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Abstract

We examine the best extraction strategies for the provider of an exhaustible resource
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the virgin resource. Its entry is an opportunity or a threat for the extractor, depending
on whether it maximizes social welfare or its own revenue. Our results highlight how
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1 Introduction

Recycling is a fast-growing industry in a world where the issue of resource conservation is

becoming more acute. For instance, Baksi and Long (2009) point out that the percentage of

municipal solid waste recycled in the United States has increased almost fivefold between 1960

and 2007. The question as to whether recycling conserves resources is particularly relevant

with regard to exhaustible resources that can be partially recycled after use.

In an early analysis of the issue, Weinstein and Zeckhauser (1974) show that perfectly

competitive markets achieve a socially effi cient consumption stream that involves, after an

initial period of extraction only, a number of periods in which the virgin and the recycled

resources coexist. The authors conclude their analysis by wondering whether imperfect com-

petition might lead to too rapid a rate of resource consumption with recycling. That question,

though important, has been left unanswered. The providers of exhaustible resources, such

as phosphorus or aluminum, are endowed with significant market power (see the references

in the next section). For these resources, technological progress over the last decades has

yielded less costly recycling procedures that provide consumers with close substitutes for the

virgin resource. For instance, in Germany the costs of recycling phosphorus have declined

over the past decade and, given the price for phosphate fertilizers from rock phosphate, some

recycling technologies can now be profitably operated (Sartorius 2011).

In this paper, we examine the strategic interplay between the extractor of an exhaustible

resource and the recycler of this resource. How do the extractors influence the amount of

recycled material that they will later have to compete with? Does the prospect of recycling

accelerate or slow down the depletion of exhaustible resources? Our purpose is to provide a

simple theoretical insight into these issues.

As a benchmark, we analyze a two-period model of resource extraction, in which the

extractor of the virgin resource and the recycler are integrated into a single entity that

maximizes welfare, like a social planner, under the break-even constraint of non-negative

profits from recycling. Our preliminary findings extend Weinstein and Zeckhauser’s (1974)

predictions that recycling per se may have an impact on the optimal extraction of resources,

independently of strategic considerations. We show that the possibility of recycling increases

the initial extraction of the virgin resource more than predicted by the Hotelling rule, to

make sure that the social cost of recycling is covered.

The core issue of the paper is to investigate a two-period model with the assumption

that the extractor and the recycler are separate entities. Faced with the prospective entry of

the recycler in the second period, the extractor chooses how much of the virgin resource is

extracted in the first period. We assume that the recycler maximizes its profit and incurs a

fixed cost to enter the marketplace. This entry is an opportunity or a threat for the extractor,

depending on whether it maximizes social welfare or its own revenue. Therefore, our analysis

distinguishes between the two cases.

The extractor anticipates how its initial choice affects the present and future demands
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for the resource, hence the market profitability in the second period. By virtue of providing

the input for the recycler, the extractor can exploit its first-mover advantage to signal its

post-entry behavior to the recycler, thereby influencing its entry decision. To be successful,

this signal must be credible, which may entail a cost for the extractor. This opens up a rich

set of entry possibilities and our findings highlight how prospective recycling modifies the

Hotelling rule for each equilibrium outcome.

When the extractor maximizes social welfare, it views recycling as a desirable activity

because recycling creates a valuable expansion of the resource stock. This scale effect has

been previously recognized by André and Cerdá (2006). As a result, the benevolent extractor

accelerates the resource depletion to enhance the market position of the recycler, thereby

improving the profitability of recycling. Depending on the size of the fixed cost of recycling,

there are two entry possibilities. If the fixed cost is low, then the extractor accommodates

the recycler’s entry by providing more input than needed to cover the costs of recycling. If

the fixed cost is high, then the extractor promotes recycling by providing just enough input

to offset the costs of recycling. In that case, the extractor must incur a cost to signal that

recycling is worthwhile by increasing initial extraction above the accommodating level.

When the extractor maximizes its own profit, it views recycling as a threat to its market

position. In that case, we find that the extractor must slow down the resource depletion

for two different reasons depending on the size of the fixed cost of recycling. If the fixed

cost is low, then the extractor can do no better than accommodate the recycler’s entry. In

this equilibrium, the extractor accepts some output reduction in the first period to defend its

market position in the second period by triggering a less aggressive reaction from the recycler.

For higher values of the fixed cost, the extractor deters recycling by signaling its intention

to flood the market with virgin product in the second period, so that the market becomes

unattractive to the recycler. Due to limit pricing, this signal proves costly for the extractor,

which finally makes it credible too.

The rest of this paper is organized as follows. Section 2 presents a detailed review of

the related literature. Section 3 introduces the two-period model. Section 4 presents the

optimal outcome in the case of a social planner making both the extraction and the recycling

decisions. In Section 5, we analyze the case in which the extractor and the recycler are two

independent players. Our concluding remarks appear in Section 6.

2 Motivation and related literature

The history of exhaustible resources provides evidence that the extraction sector goes through

various regimes of competition and the recycling market is often ill-organized. Martin (1982)

recognizes that “many of the industries currently practicing recycling are highly concen-

trated”.

One interesting example is phosphate extraction together with phosphorus recycling. The

majority of global phosphate rock reserves are located in Morocco, providing this country
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with a monopoly position in supplying the virgin resource (see Cordell et al. 2009). Thus,

one may expect governmental regulation in Morocco to play a leading role in choosing the

amount of virgin phosphate to be extracted. In turn, this regulation may be more or less

benevolent, depending on various factors, such as the pressure put on the government by the

shareholders of the extraction company, or the share of the consumer surplus that escapes

the government’s jurisdiction. At the same time, the sector of phosphorus recycling has no

institutional or organizational home (Cordell et al. 2009; Livingston et al. 2005). Throughout

the world, phosphorus recycling is mainly based on the reuse of nutrient flows stemming from

food production and consumption.1 While the sanitation sector in cities, such as waste water

treatment or sewage sludge plants, plays a key role in phosphorus recycling2, this service is

scarcely high on the agenda of extraction stakeholders. In addition, the process of recycling

phosphorus from sewage or waste water often requires a specific infrastructure and high levels

of technical skills. According to Weikard and Seyhan (2009), phosphorus recycling is mainly

undertaken by developed countries, except for Pakistan, not only because they have advanced

wastewater treatment technologies but also because, unlike developing countries, they have

phosphorus-saturated soils.

Weikard and Seyhan (2009), and Seyhan et al. (2012) investigate the effect of recycling on

the depletion of phosphorus in a competitive model where developed countries control both

resource extraction and recycling. They show that the Hotelling rule applies and recycling

delays the depletion of phosphorus. This framework is similar to the benchmark case that we

investigate in Section 4 of the present paper, where the extractor of the virgin resource and

the recycler are integrated into a single entity that maximizes welfare like a social planner.

We assume further that recycling involves large fixed costs, which might cause deficits under

marginal cost pricing. We conclude that the Hotelling rule applies only when the social cost of

financing the recycling activity is nil. When it is positive, the rate of increase of the resource

price must instead exceed the rate of interest.

Another example of a recyclable exhaustible resource is aluminum. This is now well

documented because aluminum has been recycled since the early 1900s.3 The monopolistic

nature of virgin aluminum production in 1945 was acknowledged by the famous Alcoa case

(Swan 1980).4 In contrast, the recycling sector of the industry is generally considered to

1There are various methods available to recover phosphorus, such as ploughing crop residues back into the
soil, composting food waste from households, using human and animal excreta, and so on.

2“Around 41% of phosphorus from sewage sludge across the European Union is currently recovered and
reused in agriculture”, from the European Commission’s expert seminar on the sustainability of phosphorus
resources (2011, http://ec.europa.eu/environment/natres/pdf/conclusions_17_02_2011.pdf.). Even now,
according to Ensink et al. (2004), more than 25% of urban vegetables grown in Pakistan are being fertilized
with municipal wastewater.

3 In 1989, about 28% of the total aluminum supply in the United States came from recycled aluminum (see
http://www.epa.gov/osw/nonhaz/municipal/pubs/sw90077a.pdf).

4 In 1945, Alcoa was judged to enjoy a strong monopoly position, which was supported rather than threat-
ened by competition from secondary aluminum produced by recycling scrap aluminum. Swan (1980) provides
empirical evidence that the price charged by Alcoa is only slightly below the pure monopoly price but is well
above the purely competitive price. The question of whether Alcoa had maintained its monopoly position by
strategically controlling the supply of scrap aluminum that was ultimately available to secondary producers
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be competitive throughout the literature. In the view of Friedman (1967), the competitive

recycler would tend to push the aluminum price down to the marginal cost of virgin aluminum

production. Martin (1982), Suslow (1986), and Grant (1999) dispute this statement under the

assumption that Alcoa was confronted by an independent and competitive recycling sector.

Their results generally show that recycling barely eroded Alcoa’s market power. Since then,

the aluminum industry has gone through different regimes of imperfect competition, both in

the extraction and the recycling sectors.

The early theoretical literature on the extraction of exhaustible resources has examined

how market power in the extraction sector affects the Hotelling rule. The present paper

extends the scope of this research by allowing for the possibility that recycling yields a perfect

substitute for the virgin product. On the one hand, recycling is tantamount to increasing the

resource stock, which spurs the extractor to accelerate the resource depletion. On the other

hand, recycling by an independent company represents the threat of potential competition

from the extractor’s standpoint. Our findings mainly contribute to the traditional literature

on the Hotelling rule by providing insight into the strategic interplay between the extractor

and the recycler. Hotelling (1931) shows that the monopolist has a tendency to be more

resource-conservative than “competition... or maximizing of social value would require”.

Stiglitz (1976) adds that the parsimony of the monopolist depends on the elasticity of demand

and extraction costs. Except for the case where the elasticity of demand is constant and

extraction costs are zero, the result that the monopolist extracts the resource at a lower rate

than that of the competitive firm seems rather robust (see also Tullock 1979) for the case

of inelastic demand). Gilbert and Goldman (1978) find that the monopolist may deter the

entry of potential competitors by reducing the initial extraction below the level that is optimal

when the monopolist is not constrained by entry. In the present setting, the monopolist also

discourages the entry of the recycler with a decrease in the initial extraction.

As previously mentioned, the issue of recycling an exhaustible resource was addressed by

Weinstein and Zeckhauser (1974), and was more recently developed with the aforementioned

debate on the Alcoa case. The benchmark case in Section 4 of the present paper is closely

related to Weinstein and Zeckhauser (1974). The difference is that, in our analysis, the social

planner uses the proceeds from the sales of the recycled resource to cover the social cost

of recycling. Another difference is that demand is divided between resource extraction and

recycling in the present paper, while the total supply of the virgin resource is used up before

any recycling begins in their analysis. When demand is met entirely by recycling after the

resource has been used up, they show that the market price may exceed the marginal cost of

recycling due to an excess of demand over supply. In contrast, we show that the final market

price for the resource must lie between marginal cost and the monopoly price, depending on

the social cost of financing the recycling activity.

Hollander and Lasserre (1988) investigate the case of a monopolist in the extraction sector

which recycles the scrap from its own production. The monopolist has monopsony power in

has been debated at length in the economic literature. Grant (1999) provides a useful survey of this debate.
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the scrap market and faces a fringe of price-taking recyclers. Consequently, the extractor finds

it profitable to pre-empt market entry by competitive recyclers when the cost of recycling is

suffi ciently high. Entry pre-emption has been shown to increase the resource price above the

level that would prevail in the absence of a threat of entry because the extractor must pay a

high price for withdrawing the scrap that is available to recyclers from the market. Section

5 of the present paper also considers the case of strategic rivalry between the extractor and

the recycler. Our setting differs from that of Hollander and Lasserre (1988) in two respects.

First, the extractor does not recycle its own output: competition occurs in the second period

where it involves the virgin resource supplied by the extractor and a substitute product

supplied by the recycler. Second, the extractor is committed to its initial choice of extraction

before recycling occurs. Hence, the first-period extraction signals to the recycler whether

or not entry is profitable in the second period, depending on the post-entry behavior of the

extractor. To make the recycler’s entry unprofitable, the extractor signals its intention to

flood the market with the virgin resource in the second period. This raises the first period

price above the level that would prevail in the absence of a threat of entry, leading to a lower

price in the second period, which makes the market unattractive to the recycler.

Gaudet and Van Long (2003) examine how market power in the recycling industry affects

the primary production of an inexhaustible resource. They show that the possibility of

recycling may increase the market power of the extractor. Clearly, this cannot occur in the

present model because competition between the exhaustible resource and its recycled output

mitigates the extractor’s market power.

André and Cerdà (2006) analyze recycling as a production technology that transforms

waste into recycled materials. They highlight two different impacts of recycling on the

growth of the economy: a technological effect, which affects the mixing of renewable and

non-renewable inputs in the production process; and a scale effect, which increases the avail-

ability of recyclable resources. In the short run, recycling may alleviate resource scarcity and

allow for higher output levels but it cannot avoid resource exhaustibility in the long run. In

the present setting, the scale effect also plays a key role, especially when the weight of profit

in the extractor’s objective function is relatively low. In that case, the scale effect strengthens

the incentive to extract more of the resource prior to recycling because an increase in the

available stock of the resource is socially valuable.

Lastly, Gaudet (2007) and Slade and Thille (2009) provide comprehensive reviews of the

literature on the extraction of exhaustible resources. According to them, there is empirical

evidence that, for many resources, prices have fallen or remained unchanged over long periods,

which is inconsistent with simple versions of Hotelling’s model but is not inconsistent with

the monopoly formulation of the rule (Stiglitz 1976; Gaudet 2007). The monopoly variant of

the model used in the present paper shows that the threat of business stealing by the recycler

further flattens the price path of the resource, which may be able to explain falling prices.
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3 The baseline two-period model

We consider a two-period exhaustible resource market, in which an extractor has sole extrac-

tion rights for the resource. Consumer demand is assumed to be separable by time period.

Let the market inverse demand curve in each period be pt = Pt(qt), where t is an index over

time periods, qt is the total quantity consumed in period t, and pt is the price in that period.

To limit the analysis to two periods like, for example, Gaudet et al. (1995), we assume that

pt = 0 for all t > 2. Let δ = 1
1+ρ denote the common discount factor, where ρ is the rate of

interest.

The extractor is endowed with a stock, s, and determines the amount q1 = q that it

will extract and sell at price p1 = P1(q) in the first period. The extractor can extract the

resource and transport it to the market at no cost. Exploration does not occur and s is

the single known stock of the resource. We assume for simplicity that the extractor sells

all of the remaining resource stock, s − q, in the second period, after which the resource

becomes worthless. In the second period, the extractor faces the entry of a recycler. The

recycled resource is viewed by consumers as a perfect substitute for the extracted resource.

The recycler increases the quantity of the available resource by the amount r, and, hence,

the market clears at the price p2 = P2(q2) in the second period, with q2 = s− q + r.
We assume that the first-period consumers dispose of the used resource by giving it to the

recycler because it is the only producer capable of recycling part of the resource from used

quantities.5 The amount recycled r cannot exceed q due to the depreciation and shrinkage

that are present in every recycling process.6 The recycling process requires the installation

of capacity (e.g., sewage plants, specialized machinery for recycling, etc.), which involves a

fixed set-up cost F . We shall suppose that this cost is incurred up front. The recycling cost

function is given by c(r). We make the following assumption on c(r):

(A1) c(r) is a non-decreasing, twice continuously differentiable and convex function on

[0, q] with c(0) = 0.

The consumers’gross surplus in period t is St(qt) =

qt∫
0

Pt(x)dx, and we assume that Pt(.)

is twice continuously differentiable with P ′t(.) < 0.
7

We make a further assumption on Pt(.):

(A2) Pt(.) is log-concave.8

5Regarding phosphorus, for instance, the recycler may be viewed as the group of developed countries with
phosphorus-saturated soils and advanced wastewater treatment technologies (see Weikard and Seyhan 2009).

6See Martin (1982) for aluminum scrap recycling and Weikard and Seyhan (2009) for phosphorus recycling
from sewage sludge.

7P ′t (.) denotes the derivative of Pt(x) with respect to x. Throughout the text, the superscripts
′ and ′′ will

be used to represent, respectively, the first and second derivatives of a function of a single variable.
8A function Pt(.) is log-concave if P

′′
t (.)Pt(.) − P ′t (.)

2 < 0. This assumption is very general: LogP is
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As recycling cannot emerge ex nihilo, we will assume that recycling is too costly to be

worthwhile at q = 0, thus, P2(s + r) < c′(r) for all r ≥ 0. Furthermore, the whole stock of
the resource must be large enough to allow for recycling. Hence, at q = s and r = 0, we must

have P2(s− q + r) > c′(r). We summarize these assumptions as follows:

(A3) P2(s) < c′(0) < P2(0).

The extractor.– The extractor obtains the intertemporal revenue R (q, r) = P1 (q) q +

δP2(s − q + r)(s − q) from extraction. It may be purely self-interested, in which case its

objective is to maximize R (q, r). Alternatively, the extractor may have some social concern

and maximize the present discounted value of the social welfare, that is, W (q, r) = S1 (q) +

δS2(s − q + r). To distinguish between each of these cases, we will write the extractor’s

objective function V (q, r) as a convex combination of the social welfare and the revenue from

extraction:

V (q, r) = (1− λ)W (q, r) + λR (q, r) , (1)

where λ is a dummy variable that takes the value 0 or 1 to indicate that the extractor is

socially benevolent or self-interested.

The case where the extractor is highly driven by a concern for revenue is motivated by

real-world features of the phosphorus and aluminum industries. The market for phosphorus

is mainly characterized by high concentrations of phosphate reserves in a few countries, such

as Morocco and China (see, for example, Cordell et al. 2009 or Weikard and Seyhan 2009).

In both of these countries, however, a very large share of the extraction companies are state

owned: whether or not they abuse market power depends on the state regulation, if any.

The case λ = 1 is also closely related to Swan’s (1980) study of the market for aluminum,

where the monopolist Alcoa is confronted by an independent competitive recycler (see also

Martin 1982). According to Wan and Boyce (2014), the market structure in the extraction

of platinum, nickel and diamond is quite concentrated, too.

The recycler.– Our analysis will deal separately with two scenarios of organizational in-

tegration of extraction and recycling. In the first scenario, the recycler and the extractor of

the virgin resource are integrated into a single entity. This scenario is treated in Section 4

under the assumption that the decision maker maximizes welfare. The outcome will serve as

a benchmark that points to the effects of recycling on the optimal extraction of the resource,

independently of strategic considerations. In the second scenario, the extractor and the re-

cycler are separate entities engaged in strategic interaction. Section 5 explores this scenario

under the assumption that the independent recycler maximizes profit.

In each of the two scenarios, recycling involves a fixed cost, which may lead to deficits

under marginal cost pricing. This may impose a break-even constraint of non-negative profits

concave if P is concave, linear or P (q) = Aqγ−1 with 0 < γ < 1 so that 1/(1− γ) is the elasticity of demand.
Most of the commonly used demand functions are, in fact, log-concave. The limiting case is P (q) = Ae−q,
which is strictly convex and log-linear (hence log-concave).
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from recycling in both scenarios:

π(q, r) ≥ 0, (2)

where π(q, r) = P2(s− q + r)r − c(r)− F is the recycling profit function.

We will denote by µ the Lagrange multiplier of the constraint (2), regardless of the sce-

nario. If µ happens to be positive in the equilibrium outcome, then the break-even constraint

is binding. An increased value of µ will indicate that higher proceeds from sales of the recy-

cled resource are needed to cover the growing costs of recycling. Generally, the multiplier µ

measures the social cost of financing the recycling activity.

To illustrate the results obtained in the general setting, we will solve explicitly for the

equilibria within a specific framework, in which consumer surplus is quadratic and stationary:

St(qt) = aqt − q2t /2, t = 1, 2, so that demand is linear: Pt(qt) = a− qt, t = 1, 2; that variable
costs are also linear: c(r) = cr, with a > c; and that δ = 1, hence ρ = 0 .

This framework satisfies assumptions (A1) and (A2). Moreover, assumption (A3) amounts

to

a− s < c < a. (3)

and the recycler’s profit function becomes

π(q, r) = (a− s+ q − r)r − cr − F. (4)

4 The extractor and the recycler are integrated into a single
entity

To begin, we examine the situation in which the extractor and the recycler are integrated,

and thus the extraction and the recycling choices are made by a single decision maker. We

formulate this problem following the standard approach that was identified by Ramsey (1927),

developed by Boiteux (1956), and synthesized by Baumol and Bradford (1970). We assume

that the decision maker behaves as a social planner whose goal is to maximize social welfare

under the break-even constraint of non-negative profits from recycling. In this scenario, the

welfare function is computed net of recycling costs, as indicated by the index n:

Wn(q, r) = S1(q) + δ [S2(s− q + r)− c(r)− F ] . (5)

The solution of the social planner’s problem is an initial amount of virgin resource and a

recycling output (q̂, r̂) that maximizes (5) subject to the constraint (2) associated with the

Lagrange multiplier µ̂. In the equilibrium outcome, p̂1 = P1(q̂) and p̂2 = P2(s − q̂ + r̂) will

denote the market prices in the first and the second period, respectively. Note that in this

problem with a single decision maker, the initial extraction q̂ has no commitment value.

Extraction of the virgin resource provides the input for recycling under the constraint of

non-negative profits from recycling. The optimal recycling decision for the social planner is a

function r̂(q, µ) of the output q and the social cost µ. Assuming an interior solution, r̂(q, µ)
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satisfies the necessary condition Wn
r (q, r) + µπr(q, r) = 0.

9

The following lemma states the existence and properties of r̂(q, µ).

Lemma 1: Given a market for an exhaustible natural resource with inverse demand Pt(.)

and recycling costs c(r) satisfying assumptions (A1) , (A2) and (A3), there exists a unique

local maximum r̂(q, µ) such that 0 < r̂q(q, µ) < 1.

Proof: see Appendix 1.

Given µ, the recycling function r̂(q, µ) is upward sloping with respect to q because remov-

ing more of the virgin resource from the ground induces the social planner to recycle more

in the next period. The inequality r̂q(q, µ) < 1 reflects the fact that recycling is subject to

entropy: the process of resource recycling cannot work with 100% effi ciency.

Denoting by ε = − P2(s−q+r)
P ′2(s−q+r)r

the price elasticity of demand for the recycled resource, we

write ε̂ for the price elasticity given in equilibrium by (q̂, r̂), where r̂ = r̂(q̂, µ̂).

Proposition 1: When a social planner implements both extraction and recycling un-
der assumptions (A1) , (A2) and (A3), the relative profit margin from recycling is inversely

proportional to the elasticity of demand for the recycled product and the resource price rises

faster than the interest rate. If ε̂ > µ̂
δ , then

p̂2 − c′(r̂)
p̂2

=
µ̂

(δ + µ̂)

1

ε̂
, (6)

and
p̂2 − p̂1
p̂1

> ρ. (7)

Proof: see Appendix 2.

The equation (6) is the standard Ramsey formula: the pricing of the recycled resource is

positively related to the social cost of financing the recycling activity and inversely related

to the demand elasticity. When recycling causes no deficit (which corresponds to µ̂ = 0),

the market price for the resource after recycling equals the marginal cost of recycling. This

particular result coincides with that obtained by Weinstein and Zeckhauser (1974) in the

variant of their model where they assume that a fixed supply of the resource can be recycled

at a cost. One difference fromWeinstein and Zeckhauser (1974) is that demand is met entirely

by recycling after the resource has been used up, whereas in our setting the demand is also

met by resource extraction.

In the present setting, we further assume that recycling involves large fixed costs. The

social planner must use the proceeds from the sales of the recycled product to cover the social

cost of recycling. As a result, the final market price for the resource must lie between its

marginal cost and its monopoly price, at a level depending on the elasticity of demand for

the recycled resource and the fixed cost of recycling. As µ̂ grows in equilibrium, the need

9For a function with several variables, the partial derivative with respect to a variable is denoted by that
variable’s being written as a subscript.
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for budgetary revenue increases and a larger premium above the marginal cost of recycling

becomes necessary to cover the cost of recycling. In the limit case where µ̂ is infinite, the price

for the resource after recycling tends to the monopoly price because monetary considerations

are weighted infinitely more than the value created by recycling.

The desire to accommodate recycling modifies the Hotelling rule in the following way:

p̂2 − p̂1
p̂1

= ρ+ (1 + ρ)
µ̂

ε̂

p̂2
p̂1
. (8)

As usual, the rate of price increase must equal the opportunity cost of deferred extraction.

The standard rule of Hotelling applies only when recycling is socially costless (µ̂ = 0), which is

consistent with Weinstein and Zeckhauser (1974, pp. 77—78): according to their predictions,

the willingness to pay for the use of the virgin resource grows at the rate of interest before

recycling begins.

When µ̂ > 0, the rate of increase of the price exceeds the rate of interest because the

present value of extraction takes further into account the budgetary cost of recycling the

extracted resource. This cost includes both the financing of the recycling costs and the cost

of raising funds due to pricing above marginal cost. The second term in the right-hand side

of (8) represents the foregone revenue in the sale of the recycled output, which depends both

on the price elasticity of demand for the recycled resource, and on the overall costs entailed

by recycling. In a nutshell, recycling accelerates the depletion of the resource to make sure

that the social cost of recycling is covered.

The framework of linear demand and cost functions.–We now derive explicit solutions

(q̂, r̂) in the specific example. With linear demand and cost functions, the welfare function is

Wn(q, r) = aq − q2/2 + a(s− q + r)− (s− q + r)2/2− cr − F, (9)

The recycling profit is given by (4). The recycling function is

r̂(q, µ) =
1 + µ

1 + 2µ
(a− s− c+ q) . (10)

Figure 1 shows the isowelfare curves (in black) given by (9) and the isoprofit curves (in

gray) given by (4) in (q, r) space. The isowelfare curves are ellipses of the form {(q, r) :Wn(q, r) =Wn}
for some isowelfare level Wn. The ellipses are centered at the point B that identifies the

maximal welfare point corresponding to the solution of the social planner’s problem with

no break-even constraint. In that case, F = 0, thus µ̂ = 0 and Proposition 1 yields that

p̂2 = p̂1 = c at point B, whose coordinates are (a− c, 2(a− c)− s). The existence of a
solution at B requires that the resource is moderately abundant, so that s < 2(a − c). As
the levels of F decrease, the isowelfare levels increase when shifting from A to B along the

line defined by Wn
q (q, r) = 0, which boils down to p2 = p1. The line (C,D) cuts each of the

isoprofit curves at its maximum, according to the equation πr(q, r) = 0. Thus, profit levels

are higher as the isoprofit curves shift to the right along the line (C,D), due to the increasing
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12



levels of F .

The social planner’s problem is to find a location on the segment [A,B] that maximizes

welfare given the break-even constraint. The solution occurs at point E in the figure, where

[A,B] crosses the set of points such that π(q, r) = 0. Point E has coordinates (q̂, r̂) charac-

terized by

q̂ =
1

4

(
2(a− c) + s+

√
(2(a− c)− s)2 − 8F

)
, (11a)

r̂ =
1

2

(
2(a− c)− s+

√
(2(a− c)− s)2 − 8F

)
, (11b)

and associated with µ̂ given by

F =
µ̂ (1 + µ̂) (2(a− c)− s)2(

1 + 2µ̂− µ̂2
)2 . (12)

A necessary condition for the existence of q̂ is that F ≤ F
◦
= (2(a−c)−s)2

8 . Hence, F
◦
is

the maximum level of fixed cost below which recycling is socially desirable.

Furthermore, from Equation (12), we have that µ̂ is increasing with F from µ̂ = 0 at F = 0,

to µ̂ = 1 +
√
3 −

√
3 + 2

√
3 at F = F

◦
under the restriction that 1 + 2µ̂ − µ̂2 > 0.10 This

shows that increasing fixed costs of recycling raise the social cost of financing the recycling

activity µ̂ because higher proceeds from sales are needed to cover the cost of recycling.

The following corollary summarizes the result obtained with linear demand and cost

functions.

Corollary 1: Assume that s < 2(a − c) and F < F
◦
within the framework of linear

demand and cost functions. The social planner achieves an optimal outcome characterized by

(11a) and (11b).

5 The extractor and the recycler are separate entities

In the outcome of the social planner’s problem, the initial extraction of the virgin resource has

no commitment value. In contrast, when the extraction and the recycling decisions are made

by two independent entities, the extractor is committed to its initial choice of extraction,

which provides the input for the recycler. De facto, the extractor cannot change the initial

extraction for the period during which the recycler makes its choice. To formalize the idea

that the recycler responds to the extractor’s initial choice after some lag, we study a two-

period model with the following timing. In the first period, the extractor chooses q. In the

second period, the recycler observes q, responds to that action by choosing the output r, and

the extractor simultaneously sells s− q.
10We need this restriction because q̂ = (1+µ̂)2(a−c)−sµ̂2

1+2µ̂−µ̂2 and r̂ = (1+µ̂)(2(a−c)−s)
1+2µ̂−µ̂2 .
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In this scenario, we assume that the extractor maximizes the objective function (1) under

the break-even constraint (2). The notation µ for the Lagrange multiplier associated with

this constraint is still valid. We also assume that the recycler maximizes profit. The extractor

chooses a point on the recycler’s reaction function to maximize its own objective function. A

(pure) strategy for the extractor is a quantity q and a strategy for the recycler is a mapping

r(q) : [0, s] → [0, s]. The equilibrium of the two-period game reduces to a pair (q∗, r∗(.))

associated with the multiplier µ∗ such that:

(i) r∗(q) = argmaxr∈[0,s] π(q, r) subject to π(q, r∗(q)) ≥ 0,

(ii) q∗ = argmaxq∈[0,s] V (q, r∗(q)).

In the equilibrium outcome, we will generally write p∗1 = P1(q
∗) and p∗2 = P2(s−q∗+r∗(q∗))

for the first- and the second-period market prices, respectively. Moreover, we will denote

the price elasticities of demand for the virgin product in the first and the second period,

respectively, by η1 = − p1
P ′1(.)q

and η2 = − p2
P ′2(.)(s−q)

. Hence, we will write η∗t , t = 1, 2, for the

equilibrium values of the demand elasticity in each period for the virgin product, and ε∗ for

the equilibrium value of the demand elasticity for the recycled resource.

In this setting, the extractor anticipates how its initial choice of extraction affects not

only the present and future demands for the resource but also the profitability of the market

for the recycler. Unlike the social planner in the previous section, the extractor now behaves

strategically. The initial extraction “signals”the extractor’s post-entry behavior to the recy-

cler. Clearly, this signal influences the recycler’s view of what will happen if it enters, thereby

making entry more or less diffi cult. The extractor’s willingness to accommodate the recy-

cler’s entry depends on whether the extractor is socially benevolent or self-interested. If the

extractor maximizes social welfare (λ = 0), it is more likely to view recycling as a desirable

activity. But if the extractor maximizes profit (λ = 1), it will view the recycler as a rival

threatening its market position.

As previously mentioned, we assume that all of the remaining resource stock is extracted

in the second period, which precludes the extractor from reducing its output below s. If the

extractor did reduce its output, it would sell the non-cooperative quantity qN of the Nash

equilibrium outcome resulting from competition against the recycler with simultaneous move.

To ensure that this will not happen, we explicitly state the following assumption:

(A4) s < qN .

The first step is to derive the recycler’s reaction function r∗(q) that maximizes π(q, r) with

respect to r. Given q, the recycler will enter the market if π(q, r∗(q)) is positive; otherwise,

the recycler earns zero profit and stays out of the market. If the recycler enters the market,

then r∗(q) is the interior solution denoted by r(q) to

πr (q, r) = 0. (13)

14



We show in Appendix 3 that assumptions (A1) and (A2) ensure the existence of r(q).

We define q̃ as the minimum threshold of initial extraction above which recycling becomes

profitable, so that π(q̃, r(q̃)) = 0. Observing q̃, the recycler is indifferent between staying out

and entering. For all q higher than q̃, we have π(q, r(q)) > 0 and the recycler enters the

market. In contrast, for all q lower than q̃, we have π(q, r(q)) < 0, and hence the recycler is

better off securing zero profit by staying out of the market. Therefore, the recycler’s reaction

function is discontinuous at q̃, which increases with F . If F is so high that q̃ = s, the recycler

cannot even make a profit as a monopolist in the second period, and then its reaction function

is simply r∗(q) = 0 for all q ∈ [0, s].
Lemma 2: Under assumptions (A1) , (A2) and (A3), the recycler has the following re-

action function

r∗(q) =

{
r(q) when q̃ ≤ q ≤ s,

0 otherwise,
(14)

with a slope such that 0 < r′(q) < 1.

Proof: The mathematical techniques of the proof are similar to those used for Lemma 1
and so it is left to the reader to refer to them.

The extractor chooses q to maximize the reduced-form functionV(q) = V (q, r∗(q)), taking

into account the possibility and consequences of the recycler’s entry. Then, we have

V(q) =


V (q, r(q)) if q̃ ≤ q ≤ s,

V (q, 0) otherwise.
(15)

A key feature of the general framework is that V(q) is not concave in q because of the

discontinuity in r∗(q). More precisely, V(q) is piecewise concave and discontinuous with a

jump at q̃. Moreover, the jump of V(q) will be downward or upward depending on the

extractor’s objective function. Indeed, we have

Vr (q, r) = (1− λ)δp2 − λδ
p2
η2
. (16)

Thus, Vr (q, r) is positive when λ = 0, which implies that V(q) has an upward jump at q̃.

In contrast, when λ = 1, then Vr (q, r) is negative, which implies that V(q) has a downward

jump at q̃.

These technical diffi culties make it complicated to address the issue of the recycler’s entry.

As a first consequence, V(q) may have two local maxima, of which the one within the range

[q̃, s] allows the recycler’s entry and the one within the range [0, q̃] does not. Depending on

the size of F which determines the position of q̃, there is a rich set of entry possibilities that

follow Bain’s classification (1956, pp. 21—22). If F is so high that q̃ > s, then the recycler

stays out for all q ∈ [0, s]. In that case, V(q) = V (q, 0) has a global maximum at q0, that

is, the first-period optimal extraction in the absence of recycling. In Bain’s terminology, the

recycler’s entry is blockaded at q0, where the extractor behaves as if recycling were irrelevant.
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Let us now turn to the case where F is so small that q̃ < s. Among all the putative

equilibrium outcomes, the most interesting ones involve recycling. Suppose for the moment

that q∗ is chosen within the range [q̃, s]. Restricting the maximization problem to this domain,

we can write the Kuhn-Tucker conditions as

Vq(q, r
∗(q)) + Vr(q, r

∗(q))r∗′ (q) = −µ
[
πq(q, r

∗(q)) + πr(q, r
∗(q))r∗′ (q)

]
, (17)

µ ≥ 0 (µ = 0 if π(q, r∗(q)) > 0) . (18)

Using these conditions, we distinguish between the equilibrium outcomes, depending on

whether the break-even constraint is binding or not.

The case µ∗ = 0.– Assume first that the break-even constraint is not binding in equi-

librium, so that µ∗ = 0, which can only be achieved if q∗ > q̃. In that case, the recycler

enters the market and, given q∗, responds with r∗(q∗) = r(q∗). Taking the recycler’s entry for

granted, the extractor accommodates recycling with qa = argmaxq∈[0,s] V (q, r(q)) satisfying

Vq(q, r
∗(q)) = −Vr(q, r∗(q))r∗′ (q) , (19)

provided that F is small enough to ensure that q̃ < qa. The left-hand side of (19) is the

marginal value obtained from extracting the virgin resource prior to recycling. It captures the

standard trade-off between the extractor’s returns from present and postponed extractions.

The right-hand side of (19) represents the additional value obtained by the extractor from

recycling as an opportunity cost of extracting the virgin resource today. This is a strategic

effect measuring to what extent recycling affects the return from extraction in the second

period.

Introducing (16) into the right-hand side of (19), we get Vq(q, r∗(q)) =
(
−(1− λ)δp2 + λδ p2η∗2

)
r∗′ (qa).

We observe that the extractor’s incentive to accommodate the recycler’s entry with qa de-

pends on whether the extractor is socially benevolent or self-interested. In the case where

λ = 0, each unit of resource extracted in the first period improves the second-period welfare

by δp2r∗′ (qa) through recycling since r′(q) > 0. In the case where λ = 1, each unit of re-

source extracted in the first period reduces the second-period marginal revenue by δ p2η∗2
r∗′ (qa)

through recycling.

Lemma 3: Suppose that the extractor accommodates the recycler’s entry. Then, recy-
cling:

(1) boosts the initial extraction when the extractor maximizes welfare, and

(2) curbs the initial extraction when the extractor maximizes profit.

By choosing extraction in the first period, the extractor is in a position to send a signal

to the recycler on the profitability of the market in the second period. The extractor exploits

this leadership in two different ways, depending on its objective.

If the extractor maximizes social welfare (λ = 0), it views recycling as a desirable activity

because recycling creates a valuable expansion of the stock of the resource. This is similar to
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what André and Cerdá (2006) call the “scale effect”when they point out that recycling may

alleviate resource scarcity.

In contrast, if the extractor maximizes profit (λ = 1), it views the recycler as a rival that

threatens its market position. The prospective entry of the recycler provides the extractor

with an incentive to restrict the initial extraction and instead flood the market in the second

period, which finally triggers a less aggressive reaction from the recycler.

The case µ∗ > 0.– Assume now that the break-even constraint is binding in equilibrium,
i. e., µ∗ > 0, which can only happen at q∗ = q̃, where V(q) is discontinuous. This requires

that F be higher than in the case where µ∗ = 0, so that we have qa < q̃ < s. Setting q̃

triggers the reaction r∗(q̃) ∈ {0, r(q̃)} from the recycler, meaning that the extractor may

either prevent recycling or allow it to occur.

In the outcome with no recycling, q̃ is the best choice for the extractor only if V(q̃) =

V (q̃, 0) > V (q̃, r(q̃)). Two requirements are needed for this: (i) V(q) has a downward jump

at q̃, hence λ = 1, and (ii) the recycler chooses to stay out when it is indifferent between

entering and staying out, hence r∗(q̃) = 0. We will assume this to be the case when λ = 1.11

Then, V(q) achieves a unique maximum within the range [0, q̃] since qa < q̃. Finally, the

maximum is at q̃ provided that q̃ < q0. In Bain’s terminology, the extractor deters entry

by decreasing the initial extraction below the level q0 that would be optimally extracted in

the absence of recycling. Thus, setting q̃ to impede the recycler’s entry proves costly for the

profit-maximizing extractor. But this strategy signals to the recycler the extractor’s intention

to flood the market and make recycling worthless.

Alternatively, the choice of q̃ by the extractor may also allow the recycler’s entry in

equilibrium, under the binding constraint of zero profit. For this to occur, we need that

V(q̃) = V (q̃, r(q̃)) > V (q̃, 0), which requires the following conditions to be met: (i) V(q) has

an upward jump at q̃, hence λ = 0, and (ii) the recycler chooses to enter when it is indifferent

between entering and staying out, hence r∗(q̃) = r(q̃). We will assume this to be the case

when λ = 0.12 Then, V(q) achieves a local maximum at q̃ above qa that would be optimally

extracted if the break-even constraint were not binding. Thus, setting q̃ to encourage entry

proves costly for the benevolent extractor. However, this strategy signals to the recycler the

extractor’s intention to make recycling worthwhile by relaxing the pressure on the price in the

second period. We will say that the extractor promotes recycling with q∗ = q̃ to distinguish

this equilibrium strategy from the accommodating strategy qa.

When the benevolent extractor promotes recycling with q̃, (17) can be rewritten as

Vq(q, r(q)) = −δp2r′ (q)− µπq(q, r(q)), (20)

by using (16) and the envelope theorem. Furthermore, we know that πq(q, r) = −P ′2(.)r
11 In other terms, in the case λ = 1, we will restrict attention to the pure strategy in which the recycler

chooses to stay out with probability 1 when the initial extraction is q̃.
12 In other terms, in the case λ = 0, we will restrict attention to the pure strategy in which the recycler

chooses to enter with probability 1 when the initial extraction is q̃.
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and, for q = q̃, we have −P ′2(.)r(q) = p2 − c′(r) = p2
ε , provided that ε > 1 for an interior

solution. Introducing this into (20) yields

Vq(q, r(q)) = −δp2r′ (q)− µ
p2
ε
. (21)

Each term in the right-hand side of (21) reflects specific earnings foregone by the benevolent

extractor when it reduces the input for recycling. As with the accommodating strategy,

recycling has a valuable effect on the size of the resource stock (first term). In addition, the

extractor needs that the proceeds from sales of the recycled resource exactly offset the costs

of recycling. Therefore, when promoting recycling, the benevolent extractor must take into

consideration the foregone revenue from recycling (second term).

Lemma 4: In equilibrium, the strategy q̃ is a costly signal for the extractor. This strategy:
(1) promotes recycling when the extractor maximizes welfare, and

(2) deters recycling when the extractor maximizes profit.

Faced with the prospective entry of the recycler, the extractor must consider different

strategies, depending on whether it maximizes social welfare or its own revenue. We will

distinguish these cases in Sections 5.1 and 5.2, and present our results in the form of two

modified Hotelling rules.

5.1 The extractor maximizes social welfare (λ = 0)

The extractor’s problem is now to design a socially effi cient extraction program guarantee-

ing the financing of recycling. By socially effi cient, we mean an extraction program that

maximizes the social surplus from extracting the virgin resource and providing the input for

recycling less the true budgetary cost of delegating the task of recycling to a profit-maximizing

firm.

When λ = 0, the extractor maximizes W (q, r) = S1 (q) + δS2(s− q + r) under the break-
even constraint (2). From (17) and (21), the first-order condition for the extractor’s problem

becomes

p1 − δp2 = −p2
(
δr′(q) +

µ

ε

)
. (22)

In the absence of recycling, the extractor would be better off setting q0, in accordance

with the standard Hotelling rule under perfect competition. Faced with prospective recycling,

the extractor finds it worthwhile to increase the initial extraction above q0, as shown by the

right-hand side of (22). By substituting δ = 1
1+ρ into (22), we obtain that the equilibrium

solutions revisits the Hotelling rule as follows:

p∗2 − p∗1
p∗1

= ρ+
p∗2
p∗1

(
r′(q∗) + (1 + ρ)

µ∗

ε∗

)
, (23)

provided that ε∗ > 1 for an interior solution at q∗ = q̃. As r′(q) > 0 and µ∗ ≥ 0, we see that
p∗2−p∗1
p∗1

> ρ. Thus, the price of the resource increases faster than the rate of interest. The

right-hand side of (23) shows that, besides the foregone interest ρ, the opportunity cost of
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postponing extraction includes the dual value of recycling foregone from holding the resource

in the ground. Recycling is always valuable because it increases the stock of the resource

(first term in the parentheses), but recycling is also valuable when the break-even constraint

is binding (second term in the parentheses) because proceeds from recycling are needed to

offset the recycling costs. The extractor takes this budgetary requirement into account when

it promotes recycling with q∗ = q̃, but not when it accommodates recycling with q∗ = qa.

We conclude:

Proposition 2: Assume (i) that the extractor and the recycler are separate entities and
(ii) that the extractor maximizes welfare. Under assumptions (A1) , (A2) , (A3) and (A4),

recycling induces the extractor to accelerate the depletion of the resource by setting q∗ above

q0, so that
p∗2 − p∗1
p∗1

> ρ.

Not surprisingly, this result is closely related to that obtained in the benchmark scenario

treated in Section 4. One reason for increasing the initial extraction is to generate enough

revenue to cover the costs of recycling. The scale effect of recycling is a further reason for

accelerating the resource depletion in the present scenario: increased extraction alleviates

resource scarcity by providing more input for recycling.

The framework of linear demand and cost functions.–We now derive explicit solutions

for (q∗, r∗(.)) in the specific example, when the extractor maximizes social welfare and the

recycler is an independent profit maximizer. The social welfare is given by

W (q, r) = aq − q2/2 + a(s− q + r)− (s− q + r)2/2. (24)

In the absence of recycling, the optimal extraction is q0 = s
2 . The recycler chooses r to

maximize π(q, r), which yields the reaction function

r∗(q) =

{
r (q) = 1

2 (a− s− c+ q) when q̃ ≤ q ≤ s,
0 otherwise,

(25)

where

q̃ = s+ c− a+ 2
√
F . (26)

Observe that q̃ is increasing with F , so that q̃ > s when F > F = (a−c)2
4 . In that case, the

fixed cost is so large that the recycler stays out of the market, whatever the initial extraction.

Hence, F is the maximum level of fixed cost below which the recycler may find the market

attractive. To ensure the relevance of recycling, we assume that F ≤ F .
Figure 2 depicts the extractor’s isowelfare curves (in black) given by (24) and the recycler’s

isoprofit curves (in gray) in (q, r) space. As in Figure 1, isowelfare curves are associated with

higher levels of welfare when moving from A to B, and profit levels are higher as the isoprofit

curves shift from C to D along the line πr(q, r) = 0. The segment [C,D] represents that

part of the recycler’s reaction function for which recycling is profitable, for a given F . The

extractor’s problem is to find a location on [C,D] that maximizes welfare.
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Figure 2: Equilibrium solutions for a benevolent extractor confronted by an independent
recycler
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Figure 2 illustrates two different equilibrium outcomes corresponding to points E and E′,

respectively.

At point E, whose coordinate on the q-axis is qa, the isowelfare curve is tangent to [C,D].

The highest level of welfare is achieved at E provided that q̃ ≤ qa. This requires that F be

lower than

Fa =
(4a− 3c− 2s)2

25
. (27)

In that case, the break-even constraint is not binding, that is, µ∗ = 0, and hence, the

extractor accommodates recycling. Calculations made from (22) yield

qa =
3a− c+ s

5
. (28)

Note that the figure is drawn under the assumption that

W (q0, 0) < W (s, r(s)) . (29)

meaning that it would be socially more effi cient for the benevolent extractor to recycle the

whole stock of the resource rather than to extract the virgin resource without recycling.

Throughout this example, we focus on the set of parameters satisfying this assumption for

the sake of simplicity.

If F becomes so large that qa ≤ q̃, then the part r (q) of the recycler’s reaction function for
which entry is profitable shrinks to fit the segment [E′, D] on Figure 2. The best the extractor

can do to meet the break-even constraint is to choose the point E′ on the reaction function

whose coordinates are (q̃, r (q̃)). Recall that the recycler chooses to enter with probability

1 when the initial extraction is q̃ (see Footnote 12).13 At E′, the break-even constraint is

binding. Thus, the extractor promotes recycling.

We can state these results as follows.

Corollary 2: Under assumptions (A4) and (29) within the framework of linear demand
and cost functions, the best choice for the benevolent extractor is:

(1) To accommodate recycling with min {qa, s} when F ≤ Fa;
(2) To promote recycling with q̃ = s+ c− a+ 2

√
F when Fa < F < F ;

(3) To ignore recycling with q0 = s
2 when F ≤ F .

Proof: see Appendix 3.

5.2 The extractor only maximizes its own revenue (λ = 1)

Assume now that the extractor only serves its own interests; that is, V (q, r) = R (q, r) =

P1 (q) q + δP2(s − q + r)(s − q). Let MR1 (q) = P1 (q) + P ′1 (q) q and MR2 (q) = P2(s − q +
r)+P ′2(s− q+ r)(s− q) denote the marginal revenues earned by the extractor in the first and
the second period, respectively. By introducing the price elasticity of demand ηt into these

13Otherwise, there can be no equilibrium at E′ so long as the extractor thinks that the recycler stays out
with a positive probability.
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expressions, we get MRt (q) = pt

(
1− 1

ηt

)
and we will assume that η∗t > 1 in equilibrium, so

that the marginal revenue is positive in both periods.

The first-period optimal extraction in the absence of recycling is q0 = argmaxq R(q, 0).

This monopoly output satisfies the corresponding Hotelling rule that marginal revenues in-

crease at the rate of interest14; that is,

MR2 (q0)−MR1 (q0)

MR1 (q0)
= ρ. (30)

To examine how recycling affects this rule, we focus on the equilibrium outcome that

allows the entry of the recycler. As previously shown , the break-even constraint is not

binding in this case, hence µ∗ = 0. The extractor accommodates recycling with qa satisfying

(19) and the recycler responds to the initial extraction with r∗(qa) = r(qa). From Lemma 3,

we know that recycling induces the extractor to curb the initial extraction.

The condition (19) can be rewritten as

MR1 (q)− δMR2 (q) = δ
p2
η2
r′ (q) . (31)

Substituting δ = 1
1+ρ into (31) yields

MR2 (q)−MR1 (q)

MR1 (q)
= ρ− p2

p1

η1
(η1 − 1) η2

r′(q). (32)

Equation (32) says that the rate of increase in the extractor’s marginal revenue must

equal the opportunity cost of deferred extraction. As usual, this cost is made up of the

foregone interest, ρ. The novel insight here is the second term in the right-hand side of

(32), which can be interpreted as capturing the savings in costs due to softening competition

from the recycler. As a result, the extractor accommodates recycling so that its marginal

revenue rises more slowly than the rate of interest. Extracting more of the resource prior to

recycling in accordance with the standard Hotelling rule would weaken the market position

of the extractor in the next period by making the recycler more aggressive.

Proposition 3: Assume (i) that the extractor and the recycler are separate entities, (ii)
that the extractor accommodates recycling to maximize its own revenue. Under assumptions

(A1) , (A2) , (A3) and (A4), recycling induces the extractor to slow down the depletion of the

resource by setting qa below q0, so that

MR2 (qa)−MR1 (qa)

MR1 (qa)
< ρ.

As pointed out by Hotelling (1931), the resource is extracted less rapidly by a monopoly

than by competitive producers because of “the general tendency for production to be retarded

under monopoly”. The theoretical literature has since shown that this result is fairly robust

14See Stiglitz (1976), for instance.
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(see, for instance, Stiglitz 1976; Peterson and Fisher 1977). From Lemma 4, we know that the

monopolist deters the entry of the recycler by setting q̃ below q0. The reduction in extraction

signals to the recycler the extractor’s intention to flood the market enough to make recycling

worthless. Finally, Proposition 3 sheds light on a further motivation for the monopolist to

conserve the resource more than predicted by the Hotelling rule: the monopolist defends its

market position by mitigating the recycler’s reaction.

By rearranging Eq. (32), we obtain

p2 − p1
p1

=
(η1 − 1) η2
η1 (η2 − 1)

ρ− η2 − η1
η1 (η2 − 1)

− p2
p1

r′(q)

η2 − 1
. (33)

We can see that whether prices will grow or fall depends on two factors: (i) the change in

the elasticity of demand from one period to the next; and (ii) the severity of the recycling

reaction measured by the slope of r(q). Assume that the elasticity of demand increases over

time due, for instance, to the discovery of substitutes for the resource: η2 > η1 > 1. Then,

the second and third terms in the right-hand side of (33) are negative and the weight given

to the rate of interest in the first term is lower than 1. It follows that p2−p1
p1

< ρ. This is

consistent with standard predictions that monopoly power tends to flatten the price path

of the resource (Stiglitz 1976; Gaudet 2007). The third term in the right-hand side of (33)

shows that the extractor’s internalization of the recycler’s reaction tends to further flatten

the price path. The addition of the three negative effects might explain falling prices for some

exhaustible resources, as revealed by casual inspection of price data (Slade and Thille 2009).

The framework of linear demand and cost functions.–We now derive explicit solutions

(q∗, r∗(.)) in the specific example where the extractor and the recycler are separate entities

which both maximize profit.

In Section 5.1, we saw that r∗(q) is given by (25). The extractor’s objective function is

now

R (q, r) = (a− q) q + (a− s+ q − r) (s− q). (34)

We already know that q̃ > s provided that F > F = (a−c)2
4 . In that case, the fixed

cost is so large for the recycler that entry is never profitable. Consequently, the extractor

can ignore recycling altogether and exercise unrestrained monopoly power by setting q0 =

argmaxq R(q, 0) =
s
2 .

Assume now that F ≤ F , so that the recycler will find the market attractive for all

q ∈ [q̃, s]. Figure 3 depicts the extractor’s isoprofit curves (in gray) given by (34) and

the recycling reaction (25) in (q, r) space. The isoprofit curves are hyperbolae of the form

{(q, r) : R(q, r) = R} for some isoprofit level R. The segment [A,B] cuts each of the isoprofit
curves at its maximum. In particular, given r = 0, R (q, r) is maximized at the point A

whose coordinates are (q0, 0) yielding the monopoly outcome for the extractor. The profit

levels decrease moving away from A to B. The isoprofit curve is tangent to [C,D] at E, and
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Figure 3: Equilibrium solutions for a self-interested extractor confronted by an independent
recycler
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this curve meets the q-axis at that I whose coordinates are (q, 0).

Figure 3 illustrates the case where H lies between I and G, whose coordinates are (qa, 0).

In that case, the extractor maximizes its revenue at H by setting the initial extraction to be

q̃, which deters the recycler from entering the market. Recall that the recycler chooses to

stay out with probability 1 when the initial extraction is q̃ (see Footnote 11).15 The figure is

drawn under the assumption

R (q0, 0) > R (qa, r (qa)) . (35)

meaning that it would be more profitable for the self-interested extractor to ignore recycling

rather than to accommodate it. Throughout this example, we work under this assumption

to simplify matters.

Suppose that the fixed cost is so low that q̃ < q and H lies to the left of I. This case

occurs when F < FA, where

FA =
1

192

[
47(a− c)2 + 8s(s− 5(a− c)) + 4

√
3(2 (a− c)− s)

√
4s(2 (a− c)− s)− (a− c)2

]
.

(36)

Then, the best choice for the extractor is to accommodate the recycler at point E by setting

the initial extraction at qa. Computations based on (31) yield

qa =
2s+ a− c

6
. (37)

Observe that qa < q0 under the assumption (3), which is consistent with the result stated

in Proposition 3: to accommodate the recycler’s entry, the extractor must reduce the initial

extraction below the output level that would prevail in the absence of recycling.

In contrast, if F is so high that q0 < q̃ and H lies to the right of A, then the extractor

prefers choosing q0 to q̃, thereby blockading the recycler’s entry. Such is the case when

F > Fd, where

Fd =
(2 (a− c)− s)2

16
. (38)

We can summarize the previous discussion as follows.

Corollary 3: Under assumptions (A4) and (35) within the framework of linear demand
and cost functions, the best choice for the self-interested extractor is:

(1) To accommodate recycling with qa = 2s+a−c
6 when F < FA,

(2) To deter recycling with q̃ = s+ c− a+ 2
√
F when FA ≤ F < Fd;

(3 ) To blockade recycling with q0 = s
2 when Fd ≤ F ≤ F .

Proof: see Appendix 4.
15Otherwise, there can be no equilibrium at H so long as the extractor thinks that there is a positive

probability of entry.
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6 Conclusion

In this paper, we have examined the strategic behavior of the extractor of an exhaustible

resource in the face of prospective recycling. For this, we have investigated a two-period

model. Extraction of the virgin resource in the first period provides the input for recycling in

the second period, which is when the market is shared between the extractor and the recycler.

Hence, the first-period choice of extraction signals whether and to what extent recycling is

profitable in the second period.

The intuitions underlying the equilibrium outcomes differ according to the objective pur-

sued by the extractor. When the extractor seeks to maximize social welfare, it views recycling

as an opportunity to increase the resource stock beyond its natural limits. In contrast, the

profit-maximizing extractor sees recycling as a threat to its market position. Therefore, the

socially benevolent extractor is more willing to encourage recycling than the self-interested

extractor. Our findings shed fresh light on the modifications introduced in the Hotelling rule

by recycling in each equilibrium outcome.

In the case where the extractor maximizes welfare, we find that it must accelerate the re-

source depletion to accommodate recycling when fixed costs are low. As fixed costs rise above

some threshold level, the extractor still more accelerates the resource depletion, accepting a

costly increase in output to promote recycling.

In the case where the extractor maximizes profit, it must slow down the resource depletion

to send a signal to the recycler about the market’s profitability. When fixed costs of recycling

are low, the signal indicates that the extractor accommodates recycling with the intention

of softening the blow of recycling. In contrast, when fixed costs are higher, the extractor

signals to the recycler that it will make the recycling business unattractive. The decrease in

extraction is fine tuned to exert just enough pressure on the market price to deter recycling.

Given that the model with sequential moves investigated here is very simple, a natural

extension would be to switch to an infinite horizon. One possible approach in this direction

is to assume that the extractor and the recycler use Markovian strategies in an alternating-

move infinite-horizon model in the spirit of Maskin and Tirole (1987). According to them,

the switch to a long-run model built on the infinite repetition of a short-run model with

sequential moves yields equilibrium outcomes that are more competitive than those obtained

in the short-run model.
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7 Appendix

7.1 Appendix 1: Proof of Lemma 1

In the first step, we show that the solution r̂(q, µ) of Wn
r (q, r) + µπr(q, r) = 0 is a local

maximum.

Let the Lagrangian be L(q, r) = Wn(q, r) + µ [P2(s− q + r)r − c(r)− F ]. If Lr(q, r) = 0
has an interior solution r̂(q, µ), then we have

r̂(q, µ) = −µ+ δ
µ

P2(s− q + r)− c′(r)
P ′2(s− q + r)

. (39)

We now check that the second-order condition for r̂(q, µ) to be a local maximum of L(q, r)

is satisfied. By substituting r̂(q, µ) for r in

Lrr (q, r) = δ
[
P ′2(s− q + r)− c′′(r)

]
+ µ

[
2P ′2(s− q + r) + P ′′2 (s− q + r)r − c′′(r)

]
, (40)

we obtain

Lrr(q, r̂(q, µ))

= (δ + µ)

[
P ′2(s− q + r̂(q, µ))− c′′(r̂(q, µ))−

P2(s− q + r̂(q, µ))− c′(r̂(q, µ))
P ′2(s− q + r̂(q, µ))

P ′′2 (s− q + r̂(q, µ))
]

+µP ′2(s− q + r̂(q, µ)). (41)

Given that P2(.) is log-concave by assumption (A2), we know that P ′′2 (.) <
P ′2(.)

2

P2(.)
. Thus,

we have

Lrr(q, r̂(q, µ)) < µP ′2(.)− (δ + µ) c′′(.) +
(δ + µ) c′(.)

P2(.)
P ′2(.). (42)

Under assumption (A1), the right-hand side of (42) is negative, and so r̂(q, µ) is a local

maximum.

In the second step, we show that 0 < r̂q(q, µ) < 1.

Differentiating Lr(q, r̂(q, µ)) = 0 yields the slope of r̂q(q, µ) with respect to q:

r̂q(q, µ) = −
Lrq
Lrr

,=
δP ′2(.) + µ [P

′
2(.) + P

′′
2 (.)r]

δ [P ′2(.)− c′′(.)] + µ [2P ′2(.) + P ′′2 (.)r − c′′(.)]
. (43)

where −Lrq = δP ′2(.) + µ [P ′2(.) + P
′′
2 (.)r]. As Lrr < 0, we have sign (r̂q) = sign (Lrq).

After substitution of r̂(q, µ) for r, we obtain

−Lrq = (δ + µ)
[
P ′2(.)−

(
P2(.)− c′(.)

)
P ′′2 (.)/P

′
2(.)
]
. (44)

Again using the log-concavity of P2(.), we have

−Lrq < (δ + µ)
[
P ′2(.)−

(
P2(.)− c′(.)

) P ′2(.)
P2(.)

]
. (45)
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The right-hand side of (45) reduces to (δ + µ) c′(.)P
′
2(.)
P2(.)

< 0. It follows that −Lrq < 0 and,

therefore, r̂q(q, µ) > 0.

Further calculations yield

r̂q(q, µ)− 1 =
δc′′(.) + µ [−P ′2(.) + c′′(.)]

Lrr
. (46)

The numerator of the fraction given on the right-hand side of (46) is strictly positive, whereas

the denominator Lrr is negative. We can conclude that r̂q(q, µ)− 1 < 0.
In the third step, we show that r̂(q, µ) is an interior solution under assumption (A3),

which falls short of q.

Given that recycling cannot emerge ex nihilo, a minimum amount q > 0 of the virgin

resource is needed to produce the first unit of recycled output; that is, r̂(q, µ) = 0. As

q > 0, we have r̂(0, µ) < r̂(q, µ) = 0 since r̂ (q, µ) is upward sloping with respect to q.

This inequality is equivalent to Lr(0, 0) = − (µ+ δ) [P2(s)− c′(0)] ≤ 0, which holds under
assumption (A3). Moreover, Lr(s, 0) = (µ+ δ) [P2(0)− c′(0)] is positive under assumption
(A3). Thus, r̂(q, µ) = 0 < r̂(s, µ), and so q < s. Finally, for all q higher than q, we have

r̂(q, µ) − q < r̂(q, µ) − q since r̂q(q, µ) − 1 < 0, and thus r̂(q, µ) < q: the virgin resource is

never fully recycled.

7.2 Appendix 2: Proof of Proposition 1

The social planner maximizes Wn(q, r) under the break-even constraint (2). Assuming an

interior solution, the first-order conditions for this problem are

P1(q)− δP2(s− q + r) = µP ′2(s− q + r)r, (47)

P2(s− q + r)− c′(r) = − µ

(δ + µ)
P ′2(s− q + r)r, (48)

µ [P2(s− q + r)r − c(r)− F ] = 0. (49)

If µ = 0, (48) immediately shows that the recycling output must be sold at marginal

cost. If µ is positive, then the constraint (2) is binding and the social planner must use

the proceeds from sales of the recycled product to finance the recycling costs. Using ε, the

first-order condition (48) yields the standard Ramsey formula

P2(s− q + r)− c′(r)
P2(s− q + r)

=
µ

(δ + µ)

1

ε
. (50)

Note that (50) can be rewritten as follows:

p2

(
1− µ

(δ + µ) ε

)
= c′(r). (51)

Thus, we must have ε > µ
δ+µ for an interior solution. If this were not the case, the left-hand

side of (51) would be negative and, hence, could not be equal to marginal cost.
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Furthermore, setting ε in (47) yields:

p2
p1
=
1

δ
+
µ

δε

p2
p1
. (52)

By substituting δ = 1
1+ρ into (52), we obtain the variant of the Hotelling rule(8). More-

over, we can write (52) as
p2
p1

(
1− µ

δε

)
=
1

δ
, (53)

which shows that ε must be higher than µ
δ to get an interior solution. If so, then the condition

ε > µ
δ+µ needed for the existence of an interior solution of Equation (51) is also satisfied.

7.3 Appendix 3: Proof of Corollary 2

With linear demand and cost functions, assumption (A4) can be written as16

s <
a+ c

3
. (54)

By substituting r∗(q) for r in (24), we obtain the reduced-form function

V(q) =


aq − q2/2 + a(a− c+ s− q)/2− (a− c+ s− q)2/8 if q̃ ≤ q ≤ s,

−q2 + sq + as− s2/2 otherwise.
(55)

Assumption (29) boils down to W (q0, 0) < V(s), which requires that s belongs to the

interval
(
a− c,

√
(a−c)(3a+c)

2

)
.

Substituting (28) into (25) yields

r (qa) =
4a− 3c− 2s

5
. (56)

From (28), we see that qa ≤ s provided that c ≥ 3a− 4s. Otherwise, we have q̃ ≤ s < qa

when F ≤ F , and thus V(q) achieves a global maximum at s from (29). Moreover, r (qa) ≥ 0
requires that c ≤ 2

3 (2a− s), which holds under (29). It turns out that Fa < F when

c ≥ 3a − 4s holds. One can also check that, under assumption (A4) and c < a, we have

q0 < qa.

There are three possibilities:

(i) q̃ < q0 < qa < s. The inequality q̃ < q0 requires that F < Fd, where Fd =
(2(a−c)−s)2

16 .

Under (29), we have Fd < Fa because this requires that c < 26a−13s
22 and we have√

(a−c)(3a+c)
2 < 26a−13s

22 . Then, V(q) achieves a unique maximum at qa.

16Let pN2 and r
N respectively denote the market clearing price and the recycler’s output in the second period

Nash equilibrium with no resource exaustion that would result from competition between the extractor and the
recycler. Within this specific framework, this equilibrium outcome is characterized by qN = a+c

3
, rN = a−2c

3

and pN2 =
a+c
3
.
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(ii) q0 ≤ q̃ ≤ qa < s. This requires that Fd ≤ F ≤ Fa. Under (29), V(q) achieves a global

maximum at qa because W (q0, 0) < V(s) < V(qa).

(iii) q0 ≤ qa < q̃ < s. This requires that Fa < F < F . Under (29), V(q) achieves a global

maximum at q̃ because W (q0, 0) < V(s) < V(q̃).

7.4 Appendix 4: Proof of Corollary 3

By substituting r∗(q) for r in (34) within the framework of linear demand and cost functions,

we obtain the reduced-form function

V(q) =


(a− q)q + (a− s+ q + c)(s− q)/2 if q̃ ≤ q ≤ s,

(a− q)q + (a− s+ q)(s− q) otherwise.
(57)

Assumption (35) requires that s belongs to the interval
(
a− c, 2+

√
3

2 (a− c)
)
and assump-

tion (A4) requires that s < a+c
3 . Under these assumptions, the fixed costs thresholds are

ranked in the following order

FA < Fd < F. (58)

By solving the equation R (q, 0) = R (qa, r (qa)) for q, we obtain an explicit formula for q:

q =
s

2
−
√
3

12

√
4s(2 (a− c)− s)− (a− c)2. (59)

One can easily check that 4s(2 (a− c)−s)− (a− c)2 > 0 for all s ∈
(
a− c, 2+

√
3

2 (a− c)
)
.

Thus, q does exist for all s < 2+
√
3

2 (a− c), and we have q < q0. Further calculations show

that q̃ > q holds only if F ≥ FA.
Depending on the level of the recycler’s fixed costs, which determines the location of q̃,

there are three possibilities:

(i) q̃ < q < q0. In the case where q̃ < q, fixed costs are so small that F < FA. Then, V(q)

has two local maxima at q̃ and qa, with a global maximum at qa because q̃ < q implies

that R (q̃, 0) < R (qa, r (qa)) = V(qa).

(ii) q ≤ q̃ < q0. In this case, fixed costs are higher, so that FA ≤ F < Fd. As q ≤ q̃, we have
R (qa, r (qa)) ≤ R (q̃, 0), which rules out qa as a possible equilibrium. Moreover, q̃ < q0

implies that F < Fd, and one can check that Fd < F when s < 2+
√
3

2 (a− c). Since
V(q) is increasing on [0, q̃], V(q) is maximized at q̃.

(iii) q0 ≤ q̃ ≤ s. Now, fixed costs are even higher so that Fd ≤ F ≤ F . As qa < q0, V(q) is

decreasing on (q̃, s], therefore V(q) achieves a unique maximum at q0.
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