a linear transport equation, which we seek to stabilize with an internal, scalar feedback, given by
a real-valued feedback law. This article aims at proving the following class of stabilization results:

Theorem 1.1 (Rapid stabilization in Sobolev norms). Let m ≥ 1. Let ϕ ∈ Hm
(pw) ∩H

m−1
per such that

c√
1 +

∣∣ 2iπn
L

∣∣2m ≤ |ϕn| ≤ C√
1 +

∣∣ 2iπn
L

∣∣2m , ∀n ∈ Z, (7)

where c, C > 0 are the optimal constants for these inequalities. Then, for every λ ≥ 0 there exists a
stationary feedback law F such that for all α0 ∈ Hm

per the closed-loop system (6) has a solution α(t) which
satisfies

‖α(t)‖m ≤
(
C

c

)2

e(µ+λ)Le−λt‖α0‖m, ∀t ≥ 0.

The growth restriction on the Fourier coefficients of ϕ can be written, more intuitively, and for some
other constants c′, C ′ > 0,

c′

1 +
∣∣ 2iπn
L

∣∣m ≤ |ϕn| ≤ C ′

1 +
∣∣ 2iπn
L

∣∣m , ∀n ∈ Z,
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and corresponds to the necessary and sufficient condition for the controllability of system (2) in Hm
per.

Indeed, this system satisfies an observability inequality in Hm
per if and only if ϕ satisfies (7). The control-

lability of system (2), in turn, will allow us to “shift its poles”, using the so-called backstepping method.
On the other hand, the additional regularity ϕ ∈ Hm

(pw) gives us the following equality, by iterated
integration by parts on each interval [σj , σj+1]:

ϕn = τϕn
(−1)m−1(
2iπ
L n
)m +

(−1)m(
2iπ
L n
)m d∑

j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉
, ∀n ∈ Z∗, (8)

where

τϕn :=
1√
L

∂m−1ϕ(L)− ∂m−1ϕ(0) +

d∑
j=1

e−
2iπ
L nσj (∂m−1ϕ(σ−j )− ∂m−1ϕ(σ+

j ))

 , ∀n ∈ Z∗,

and we can set
τϕ0 := 1.

Note that, thanks to condition (7), there exists C1, C2 > 0 such that

C1 ≤ |τϕn | ≤ C2, n ∈ Z,

so that these numbers are the eigenvalues of a diagonal isomorphism of any Sobolev space into itself,
which we note τϕ. Also, note that τϕn 6= 0, and thus, ϕ /∈ Hm

per. Finally, note that d∑
j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉 ∈ `2. (9)

1.3 The backstepping method: a finite-dimensional example
Consider the finite-dimensional control system

ẋ = Ax+Bu(t), x ∈ Cn, A ∈Mn(C), B ∈Mn,1(C). (10)

Suppose that (10) is controllable. Then, it is well known (see for example [13]) that for every polynomial
P ∈ C[X] there exists a feedback K ∈M1,n(R) such that P is the characteristic polynomial of A+BK.

This pole-shifting property for controllable systems can be formulated in another way, by trying to
invertibly transform system (10) into another system with shifted poles, namely

ẋ = (A− λI)x+Bv(t), (11)

which is asymptotically stable for a large enough λ.
Suppose that x(t) is a solution of system (10) with u(t) = Kx(t) + v(t) for some control function v.

Such a transformation T would map (10) into

˙(Tx) = T ẋ = T (A+BK)x+ TBv(t).

In order for Tx to be a solution of (11), we need

T (A+BK)x+ TBv(t) = (A− λI)Tx+Bv(t),

hence the conditions
T (A+BK) = AT − λT,

TB = B,
(12)

for which one has the following theorem (see for example [14], or [7] for a different proof, more adaptable
to the context of PDEs):
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Theorem 1.2. There exists a unique pair (T,K) satisfying conditions (12).

The controllability of (10) is crucial here, as it allows to build a basis for the space state, in which T
can then be constructed. The Hautus test gives the invertibility of T , and the uniqueness is given by the
TB = B condition.

This other approach to pole-shifting, which links controllability to stabilization, can be used in infinite
dimensions. In our case, the controllability of (2) will have the same importance: it will also allow us to
build some sort of basis for the state space, and find a general form for the backstepping transformation,
depending on F .

1.4 Related results
To investigate the stabilization of infinite-dimensional systems, there are three main types of approaches.

The first type of approach relies on abstract methods, such as the Gramian approach and the Riccati
equations (see for example [29, 28, 20]). Although quite powerful, it seems that these methods fail to
obtain the stabilization of nonlinear systems from the stabilization of their linearized systems.

The second approach relies on Lyapunov functions. Many results on the boundary stabilization of first-
order hyperbolic systems, linear and nonlinear, have been obtained using this approach: see for example
the book [2], and the recent results in [16, 17]. However, this approach can be limited, as it is sometimes
impossible to obtain an arbitrary decay rate using Lyapunov functions (see [13, Remark 12.9, page 318]
for a finite dimensional example).

The third approach, which we will be using in this article, is the backstepping method. This name
originally refers to a way of designing, in a recursive way, more effective feedback laws, for systems for
which one already has a Lyapunov function and a feedback law which globally asymptotically stabilizes
the system, see [13, 26] for an overview of the finite-dimensional case, and [6] or [22] for applications to
partial differential equations. Another way of applying this approach to partial differential equations was
then developed in [3] and [1]: when applied to the discretization of the heat equation, the backstepping
approach yielded a change of coordinates which was equivalent to a Volterra transform of the second kind.
Backstepping then took yet another successful form, consisting in mapping the system to stable target
system, using a Volterra transformation of the second kind (see [21] for a comprehensive introduction to
the method):

f(t, x) 7→ f(t, x)−
∫ x

0

k(x, y)f(t, y)dy.

This was used to prove a host of results on the boundary stabilization of partial differential equations:
let us cite for example [19] and [25] for the wave equation, [31, 32] for the Korteweg-de Vries, [2, chapter
7] for an application to first-order hyperbolic systems, and also [15], which combines the backstepping
method with Lyapunov functions to prove finite-time stabilization in H2 for a quasilinear 2×2 hyperbolic
system.

In some cases, the method was used to obtained stabilization with an internal feedback. This was done
in [27] and [30] for parabolic systems, and [33] for first-order hyperbolic systems. The strategy in these
works is to first apply a Volterra transformation as usual, which still leaves an unstable source term in
the target, and then apply a second invertible transformation to reach a stable target system. Let us note
that in the latter reference, the authors study a linear transport equation and get finite-time stabilization.
However, their controller takes a different form than ours, and several hypotheses are made on the space
component of the controller so that a Volterra transform can be successfully applied to the system. This is
in contrast with the method in this article, where the assumption we make on the controller corresponds
to the exact null-controllability of the system.

In this paper, we use another application of the backstepping method, which uses another type of
linear transformations, namely, Fredholm transformations:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy.
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These are more general than Volterra transformations, but they require more work: indeed, Volterra
transformations are always invertible, but the invertibility of a Fredholm transform is harder to check.
Even though it is sometimes more involved and technical, the use of a Fredholm transformation proves
more effective for certain types of control: for example, in [11] for the Korteweg-de Vries equation and
[10] for a Kuramoto-Sivashinsky, the position of the control makes it more appropriate to use a Fredholm
transformation. Other boundary stabilization results using a Fredholm transformation can be found in [8]
for integro-differential hyperbolic systems, and in [9] for general hyperbolic balance laws. Fredholm trans-
formations have also been used in [7], where the authors prove the rapid stabilization of the Schrödinger
equation with an internal feedback.

The backstepping method has the advantage of providing explicit feedback laws, which makes it
a powerful tool to prove other related results, such as null-controllability or small-time stabilization
(stabilization in an arbitrarily small time). This is done in [12], where the authors give an explicit
control to bring a heat equation to 0, then a time-varying, periodic feedback to stabilize the equation in
small time. In [32], the author obtains the same kind of results for the Korteweg-de Vries equation.

1.5 Structure of the article
The structure of this article is as follows: in Section 2, after some formal calculations, and using a formal
TB = B condition, we build candidates for the backstepping transformation. Using the properties of
Riesz bases, we prove that such candidates are indeed invertible, under some conditions on the feedback
coefficients (Fn). For consistency, we then determine the feedback law (Fn) such that the corresponding
transformation indeed satisfies a weak form of the TB = B condition. Then, in Section 3, we check that
the corresponding transformation indeed satisfies an operator equality analogous to (12), making it a valid
backstepping transformation. We check the well-posedness of the closed-loop system for the feedback law
obtained in Section 2, which allows us to prove the stability result. Finally, Section 4 gives a few remarks
on the result, as well as further questions on this stabilization problem.

2 Definition and properties of the transformation
Let λ′ > 0, and m ≥ 1. Let ϕ ∈ Hm ∩Hm−1

per be a real-valued function satisfying (7). We consider the
following target system: {

zt + zx + λ′z = 0, x ∈ (0, L),

z(t, 0) = z(t, L), t ≥ 0.
(13)

Then it is well-known that, taking α0 ∈ L2, the solution to (13) with initial condition α0 writes

z(t, x) = e−λ
′tα0(x− t), ∀(t, x) ∈ R+ × (0, L).

Hence,

Proposition 2.1. For all s ≥ 0, the system (13) is exponentially stable for ‖ · ‖s, for initial conditions
in Hs

per.

2.1 Kernel equations
As mentioned in the introduction, we want to build backstepping transformations T as a kernel operator
of the Fredholm type:

f(t, x) 7→
∫ L

0

k(x, y)f(t, y)dy.

To have an idea of what this kernel looks like, we can do the following formal computation for some
Fredholm operator T : first the boundary conditions(∫ L

0

k(0, y)α(y)dy

)
=

(∫ L

0

k(L, y)α(y)dy

)
,

6



then the equation of the target system, for x ∈ [0, L]:

0 =

(∫ L

0

k(x, y)α(y)dy

)
t

+

(∫ L

0

k(x, y)α(y)dy

)
x

+ λ′

(∫ L

0

k(x, y)α(y)dy

)

=

(∫ L

0

k(x, y)αt(y)dy

)
+

(∫ L

0

kx(x, y)α(y)dy

)
+ λ′

(∫ L

0

k(x, y)α(y)dy

)

=

(∫ L

0

k(x, y)(−αx(y)− µα(y) + 〈α, F 〉ϕ(y))dy

)
+

(∫ L

0

(kx(x, y) + λ′k(x, y))α(y)dy

)

=

(∫ L

0

ky(x, y)α(y)dy

)
− (k(x, L)α(L)− k(x, 0)α(0)) +

(∫ L

0

k(x, y)〈α, F 〉ϕ(y))dy

)
+

(∫ L

0

(kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)

=

(∫ L

0

k(x, y)

(∫ L

0

F̄ (s)α(s)ds

)
ϕ(y))dy

)
− (k(x, L)α(L)− k(x, 0)α(0))

+

(∫ L

0

(ky(x, y) + kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)

=

(∫ L

0

F̄ (s)

(∫ L

0

k(x, y)ϕ(y)dy

)
α(s)ds

)
− (k(x, L)α(L)− k(x, 0)α(0))

+

(∫ L

0

(ky(x, y) + kx(x, y) + (λ′ − µ)k(x, y))α(y)dy

)
.

Now, suppose we have the formal TB = B condition∫ L

0

k(x, y)ϕ(y)dy = ϕ(x), ∀x ∈ [0, L].

Then, we get, noting λ := λ′ − µ,(∫ L

0

(
ky(x, y) + kx(x, y) + λk(x, y) + ϕ(x)F̄ (y)

)
α(y)dy

)
− (k(x, L)α(L)− k(x, 0)α(0)) = 0.

Hence the kernel equation: 
kx + ky + λk = −ϕ(x)F̄ (y),

k(0, y) = k(L, y),

k(x, 0) = k(x, L),

(14)

together with the TB = B condition

〈k(x, ·), ϕ(·)〉 = ϕ(x), ∀x ∈ [0, L]. (15)
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2.2 Construction of Riesz bases for Sobolev spaces
To study the solution to the kernel equation, we project it along the variable y. Let us write heuristically

k(x, y) =
∑
n∈Z

kn(x)en(y),

so that we get the projected kernel equations

k′n + λnkn = −F−nϕ, (16)

where
λn = λ+

2iπ

L
n. (17)

Note that
2iπp

L

1

λn+p
+ λn

1

λn+p
= 1, ∀n, p ∈ Z. (18)

Now consider the L2 function given by

Λλn(x) =

√
L

1− e−λL
e−λnx, ∀n ∈ Z, ∀x ∈ [0, L). (19)

Then, for all m ≥ 0, Λλn ∈ Hm, and we have

〈Λλn, ep〉 =
1√
L

∫ L

0

√
L

1− e−λL
e−λnxe−

2iπp
L xdx =

1

1− e−λL

∫ L

0

e−λn+px =
1

λn+p
, ∀n, p ∈ Z,

so that, using (18),
(Λλn)′ + λnΛλn =

∑
p∈Z

ep in E ′.

Remark 2.1. In E ′,
∑
p∈Z

ep is the equivalent of the Dirac comb, or the “Dirac distribution” on the space

of functions on [0, L]. So, in a sense, Λλn is the elementary solution of (16).

Let us now define, in analogy with the elementary solution method,

kn,λ = −F−nΛλn ? ϕ ∈ Hm
per, ∀n ∈ Z. (20)

The regularity comes from the definition of the convolution product, (7) and (17), and one can check,
using (18), that kn,λ is a solution of (16).

The next step to build an invertible transformation is to find conditions under which (kn,λ) is some
sort of basis. More precisely we use the notion of Riesz basis (see [5, Chapter 4])

Definition 2.1. A Riesz basis in a Hilbert space H is the image of an orthonormal basis of H by an
isomorphism.

Proposition 2.2. Let H be a Hilbert space. A family of vectors (fk)k∈N ∈ H is a Riesz basis if and
only if it is complete (i.e., Span(fk) = H) and there exists constants C1, C2 > 0 such that, for any scalar
sequence (ak) with finite support,

C1

∑
|ak|2 ≤

∥∥∥∑ akfk

∥∥∥2
H
≤ C2

∑
|ak|2. (21)

Let us now introduce the following growth condition:
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Definition 2.2. Let s ≥ 0, (un) ∈ CZ (or u ∈ E ′) . We say that (un) (or u) has s-growth if

c

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2s ≤ |un| ≤ C

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2s, ∀n ∈ Z, (22)

for some c, C > 0. The optimal constants for these inequalities are called growth constants.

Remark 2.2. The inequalities (22) can also be written, more intuitively, and for some other positive
constants,

c (1 + |n|s) ≤ |un| ≤ C (1 + |n|s) , ∀n ∈ Z. (23)

We can now establish the following Riesz basis properties for the (kn,λ):

Proposition 2.3. Let s ≥ 0. If (Fn) has s-growth, then the family of functions

(ksn,λ) :=

 kn,λ√
1 +

∣∣ 2iπn
L

∣∣2s


is a Riesz basis for Hm
per.

Proof. We use the characterization of Riesz bases given in Proposition 2.2. First, let us prove the com-
pleteness of (ksn,λ). Let f ∈ Hm

per be such that

〈f, ksn,λ〉m = 0, ∀n ∈ Z.

Then for all n ∈ Z we get

0 = 〈Λλn ? ϕ, f〉m =
∑
p∈Z

fpϕp
λn+p

(
1 +

∣∣∣∣2iπpL
∣∣∣∣2m
)

=

〈
Λλn,

∑
p∈Z

(
1 +

∣∣∣∣2iπpL
∣∣∣∣2m
)
fpϕpep

〉
,

as, thanks to (7), and using the fact that f ∈ Hm
per,∑

p∈Z

(
1 +

∣∣∣∣2iπpL
∣∣∣∣2m
)
fpϕpep ∈ L2.

Now, (Λλn) is a complete family of L2, as it is a Riesz basis, so that

fpϕp = 0, ∀p ∈ Z.

Recalling condition (7), this yields
fp = 0, ∀p ∈ Z,

which proves the completeness of (ksn,λ).
Now let I ⊂ Z be a finite set, and (an) ∈ CI . Then,∥∥∥∥∥∑

n∈I
ank

s
n,λ

∥∥∥∥∥
2

m

=

∥∥∥∥∥∥
∑
n∈I
−an

F−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn ? ϕ

∥∥∥∥∥∥
2

m

=

∥∥∥∥∥∥
∑
n∈I

an
F−n√

1 +
∣∣ 2iπn
L

∣∣2s
∑
p∈Z

ϕp
λn+p

ep

∥∥∥∥∥∥
2

m

=

∥∥∥∥∥∥
∑
p∈Z

ϕp
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s ep
∥∥∥∥∥∥
2

m

=
∑
p∈Z

(
1 +

∣∣∣∣2πpL
∣∣∣∣2m
)
|ϕp|2

∣∣∣∣∣∣
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

.
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Now, using condition (7), we have

c2
∑
p∈Z

∣∣∣∣∣∣
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

≤

∥∥∥∥∥∑
n∈I

ank
s
n,λ

∥∥∥∥∥
2

m

≤ C2
∑
p∈Z

∣∣∣∣∣∣
∑
n∈I

anF−n

λn+p

√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

,

where c, C > 0 are the decay constants in condition (7).
This last inequality can be rewritten

c2

∥∥∥∥∥∥
∑
n∈I

anF−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∑
n∈I

ank
s
n,λ

∥∥∥∥∥
2

m

≤ C2

∥∥∥∥∥∥
∑
n∈I

anF−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn

∥∥∥∥∥∥
2

,

as
Λλn =

∑
p∈Z

1

λn+p
ep.

We now use the fact that (Λλn) is a Riesz basis of L2: indeed, it is the image of the Hilbert basis (en) by
the isomorphism

Λλ : f ∈ L2 7→
√
L

1− e−λL
e−λ·f.

The norms of Λλ and its inverse are rather straightforward to compute using piecewise constant functions,
we have

|||Λλ||| =
√
L

1− e−λL
,

|||(Λλ)−1||| = 1− e−λL√
L

eλL,

so that

1

|||(Λλ)−1|||2
∑
n∈I

∣∣∣∣∣∣ anF−n√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

≤

∥∥∥∥∥∥
∑
n∈I

anF−n√
1 +

∣∣ 2iπn
L

∣∣2sΛλn

∥∥∥∥∥∥
2

≤ |||Λλ|||2
∑
n∈I

∣∣∣∣∣∣ anF−n√
1 +

∣∣ 2iπn
L

∣∣2s
∣∣∣∣∣∣
2

,

and we finally get, using the fact that (Fn) has s-growth,

c2C2
1

1

|||(Λλ)−1|||2
∑
n∈I
|an|2 ≤

∥∥∥∥∥∑
n∈I

ank
s
n,λ

∥∥∥∥∥
2

m

≤ C2C2
2 |||Λλ|||

2∑
n∈I
|an|2.

where C1, C2 > 0 are the growth constants of (Fn), so that the constants in the inequalities above are
optimal. Hence, using again point 2. of Proposition 2.2, (ksn,λ) is a Riesz basis of Hm

per.

We now have candidates for the backstepping transformation, under some conditions on F :

Corollary 2.1. Let m ∈ N∗, and F such that (Fn) has m-growth, with growth constants C1, C2 > 0.
Define

Tλα :=
∑
n∈Z

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2mαnkm−n,λ ∈ Hm

per, ∀α ∈ Hm
per, (24)

where α =
∑
n∈Z

αnen. Then, Tλ : Hm
per → Hm

per is an isomorphism. Moreover,

|||Tλ||| = CC2

√
L

1− e−λL
,

|||(Tλ)−1||| = 1− e−λL

cC1

√
L
eλL.

(25)
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Proof. The invertibility of Tλ is clear thanks to the Riesz basis property of (km−n,λ), and (25) comes from
the fact that, as mentioned at the end of the proof of Proposition 2.3, all the constants in the inequalities
are optimal.

2.3 Definition of the feedback law
In order to further determine the feedback law, and define our final candidate for the backstepping
transformation, the idea is now to return to the TB = B condition (15), as we have used it in the formal
computations of section 2.1, in the equation (15). However, in this case, ϕ /∈ Hm

per, and so it is not clear
whether Tλϕ is well-defined.

We can nonetheless obtain a TB = B condition in some weak sense: indeed, let us set

ϕ(N) :=

N∑
n=−N

ϕnen ∈ Hm
per, ∀N ∈ N.

Then,

ϕ(N) Hm−1

−−−−→
N→∞

ϕ

and

Tλϕ(N) =

N∑
n=−N

−ϕnFnΛλ−n ? ϕ

=

N∑
n=−N

∑
p∈Z

−ϕnFnϕp
λ−n+p

ep

=
∑
p∈Z

ϕp

(
N∑

n=−N

−ϕnFn
λ−n+p

)
ep.

Now, notice that one can apply the Dirichlet convergence theorem for Fourier series (see for example [18])
to Λλp , p ∈ Z at 0:

N∑
n=−N

1

λ−n+p
=

N∑
n=−N

1

λn+p
−−−−→
N→∞

Λλp(0) + Λλp(L)

2
=

√
L

1− e−λL
1 + e−λL

2
.

Let us note

K(λ) :=
2√
L

1− e−λL

1 + e−λL
,

and set
Fn := −K(λ)

ϕn
, ∀n ∈ Z. (26)

This defines a feedback law F ∈ E ′ which is real-valued, as ϕ is real-valued, and which has m-growth
thanks to condition (7), so that Tλ is a valid backstepping transformation. Moreover,

〈Tλϕ(N), ep〉 = ϕpK(λ)

N∑
n=−N

1

λ−n+p
−−−−→
N→∞

ϕp, ∀p ∈ Z, (27)

which corresponds to the TB = B condition in some weak sense.
With this feedback law, the backstepping transformation now writes

Tλα =
∑
n∈Z

αnk−n,λ, ∀α ∈ Hm
per, (28)
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and

|||Tλ||| = CK(λ)
√
L

c(1− e−λL)
,

|||(Tλ)−1||| = C(1− e−λL)

cK(λ)
√
L

eλL.

(29)

2.4 Regularity of the feedback law
Finally, in order to study the well-posedness of the closed-loop system corresponding to (26), we need
some information on the regularity of F .

Let us first begin by a general lemma for linear forms with coefficients that have m-growth:

Lemma 2.1. Let m ≥ 0, and G ∈ E ′ with m-growth.
Then, for all s > 1/2, G is defined on Hm+s

per , is continuous for ‖ · ‖m+s, but not for ‖ · ‖m+σ, for
−m ≤ σ < 1/2.

In particular, the feedback law F ∈ E ′ defined by (26) defines a linear form on Hm+1
per which is contin-

uous for ‖ · ‖m+1 but not for ‖ · ‖m.

Proof. Let s > 1/2, and let α ∈ Hm+s
per . Using the growth conditions (22), we can do the following

computations for α ∈ Hm+s
per :

∑
n∈Z
|Gn||αn| ≤ C

∑
n∈Z

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2m|αn|

≤ C ′
∑
n∈Z

1

1 + |n|s

√
1 +

∣∣∣∣2iπnL
∣∣∣∣2m+2s

|αn|

≤ C ′

√∑
n∈Z

1

(1 + |n|s)2

 ‖α‖m+s

where C,C ′ > 0 are constants that do not depend on α, and where the last inequality is obtained using
the Cauchy-Schwarz inequality. Thus G is defined on Hm+s

per by

〈α,G〉 :=
∑
n∈Z

Gnαn, ∀α ∈ Hm+s
per ,

and G is continuous on Hm+s
per .

On the other hand, let −m ≤ σ < 1/2, and consider, for N ≥ 1,

γ(N) :=
∑
|n|≥N

1

Gn (1 + |n|1+s)
en ∈ Hm+s

per .

We have

‖γ(N)‖2m+σ =
∑
|n|≥N

(
1 +

∣∣ 2iπn
L

∣∣2m+2σ
)

|Gn|2
1

(1 + |n|1+s)2
≤ C

∑
|n|≥N

1

1 + |n|2+2s−2σ

12



for some constant C > 0. Then,

|〈γ(N), G〉| =
∑
|n|≥N

1

1 + |n|1+s

≥ c
∑
|n|≥N

|n|1+s−2σ 1

1 + |n|2+2s−2σ

≥ cN1+s−2σ
∑
|n|≥N

1

1 + |n|2+2s−2σ

≥ c′N1+s−2σ

√√√√ ∑
|n|≥N

1

1 + |n|2+2s−2σ ‖γ
(N)‖m+σ

for some constants c, c′ > 0. Now, we know that there exists constants c′′, C ′′ > 0 such that

c′′

N1+2s−2σ ≤
∑
|n|≥N

1

1 + |n|2+2s−2σ ≤
C ′′

N1+2s−2σ ,

So that

N1+s−2σ

√√√√ ∑
|n|≥N

1

1 + |n|2+2s−2σ ≥ c
′′N

1
2−σ −−−−→

N→∞
∞.

This proves that G is not continuous for‖ · ‖m+σ.

Let us now give a more precise description of the domain of definition and regularity of F . Recalling
the identity (8), we can derive the following identity for Fn:

Fn =
K(λ)

τϕn

(
2iπn

L

)m
− K(λ)

τϕn

(
2iπn

L

)m d∑
j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉

τϕn −
d∑
j=0

〈
χ[σj ,σj+1]∂

mϕ, en
〉 , ∀n ∈ Z∗, (30)

so that (
1(

2iπn
L

)m (Fn − K(λ)

τϕn

(
2iπn

L

)m))
n∈Z∗

∈ `2. (31)

Let us then note

hn :=
K(λ)

τϕn

(
2iπn

L

)m
, ∀n ∈ Z,

and h the associated linear form in E ′.

Proposition 2.4. The linear form h defines the following linear form on τϕ(Hm+1
(pw) ), continuous for

‖ · ‖m+1,pw:

〈α, h〉 = (−1)m
√
L
K(λ)

2
∂m
(
(τϕ)−1α

)
(0) + ∂m

(
(τϕ)−1α

)
(L), ∀α ∈ Hm+1. (32)

Moreover, F̃ := F −h is continuous for ‖·‖m, so that F is defined on τϕ(Hm+1
(pw) )∩Hm

per, and is continuous
for ‖ · ‖m+1,pw, but not ‖ · ‖m.

13



Proof. It is clear, by definition of Hm
per, and using (31), that for α ∈ Hm

per, the expression

〈α, F − h〉 =
∑
n∈Z

αn(Fn − hn) =
∑
n 6=0

(
2iπn

L

)m
αn

1(
2iπn
L

)m (Fn + hn) +
K(λ)α0

ϕ0

defines a continuous linear form on Hm
per.

On the other hand, let α ∈ τϕ(Hm+2
(pw) ), then

N∑
n=−N

αnhn = (−1)m
√
LK(λ)

N∑
n=−N

(
2iπn

L

)m
αn
τϕn

1√
L

we can use the Dirichlet convergence theorem (see [18]) on ∂m
(
(τϕ)−1α

)
∈ H2

(pw) at 0, so that

N∑
n=−N

αnhn = (−1)m
√
LK(λ)

N∑
n=−N

(
2iπn

L

)m
αn
τϕn

1√
L

−−−−→
N→∞

(−1)m
√
L
K(λ)

2

(
∂m
(
(τϕ)−1α

)
(0) + ∂m

(
(τϕ)−1α

)
(L)
)
.

Now, we know that Hm+2
(pw) is dense in Hm+1

(pw) for the Hm+1
(pw) norm. As τϕ is a sum of translations, it is

continuous for ‖ · ‖m+1,pw, so that τϕ(Hm+2
(pw) ) is dense in τϕ(Hm+1

(pw) ) for ‖ · ‖m+1,pw.
Moreover, using the Sobolev inequality for H1 and L∞ (see for example [4, Chapter 8, Theorem 8.8]),

we get the continuity of h for ‖ · ‖m+1,pw, so that we can extend it from τϕ(Hm+2
(pw) ) to τϕ(Hm+1

(pw) ) by
density. We also get that h is not continuous for ‖ · ‖m, as α ∈ Hm 7→ ∂mα(0) and α ∈ Hm 7→ ∂mα(L)
are not continuous for ‖ · ‖m.

Thus, F = F̃ + h is defined on τϕ(Hm+1
(pw) ) ∩Hm

per, is continuous for ‖ · ‖m+1 but not for ‖ · ‖m.

3 Well-posedness and stability of the closed-loop system
Let m ≥ 1, ϕ ∈ Hm

(pw)∩H
m−1
per satisfying growth condition (7). Let the feedback law F be defined by (26).

3.1 Operator equality
Now that we have completely defined the feedback F and the transformation Tλ, let us check that we
have indeed built a backstepping tranformation. As in the finite dimensional example of subsection 1.3,
this corresponds to the formal operator equality

T (A+BK) = (A− λI)T.

Let us define the following domain:

Dm :=
{
α ∈ τϕ(Hm+1

(pw) ) ∩Hm
per, −αx − µα+ 〈α, F 〉ϕ ∈ Hm

per

}
. (33)

Notice that, as ϕ ∈ Hm
(pw), the condition α ∈ Hm+1

(pw) ⊃ τ
ϕ(Hm+1

(pw) ) is necessary for −αx − µα+ 〈α, F 〉ϕ
to be in Hm

per . Let us first check the following property:

Proposition 3.1. For m ≥ 1, Dm is dense in Hm
per for ‖ · ‖m.

Proof. It is clear that Hm+1
per ⊂ τϕ

(
Hm+1

(pw)

)
, so that

Km :=
{
α ∈ Hm+1

per , 〈α, F 〉 = 0
}
⊂ Dm.

Now, by Lemma 2.1, as F has m-growth, Km is dense in Hm+1
per for ‖ · ‖m, as the kernel of the linear form

F which is not continuous for ‖ · ‖m. As Hm+1
per is dense in Hm

per, then Dm is dense in Hm
per for ‖ · ‖m.
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Now, on this dense domain, let us establish the operator equality:

Proposition 3.2.

Tλ(−∂x − µI + 〈·, F 〉ϕ)α = (−∂x − λ′I)Tλα in Hm
per, ∀α ∈ Dm. (34)

Proof. First let us rewrite (34) in terms of λ:

Tλ(−∂x + 〈·, F 〉ϕ)α = (−∂x − λI)Tλα in Hm
per, ∀α ∈ Dm(F ).

Let α ∈ Dm. By definition of the domain Dm, the left-hand side of (34) is a function of Hm
per ⊂ E ′,

and by construction of Tλ, the right-hand side of (34) is a function of Hm−1
per ⊂ E ′. To prove that these

functions are equal, it is thus sufficient to prove their equality in E ′. Let us then write each term of the
equality against en for n ∈ Z. One has

〈
(−∂x − λI)Tλα, en

〉
=

〈
Tλα,

2iπn

L
en

〉
− λ

〈
Tλα, en

〉
= −λn〈Tλα, en〉.

Let us now prove that

〈Tλ(−αx + 〈α, F 〉ϕ), en〉 = −λn〈Tλα, en〉, ∀n ∈ Z. (35)

Now, as we only have αx ∈ Hm−1
per , Tλαx is not defined a priori. In order to allow for more computa-

tions, let us define

α(N) :=

N∑
n=−N

αnen, ∀N ∈ N,

ϕ(N) :=

N∑
n=−N

ϕnen,

so that we have, by property of the partial Fourier sum of a Hm
per function,

−α(N)
x + 〈α, F 〉ϕ(N) Hm−−−−→

N→∞
−αx + 〈α, F 〉ϕ,

so that in particular,

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 −−−−→

N→∞
〈Tλ(−αx + 〈α, F 〉ϕ), en〉 (36)

Let N ∈ N. We can now write

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 = −〈Tλα(N)

x , en〉+ 〈α, F 〉〈Tλϕ(N), en〉

= −

〈
N∑

p=−N

2iπp

L
αpk−p,λ, en

〉
+ 〈α, F 〉〈Tλϕ(N), en〉.

Now, using (16), we get
2iπp

L
k−p,λ = (k−p,λ)x + λk−p,λ + Fpϕ,
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so that

−Tλα(N)
x =

N∑
p=−N

αp
(
(k−p,λ)x + λk−p,λ + Fpϕ

)
.

Hence
−〈Tλα(N)

x , en〉 = −
〈(
Tλα(N)

)
x
, en

〉
− λ

〈
Tλα(N), en

〉
− 〈α(N), F 〉ϕn,

and finally,

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 = −λn

〈
Tλα(N), en

〉
+
(
〈α− α(N), F 〉

)
ϕn

+ 〈α, F 〉
(〈
Tλϕ(N) − ϕ, en

〉)
.

(37)

To deal with the third term of the right-hand side of this equality, recall that we have chosen a feedback
law so that the TB = B condition (15) holds. Thus,〈

Tλϕ(N) − ϕ, en
〉
−−−−→
N→∞

0. (38)

To deal with the second term, recall that F is the sum of a regular part F̃ and a singular part h:

〈α− α(N), F 〉 =
〈
α− α(N), F̃

〉
+ 〈α− α(N), h〉.

Now, by definition of α(N) and continuity of F̃ for ‖ · ‖m,〈
α− α(N), F̃

〉
−−−−→
N→∞

0. (39)

On the other hand, for all N ∈ N,

〈α(N), h〉 = K(λ)

N∑
n=−N

αn
τϕn

(
2iπn

L

)m

=
K(λ)

2

N∑
n=−N

(
αn
τϕn

+ (−1)m
α−n

τϕn

)(
2iπn

L

)m
.

=
K(λ)

2
∂m−1τ̃ϕα(N)

x (0),

(40)

where
τ̃ϕf =

∑
n∈Z

(
fn
τϕn

+ (−1)m−1
f−n

τϕn

)
en, ∀f ∈ L2.

Now, notice that, by definition of τϕ and Dm,

τ̃ϕ (−αx − µα+ 〈α, F 〉ϕ) ∈ Hm
per. (41)

Moreover, using (8), we have for n ∈ Z∗:

ϕn
τϕn

+ (−1)m−1
ϕ−n

τϕn
=

ϕn
τϕn

+ (−1)m−1
ϕn
τϕn

=
(−1)m−1 + (−1)m−1(−1)m−1(−1)m(

2iπ
L n
)m +

rn(
2iπ
L n
)m

=
rn(

2iπ
L n
)m ,
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where rn ∈ `2. Hence, τ̃ϕϕ ∈ Hm
per. This, together with (41), yields

τ̃ϕαx ∈ Hm
per.

This implies that
τ̃ϕα(N)

x
Hm−−−−→
N→∞

τ̃ϕαx,

as τ̃ϕα(N)
x is the partial sum of τ̃ϕαx.

Hence, by continuity of α 7→ ∂m−1α(0) for ‖ · ‖m, (40) implies that〈
α− α(N), h

〉
−−−−→
N→∞

0. (42)

Finally, (37), (38), (39), (42), and the continuity of Tλ yield

〈Tλ(−α(N)
x + 〈α, F 〉ϕ(N)), en〉 −−−−→

N→∞
−λn

〈
Tλα, en

〉
.

This, put together with (36), gives (35) by unicity of the limit, which in turn proves (34).

Remark 3.1. When ϕ ∈ Hm, τϕ is simply (−1)m−1(∂m−1ϕ(L)−∂m−1ϕ(0))Id, F is defined on Hm+1 ∩
Hm
per, and τ̃

ϕα is simply the symmetrisation α+ (−1)mα(L− ·), which is Hm
per if α ∈ Hm.

3.2 Well-posedness of the closed-loop system
The operator equality we have established in the previous section means that Tλ transforms, if they exist,
solutions of the closed-loop system with a well-chosen feedback into solutions of the target system. Let
us now check that the closed-loop system in question is indeed well-posed.

Proposition 3.3. The operator A+BK := −∂x−µα+ 〈F, ·〉ϕ defined on Dm generates a C0-semigroup
on Hm

per.

Proof. We know from Lemma 3.1 that A + BK is densely defined. We use the Lumer-Phillips theorem
(see for example [24, Section 1.4]): if A + BK is densely defined, closed, and if A + BK and its adjoint
are both dissipative on their respective domains, then A+BK generates a C0-semigroup.

Let us prove that A+BK is closed. Let

α(N) ∈ Dm
Hm−−−−→
N→∞

α ∈ Hm
per

such that
(A+BK)α(N) Hm−−−−→

N→∞
β ∈ Hm

per

i.e.
−α(N)

x + µα(N) + 〈α(N), F 〉ϕ Hm−−−−→
N→∞

β. (43)

Now, as

−α(N)
x

Hm−1

−−−−→
N→∞

−αx,

the first two terms of the left-hand side of (43) converge, which implies that

〈α(N), F 〉ϕ Hm−1

−−−−→
N→∞

γϕ

and even
〈α(N), F 〉ϕ

Hm(pw)−−−−→
N→∞

γϕ
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for some limit γ ∈ C, so that

−α(N)
x

Hm(pw)−−−−→
N→∞

β − µα− γϕ. (44)

Now, notice that (8) implies that

ϕ = τϕ

(∑
n∈Z∗

(−1)m−1(
2iπ
L n
)m en + r

)
,

where r ∈ Hm
per. Moreover, it is well-known that

∂m
∑
n∈Z∗

(−1)m−1(
2iπ
L n
)m en =

∑
n∈Z∗

(−1)m−1

2iπ
L n

en

is a piecewise constant function, so in particular∑
n∈Z∗

(−1)m−1(
2iπ
L n
)m en ∈ Hm

(pw)

which means that ϕ ∈ τϕ
(
Hm

(pw)

)
∩Hm−1

per , and thus, by (44),

−αx + µα+ γϕ = β,

α ∈ τϕ
(
Hm+1

(pw)

)
∩Hm

per,

α(N)
Hm+1

(pw)−−−−→
N→∞

α.

Then, using Proposition 2.4, we get, by continuity of F for the Hm+1
(pw) norm:

〈α, F 〉 = γ.

Hence, α ∈ Dm and (A+BK)α = β, and A+BK is closed.
Finally, to study the behavior of the adjoint, let us consider the norm ‖ · ‖Tλ := ‖Tλ · ‖m, which is

equivalent and its associated scalar product 〈·, ·〉Tλ := 〈Tλ·, Tλ·〉m. Then, for α ∈ Dm, β ∈ Hm
per, we get,

using the operator equality (34) of Proposition 3.2:

〈(A+BK)α, β〉Tλ = 〈Tλ(−αx + µα+ 〈α, F 〉ϕ), Tλβ〉m
= 〈−∂xTλα− λ′Tλα, Tλβ〉m
= 〈Tλα, ∂xTλβ〉m − λ′〈α, β〉Tλ ,

so that the adjoint of (A+BK) for this scalar product is defined by

D∗m = {β ∈ Hm
per, Tλβ ∈ Hm+1},

(A+BK)∗ = (Tλ)−1∂x T
λ − λ′I on D∗m.

Thus, for all α ∈ Dm, γ ∈ D∗m:

〈(A+BK)α, α〉Tλ = 〈∂xTλα, Tλα〉m − λ′‖α‖Tλ ,

and
〈(A+BK)∗γ, γ〉Tλ = 〈∂xTλγ, Tλγ〉m − λ′‖γ‖Tλ .

Now, as for any f ∈ Hm+1
per , we have, by integration by parts,

Re (〈∂xf, f〉m) = 0,

both A+BK and (A+BK)∗ are dissipative.

18



3.3 Stability of the closed-loop system
We can now prove Theorem 1.1.

Let m ≥ 1, m ≥ 0. Let (Fn) ∈ CZ with m-growth and growth constants C1, C2 > 0. Let us first
consider trajectories with initial data in Dm.

System (6) with initial data α0 ∈ Dm has a unique solution α(t) ∈ C0(R+, Dm) ∩ C1(R+, Hm
per), and

we have
d

dt
Tλα = Tλ

d

dt
α

= Tλ(−αx + µα+ 〈α, F 〉ϕ)

= (−∂x − λ′I)Tλα.

Thus, Tλα(t) ∈ Hm
per is a solution of the target system (13) and satisfies for t ≥ 0,

‖Tλα(t)‖m ≤ e−λ
′t‖Tλα0‖m. (45)

Using (29), we then get, for t ≥ 0,

‖α(t)‖m ≤ |||(Tλ)−1|||‖Tλα(t)‖m
≤ |||(Tλ)−1||| e−λ

′t‖Tλα0‖m
≤ |||(Tλ)−1||||||Tλ|||e−λ

′t‖α0‖m

≤
(
C

c

)2

eλLe−λ
′t‖α0‖m

This proves the exponential stability of solutions to system (6) with initial data in Dm. As the constant
in this last inequality does not depend on the initial conditions, by density of Dm in Hm

per, any solution
to system (6) with initial data in Hm

per satisfies the last inequality with the same constant.

3.4 Application
Let m = 1, λ > 0, and let us suppose, to simplify the computations, that a ≡ 0. Define

ϕ(x) = L− x, ∀x ∈ (0, L), (46)

so that ϕ ∈ H1 but is not periodic, and satisfies (7), with

ϕn = − iL
3
2

2πn
, ∀n ∈ Z∗,

ϕ0 =
L

3
2

2
.

Then,

〈α, F 〉 = −2K(λ)

L
3
2

α0 −K(λ)αx(0), ∀α ∈ H2 ∩H1
per, (47)

and
D1 =

{
α ∈ H2 ∩H1

per,
2K(λ)

L
3
2

α0 +

(
1

L
−K(λ)

)
αx(0)− 1

L
αx(L) = 0

}
,

so that αt + αx =

(
−2K(λ)

L
3
2

α0 −K(λ)αx(0)

)
ϕ(x), x ∈ [0, L],

α(t, 0) = α(t, L), ∀t ≥ 0,

(48)

19



has a unique solution for initial conditions in D1.
The backstepping transformation can be written as:

α =

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
αx −

2K(λ)

L2
α0

))
? ϕ, ∀α ∈ H1

perT
λ. (49)

Let α(t) ∈ D1 be the solution of the closed loop system (48) with initial condition α0 ∈ D1, and let us
note z(t) := Tλα(t), then

zt =

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
αxt −

2K(λ)

L2
α′0

))
? ϕ.

=

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
(−αxx + 〈α, F 〉ϕx)− 2K(λ)

L2
α′0

))
? ϕ.

=

√
L

1− e−λL

(
e−λx

(
−K(λ)√

L
(−αxx − 〈α, F 〉)−

2K(λ)

L2
α′0

))
? ϕ.

zx =

√
L

1− e−λL

(
−e−λxK(λ)√

L
αxx

)
? ϕ− λz

zt + zx + λz =

√
L

1− e−λL

(
e−λx

(
K(λ)√
L
〈α, F 〉 − 2K(λ)

L2
α′0

))
? ϕ.

By projecting the closed loop system on e0, we get

α′0 = 〈α, F 〉ϕ0 = 〈α, F 〉L
3
2

2

so that
zt + zx + λz = 0.

In particular,
d

dt
‖z‖21 = −2λ‖z‖21. (50)

Let us now set
V (α) := ‖z‖21, ∀α ∈ H1

per.

Now, notice that

‖Tλα‖21 =
L

(1− e−λL)2

∑
n∈Z

(
1 +

∣∣∣∣2iπnL
∣∣∣∣2
)
|ϕn|2

∣∣∣∣〈e−λx(−K(λ)√
L
αx −

2K(λ)

L2
α0

)
, en

〉∣∣∣∣2

≥ C

∥∥∥∥e−λx(−K(λ)√
L
αx −

2K(λ)

L2
α0

)∥∥∥∥2

≥ Ce2λL
∥∥∥∥−K(λ)√

L
αx −

2K(λ)

L2
α0

∥∥∥∥2

≥ C ′K(λ)2e2λL‖α‖21.

Together with (50), this shows that V is a Lyapunov function, and (48) is exponentially stable.
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4 Further remarks and questions

4.1 Controllability and the TB = B condition

In the introduction we have mentioned that the growth constraint on the Fourier coefficients of ϕ
actually corresponds to the exact null controllability condition in some Sobolev space for the control
system (2). As we have mentioned in the finite dimensional example, the controllability condition is
essential to solve the operator equation: in our case, formal computations lead to a family of functions
that turns out to be a Riesz basis precisely thanks to that rate of growth. Moreover, that rate of growth
is essential for the compatibility of the TB = B condition and the invertibility of the backstepping
transformation. Indeed, as the transformation is constructed formally using a formal TB = B condition,
that same TB = B condition fixes the value of the coefficients of Fn, giving them the right rate of growth
for Tλ to be an isomorphism.

It should be noted that, while in [7] the TB = B condition is well-defined, in our case, it only holds in
a rather weak sense. This is probably because of a lack of regularization, indeed in [7] the backstepping
transformation has nice properties, as it can be decomposed in Fredholm form, i.e. as the sum of a
isomorphism and a compact operator. Accordingly, the Riesz base in that case is quadratically close to
the orthonormal base given by the eigenvectors of the Laplacian operator. That is not the case for our
backstepping transformation, as it is closely linked to the operator Λλ, which does not have any nice
spectral properties.

Nonetheless, it appears that thanks to some information on the regularity of F , a weak sense is
sufficient and allows us to prove the operator equality by convergence.

In that spirit, it would be interesting to investigate if a backstepping approach is still valid if the
conditions on ϕ are weakened. For example, if we suppose approximate controllability instead of exact
controllability, i.e.

ϕn 6= 0, ∀n ∈ Z,

then F can still be defined using a weak TB = B condition. However, it seems delicate to prove, in the
same direct way as we have done, that Tλ is an isomorphism, as we only get the completeness of the
corresponding (kn,λ), but not the Riesz basis property.

4.2 Null-controllability and finite-time stabilization

As we have mentioned in the introduction, one of the advantages of the backstepping method is that
it can provide an explicit expression for feedbacks, thus allowing the construction of explicit controls for
null controllability, as well as time-varying feedbacks that stabilize the system in finite time T > 0.

The general strategy (as is done in [12], [31]) is to divide the interval [0, T ] in smaller intervals [tn, tn+1],
the length of which tends to 0, and on which one applies feedbacks to get exponential stabilization with
decay rates λn, with λn → ∞. Then, for well-chosen tn, λn, the trajectory thus obtained reaches 0 in
time T . Though this provides an explicit control to steer the system to 0, the norm of the operators
applied successively to obtain the control tends to infinity. As such, it does not provide a reasonably
regular feedback. However, the previous construction of the control can be used, with some adequate
modifications (see [12] and [32]) to design a time-varying, periodic feedback, with some regularity in the
state variable, which stabilizes the system in finite time.

Let us first note that, due to the hyperbolic nature of the system, there is a minimal control time,
and thus small-time stabilization cannot be expected. Moreover, even for T > L, the estimates we have
established on the backstepping transforms prevent us from applying the strategy we have described
above: indeed, for any sequences (tn)→ T , λn →∞, we have

‖α(t)‖m ≤
n∏
k=0

(
C

c

)2n

enµLexp

(
n∑
k=0

−λk(tk+1 − tk − L)

)
‖α0‖m, ∀t ∈ [tn, tn+1],
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where c, C are the decay constants in (8). Moreover, as tk+1 − tk → 0, we have

exp

(
n∑
k=0

−λk(tk+1 − tk − L)

)
−−−−→
n→∞

∞.

Another approach could be to draw from [9] and apply a second transformation to design a more
efficient feedback law. It would also be interesting to adapt the strategy in [33], inspired from [27], to our
setting.

4.3 Nonlinear systems

Finally, another prospect, having obtained explicit feedbacks that stabilize the linear system, is to
investigate the stabilization of nonlinear transport equations. This has been done in [10], where the
authors show that the feedback law obtained for the linear Korteweg-de Vries equation also stabilize the
nonlinear equation. However, as in [7], the feedback law we have obtained is not continuous in the norm
for which the system is stabilize. This would require some nonlinear modifications to the feedback law in
order to stabilize the nonlinear system.
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