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Existence of the anchored isoperimetric profile
in supercritical bond percolation in dimension

two and higher

Barbara Dembin ∗

Abstract: Let d ≥ 2. We consider an i.i.d. supercritical bond percolation
on Zd, every edge is open with a probability p > pc(d), where pc(d) denotes the
critical point. We condition on the event that 0 belongs to the infinite cluster
C∞ and we consider connected subgraphs of C∞ having at most nd vertices and
containing 0. Among these subgraphs, we are interested in the ones that mini-
mize the open edge boundary size to volume ratio. These minimizers properly
rescaled converge towards a translate of a deterministic shape and their open
edge boundary size to volume ratio properly rescaled converges towards a de-
terministic constant.

AMS 2010 subject classifications: primary 60K35, secondary 82B43.
Keywords: Percolation, anchored isoperimetric profile.

1 Introduction
Isoperimetric problems are among the oldest problems in mathematics. They

consist in finding sets that maximize the volume given a constraint on the
perimeter or equivalently that minimize the perimeter to volume ratio given a
constraint on the volume. These problems can be formulated in the anisotropic
case. Given a norm ν on Rd and S a continuous subset of Rd, we define the ten-
sion exerted at a point x in the boundary ∂S of S to be ν(nS(x))nS(x), where
nS(x) is the exterior unit normal vector of S at x. The quantity ν(nS(x))
corresponds to the intensity of the tension that is exerted at x. We define the
surface energy of S as the integral of the intensity of the surface tension ν(nS(x))
over the boundary ∂S. An anisotropic isoperimetric problem consists in finding
sets that minimize the surface energy to volume ratio given a constraint on the
volume. To solve this problem, in [22], Wulff introduced through the Wulff con-
struction a shape achieving the infimum. This shape is called the Wulff crystal,
it corresponds to the unit ball for a norm built upon ν. Later, Taylor proved in
[20] that this shape properly rescaled is the unique minimizer, up to translations
and modifications on a null set, of the associated isoperimetric problem.

∗LPSM UMR 8001, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-75013 Paris,
France
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The study of isoperimetric problems in the discrete setting is more recent. In
the continuous setting, we study the perimeter to volume ratio, in the context
of graphs, the analogous problem is the study of the size of edge boundary to
volume ratio. This can be encoded by the Cheeger constant. For a finite graph
G = (V (G), E(G)), we define the edge boundary ∂GA of a subset A of V (G) as

∂GA =
{
e = 〈x, y〉 ∈ E(G) : x ∈ A, y /∈ A

}
.

We denote by ∂A the edge boundary of A in (Zd,Ed) and by |B| the cardinal
of the finite set B. The isoperimetric constant, also called Cheeger constant, is
defined as

ϕG = min

{
|∂GA|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
.

This constant was introduced by Cheeger in his thesis [9] in order to obtain
a lower bound for the smallest eigenvalue of the Laplacian. The isoperimetric
constant of a graph gives information on its geometry.

Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on Zd,
every edge is open with a probability p > pc(d), where pc(d) denotes the critical
parameter for this percolation. We know that there exists almost surely a unique
infinite open cluster C∞ [11]. In this paper, we want to study the geometry of
C∞ through its Cheeger constant. However, if we minimize the isoperimetric
ratio over all possible subgraphs of C∞ without any constraint on the size, one
can show that ϕC∞ = 0 almost surely. For that reason, we shall minimize the
isoperimetric ratio over all possible subgraphs of C∞ given a constraint on the
size. There are several ways to do it. We can for instance study the Cheeger
constant of the graph Cn = C∞∩ [−n, n]d or of the largest connected component
C̃n of Cn for n ≥ 1. As we have ϕC∞ = 0 almost surely, the isoperimetric
constants ϕCn and ϕC̃n go to 0 when n goes to infinity. Benjamini and Mossel
[1], Mathieu and Remy [14], Rau [17], Berger, Biskup, Hoffman and Kozma [2],
Pete [15] proved that ϕC̃n is of order n−1. Roughly speaking, by analogy with
the full lattice, we expect that subgraphs of C̃n that minimize the isoperimetic
ratio have an edge boundary size of order nd−1 and a size of order nd, this
is coherent with the fact that ϕC̃n is of order n−1. This leads Benjamini to
conjecture that for p > pc(d), the limit of nϕC̃n when n goes to infinity exists
and is a positive deterministic constant.

This conjecture was solved in dimension 2 by Biskup, Louidor, Procaccia
and Rosenthal in [3] and by Gold in dimension 3 in [10]. They worked on
a modified Cheeger constant. Instead of considering the open edge boundary
of subgraphs within Cn, they considered the open edge boundary within the
whole infinite cluster C∞, this is more natural because Cn has been artificially
created by restricting C∞ to the box [−n, n]d. They also added a stronger
constraint on the size of subgraphs of Cn to ensure that minimizers do not
touch the boundary of the box [−n, n]d. Moreover, the subgraphs achieving
the minimum, properly rescaled, converge towards a deterministic shape that
is the Wulff crystal. Namely, it is the shape solving the continuous anisotropic
isoperimetric problem associated with a norm βp corresponding to the surface
tension in the percolation setting. The quantity nϕCn converges towards the
solution of a continuous isoperimetric problem.
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Dealing with the isoperimetric ratio within Cn needs to be done with cau-
tion. Indeed, we do not want minimizers to be close to the boundary of Cn
because this boundary does not exist in C∞. There is another way to define
the Cheeger constant of C∞, that is more natural in the sense that we do not
restrict minimizers to remain in the box [−n, n]d. This is called the anchored
isoperimetric profile ϕn and it is defined by:

ϕn = min

{
|∂C∞H|
|H|

: 0 ∈ H ⊂ C∞, H connected, 0 < |H| ≤ nd
}
,

where we condition on the event {0 ∈ C∞}. We say that H is a valid subgraph
if 0 ∈ H ⊂ C∞, H is connected and |H| ≤ nd. We also define

∂oH =
{
e ∈ ∂H, e is open

}
.

Note that if H ⊂ C∞, then ∂C∞H = ∂oH. For each n, let Gn be the set of the
valid subgraphs that achieve the infimum in ϕn. In this context, a minimizer
Gn ∈ Gn can go potentially very far from 0. The minimizer Gn properly rescaled
do not belong anymore to a compact set. This lack of compacity is the main
issue to overcome to prove that the limit exists. It was done in dimension 2
in [3], with a specific norm that cannot be extended to higher dimensions. We
need to introduce some definitions to be able to define properly a limit shape
in dimension d ≥ 2. In order to build a continuous limit shape, we shall define
a continuous analogue of the open edge boundary. In fact, we will see that the
open edge boundary may be interpreted in term of a surface tension I, in the
following sense. Given a norm τ on Rd and a subset E of Rd having a regular
boundary, we define Iτ (E) as

Iτ (E) =

∫
∂E

τ(nE(x))Hd−1(dx) ,

where Hd−1 denotes the Hausdorff measure in dimension d − 1. The quantity
Iτ (E) represents the surface tension of E for the norm τ . At the point x, the
tension has intensity τ(nE(x)) in the direction of the normal unit exterior vector
nE(x). We denote by Ld the d-dimensional Lebesgue measure. We can associate
with the norm τ the following isoperimetric problem:

minimize
Iτ (E)

Ld(E)
subject to Ld(E) ≤ 1 .

We use the Wulff construction to build a minimizer for this anisotropic isoperi-
metric problem. We define the set Ŵτ as

Ŵτ =
⋂

v∈Sd−1

{
x ∈ Rd : x · v ≤ τ(v)

}
,

where · denotes the standard scalar product and Sd−1 is the unit sphere of Rd.
The set Ŵτ is a minimizer for the isoperimetric problem associated with τ . We
will build in section 3 an appropriate norm βp for our problem that will be
directly related to the open edge boundary ratio. We define the Wulff crystal
Wp as the dilate of Ŵβp

such that Ld(Wp) = 1/θp, where θp = P(0 ∈ C∞).
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In this paper, we adapt the proof of Gold to any dimension d ≥ 2 to give a
self-contained proof of the existence of the limit for the anchored isoperimetric
profile. Note that this proof also holds in dimension 2, it gives an alternative
proof of [3] with a simpler norm. The aim of this paper is the proof of the two
following Theorems. The first theorem asserts the existence of the limit of nϕn.

Theorem 1. Let d ≥ 2, p > pc(d) and let βp be the norm that will be properly
defined in section 3. Let Wp be the Wulff crystal for this norm, i.e., the dilate
of Ŵβp

such that Ld(Wp) = 1/θp. Then, conditionally on {0 ∈ C∞},

lim
n→∞

nϕn =
Ip(Wp)

θpLd(Wp)
= Ip(Wp) a.s..

The second theorem shows that the graphs Gn realizing the minimum con-
verge in probability towards a translate of Wp.

Theorem 2. Let d ≥ 2 and p > pc(d). Let ε > 0. There exists positive
constants C1 and C2 depending on d, p and ε such that, for all n ≥ 1,

P
[

max
Gn∈Gn

inf
x∈Rd

1

nd
∣∣Gn∆(n(x+Wp) ∩ C∞)

∣∣ ≥ ε ∣∣∣ 0 ∈ C∞ ] ≤ C1 e−C2n
1−3/2d

,

where ∆ denotes the symmetric difference.

To prove Theorem 1, we first prove a large deviations result from above for
nϕn stated in the following Theorem.

Theorem 3. Let d ≥ 2. Let p > pc(d). For all ε > 0, there exist positive
constants C1 and C2 depending on p, d, ε such that, for all n ≥ 1,

P
[
nϕn ≥ (1 + ε)

Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞] ≤ C1 exp(−C2n) .

The proof of Theorem 3 is inspired from the proof of Theorem 5.4 in [10].
We shall build a valid subgraph that has an isoperimetric ratio close to ϕn. In
order to do so, we approximate the Wulff shape Wp from the inside by a convex
polytope P . We shall build a cutset Γn that cuts nP from infinity whose number
of open edges is close to nd−1Ip(P ) with high probability. For each face F of
P and v its associated exterior unit normal vector, we consider the cylinder
cyl(F + εv, ε) of basis F + εv and of height ε > 0. We build E by merging
the cutsets from the top to the bottom of minimal capacity of the cylinders
cyl(F +εv, ε). The union of these cutsets is not yet a cutset itself because of the
potential holes between these cutsets. We fix this issue by adding extra edges
to fill the holes. We control next the number of extra edges we have added. We
also need to control the capacity of the cutsets in a cylinder of polyhedral basis.
We next build a valid subgraph Hn ⊂ Zd from Γn by taking all the vertices of
C∞ ∩ nP that are connected to 0 without using edges in Γn. We expect that
|Hn| is of order θp(d)ndLd(P ). We can bound from above |∂C∞Hn| thanks to the
number of open edges in Γn and so we control its isoperimetric ratio. Finally,
we control the upper large deviations for this number of open edges thanks to
the upper large deviations for the flow in a cylinder of polyhedral basis. The
next step is to obtain the large deviations result from below.
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Theorem 4. Let d ≥ 2. Let p > pc(d). For all ε > 0, there exist positive
constants C1 and C2 depending on p, d, ε such that, for all n ≥ 1,

P
[
nϕn ≤ (1− ε) Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞] ≤ C1 exp(−C2n
1−3/2d) .

Remark 1.1. The deviation order in Theorem 4 is not optimal due to technical
details of the proof. In this work we do not make any attempt to get the proper
order of deviation. Our aim is mainly to obtain Theorems 1 and 2. The study
of the large deviations order would be an interesting problem in itself.

Theorem 1 follows from Theorem 3 and Theorem 4 by a straightforward appli-
cation of the Borel-Cantelli Lemma. Proving the large deviations result from
below is the most difficult part of this work. To be able to compare discrete
objects with continuous ones, we shall encode each optimizer Gn ∈ Gn as a
measure µn defined as

µn =
1

nd

∑
x∈V (Gn)

δx/n .

We first need to build from a minimizer Gn an appropriate continuous object
Pn. To do so, we use the same method as in [10]. The main issue is that the
boundary of Gn may be very tangled, we will have to build a smoother boundary
of size of order nd−1. This will enable us to build a continuous object Pn of
finite perimeter such that, with high probability, its associated measure is close
to µn in some sense to be specified later.

Let F be a subset of Rd. We define its associated measure νF :

∀E ∈ B(Rd), νF (E) = θpLd(F ∩ E) .

We now define the set W of the measures associated with the translates of the
Wulff shape as

W =
{
νx+Wp : x ∈ Rd

}
.

Note that µn belongs to M(Rd), the set of finite measures on Rd. We cannot
use a metric as in [10] where µn was a measure on [−1, 1]d. In fact, we will not
use a metric here. We first show that all the minimizers Gn ∈ Gn are with high
probability in a local neighborhood of W for a weak topology. This is the key
step before proving Theorem 4.

Theorem 5. Let d ≥ 2 and p > pc(d). Let u :]0,+∞[→]0,+∞[ be a non-
decreasing function such that limt→0 u(t) = 0. For all ζ > 0, there exist positive
constants C1 and C2 depending on d, p, u and ζ such that for all n ≥ 1, for any
finite set Fn of uniformly continuous functions that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

we have

P

[
∃Gn ∈ Gn, ∀ν ∈ W, sup

f∈Fn

|µn(f)− ν(f)| > ζ
∣∣∣0 ∈ C∞] ≤ C1 e−C2n

1−3/2d

.

The main difficulty of this paper lies in the proof of this theorem. In our
context, an issue that was not present in [10] arises. Whereas the support of
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the measure µn was included in a fixed compact set in [10], this is not the case
here because we do not constrain Gn ∈ Gn to remain in the box [−n, n]d. To
fix this issue, we will use the method developed in [5]. We will first localize
the set Gn in a finite number of balls of radius of order n up to a set of small
fractional volume. We will study Gn only inside these balls, i.e., the intersection
of Gn with these balls. The intersection of Gn with the boundary of these balls
will create an additional surface tension. However, this surface tension is not
related to the open boundary edges of Gn but to the fact that we have cut Gn
along these boundaries. Therefore, we should not take this surface tension into
account for the isoperimetric constant. In fact, we will cut Gn in such a way
to ensure that we do not create too much surface tension, i.e., we will cut in
regions where Gn is not concentrated. To conclude, we will link the probability
that the measure µn corresponding to Gn ∈ Gn is far from a weak neighborhood
of W with the probability that the surface tension of Gn is locally abnormally
small.

Finally, to prove Theorem 2, we exhibit a set Fn of uniformly continu-
ous functions such that we can bound from above the symmetric difference
|Gn∆(n(x + Wp) ∩ C∞)| by supf∈Fn

|µn(f) − ν(f)| for some ν ∈ W and then
apply the result of Theorem 5.

The rest of the paper is organized as follows. In section 2, we give some
definitions and useful results. We do the construction of the norm βp in section
3. In section 4, we prove the upper large deviations in Theorem 3. We build a
continuous object Pn from a minimizer Gn ∈ Gn and prove that its associated
measure is close in some sense to the measure µn of Gn in section 5. Finally,
in section 6, we prove Theorem 5 that is a preliminary work before proving the
lower large deviations Theorem 4 and the convergence of Gn properly rescaled
towards a limit shape in Theorem 2.

2 Some definitions and useful results

2.1 Geometric notations
For x = (x1, . . . , xd), we define

‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max

1≤i≤d
|xi| .

We say that x, y ∈ Zd are ∗-connected if ‖x − y‖∞ = 1. We say that γ =
(x0, . . . , xn) is an ∗-path of Zd if for any 0 ≤ i ≤ n− 1, the points xi and xi+1

belong to Zd and are ∗-connected. We say that Γ is ∗-connected or a lattice
animal if any x, y ∈ Γ are connected by an ∗-path in Γ. We denote by Animalsx
the set of lattice animals containing the point x ∈ Zd.

Lemma 1. [Kesten [12], p82 or Grimmett [11], p85] Let x ∈ Zd. For all
positive integer l,

|{Γ ∈ Animalsx, |Γ| = l}| ≤ (7d)l .

Let S ⊂ Rd and r > 0, we define d2(x, S) = infy∈S ‖x− y‖2 and V(S, r) the
open r-neighborhood of S by

V(S, r) =
{
x ∈ Rd : d2(x, S) < r

}
.
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Let x ∈ Rd, r > 0 and a unit vector v. We denote by B(x, r) the closed ball
of radius r centered at x, by disc(x, r, v) the closed disc centered at x of radius
r normal to v, and by B+(x, r, v) (respectively B−(x, r, v)) the upper (resp.
lower) half part of B(x, r) along the direction of v, i.e.,

B+(x, r, v) =
{
y ∈ B(x, r) : (y − x) · v ≥ 0

}
,

and
B−(x, r, v) =

{
y ∈ B(x, r) : (y − x) · v ≤ 0

}
.

We denote by αd the Ld measure of a unit ball in Rd. We denote by Hd−1 the
Hausdorff measure in dimension d − 1. In particular, the Hd−1 measure of a
d− 1 dimensional unit disc in Rd is equal to αd−1. Let A be a non-degenerate
hyperrectangle, i.e., a rectangle of dimension d− 1 in Rd. Let −→v be one of the
two unit vectors normal to A. Let h > 0, we denote by cyl(A, h) the cylinder of
basis A and height h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The dependence on −→v is implicit in the notation cyl(A, h). Note that these
definitions of cylinder may be extended in the case where A is of linear dimension
d− 1, i.e., A is included in an hyperplane of Rd, which is the affine span of A.

2.2 Sets of finite perimeter and surface energy
The perimeter of a Borel set S of Rd in an open set O is defined as

P(S,O) = sup

{∫
S

div f(x)dLd(x) : f ∈ C∞c (O,B(0, 1))

}
,

where C∞c (O,B(0, 1)) is the set of the functions of class C∞ from Rd to B(0, 1)
having a compact support included in O, and div is the usual divergence opera-
tor. The perimeter P(S) of S is defined as P(S,Rd). The topological boundary
of S is denoted by ∂S. The reduced boundary ∂∗S of S is a subset of ∂S such
that, at each point x of ∂∗S, it is possible to define a normal vector nS(x) to
S in a measure-theoretic sense, and moreover P(S) = Hd−1(∂∗S). Let ν be a
norm on Rd. We define its associated Wulff crystal Wν as

Wν =
{
x ∈ Rd : ∀y, y · x ≤ ν(y)

}
.

With the help of the Wulff crystal, we define the surface energy of a general set.

Definition 2.1. The surface energy I(S,O) of a Borel set S of Rd in an open
set O is defined as

I(S,O) = sup

{∫
S

div f(x)dLd(x) : f ∈ C1
c (O,Wν)

}
.

We will note simply I(S) = I(S,Rd).

Proposition 2.1 (Proposition 14.3 in [5]). The surface energy I(S,O) of a
Borel set S of Rd of finite perimeter in an open set O is equal to

I(S,O) =

∫
∂∗S∩O

ν(nS(x))dHd−1(x) .
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We recall the two following fundamental results.

Proposition 2.2 (Isoperimetric inequality). There exist two positive constants
biso, ciso which depend only on the dimension d, such that for any Cacciopoli
set E, any ball B(x, r) ⊂ Rd,

min
(
Ld(E ∩B(x, r)),Ld((Rd \ E) ∩B(x, r))

)
≤ bisoP(E, B̊(x, r))d/d−1,

min
(
Ld(E),Ld(Rd \ E)

)
≤ cisoP(E)d/d−1 .

2.3 Approximation by convex polytopes
We recall here an important result, which allows to approximate adequately

a set of finite perimeter by a convex polytope.

Definition 2.2 (Convex polytope). Let P ⊂ Rd. We say that P is a convex
polytope if there exist v1, . . . , vm unit vectors and ϕ1, . . . , ϕm real numbers such
that

P =
⋂

1≤i≤m

{
x ∈ Rd : x · vi ≤ ϕi

}
.

We denote by Fi the face of P associated with vi, i.e.,

Fi = P ∩
{
x ∈ Rd : x · vi = ϕi

}
.

Any convex subset can be approximated from the outside and from the inside
by a convex polytope with almost the same surface energy.

Lemma 2. Let A be a bounded convex set. For each ε > 0, there exist convex
polytopes P and Q such that P ⊂ A ⊂ Q and I(Q)− ε ≤ I(A) ≤ I(P ) + ε.

Proof. Let A be a bounded convex set. Let ε > 0. Let (xk)k≥1 be a dense
family in ∂A. For n ≥ 1, we define Pn as the convex hull of x1, . . . , xn, i.e., the
smallest convex that contains the points x1, . . . , xn. As A is convex, we have
Pn ⊂ A and Pn converges towards A when n goes to infinity for the L1 topology.
The functional I is lower semi-continuous, thus

I(A) ≤ lim inf
n→∞

I(Pn) ,

so there exists n large enough such that

I(A) ≤ I(Pn) + ε

and we take P = Pn. The existence of Q was shown in Lemma 5.1. in [7] for
the Wulff shape. The proof may be easily adapted to a general convex bounded
set A.

3 Construction of the norm
Minimizing the open edge boundary is the analogue of minimizing a surface

tension in the continuous setting. We shall build a norm βp that represents the
tension that is exerted on the surface, i.e., any point x in a surface S having
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nS(x) as a normal unit exterior vector has a tension βp(nS(x))nS(x) that exerts
at the point x. To build this norm, let us consider Gn ∈ Gn. We zoom on
the boundary of Gn, we look at what happens in a small but macroscopic cube
centered at a point x in the boundary ∂Gn (see figure 1). The cube is located
in such a way that its bottom intersects Gn and its top intersects Zd \Gn, and
it is rotated so that its normal vector coincides with the normal exterior vector
at the point x. As this cube is small, the portion of Gn in that cube does not
affect much |Gn|, the total volume of Gn. Thus, if one would like to minimize
the open edges to volume ratio, one needs to minimize the number of open edges
of ∂Gn in that cube. This problem is equivalent to finding a set of edges that
separates the top from the bottom of the cube with a minimal number of open
edges.

Gn

x
n(x)

Figure 1 – A small box on the boundary ∂Gn of a minimizer Gn ∈ Gn

Let us give now a more precise definition of the norm βp. We consider a
bond percolation on Zd of parameter p > pc(d) with d ≥ 2. We introduce many
notations used for instance in [18] concerning flows through cylinders. Let A
be a non-degenerate hyperrectangle, i.e., a rectangle of dimension d− 1 in Rd.
Let −→v be one of the two unit vectors normal to A. Let h > 0, we denote by
cyl(A, h) the cylinder of basis A and height 2h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The set cyl(A, h) \ A has two connected components, denoted by C1(A, h) and
C2(A, h). For i = 1, 2, we denote by C ′i(A, h) the discrete boundary of Ci(A, h)
defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
.

We say that a set of edges E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h) if any
path γ from C ′1(A, h) to C ′2(A, h) in cyl(A, h) contains at least one edge of E.
We call such a set a cutset. For any set of edges E, we denote by |E|o the
number of open edges in E. We shall call it the capacity of E. We define

τp(A, h) = min
{
|E|o : E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h)

}
.
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Note that this is a random quantity as |E|o is random, and that the cutsets in
this definition are pinned near the boundary of A. Finding cutsets of minimal
capacity is equivalent to the study of maximal flows, see [4]. To each edge e,
we can associate the random variable t(e) = 1e is open. In the study of maximal
flows, we interpret each t(e) as the capacity of the edge e, i.e., the maximal
amount of water that can flow through e per unit of time. We are interested
in the maximal amount of water that can flow through the cylinder given the
constraint on the capacity. We refer to [19] for a rigorous definition of maximal
flows. In the following, we will use the term flow to speak about the quantity
τp. The following proposition is a corollary of Proposition 3.5 in [18], it enables
us to give a rigorous definition of the norm βp.

Proposition 3.1 (Definition of the norm βp). Let d ≥ 2, p > pc(d), A be a
non-degenerate hyperrectangle and −→v one of the two unit vectors normal to A.
Let h an height function such that limn→∞ h(n) =∞. The limit

βp(
−→v ) = lim

n→∞

E[τp(nA, h(n))]

Hd−1(nA)

exists and is finite. Moreover, this limit is independent of A and h and βp is a
norm.

The norm βp is called the flow constant. Roughly speaking, βp(−→v ) corresponds
to the expected maximal amount of water that can flow in the direction −→v on
average. Actually, we can obtain a stronger convergence. A straightforward
application of Theorem 3.8 in [18] gives the existence of the following almost
sure limit:

lim
n→∞

τp(nA, h(n))

Hd−1(nA)
= βp(

−→v ) .

We define

βmin = inf−→v ∈Sd−1
βp(
−→v ) , βmax = sup

−→v ∈Sd−1

βp(
−→v ) .

As βp is a norm on Rd, we have βmin > 0 and βmax < ∞. We will need the
following upper large deviations result which is a straightforward application of
Theorem 4 in [21].

Theorem 6. Let d ≥ 2 and p > pc(d). For every unit vector −→v , for every
non-degenerate hyperrectangle A normal to −→v , for every h > 0 and for every
λ > βp(

−→v ), there exist C1 and C2 depending only on λ and G, such that, for
all n ≥ 0,

P
[
τp(nA, hn) ≥ λHd−1(A)nd−1

]
≤ C1 exp(−C2hn

d) .

To ease the reading and lighten the notations, the value of the constants
may change from appearance to appearance.

4 Upper large deviations

4.1 The case of a cylinder
The aim of this section is to prove Theorem 3. A convex polytope of dimen-

sion d−1 is a convex polytope F which is contained in an hyperplane of Rd and
such that Hd−1(F ) > 0. We have the following Lemma.
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Lemma 3. Let p > pc(d). Let F be a convex polytope of dimension d− 1. Let
v be a unit vector normal to F . There exist positive real numbers C1 and C2

depending on F , p and d such that for all n ≥ 1, for all λ > βp(v)Hd−1(F ), for
all h > 0

P[τp(nF, nh) ≥ λnd−1] ≤ C1 exp(−C2hn
d) .

Proof. Let p > pc(d). Let F be a convex polytope of dimension d − 1 and v a
unit vector normal to F . We shall cover F by a finite family of hypersquares
and control the probability that the flow is abnormally big in cyl(nF, nh) by
the probability that the flow is abnormally big in one of the cylinders of square
basis. Let λ > βp(v)Hd−1(F ). Let κ > 0 be a real number that we will choose
later. We denote by S(κ) an hypersquare of dimension d − 1 of side length κ
and normal to v. We want to cover the following region of F by hypersquares
isometric to S(κ):

D(κ, F ) =
{
x ∈ F : d(x, ∂F ) > 2

√
dκ
}
.

There exists a finite family (Si)i∈I of closed hypersquares isometric to S(κ)
included in F having pairwise disjoint interiors, such that D(κ, F ) ⊂ ∪i∈ISi
(see figure 2). Moreover, there exists a constant cd depending only on the
dimension d such that

Hd−1
(
F \D(κ, F )

)
≤ cdHd−2(∂F )κ . (1)

We have then

|I| ≤ Hd−1(F )

Hd−1(S(κ))
. (2)

SiF

D(κ, F )

An hypersquare
of side length κ

Figure 2 – Covering P with hypersquares

Let h > 0. We would like to build a cutset between C ′1(nF, nh) and C ′2(nF, nh)
out of minimal cutsets for the flows τp(nSi, nh), i ∈ I. Note that a cutset that

11



achieves the infimum defining τp(nSi, nh) is pinned near the boundary ∂nSi.
However, if we pick up two hypersquares Si and Sj that share a common side,
due to the discretization, their corresponding minimal cutsets for the flow τp
do not necessarily have the same trace on the common face of the associated
cylinders cyl(nSi, nh) and cyl(nSj , nh). We shall fix this problem by adding
extra edges around the boundaries of the hypersquares ∂Si in order to glue
properly the cutsets. We will need also to add extra edges around n(F \D(κ, F ))
in order to build a cutset between C ′1(nF, nh) and C ′2(nF, nh). For i ∈ I, let
Ei be a minimal cutset for τp(nSi, nh), i.e., Ei ⊂ Ed cuts C ′1(nSi, nh) from
C ′2(nSi, nh) in cyl(nSi, nh) and |Ei|o = τp(nSi, nh). We fix ζ = 4d. Let E0 be
the set of edges of Ed included in E0, where we define

E0 =
{
x ∈ Rd : d

(
x, nF \

⋃
i∈I

nSi

)
≤ ζ

}
∪
⋃
i∈I

{
x ∈ Rd : d(x, ∂nSi) ≤ ζ

}
.

The set of edges E0 ∪
⋃
i∈I Ei separates C ′1(nF, nh) from C ′2(nF, nh) in the

cylinder cyl(nF, nh), therefore,

τp(nF, nh) ≤ |E0|o +
∑
i∈I
|Ei|o ≤ card(E0) +

∑
i∈I

τp(nSi, nh) . (3)

There exists a constant c′d depending only on d such that, using inequalities (1)
and (2),

card(E0) ≤ c′d
(
κnd−1Hd−2(∂F ) + |I|Hd−2(∂S(κ))nd−2

)
≤ c′d

(
κnd−1Hd−2(∂F ) +

Hd−1(F )

Hd−1(S(κ))
Hd−2(∂S(κ))nd−2

)
≤ c′d

(
κnd−1Hd−2(∂F ) +

Hd−1(F )

κ
nd−2

)
.

Thus, for n large enough,

card(E0) ≤ 2c′d κHd−2(∂F )nd−1 . (4)

There exists s > 0 such that λ > (1 + s)βp(v)Hd−1(F ). We choose κ small
enough such that

2c′dκHd−2(∂F ) <
s

2
βminHd−1(F ) . (5)

Inequalities (4) and (5) yield that

card(E0) ≤ s

2
βp(v)nd−1Hd−1(F ) . (6)

Thanks to inequality (6), we obtain

P[τp(nF, nh) ≥ λnd−1]

≤ P

[
card(E0) +

∑
i∈I

τp(nSi, nh) ≥ (1 + s)βp(v)Hd−1(F )nd−1

]
≤
∑
i∈I

P[τp(nSi, nh) ≥ (1 + s/2)βp(v)Hd−1(Si)n
d−1] . (7)
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Thanks to Theorem 6, there exist positive real numbers C1, C2 such that, for
all i ∈ I,

P[τp(nSi, nh) ≥ (1 + s/2)βp(v)Hd−1(Si)n
d−1] ≤ C1 exp(−C2hn

d) . (8)

By combining inequalities (7) and (8), we obtain

P[τp(nF, nh) ≥ λnd−1] ≤ |I|C1 exp(−C2hn
d) ,

and the result follows.

We can now proceed to the proof of Theorem 3.

Proof of Theorem 3. Let ε > 0 and ε′ > 0. By Lemma 2, there exists a convex
polytope P such that P ⊂ Wp, Ip(P ) ≤ (1 + ε′)Ip(Wp) and Ld(P ) ≥ (1 −
ε′)Ld(Wp). Up to multiplying P by a constant α < 1 close to 1, we can assume
without loss of generality that Ld(P ) < Ld(Wp). We have, for small enough ε′
(depending on ε),

P
[
nϕn ≥ (1 + ε)

Ip(Wp)

θp(d)Ld(Wp)

∣∣∣0 ∈ C∞]
≤ P

[
nϕn ≥ (1 + ε/2)

(
1 + ε′

1− ε′

)
Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞]
≤ P

[
nϕn ≥ (1 + ε/2)

Ip(P )

θp(d)Ld(P )

∣∣∣ 0 ∈ C∞] . (9)

Let us denote by F1, . . . , Fm the faces of P and let v1, . . . , vm be the associated
exterior unit vectors. Let δ > 0. For i ∈ {1, . . . ,m}, we define

Ci = cyl(Fi + δvi, δ) .

All the Ci are of disjoint interiors because P is convex. Indeed, assume there
exists z ∈ C̊i ∩ C̊j for some i 6= j. Then there exist unique x ∈ Fi, y ∈ Fj and
h, h′ < 2δ such that z = x+ hvi = y + h′vj . The points x and y correspond to
the orthogonal projection of z on P . As P is convex, the orthogonal projection
on P is unique and so x = y = z. This contradicts the fact that z belongs to the
interior of Ci. We now aim to build a cutset that cuts nP from infinity out of
cutsets of minimal capacities for τp(n(Fi + δvi), nδ), i ∈ {1, . . . ,m}. The union
of these cutsets is not enough to form a cutset from nP to infinity because there
are holes between these cutsets. We shall add edges around the boundaries
∂(n(Fi + δvi)) to close these holes (see figure 3). As the distance between two
adjacent boundaries ∂(n(Fi + δvi)) decreases with δ, by taking δ small enough,
the size of the bridges and so their capacities are not too big. We recall that the
capacity of a set, namely the number of open edges in the set, may be bounded
from above by its size. Next, we control the maximal flow through the cylinders
or equivalently the capacity of minimal cutsets in the cylinders with the help of
Lemma 3.

For i ∈ {1, . . . ,m}, let E′i be a minimal cutset for τp(n(Fi+δvi), nδ), i.e., E′i
cuts C ′1(n(Fi+δvi), δ) from C ′2(n(Fi+δvi), δ) and |E′i|o = τp(n(Fi+δvi), δn). We
shall add edges to control the space between E′i and the boundary ∂(n(Fi+δvi)).
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Let ζ = 4d. Let i, j ∈ {1, . . . ,m} such that Fi and Fj share a common side. We
define

M(i, j) = (V(nFi ∩ nFj , nδ + ζ) \ V(nFi ∩ nFj , nδ − ζ)) ∩ (nP )c .

Let Mi,j denote the set of the edges in Edn included in M(i, j) (see figure 3).
There exists a constant c′d depending only on the dimension d such that for all
i, j ∈ {1, . . . ,m} such that Fi and Fj share a common side,

card(Mi,j) ≤ cdδd−1nd−1 . (10)

We set
M =

⋃
i,j

Mi,j ,

where the union is over i, j ∈ {1, . . . ,m} such that i 6= j and Fi, Fj share a
common side. The set Γn = M ∪

⋃m
i=1E

′
i cuts nP from infinity. We define Hn

to be the set of the vertices connected to 0 by open paths which do not use an
edge of Γn, i.e.,

Hn =
{
x ∈ Zd, x is connected to 0 with open edges in Ed \ Γn

}
.

nWp

nP
2δn

M(i, j)

a face
nFi

a face nFj

a minimal cutset for
τp(n(Fj + δvj), δn)

Figure 3 – Construction of a cutset Γn from nP to infinity

By definition, the set Hn is connected. As we condition on the event {0 ∈ C∞},
the set Hn is a subgraph of C∞. As P is a polytope,

Ip(P ) =

m∑
i=1

βp(vi)Hd−1(Fi) .

Moreover, we have
|∂C∞Hn| = |∂oHn| ≤ |Γn|o ,

14



where the last inequality comes from the fact that, by construction of Hn, if
e ∈ ∂Hn \ Γn, then e is necessarily closed. Using (10), we have

|Γn|o ≤ card(M) +

m∑
i=1

|E′i|o

≤ cdm2δd−1nd−1 +

m∑
i=1

τp
(
n(Fi + δvi), δn

)
. (11)

We choose δ small enough so that

m2cdδ
d−1 < δIp(P )/2 and Ld(V(∂P, 3δ)) ≤ δLd(P ) . (12)

Let us now estimate the probability that |Γn|o is abnormally big. Using inequal-
ities (11) and (12), we get

P[|Γn|o ≥ (1 + δ)Ip(P )nd−1 | 0 ∈ C∞]

≤ 1

θp
P
[

card(M) +

m∑
i=1

τp(n(Fi + δvi), δn) ≥ (1 + δ)

m∑
i=1

βp(vi)Hd−1(Fi)n
d−1
]

≤ 1

θp
P

[
m∑
i=1

τp(n(Fi + δvi), δn) ≥ (1 + δ/2)

m∑
i=1

βp(vi)Hd−1(Fi)n
d−1

]

≤ 1

θp

m∑
i=1

P[τp(n(Fi + δvi), δn) ≥ (1 + δ/2)βp(vi)Hd−1(Fi)n
d−1] . (13)

By Lemma 3, there exist positive constants C1, C2 depending on d, p, P and δ
such that, for all 1 ≤ i ≤ m,

P[τp(n(Fi + δvi), δn) ≥ (1 + δ/2)βp(vi)Hd−1(Fi)n
d−1] ≤ C1 exp(−C2δn

d) .
(14)

Finally, combining inequalities (13) and (14), we obtain

P[|Γn|o ≥ (1 + δ)Ip(P )nd−1] ≤ mC1

θp
exp(−C2δn

d) . (15)

We shall now estimate the number of vertices in Hn in order to check that
Hn is a valid subgraph. For that purpose, we use a renormalization argument.
Let k > 0. We partition Rd into disjoint cubes of side length 1/k. We define B′j
as the union of Bj and all its 3d − 1 ∗-neighbors (the cubes B having at least
one vertex at L1 distance less than 1 from Bj). We consider B1, . . . , Bl1 the
cubes such that B′1, . . . , B′l1 are contained in P \ V(∂P, 2δ) and Bl1+1, . . . , Bl2
the cubes such that B′l1+1, . . . , B

′
l2

intersect V(∂P, 2δ). We can choose k large
enough such that

Ld
(

l2⋃
i=l1+1

Bi

)
≤ Ld(V(∂P, 3δ)) ≤ δLd(P ) . (16)

We say that a cube Bj is good if the following event E(j)
n occurs:

— There exists a unique open cluster of diameter larger than n/k in nB′j .
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— We have
|C∞ ∩ nBj |
Ld(nBj)

∈ (θp − δ, θp + δ) .

There exist positive constants C1 and C2 depending on d, p, k and δ such that

P[E(j)c
n ] ≤ C1 exp(−C2n) . (17)

For a proof of the control of the probability of the first property see Theorem 7.68
in [11] or [16], for the second property see [16]. If the cube Bj is good, we denote
by Cj its unique open cluster of diameter larger than n/k in nB′j , for 1 ≤ j ≤ l1.
On the event

⋂
1≤j≤l1 E

(j)
n ∩

{
0 ∈ C∞

}
, the set

⋃l1
j=1 Cj is connected without

using edges of Γn and contains 0, therefore, it is a subgraph of Hn. Furthermore,
we claim that, on this event, we have C∞ ∩ (

⋃
1≤j≤l1 nBj) ⊂ Hn. Indeed, let

us assume that there exists x ∈ C∞ ∩ (
⋃

1≤j≤l1 nBj) that does not belong to
Hn. Both 0 and x belong to C∞, therefore, x is connected to 0 by a path
γ = (x0, e1, . . . , el, xl) with x0 = 0 and xl = x that uses edges in Γn. We define

r = sup
{
i ≥ 1, ei ∈ Γn

}
.

0

x

γ

nP

Γn

xr

nBj

nB′j

Figure 4 – Vertices in Hn

By construction, as el /∈ Γn, we have r < l. Let us denote γ′ = (xr, er+1, . . . , xl).
The path γ′ is not connected to Hn without using edges in Γn (see figure 4).
Let j such that x ∈ nBj , by construction xr is outside nB′j . Moreover, on the
event E(j)

n , the cube nB′j contains a unique cluster of diameter larger than n/k.
As the path γ′ starts outside nB′j and ends inside nBj , its intersection with nB′j
has a diameter larger than n/k. Besides, the path γ′ is not connected to Hn in
nB′j by an open path, so the cube nB′j contains two open clusters of diameter
larger than n/k. This is a contradiction with the first property of a good cube.
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Therefore, on the event
⋂

1≤j≤l1 E
(j)
n ∩

{
0 ∈ C∞

}
,

|Hn| ≥ |C∞ ∩ (∪1≤j≤l1nBj)|

≥ (θp − δ)
l1∑
i=1

Ld(nBi) . (18)

Thanks to inequalities (16) and (18), we obtain

|Hn| ≥ (θp − δ)(1− δ)Ld(nP ) . (19)

To ensure that Hn is a valid subgraph, it remains to check that |Hn| ≤ nd, yet
we have

|Hn| ≤ (θp + δ)

l1∑
i=1

Ld(nBi) +

l2∑
i=l1+1

Ld(nBi)

≤ (θp + δ)ndLd(P ) + ndδLd(P )

≤ (θp + 2δ)ndLd(P ) .

As Ld(P ) < Ld(Wp), we can choose δ small enough such that

|Hn| ≤ θpLd(Wp)n
d ≤ nd .

Finally, on the event⋂
1≤j≤l1

E(j)
n ∩

{
|Γn|o ≤ (1 + δ)Ip(P )nd−1

}
∩
{

0 ∈ C∞
}
,

combining (11) and (19), we obtain, for small enough δ,

nϕn ≤
|Γn|o
|Hn|

≤ (1 + δ)
Ip(P )

(θp − 2δ)(1− δ)Ld(P )
≤ (1 + ε/2)

Ip(P )

θpLd(P )
.

Combining the result of Lemma 3 and inequalities (9), (15) and (17), we obtain

P
[
nϕn ≥ (1 + ε)

Ip(Wp)

θp(d)Ld(Wp)

∣∣∣0 ∈ C∞]
≤ l1C1

θp
exp(−C2n) +

mC1

θp
exp(−C2δn

d) .

This yields the result.

5 Construction of a continuous object
The aim of this section is to build a continuous object Pn from a minimizer

Gn ∈ Gn.
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5.1 Some useful results on the minimizers
The following lemma ensures that the size of the minimizers Gn ∈ Gn are of

order nd.

Lemma 4. Let d ≥ 2 and p > pc(d). There exist positive constants D1, D2 and
η1 depending only on d and p such that, for all n ≥ 1,

P
[
∃Gn ∈ Gn, |Gn| ≤ η1n

d
∣∣ 0 ∈ C∞ ] ≤ D1 exp(−D2n

(d−1)/2d)) .

To prove Lemma 4, we adapt the proof of Lemma A.8 in [10]. We need
the following proposition that ensures that the open edge boundary of a large
subgraph is not too small.

Proposition 5.1 (Berger-Biskup-Hoffman-Kozma, Proposition 5.2. in [2]). Let
d ≥ 2 and p > pc(d). There exist positive constants c1, c2 and c3 depending only
on d and p such that, for all t ≥ 0,

P
[

There exists an open connected graph containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c3|G|(d−1)/d

]
≤ c1 exp(−c2t) .

Proof of Lemma 4. Thanks to Theorem 3, there exist positive constants c′1, c′2
and c′3 depending only on p and d such that for all n ≥ 1,

P
[
ϕn ≥ c′3n−1

∣∣ 0 ∈ C∞ ] ≤ c′1 exp(−c′2n) .

Let Gn ∈ Gn. If |Gn| ≤
√
n, as Gn ⊂ C∞ the set ∂oGn is non empty on the

event {0 ∈ C∞} and so ϕn ≥ n−1/2. This is impossible for large n. We now
assume |Gn| >

√
n. Using Proposition 5.1 with t = n(d−1)/2d, conditioning

on {0 ∈ C∞}, we obtain that |∂oGn| ≥ c3|Gn|(d−1)/d with probability at least
1−c1 exp(−c2n(d−1)/2d)/θp. Moreover, on the event

{
ϕn ≤ c′3n−1

}
∩
{

0 ∈ C∞
}
,

we obtain
c3|Gn|−1/d ≤ |∂

oGn|
|Gn|

= ϕn ≤ c′3n−1.

So we set η1 = (c3/c
′
3)d. Finally,

P
[
∃Gn ∈ Gn, |Gn| ≤ η1n

d
∣∣ 0 ∈ C∞ ]

≤ P
[
ϕn ≥ c′3n−1

∣∣ 0 ∈ C∞ ]+
c1
θp

exp(−c2n(d−1)/2d)

≤ c′1 exp(−c′2n) +
c1
θp

exp(−c2n(d−1)/2d) .

This yields the result.

5.2 Construction of a continuous set
To study the upper large deviations, we needed to go from a continuous

object to a discrete object. In this section, we do the opposite. From now
on, we will always condition on the event {0 ∈ C∞}. We start with Gn ∈ Gn
and we build a continuous object Pn. Our goal is to build a continuous object
of finite perimeter which is close to n−(d−1)|∂oGn|. Although it seems natural
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to take the continuous object Pn = n−1(Gn + [−1/2, 1/2]d), this turns out to
be a bad choice because the boundary ∂Gn may be very tangled and its size
may be of higher order than nd−1. We will build from Gn a graph Fn with
a smoother boundary Γn ⊂ Ed in order to build the continuous object Pn.
At this point, there is some work left. If we consider the subgraph Fn that
contains all the vertices in C∞ enclosed in Γn, the symmetric difference Fn∆Gn
may be big due to the presence of holes in Gn, more precisely portions of C∞
enclosed in Γn but not contained in Gn (see Figure 5). Indeed, if these holes
are too large, the symmetric difference Fn∆Gn will be large too. However, we
cannot keep all the holes in Gn to build Fn because when we will pass to a
continuous object Pn, these holes will considerably increase the perimeter of Pn
so that Pn may have a too large perimeter. The solution is to fill only the small
holes to obtain Fn so that the perimeter of Pn remains of the correct order
and the symmetric difference Fn∆Gn remains small. In order to do so, we shall
perform Zhang’s construction in [23] to obtain a smooth boundary Γn for Gn but
also to surgically remove these large holes from Gn by cutting along a smooth
boundary. This work was done in [10]. We will only partially sketch Zhang’s
construction and we refer to [23] for a rigorous proof and more details about
the construction. Although we did the same construction as Gold in [10], we do
not use the same argument to conclude. Gold used a procedure called webbing
to link all the different contours together in order to obtain a single connected
object, this simplifies the combinatorial estimates. Here, we do not perform the
webbing procedure, instead we use adequate combinatorial estimates. Avoiding
the webbing procedure enables us to extend the result to dimension 2.

Let us define a renormalization process. For a large integer k, that will be
chosen later, we set Bk = [−k, k[d∩Zd and define the following family of k-cubes,
for i ∈ Zd,

Bk(i) = τi(2k+1)(Bk) ,

where τb denotes the shift in Zd with vector b ∈ Zd. The lattice Zd is the
disjoint union of this family: Zd = ti∈ZdBk(i). We introduce larger boxes B′k,
for i ∈ Zd, we define

B′k(i) = τi(2k+1)(B3k).

Underscore will be used to denote sets of cubes. For any set of k-cubes A,
the set A′ denotes the set of the corresponding 3k-cubes. Let Gn ∈ Gn. We
first use Zhang’s construction to build a smooth cutset Γn that separates Gn
from infinity. We denote by A the set of k-cubes that intersect ∂eGn, the
exterior edge boundary of Gn. We then modify the current configuration ω
into a configuration ω′ by closing all the open edges in ∂Gn. This procedure
is only formal as we will eventually reopen these edges. Zhang’s construction
enables us to extract a set of cubes Γ ⊂ A such that Γ is ∗-connected and in the
configuration ω′, the union of the 3k-cubes of Γ′ contains a closed cutset Γn that
isolates Gn from infinity and a rare event occurs in every cube of Γ. These rare
events are due to the existence of a closed cutset that creates a large interface
of closed edges, this is a very unlikely event when p > pc(d). Of course, when
we will eventually switch back to the configuration ω, these rare events will not
occur anymore in some cubes.

Several connected components of C∞ \ Gn in Zd \ Γn are enclosed in Γn
(see Figure 5). We say that a connected component C of C∞ is surrounded
by Γn if any path from C to infinity has to use an edge of Γn. We will say
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that C is large if |C| ≥ n1−1/2(d−1). We enumerate the large connected compo-
nents L1, . . . , Lm and the small connected component S1, . . . , SN . We denote
by m(Gn) the number of large connected components of C∞ \ Gn enclosed in
Γn.
Remark 5.1. We insist here on the fact that these large components are not
holes of the infinite cluster but holes of Gn (see Figure 5). Intuitively, we do
not expect that a minimizer contains such holes because the graph obtained by
filling all these holes have a smaller isoperimetric ratio. Indeed, by filling these
holes, we reduce the open edge boundary and increase the volume. However, by
filling these holes, the volume may exceed nd and the graph we obtain by filling
these holes may not be admissible. That is the reason why we cannot easily
discard the presence of these large holes inside Gn. To obtain the proper order
of large deviations, one would have to fix this issue.

We then build Fn ⊂ C∞ by filling the small connected components S1, . . . , SN
of Gn, i.e.,

Fn = Gn ∪
N⋃
i=1

Si . (20)

At this point, the boundary ∂Fn \ ∂eFn of Fn may be still tangled around the
large components. In the configuration ω′, for each 1 ≤ j ≤ m, there exists a
closed cutset that separates Lj from infinity. We can apply Zhang’s construction
to each component Lj in order to build a smooth closed cutset Γ̂

(j)
n and its

corresponding set of k-cubes Γ̂
(j)

n . Thanks to Zhang’s construction, the set of
cubes Γ̂

(j)

n is ∗-connected and in the configuration ω′, a rare event occurs in
each of its cubes. We denote the boundary of Fn by Γ̃n and its associated set
of k-cubes Γ̃n as

Γ̃n = Γn ∪
m⋃
i=1

Γ̂(i)
n , Γ̃n = Γn ∪

m⋃
i=1

Γ̂
(i)

n .

Gn

Γn

a small
component

Si

a large component
Lj

Γ̂jn

Figure 5 – Construction of Γ̃n for a Gn ∈ Gn
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The set of k-cubes Γ̃n is not ∗-connected. It only contains cubes where a rare
event occurs in the configuration ω′. Although for some cubes these events
do not occur anymore in the configuration ω, we can bound from below the
number of cubes that remain unchanged by |Γ̃n| − |∂oGn|. In these cubes, rare
events still occur when we switch back to the original configuration ω. Using a
Peierls argument, we can deduce that, with high probability, |Γ̃n| and |∂oGn|
are of same order when k is taken large enough. To perform the combinatorial
estimates we will need the two following propositions.

Proposition 5.2 (Lemmas 6, 7 in [23]). Let d ≥ 2 and let p > pc(d). There
exist positive constants C1 and C2 depending only on p and d such that for each
k-cube Bk,

P(a rare event occurs in Bk) ≤ C1 e−C2k .

Moreover, this rare event depends only on the configuration of the 3k-cube B′k.

Remark 5.2. We do not define here what these rare events are, we refer to [23]
for a precise definition of these rare events. For our purpose we only need to
know that the decay is exponential in k. We say that a cube is abnormal if a
rare event occurs in this cube.

Proposition 5.3. Let d ≥ 2 and p > pc(d). There exist positive constants c1,
c2 and c3 such that

P
[
∃Gn ∈ Gn, m(Gn) > c3n

d−2+3/2d
∣∣ 0 ∈ C∞] ≤ c1 exp(−c2n1−3/2d) .

Proof. Thanks to Theorem 3, there exist positive constants C ′1, C ′2 and C ′3
depending only on p and d such that for all n ≥ 1,

P
[
ϕn ≥ C ′3n−1

∣∣ 0 ∈ C∞ ] ≤ C ′1 exp(−C ′2n) .

Let Gn ∈ Gn. We have with probability at least 1− C ′1 exp(−C ′2n) that

|∂oGn| ≤ C ′3n−1|Gn| ≤ C ′3nd−1 .

Thanks to Proposition 5.1, there exist positive constants c′1, c′2 and c′3 depending
only on p and d such that, for all t ≥ 0, we have

P
[

There exists an open connected graph containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

]
≤ c′1 exp(−c′2t) .

(21)

In the following, we set t = n(1−1/2(d−1))(d−1)/d = n1−3/2d. First notice that by
construction, each Lj is contained in [−nd, nd] ∩ Zd. We have

P
[
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3n(1−1/2(d−1))d/(d−1)

∣∣ 0 ∈ C∞ ]
≤ P

[
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3|Li|d/(d−1)

∣∣ 0 ∈ C∞]
≤ 1

θp
P
[

There exists an open connected graph G contained in
[−nd, nd] ∩ Zd such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

]
≤ 1

θp

∑
x∈[−nd,nd]∩Zd

P
[

There exists an open connected graph G containing
x such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

]
.
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Using the translation invariance together with inequality (21), we obtain

P
[
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3n(1−ε)d/(d−1)

∣∣∣ 0 ∈ C∞ ]
≤ (2nd)d

θp
P
[

There exists an open connected graph G containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

]
≤ (2nd)d

θp
c′1 exp(−c′2n1−3/2d) .

By construction, for all i ∈ {1, . . . ,m(Gn)}, we have ∂oLi ⊂ ∂oGn and for all
j ∈ {1, . . . ,m(Gn)} such that i 6= j, we have ∂oLi ∩ ∂oLj = ∅. Thus, with high
probability,

m(Gn) ≤ |∂oGn|
c′3n

(1−ε)d/(d−1)
≤ C ′3n

d−1

c′3n
1−3/2d

≤ C ′3
c′3
nd−2+3/2d .

Finally, by setting c3 = C ′3/c
′
3, we obtain

P
[
∃Gn ∈ Gn, m(Gn) > c3n

d−2+3/2d
∣∣ 0 ∈ C∞ ]

≤ P
[
ϕn ≥ c′3n−1

∣∣ 0 ∈ C∞ ]+ P
[
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)},
|∂oLi| ≤ c′3n(1−ε)d/(d−1)

∣∣∣ 0 ∈ C∞ ]
≤ C ′1 exp(−C ′2n) +

(2nd)d

θp
c′1 exp(−c′2n1−3/2d) .

This yields the result.

Using the control on the number of large components m(Gn) of C∞ enclosed
in Γn and a Peierls argument, we obtain the following control of |Γ̃n|:

Proposition 5.4. Let d ≥ 2 and p > pc(d). There exist positive constants β0,
C1, C2 depending only on d and p such that, for all n ≥ 1, for all β ≥ β0,

P
[

max
Gn∈Gn

|Γ̃n| ≥ βnd−1
∣∣ 0 ∈ C∞ ] ≤ C1 exp(−C2n

1−3/2d) .

Proof. Let k be a large integer that we will choose later. We consider a renor-
malization process of parameter k. Let Gn ∈ Gn. First notice that as Γ̃n ⊂⋃
B∈Γ̃n

B′, we have

|Γ̃n| ≤ (6k)d|Γ̃n| .

Thus, it is enough to control the quantity |Γ̃n| to prove Proposition 5.4. We can
rewrite Γ̃n as

Γ̃n =

m′⋃
i=1

Ai with m
′ ≤ m(Gn)

where the Ai are pairwise disjoint ∗-connected sets of cubes. Thanks to Theorem
3, there exist positive constants C ′1, C ′2 and C ′3 depending only on p and d such
that for all n ≥ 1,

P
[
ϕn ≥ C ′3n−1

∣∣ 0 ∈ C∞ ] ≤ C ′1 exp(−C ′2n) . (22)
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Let Gn ∈ Gn. We have with probability at least 1− C ′1 exp(−C ′2n) that

|∂oGn| ≤ C ′3nd−1 .

We choose β large enough such that

C ′3 ≤
β

2 · 4d
,

so that
|∂oGn| ≤ C ′3nd−1 ≤ β

2 · 4d
nd−1 .

We now want to sum over the possible realizations of Γ̃n. Using Proposition 5.3
together with inequality (22), we get

P
[
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1

∣∣∣ 0 ∈ C∞]
≤ P

[
∃Gn ∈ Gn,

∑m′

i=1 |Ai| ≥ βnd−1, m′ ≤ c′3nd−2+3/2d,

|∂oGn| ≤ β
2·4dn

d−1

∣∣∣ 0 ∈ C∞]
+ c1 exp(−c2n1−3/2d) + C ′1 exp(−C ′2n)

≤
∑

j≥βnd−1

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

∑
x1,...,xm′∈[−nd,nd]d

∑
A1∈Animalsx1

|A1|=j1

· · ·

· · ·
∑

Am′∈Animalsx
m′

|Am′ |=jm′

P
[
∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |∂oGn| ≤
β

2 · 4d
nd−1

∣∣∣ 0 ∈ C∞]

+ c1 exp(−c2n1−3/2d) + C ′1 exp(−C ′2n) . (23)

Let us assume Γ̃n =
⋃m′
i=1Ai. We can extract from Γ̃n a set of k-cubes Γ̃′n

such that |Γ̃′n| ≥ |Γ̃n|/4d and for any i 6= j such that Bk(i), Bk(j) ∈ Γ̃′n we
have B′k(i) ∩ B′k(j) = ∅. As the rare event depends only on the configuration
in the 3k-cube B′k(j), the two following events

{
a rare event occurs in Bk(i)

}
and

{
a rare event occurs in Bk(j)

}
are independent. Using Proposition 5.2, we

obtain

P

∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |∂oGn| ≤
β

2 · 4d
nd−1

∣∣∣ 0 ∈ C∞


≤ P

∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |Γ̃′n| ≥ j/4d, |∂oGn| ≤
β

2 · 4d
nd−1

∣∣∣ 0 ∈ C∞


≤ P

[
∃Gn ∈ Gn,

Γ̃n =
⋃m′
i=1Ai, |∂oGn| ≤

β
2·4dn

d−1,

|{B ⊂ Γ̃′n, B abnormal}| ≥ j/4d − |∂oGn|

∣∣∣ 0 ∈ C∞]

≤ P

∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |{B ⊂ Γ̃′n, B abnormal}| ≥ j/(2.4d)

 · 1

θp
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≤ 4d

θp

∑
l≥j/(2.4d)

(
C1 e−C2k

)l
≤ 2 · 4d

θp

(
C1 e−C2k

)j/(2.4d)

where k will be chosen large enough such that C1 e−C2k ≤ 1/2. So together
with inequality (23) and using Lemma 1, we obtain

P
[
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1

∣∣ 0 ∈ C∞]
≤

∑
j≥βnd−1

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

∑
x1,...,xm′∈[−nd,nd]d

∑
A1∈Animalsx1

|A1|=j1

· · ·

· · ·
∑

Am′∈Animalsx
m′

|Am′ |=jm′

2 · 4d

θp

(
C1 e−C2k

)j/(2.4d)
+ c1 e−c2n

1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp

∑
j≥βnd−1

(
C1 e−C2k

) j

2.4d

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

(2n)d
2m′7dj1 · · · 7djm′

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp

∑
j≥βnd−1

7dj
(
C1 e−C2k

)j/(2.4d)
c′3n

d−2+3/2d∑
m′=1

(2nd)dm
′
·

×
∣∣∣∣{ (j1, . . . , jm′) :

j1 + · · ·+ jm′ = j,
j1 > 0, . . . , jm′ > 0

}∣∣∣∣+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp
(2nd)d(c′3n

d−2+3/2d+2)
∑

j≥βnd−1

(2 · 7d)j
(
C1 e−C2k

)j/(2.4d)

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

We now choose k large enough such that

C1 e−C2k ≤ 1

2
and

(
(2 · 7d)2·4d

C1 e−C2k
)1/(2.4d)

≤ e−1

Finally, we get

P
[
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1

∣∣ 0 ∈ C∞]
≤ 2(2nd)d(c′3n

d−2+3/2d+2)4d

θp

∑
j≥βnd−1

(
(2 · 7d)2·4d

C1 e−C2k
)j/(2.4d)

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤
4d+1 exp

(
2d2c′3n

d−2+3/2d log n− βnd−1
)

θp
+ c1 e−c2n

1−3/2d

+C ′1 e−C
′
2n .

This yields the result for β ≥ β0 where β0 is such that for all n ≥ 0, we have
β0 > (4d2c′3 log n)/n1−3/2d.
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We can now build the relevant continuous object Pn. Given a finite set of
edges S, we define

hull(S) =
{
x ∈ Zd : any path from x to infinity has to use an edge of S

}
and

Hn = hull(Γn) \

(
m⋃
i=1

hull(Γ̂(i)
n )

)
.

We define Pn and its associated measure νn as

Pn =
1

n

(
Hn +

[
−1

2
,

1

2

]d)
,

∀E ∈ B
(
Rd
)
, νn(E) = θpLd(Pn ∩ E) .

We obtain a control on the size of the perimeter of Pn by a straightforward
application of Proposition 5.4:

Corollary 5.1. Let d ≥ 2 and p > pc(d). There exist positive constants β0, C1,
C2 depending only on d and p such that for all n ≥ 1, for all β > β0,

P
[

max
Gn∈Gn

P(nPn) ≥ βnd−1
∣∣ 0 ∈ C∞ ] ≤ C1 e−c2n

1−3/2d

.

The following Lemma will be useful to compare the measure νn with the measure
associated to Fn.

Lemma 5. Let Gn ∈ Gn and Fn as defined in (20). We have Fn = Hn ∩ C∞.

Proof. Let Gn ∈ Gn. Let x ∈ Hn ∩ C∞, then x belongs to C∞ ∩ hull Γn but is
not in any of the large connected components L1, . . . , Lm. Therefore, x belongs
to Gn or to one of the small components S1, . . . , SN and so x ∈ Fn.

Conversely, let x ∈ Fn. It is clear that x ∈ hull(Γn). Let us assume x ∈ Gn
and that there exists i such that x ∈ hull(Γ̂

(i)
n ). As Gn is connected there exists

an open path γ in Gn that joins x with Gn \ Γ̂
(i)
n . As the edges of Γ̂

(i)
n \ ∂oLi

are closed, γ must use an edge of ∂oLi and so go through a vertex of Li. That
is a contradiction as the path γ uses only vertices in Gn. Let us now assume
that x ∈ Sj and x ∈ hull(Γ̂

(i)
n ) for some i and j. As x ∈ C∞, x is connected to

infinity by an open path γ′. However, by the same arguments, to exit hull(Γ̂
(i)
n ),

the path γ′ has to go through a vertex of Li. Thus, there exist an open path in
C∞ \Gn that joins x to Li. That is a contradiction as x /∈ Li.

Finally, Fn ⊂ Hn ∩ C∞.

5.3 Closeness of measures
We shall show that for any ball of constant radius centered at a point x ∈ Zd,

the measures νn and µn restricted to this ball are close to each other in some
weak sense.
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Proposition 5.5. Let p > pc(d) and r > 0. Let u :]0,+∞[→]0,+∞[ be a non-
decreasing function such that limt→0 u(t) = 0. For all δ > 0, there exist C1 and
C2 depending on d, p, u and δ such that for all n ≥ 1, for any finite set Fn of
uniformly continuous functions that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

we have

P

[
max
Gn∈Gn

sup
f∈F
|µn(f1B(x,r))− νn(f1B(x,r))| > δ

∣∣∣ 0 ∈ C∞] ≤ C1 e−C2n
1−3/2d

.

Remark 5.3. We state here the result in a general form. In the following, we
will apply this Proposition for the particular case of sets of functions that are
translates of the same function. The function u is an upper bound on the
modulus of continuity of the functions in Fn. If we think of Fn as a set that
grows with n, this condition may be interpreted as a sufficient condition to
obtain compactness for the set Fn in the limit.

To prove this result, we will need the following proposition that is a corollary
of the results in [16]:

Proposition 5.6. Let d ≥ 2 and p > pc(d). Let r > 0, and let Q ⊂ Rd be
a cube of side length 2r. Let δ > 0. There exist positive constants c1 and c2
depending on d, p and δ such that

P
[
|C∞ ∩Q|
Ld(Q)

/∈ (θp − δ, θp + δ)

]
≤ c1 exp(−c2rd−1) .

Proof of Proposition 5.5 . Let δ > 0 and ε > 0 that we will choose later. Let
u :]0,+∞[→]0,+∞[ be a non-decreasing function such that limt→0 u(t) = 0.
Let n ≥ 1. Let Fn be a finite set of uniformly continuous function that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

We define
µ̃n =

1

nd

∑
x∈V (Fn)

δx/n .

Thanks to Theorem 3, there exists a constant η3 depending only on the dimen-
sion such that

P
[
nϕn ≥ η3

∣∣∣ 0 ∈ C∞] ≤ C1 exp(−C2n) .

Let Gn ∈ Gn, with probability at least 1− C1 exp(−C2n), we have

n|∂oGn|
|Gn|

≤ η3,

and so |∂oGn| ≤ η3n
d−1. As each small component Sj is such that ∂oSj∩∂oGn 6=

∅, the number N of small components is at most η3n
d−1 and by definition of

Fn,

|Fn \Gn| ≤
N∑
j=1

|Sj | ≤ η3n
d−1/2(d−1) .
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Finally, with probability at least 1− C1 exp(−C2n), for all f ∈ Fn,

|µn(f)− µ̃n(f)| ≤ 1

nd
‖f‖∞|Fn \Gn| ≤ η3n

−1/2(d−1) ,

and

P

[
max
Gn∈Gn

sup
f∈Fn

|µn(f1B(x,r))− νn(f1B(x,r))| > η3n
−1/2(d−1)

]
≤ C1 e−C2n

(24)

where P represents the probability measure conditioned on the event {0 ∈ C∞}.
Let x ∈ Rd and let r > 0. Let f ∈ Fn. We now would like to estimate the
quantity

|µ̃n(f1B(x,r))− νn(f1B(x,r))| .

We adapt the proof of 16.2 in [6]. We use again a renormalization argument
but at a different scale L = K lnn. We consider the lattice rescaled by this
factor L. We say that a cluster C is crossing in a box B if for any two opposite
faces of B, the cluster C contains an open path in B that joins these two
faces. Let ε > 0. For y ∈ Zd, we define Bn(y) = (2Ly/n) + [−L/n,L/n]d and
B′n(y) = (2Ly/n) + [−3L/n, 3L/n]d. Let X(y) be the indicator function of the
event En(y). This event occurs if
• Inside nB′n(y), there is a unique crossing cluster C ′ that crosses the 3d sub-
boxes of nB′n(y). Moreover, C ′ is the only cluster in nB′n(y) of diameter larger
than L.
• Inside nBn(y), there is a crossing cluster C∗ such that

|C∗| ≥ (θp − ε)Ld(nBn(y)) .

• We have
∣∣{x ∈ nBn(y) : x←→ ∂nBn(y}

∣∣ ≤ (θp + ε)Ld(nBn(y)).
On the event En(y), any cluster C ⊂ nBn(y) that is connected by an open

path to ∂(nB′n(y)) is the unique crossing cluster, i.e., C = C ′ = C∗ and so it
also satisfies

|C|
Ld(nBn(y))

∈ [θp − ε, θp + ε] .

The family (X(y))y∈Zd is a site percolation process on the macroscopic lattice.
The states of the sites are not independent from each other but there is only a
short range dependency. Indeed, for any y and z such that |y − z|∞ ≥ 3, we
have that X(y) and X(z) are independent. We define the connected component
C(y) of y as

C(y) =
{
z ∈ Zd : z is connected to y by a macroscopic open path

}
.

Let
D = {y ∈ Zd : Bn(y) ⊂ B(x, r)} .

We have

|D|Ld ≤ ndLd(B(x, r)). (25)
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There exists an integer n0 = n0(u(ε)) such that, for n ≥ n0(u(ε)), we have
L/n ≤ u(ε) so that

Ld
B(x, r) \

⋃
y∈D

Bn(y)

 ≤ εLd(B(x, r)),

∀w, z ∈ Rd, ‖w − z‖2 ≤
L

n
⇒ |f(x)− f(y)| ≤ ε .

The last statement comes from the fact that f belongs to Fn. By decomposing
|µ̃n(f1B(x,r))− νn(f1B(x,r))| on cubes of size L/n, we obtain:

|µ̃n(f1B(x,r))− νn(f1B(x,r))|

≤ 2Ld
B(x, r) \

⋃
y∈D

Bn(y)

+
∑
y∈D

∣∣∣∣∣
∫
Bn(y)

fdµ̃n −
∫
Bn(y)

fdνn

∣∣∣∣∣
≤ 4εLd(B(x, r)) +

∑
y∈D

∣∣µ̃n(Bn(y))− νn(Bn(y))
∣∣ . (26)

Let y ∈ D. We need to distinguish several cases:
• If Bn(y) ∩ Pn = ∅, then νn(Bn(y)) = µ̃n(Bn(y)) = 0. From now on we will
only consider cubes such that Bn(y) ∩ Pn 6= ∅.
• If Bn(y) 6⊂ Pn, then we bound

|µ̃n(Bn(y))− νn(Bn(y))| ≤ 1

nd
|Bn(y)|

and as Bn(y) ∩ Pn 6= ∅, the cube intersects the boundary of Pn. Thus,

Bn(y) ⊂
{
z ∈ Rd : d∞(z, ∂Pn ∩B(x, r)) ≤ L

n

}
.

Moreover,

Ld
({

z ∈ Rd : d∞(z, ∂Pn ∩B(x, r)) ≤ L

n

})
≤
∣∣∣{x ∈ Hn, ∃y ∈ Zd \Hn, ‖x− y‖1 = 1

}
∩B(nx, nr + d)

∣∣∣ (2L+ 2

n

)d
≤ P(nPn, B(nx, nr + d))

(
3L

n

)d
≤ P(Pn, B(x, r + d))

(3L)d

n
.

• If Bn(y) ⊂ Pn and |C(y)| = ∞, then the crossing cluster C∗ of Bn(y) is a
portion of C∞ and

νn(Bn(y)) = θp
Ld(nBn(y))

nd
and µ̃n(Bn(y)) =

|(nBn(y)) ∩ C∗|
nd

.

Thus, we have

µ̃n(Bn(y)) ∈
[
(θp − ε)Ld(Bn(y)), (θp + ε)Ld(Bn(y))

]
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and
|µ̃n(Bn(y))− νn(Bn(y))| ≤ εLd(Bn(y)) .

• If Bn(y) ⊂ Pn and |C(y)| <∞, then we bound

|µ̃n(Bn(y))− νn(Bn(y))| ≤ Ld(Bn(y))1|C(y)|<∞

By summing the previous inequalities over y ∈ D, thanks to inequality (25) and
(26), we obtain

|µ̃n(f1B(x,r))− νn(f1B(x,r))|

≤ Ld(B(x, r))
(

5ε+
1

|D|
∑
y∈D

1|C(y)|<∞

)
+ P(Pn, B(x, r + d))

(3L)d

n
.

Let c(r) = 6Ld(B(0, r)) + 3d, we get

P

[
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > c(r)ε

]

≤ 1

θp
P

 1

|D|
∑
y∈D

1|C(y)|<∞ ≥ ε

+ P
[

max
Gn∈Gn

P(Pn, B(x, r + d)) ≥ ε n
Ld

]
.

(27)

Besides, using Corollary 5.1, for n large enough, we obtain

P
[

max
Gn∈Gn

P(Pn, B(x, r + d)) ≥ ε n
Ld

]
≤ P

[
max
Gn∈Gn

P(Pn) ≥ β
]
≤ c1 e−c2n

1−3/2d

.

(28)

Let Λ be the cube centered at x of side length 2r. We define

Λ =
{
y ∈ Zd : Bn(y) ⊂ Λ

}
.

As B(x, r) ⊂ Λ, we have D ⊂ Λ and

1

|D|
∑
y∈D

1|C(y)|<∞ ≤
(2d)d

|Λ|
∑
y∈Λ

1|C(y)|<∞ . (29)

Let q ∈ [0, 1] be such that θq > 1 − ε/(2(2d)d). As the family (X(y))y∈Zd is
identically distributed, has a short range dependency and is such that P(X(0) =
1) goes to 1 when n goes to infinity (see for instance Chapter 9 in [5]), then
we can apply Liggett Schonmann and Stacey’s result [13]: for n large enough,
the family (X(y), y ∈ Zd) stochastically dominates (X̃(y), y ∈ Zd) a family of
independent Bernoulli variable of parameter q. We denote by C̃∞ the unique
infinite cluster of the Bernoulli field (X̃(y))y∈Zd . Using inequality (29) and the
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stochastic domination, we get

P

 1

|D|
∑
y∈D

1|C(y)|<∞ ≥ ε

 ≤ P

 (2d)d

|Λ|
∑
y∈Λ

1|C(y)|<∞ ≥ ε


≤ P

 1

|Λ|
∑
y∈Λ

1y/∈C̃∞
≥ ε

(2d)d


≤ P


∣∣∣Λ ∩ C̃∞∣∣∣
|Λ|

/∈
(
θq −

ε

2(2d)d
, θq +

ε

2(2d)d

) .
Using Proposition 5.6, we obtain

P

 1

|D|
∑
y∈D

1|C(y)|<∞ ≥ ε

 ≤ c′1 exp

(
−c′2

(rn
L

)d−1
)
. (30)

We set ε = δ/(2c(r)). Finally, thanks to inequalities (24), (27), (28) and (30),
we have for n ≥ n0(u(ε))

P

[
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > δ

]

≤ P

[
max
Gn∈Gn

sup
f∈Fn

|µn(f)− µ̃n(f)| > δ/2

]

+ P

[
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > c(r)ε

]

≤ C1 exp(−C2n) +
c′1
θp

exp

(
−c′2

(rn
L

)d−1
)

+ c1 e−c2n
1−3/2d

.

The result follows.

6 Lower large deviations and shape Theorem

6.1 Closeness to the set of Wulff shapes
The aim of this section is to prove Theorem 5.

Proof of Theorem 5. Let ε > 0. Let ξ > 0 that we will choose later depending
on ε. We define λ such that

1− λ =
1

1 + ξ
.

We denote by Wξ:

Wξ =

{
νW+x :

x ∈ Rd, W is a dilate of Wp such that
Ld((1− λ)Wp) ≤ Ld(W ) ≤ Ld((1 + 2ξ)Wp)

}
.
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Let u :]0,+∞[→]0,+∞[ be a non-decreasing function such that limt→0 u(t) = 0.
Let n ≥ 1. Let Fn be a finite set of uniformly continuous function that satisfies
for all f ∈ Fn,

‖f‖∞ ≤ 1 and ∀x, y ∈ Rd, |f(x)− f(y)| ≤ u(‖x− y‖2) .

We define the weak neighborhood V(Wξ,Fn, ε) of Wξ given Fn and ε as

V(Wξ,Fn, ε) =
{
ν ∈M(Rd) : ∃µ ∈ Wξ, sup

f∈Fn

|ν(f)− µ(f)| ≤ ε
}
.

Our goal is to show that µn is in the set V(Wξ,Fn, ε) with high probability.
Step (i): Let Gn ∈ Gn. Thanks to Proposition 5.5, the measures µn and νn
associated with Pn and Gn are locally close to each other. In the following, it
will be more convenient to work with the continuous object Pn instead of Gn.
We can localize almost all the volume of Pn in a random region that is a union
of balls of constant radius. We follow the method in Chapter 17 in [5]. We can
cover Pn in Rd, up to a small fractional volume, by a finite number of random
disjoint balls of constant size. Thanks to the isoperimetric inequalities, we can
then control the volume of Pn outside of these balls. Let δ > 0 be a real number
that we will choose later. We denote by X:

X =
{
x ∈ Zd : Ld(B(x, 1) ∩ Pn) ≥ δ

}
.

On the event
{
|Γ̃n| ≤ βnd−1

}
, the set X is included in B(0, βnd−2) and is

therefore finite. As each point in Rd belongs to at most 2d balls among the
B(x, 1), x ∈ Zd, then using Proposition 2.2

δ|X| ≤
∑
x∈X
Ld(B(x, 1) ∩ Pn) ≤ 2dLd(Pn) ≤ 2dcisoP(Pn)

d
d−1 ≤ 2dcisoβ

d
d−1

and finally |X| ≤ M where M = 2dcisoβ
d

d−1 /δ. We now would like to control
the volume of Pn outside the balls B(x, 1) in X, i.e., to bound the measure of
Pn\

⋃
x∈X B(x, 1). For x ∈ Zd\X, by the isoperimetric inequality in Proposition

2.2, we obtain as in section 17 in [5]

Ld
(
Pn \

⋃
x∈X

B(x, 1)

)
≤

∑
x∈Zd\X

Ld(Pn ∩B(x, 1))

≤ δ1/db
d

d−1

iso

∑
x∈Zd\X

P(Pn, B̊(x, 1))

= δ1/db
d

d−1

iso

∑
x∈Zd\X

Hd−1(∂∗Pn ∩ B̊(x, 1))

≤ 2dδ1/db
d

d−1

iso H
d−1(∂∗(Pn)) = 2dδ1/db

d
d−1

iso P(Pn)

≤ 2dδ1/db
d

d−1

iso β. (31)

We note η = 2dδ1/db
d

d−1

iso β. Therefore, if P(Pn) ≤ β, then X ⊂ B(0, βnd−2),
|X| ≤M and Ld(Pn \ ∪x∈XB(x, 1)) ≤ η.
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0

A ball B(y, r) with
(y, r) ∈ E(X)

Pn

Figure 6 – Covering almost all the volume of Pn by balls of constant radius

We next would like to perform a kind of surgery between the balls. To do
so, we first shall build from the balls (B(x, 1))x∈X a family of balls that covers
∪x∈XB(x, 1) and such that the balls are far apart (see Figure 6). This is the
purpose of Lemma 17.1. in [5]. We obtain a subset

E(X) = {(y1, r1), . . . , (ym, rm)} ⊂ X ×
{

1, . . . , 3|X|
}

such that |E(X)| ≤ |X| and
• ∀(a, r) ∈ E(X), B(a, r) ∩X 6= ∅
• ∪x∈XB(x, 1) ⊂ ∪(a,r)∈E(X)B(a, r)

• ∀(a, r), (b, s) ∈ E(X), (a, r) 6= (b, s)⇒ B(a, r + 1) ∩B(b, s+ 1) = ∅
We set

ϕWp =
Ip(Wp)

θpLd(Wp)
.

Let δ′ > 0 be a real number that we will choose later. By applying Corollary
5.1 and Theorem 3, we obtain by conditioning on E(X),

P
[
∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε)

∣∣∣ 0 ∈ C∞]
≤ P[ max

Gn∈Gn
P(nPn) ≥ βnd−1] + P[nϕn > (1 + δ′)ϕWp ]

+ P[∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε), P(Pn) ≤ β, nϕn ≤ (1 + δ′)ϕWp
]

≤ b1 exp(−b2n1−3/2d) + b′1 exp(−b′2n)

+
∑

1≤m≤M

∑
y1,...,ym

∑
r1,...,rm

P

 ∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε),
E(X) = {(y1, r1), . . . , (ym, rm)}
P(Pn) ≤ β, nϕn ≤ (1 + δ′)ϕWp

 , (32)

where the second summation is over y1, . . . , ym in Zd∩B(0, βnd−2) and the third
summation is over r1, . . . , rm in {1, . . . , 3M}. The number of ways to choose m
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and r1, . . . , rm is bounded from above by a constant depending only on M ,
while the number of ways of choosing the centers y1, . . . , ym is polynomial in n.
We next control the probability inside the sums. We will only focus on what
happens inside the balls.
Step (ii): Let {(y1, r1), . . . , (ym, rm)} be a value for the random set E(X)
which occurs with positive probability. We define Ω = Ω(E(X)) as

Ω =

m⋃
i=1

B̊(yi, ri + 1) ,

and the restriction Pn of Pn to the balls determined by E(X):

Pn = Pn ∩

(
m⋃
i=1

B̊(yi, ri + 1)

)
.

Thus, using inequality (31), we have

Ld(Pn \ Pn) ≤ η . (33)

We show now that νPn
(f) is close to µn(f) with high probability on the event{
E(X) = {(y1, r1), . . . , (ym, rm)}

}
.

It is easy to check that Fn ∪ {1} associated with the function u satisfies the
conditions required in Proposition 5.5. So that applying Proposition 5.5 for
every r ∈ {1, . . . , 3M}, there exist positive constants c1, c2 depending on M , u,
and δ such that for all x ∈ Zd

max
r∈{1,...,3M}

P

[
max
Gn∈Gn

sup
f∈Fn∪{1}

|νn(f1B(x,r))− µn(f1B(x,r))| >
η

M

]
≤ c1 e−c2n

1−3/2d

.

Thus, using inequality (33), we obtain

P

[
max
Gn∈Gn

sup
f∈Fn∪{1}

|νPn
(f)− µn(f)| > 2η, E(X) = {(y1, r1), . . . , (ym, rm)}

]

≤
m∑
i=1

P

[
max
Gn∈Gn

sup
f∈Fn∪{1}

|νPn
(f1B(yi,ri))− µn(f1B(yi,ri))| > η/M

]

≤M max
r∈{1,...,3M}

P

[
max
Gn∈Gn

sup
f∈Fn∪{1}

|νn(f1B(y1,r))− µn(f1B(y1,r))| > η/M

]
≤Mc1 e−c2n

1−3/2d

. (34)

In particular, on the event {E(X) = {(y1, r1), . . . , (ym, rm)}}, with probability
at least 1−Mc1 exp(−c2n1−3/2d), we have∣∣∣∣θpLd(Pn)− |Gn|

nd

∣∣∣∣ ≤ 2η . (35)
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Moreover, by Lemma 4, there exist positive constants η1, D1 and D2 such that

P
[

min
Gn∈Gn

|Gn| ≤ η1n
d

]
≤ D1 exp(−D2n

(d−1)/2d)) .

We recall that η is a function of δ. We will choose δ small enough such that

η ≤ min

(
η1

4
,
ξd

2
,
ε

8
,
η1

3θp

)
. (36)

Other conditions will be imposed later on δ.
On the event

{
minGn∈Gn |Gn| > η1n

d
}
, using inequalities (35) and (36), we

obtain

Ld(Pn) ≥ 1

θp

(
|Gn|
nd
− 2η

)
≥ 1

θp
(η1 − 2η) ≥ η1

2θp
(37)

and as Ld(Wp) = 1/θp, using inequality (35), we have

Ld(Pn) ≤ 1

θp

(
|Gn|
nd

+ 2η

)
≤ 1

θp
(1 + ξd) = Ld(Wp)(1 + ξd) ≤ Ld((1 + ξ)Wp) .

(38)

For ν ∈ Wξ, we have

sup
f∈Fn

|νPn
(f)− ν(f)| ≥ sup

f∈Fn

|µn(f)− ν(f)| − sup
f∈Fn

|µn(f)− νPn
(f)| ,

so that, together with inequalities (34) and (36), with high probability,

µn /∈ V(Wξ,Fn, ε) =⇒ νPn
/∈ V(Wξ,Fn, 3ε/4) .

Thus, combining with inequalities (37) and (38), we have

P
[

∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε), P(Pn) ≤ β ,
E(X) = {(y1, r1), . . . , (ym, rm)}, nϕn ≤ (1 + δ′)ϕWp

]
≤ P

[
∃Gn ∈ Gn, νPn

/∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp ,
η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp), E(X) = {(y1, r1), . . . , (ym, rm)}

]
+Mc1 e−c2n

1−3/2d

+D1 exp(−D2n
(d−1)/2d) . (39)

We do not cover Pn directly but we cover separately each Pn ∩ B(yk, rk + 1)
for k ∈ {1, . . . ,m}. For any r ∈ { 1, . . . , 3M }, we define the space

C(r)
β =

{
F ⊂ B̊(0, r + 1), P(F, B̊(0, r + 1)) ≤ β

}
endowed with the topology L1 associated to the distance d(F, F ′) = Ld(F∆F ′),
where ∆ is the symmetric difference between sets. For this topology, the space
C(r)
β is compact. Suppose that we associate to each F ∈ C(r)

β a positive number
εF ≤ min(η,Ld(ξWp))/M . The collection of open sets{

H Borel subset of B̊(0, r + 1) : Ld(H∆F ) < εF

}
, F ∈ C(r)

β ,
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is then an open covering of C(r)
β . By compactness, we can extract a finite covering

(F
(r)
i , ε

F
(r)
i

)1≤i≤N(r) of C(r)
β . By union bound, we obtain

P

[
∃Gn ∈ Gn, νPn

/∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp ,
η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp), E(X) = {(y1, r1), . . . , (ym, rm)}

]

≤
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

P[Fi1,...,im ] (40)

where

Fi1,...,im =



∃Gn ∈ Gn : ∀ 1 ≤ k ≤ m,
Ld((F (rk)

ik
+ yk)∆(Pn ∩B(yk, rk + 1))) ≤ ε

F
(rk)

ik

,

νPn
/∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp

,
η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp),

E(X) = {(y1, r1), . . . , (ym, rm)}


.

So we need to study the quantity P[F ] for a generic m-uplet (F1, . . . , Fm) ∈
C(r1)
β ×· · ·×C(rm)

β and their associated εF1
, . . . , εFm

. By definition of the Cheeger
constant ϕn, we obtain

P[F ] = P

∃Gn ∈ Gn :

∀1 ≤ i ≤ m,
Ld((Fi + yi)∆(Pn ∩B(yi, ri + 1))) ≤ εFi ,

νPn
/∈ V(Wξ,Fn, 3ε/4),

|∂oGn| ≤ (1 + δ′)n−1|Gn|ϕWp
,

η1
2θp
≤ Ld(Pn) ≤ Ld((1 + ξ)Wp),

E(X) = {(y1, r1), . . . , (ym, rm)}

 .

To lighten the notations, we set

F =

m⋃
i=1

(Fi + yi) .

We have

Ld(F∆Pn) =

m∑
i=1

Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi))

≤
m∑
i=1

εFi
≤ min(η,Ld(ξWp)) . (41)

Whereas the surface tension of F in the interior of these balls corresponds to
the surface tension of our minimizer Gn, the surface tension of F along the
boundary of the balls B(yj , rj +1) does not correspond to the surface tension of
Gn because we have artificially created it. Roughly speaking, F is the continuous
object corresponding to the graph Gn intersected with the nB(yj , rj + 1). This
new graph has extra surface tension compared to Gn due to the fact that we
have built it by cutting Gn along the boundary of these balls. However, our
hope is to cut along the boundary of these balls in such a way that the surface
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tension we create is negligible. We do not work on Gn but on the continuous
object F , but we have to keep in mind that these two objects are close. The
idea is to cut F in the regions B(yi, ri + 1) \ B(yi, ri), i ∈ {1, . . . ,m}. These
regions contain a negligible volume of Gn and so of F , we want to cut F in
these regions along a surface of negligible perimeter and so of negligible surface
tension. By Lemma 14.4 in [5], for i ∈ {1, . . . ,m}, for H1 almost all t in ]0, 1[,

I(F ∩B(yi, ri + t)) ≤ I(F ∩ B̊(yi, ri + t)) + βmaxHd−1(F ∩ ∂B(yi, ri + t)) .
(42)

Let T be a subset of ]0, 1[ where all the above inequalities hold simultaneously.
We recall that for any i ∈ {1, . . . ,m}, εFi

≤ η/M . We have H1(T ) = 1 and
when we integrate in polar coordinates, using inequality (41),∫

T

m∑
i=1

Hd−1(F ∩ ∂B(yi, ri + t))dt =

m∑
i=1

Ld(F ∩B(yi, ri + 1) \B(yi, ri))

≤
m∑
i=1

Ld((Fi + yi) \B(yi, ri))

≤ Ld
(
Pn \

m⋃
i=1

B(yi, ri)
)

+ Ld(Pn∆F )

≤ 2η .

Thus, there exists t ∈ T such that
m∑
i=1

Hd−1(F ∩ ∂B(yi, ri + t)) ≤ 3η . (43)

We next set

F = F ∩

(
m⋃
i=1

B(yi, ri + t)

)
.

Using inequality (43), we get

P(F ) ≤ P

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
+

m∑
i=1

Hd−1(F ∩ ∂B(yi, ri + t))

≤ P

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
+ 3η , (44)

and using Proposition 2.1,

Ip(F ) ≤ Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
+ 3βmaxη . (45)

On the event F , using inequality (41), we obtain

Ld(F ) ≤ Ld(F ) + Ld
(
F \

m⋃
i=1

B(yi, ri)

)

≤ Ld(F ) + Ld(F∆Pn) + Ld
(
Pn \

m⋃
i=1

B(yi, ri)

)
≤ Ld(F ) + 2η . (46)
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Finally, using inequalities (44) and (46), we obtain

Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
≥ βmin P

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
≥ βmin(P(F )− 3η) . (47)

and using again inequality (41),

Ld(F ) ≥ Ld(Pn)− Ld(Pn∆F ) ≥ η1

2θp
− η . (48)

Using the isoperimetric inequalities of Proposition 2.2 and inequalities (46) and
(48), we get

P(F ) ≥
(
Ld(F )

ciso

)1−1/d

≥
(
Ld(F )− 2η

ciso

)1−1/d

≥
(
η1 − 6ηθp

2θpciso

)1−1/d

. (49)

Next, we choose δ small enough to obtain a η that satisfies the following in-
equalities:

3βmaxη ≤
λβmin

2

((
η1 − 6ηθp

2θpciso

)1−1/d

− 3η

)
, (50)

and also
η1 ≥ 6ηθp .

With this choice of δ, we obtain with high probability, using inequalities (45),
(47) and (49),

Ip(F ) ≤ (1 + λ/2)Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)

)
≤ (1 + λ/2)Ip(F,Ω) . (51)

Let Gn ∈ Gn, on the event F , we have∣∣∣∣θpLd(Pn)− |Gn|
nd

∣∣∣∣ ≤ 2η .

So that, together with inequality (46),

|Gn| ≤ nd(θpLd(F ) + θpLd(Pn∆F ) + 2η)

≤ nd(θpLd(F ) + εF + 4η)

≤ ndθpLd(F )

(
1 +

5η

θpLd(F )

)
.

Let us now choose δ small enough so that

5η

η1/2− 3ηθp
≤ δ′ . (52)

Using inequalities (46) and (48), we obtain

|Gn| ≤ ndθpLd(F )

(
1 +

5η

η1/2− 3ηθp

)
≤ ndθpLd(F )(1 + δ′).
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Finally, let r be such that Ld(F ) = Ld(rWp), we get

(1 + δ′)n−1|Gn|ϕWp ≤ (1 + δ′)2nd−1ϕWp

ϕF
Ip(F )

≤ (1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) .

We now choose δ′ small enough such that

(1 + δ′)2(1− λ) ≤ 1− λ

2
. (53)

Using inequality (41), we obtain

Ld(F ) ≤ Ld(Pn) + Ld(Pn∆F ) ≤ Ld((1 + ξ)Wp) + Ld(ξWp) ≤ Ld((1 + 2ξ)Wp)

and so r ≤ 1 + 2ξ. We distinguish now two cases:
• If r ≤ 1− λ, using inequality (53)

(1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) ≤ (1− λ/2)nd−1Ip(F )

where we used the fact that the Wulff crystal is a minimizer for Ip, i.e., that
Ip(rWp) ≤ Ip(F ).
• Let us assume that r ∈ (1− λ, 1 + 2ξ]. We recall that on the event F , for all
ν ∈ Wξ,

sup
f∈Fn

|νPn
(f)− ν(f)| ≥ 3ε/4 .

Thus, for all x ∈ Rd, for f ∈ Fn we have

|νPn
(f)− νrWp+x(f)| ≤

∣∣∣∣∣
∫
Pn\(rWp+x)

f(x)dLd(x)−
∫

(rWp+x)\Pn

f(x)dLd(x)

∣∣∣∣∣
≤
∫
Pn\(rWp+x)

|f(x)|dLd(x) +

∫
(rWp+x)\Pn

|f(x)|dLd(x)

≤
∫
Pn\(rWp+x)

1dLd(x) +

∫
(rWp+x)\Pn

1dLd(x)

≤ Ld
(
Pn∆(rWp + x)

)
,

and so,

Ld
(
Pn∆(rWp + x)

)
≥ sup
f∈Fn

|νPn
(f)− νrWp+x(f)| ≥ 3ε/4

and as η satisfies inequality (36), we obtain

Ld
(
F∆(rWp + x)

)
≥ Ld

(
Pn∆(rWp + x)

)
− Ld

(
F∆Pn

)
≥ 3ε/4− η ≥ ε/2.

Moreover, as rWp is a minimizer for the isoperimetric problem, there exists a
constant c(ε) > 0, that is a non-decreasing function of ε depending also on p
and r, that goes to 0 when ε goes to 0, such that

inf
{
I(E) : ∀x ∈ Rd, Ld(E∆(x+ rWp)) ≥ ε/2, Ld(E) = Ld(rWp)

}
≥ Ip(rWp)(1 + c(ε)) .
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Finally,
Ip(rWp)

Ip(F )
≤ 1

1 + c(ε)

and so,

(1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) ≤ (1 + δ′)2

1 + c(ε)
(1 + 2ξ)nd−1Ip(F ) .

We choose ξ small enough depending on ε such that

1 + 2ξ

1 + c(ε)
≤ 1− λ =

1

1 + ξ
.

This is equivalent to choose ξ such that

3ξ + 2ξ2 ≤ c(ε) . (54)

We obtain using inequality (53)

(1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) ≤ (1− λ/2)nd−1Ip(F ) .

Finally, combining the two cases, with ε and δ′ properly chosen and inequality
(51), we obtain

P[F ] ≤ P

∃Gn ∈ Gn :

∀1 ≤ i ≤ m,
Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi ,

|∂oGn| ≤
(

1− λ2

4

)
nd−1Ip(F,Ω),

E(X) = {(y1, r1), . . . , (ym, rm)}

 . (55)

Step (iii): The remaining of the proof follows the same ideas as in [8]. We
link the probability defined in the right hand side of (55) with the probability
that the flow is abnormally small in some local region of ∂F ∩Ω . We now want
to cover ∂F by balls of small radius such that ∂F is "almost flat" in each ball,
this is the purpose of the following Lemma:

Lemma 6. [Lemma 1 in [8]] Let R > 0. Let F be a subset of B̊(0, R) of finite
perimeter. For every positive constants δ′ and η′, there exists a finite family
of closed disjoint balls (B(xi, ρi))i∈I∪K and vectors (vi)i∈I∪K , such that, letting
Bi = B(xi, ρi) and B−i = B−(xi, ρi, vi), we have for all i ∈ I

xi ∈ ∂∗F ∩ B̊(0, R), ρi ∈]0, 1[, Bi ⊂ B̊(0, R), Ld((F ∩Bi)∆B−i ) ≤ δ′αdρdi ,

and ∣∣∣∣∣Ip(F, B̊(0, R))−
∑
i∈I

αd−1ρ
d−1
i (ν(nF (xi))

∣∣∣∣∣ ≤ η′.
We apply Lemma 6 to each Fk ⊂ B̊(0, rk + 1), with δ2 > 0 that will

be chosen later and η′ = λ4Ip(F,Ω)/16M . We obtain for each k, a family(
B

(k)
i

(
x

(k)
i , ρ

(k)
i , v

(k)
i

))
i∈I(k) that does not depend on y1, . . . , ym, so that∣∣∣∣∣Ip(Fk, B̊(0, rk + 1))−

∑
i∈I

αd−1(ρ
(k)
i )d−1(ν(nFk

(x
(k)
i ))

∣∣∣∣∣ ≤ η′. (56)
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We now choose

εFk
≤ min

(
min
i∈I(k)

αd(ρ
(k)
i )dδ2,

η

M
,
Ld(ξWp)

M

)
, (57)

for a fixed δ2 that we will choose later. Besides, as the balls B(yk, rk + 1) are
disjoint, for k ∈ {1, . . . ,m}, we have

Ip(F,Ω) =

m∑
k=1

Ip(F ∩B(yk, rk + 1),Ω) =

m∑
k=1

Ip(Fk, B̊(0, rk + 1)) .

Using inequality (56), we obtain∣∣∣∣∣∣Ip(F,Ω)−
m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))

∣∣∣∣∣∣ ≤ mη′ ≤ λ4Ip(F,Ω)/16 .

So, we get

Ip(F,Ω) ≤ 1

1− λ4/16

 m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))


and(

1− λ2

4

)
Ip(F,Ω) ≤ 1− λ2/4

1− λ4/16

 m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))

 .

Whence setting w = λ2/(4 + λ2) < 1,(
1− λ2

4

)
Ip(F,Ω) ≤ (1− w)

 m∑
k=1

∑
i∈I(k)

αd−1(ρ
(k)
i )d−1ν(nFk

(x
(k)
i ))

 . (58)

Since the balls (B
(k)
i + yk)1≤k≤m, i∈I(k) are pairwise disjoint, we have

|∂oGn| ≥
m∑
k=1

∑
i∈I(k)

|(∂oGn) ∩ (n(B
(k)
i + yk))| . (59)

Using inequalities (58) and (59), we get

P

∃Gn ∈ Gn, Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi
, 1 ≤ i ≤ m,

|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω),
E(X) = {(y1, r1), . . . , (ym, rm)}


≤ P

 ∃Gn ∈ Gn, L
d((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi

, 1 ≤ i ≤ m,∑m
k=1

∑
i∈I(k) |(∂oGn) ∩ (n(B

(k)
i + yk))|

≤ (1− w)nd−1
(∑m

k=1

∑
i∈I(k) αd−1(ρ

(k)
i )d−1ν(nFk

(x
(k)
i ))

)
 .
(60)

Let k ∈ {1, . . . ,m}. We aim to control card((Gn ∩ n(B
(k)
i + yk))∆(n(B

(k)
i +

yk)− ∩ Zd)). To do so, it is more convenient to work with the graph Fn. In

40



the following, we drop the superscript (k) for clarity. With high probability, we
have

card((Gn ∩ n(B
(k)
i + yk))∆(n(B

(k)
i + yk)− ∩ Zd))

≤ card((Fn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) + card(Fn \Gn)

≤ card((Fn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) + η3n
d−1/2(d−1) .

As Bi + yk ⊂ B(yk, rk + 1), we have

Ld((nPn ∩ n(Bi + yk))∆(n(Bi + yk)−)) ≤ Ld((nFk ∩ nBi)∆(nB−i ))

+ ndLd(Pn∆(Fk + yk))

≤ ndαdρdi δ2 + εFk
≤ 2ndαdρ

d
i δ2 .

By the same arguments as in section 5.2 in [8],

card((Fn ∩ n(Bi + yk))∆n(Bi + yk)−))

≤ Ld(((nPn ∩ n(Bi + yk))∆n(Bi + yk)−) ∩ Zd + [−1/2, 1/2]d)

≤ 2ndαdρ
d
i δ2 + nd−14d(Hd−1(∂Bi) +Hd−1(∂B−i )) .

Finally, for n large enough,

card((Gn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) ≤ 4ndαdρ
d
i δ2 .

Thus, using inequality (60), for large enough n,

P
[
∃Gn ∈ Gn,Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi

, 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω), E(X) = {(y1, r1), . . . , (ym, rm)}

]

≤
m∑
k=1

∑
i∈I(k)

P


∃Gn ∈ Gn,∣∣(Gn ∩ n(Bi + yk))∆(n(B−i + yk) ∩ Zd)

∣∣ ≤ 4δ2αdρ
d
i n

d,
|(∂oGn) ∩ n(Bi + yk)|

≤ (1− w)nd−1
(
αd−1ρ

d−1
i ν(nFk

(x
(k)
i ))

)


≤ 1

θp

m∑
k=1

∑
i∈I(k)

P[G(x
(k)
i + yk, ρ

(k)
i , nFk

(x
(k)
i ), w, δ2)] (61)

where G(x, r, v, w, δ2) is the event that there exists a set U ⊂ B ∩Zd such that:

card(U∆(nB−(x, r, v) ∩ Zd)) ≤ 4δ2αdr
dnd

and
|(∂oGn) ∩ nB| ≤ (1− w)αd−1r

d−1(ν(v)nd−1 .

This event depends only on the edges inside B(x, r, v) and is invariant under
integer translation. So that,

P
[
∃Gn ∈ Gn,Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω), E(X) = {(y1, r1), . . . , (ym, rm)}

]
≤ 1

θp

m∑
k=1

∑
i∈I(k)

P[G(x
(k)
i , ρ

(k)
i , nFk

(x
(k)
i ), w, δ2)] . (62)
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This event is a rare event. Indeed, if this event occurs, we can show that the
capacity of the minimal cutset that separates the upper half part of B(x, r, v)
(upper half part according to the direction v) from the lower half part is ab-
normally small. To do so, we build from the set U an almost flat cutset in the
ball. The fact that card(U∆B−(x, r, v)) is small implies that ∂eU is almost flat
and is close to disc(x, r, v). However, this does not prevent the existence of long
thin strands that might escape the ball and prevent U from being a cutset in
the ball. The idea is to cut these strands by adding edges at a fixed height.
We have to choose the appropriate height to ensure that the extra edges we
needed to add to cut these strands are not too many, so that we can control
their capacity. The new set of edges we create by adding to U these edges will
be in a sense a cutset. The last thing to do is then to cover the disc(x, r, v) by
hyperrectangles in order to use the estimate that the flow is abnormally small
in a cylinder. This work was done in section 6 in [8]. It is possible to choose δ2
depending on F1, . . . , Fm, G and w such that for all k ∈ {1, . . . ,m}, there exist
positive constants CFk

1,i and CFk
2,i depending on G, d, Fk, i and w so that for all

i ∈ I(k),
P[G(xi, ρi, nFk

(xi), w, δ2)] ≤ CFk
1,i exp(−CFk

2,in
d−1) .

Note that this upper bound is uniform on y1, . . . , ym but still depends on
r1, . . . , rm. Together with inequalities (55) and (62), we obtain

P[F ] ≤ P

 ∃Gn ∈ Gn, Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi
, 1 ≤ i ≤ m,

|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω),
E(X) = {(y1, r1), . . . , (ym, rm)}


≤ 1

θp

m∑
k=1

∑
i∈I(k)

CFk
1,i exp(−CFk

2,in
d−1) .

So there exist positive constants CF1
1 , . . . , CFm

1 and CF1
2 , . . . , CFm

2 such that

P[F ] ≤
m∑
k=1

CFk
1 exp(−CFk

2 nd−1) . (63)

Combining inequalities (32), (39), (40) and (63), we obtain for small enough δ2,

P [∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε) | 0 ∈ C∞ ]

≤ b1 e−b2n
1−3/2d

+b′1 e−b
′
2n +

M∑
m=1

∑
y1,...,ym

∑
r1,...,rm

N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

P[Fi1,...,im ]

+M3M
2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
≤ b1 e−b2n

1−3/2d

+b′1 e−b
′
2n

+

M∑
m=1

∑
y1,...,ym

∑
r1,...,rm

N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)

ik
1

θp
e−C

F
(rk)
ik

2 nd−1

+M3M
2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
≤ b1 e−b2n

1−3/2d

+b′1 e−b
′
2n
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+

M∑
m=1

∑
y1,...,ym

3M
2

max
r1,...,rm

{
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)

ik
1

θp
e−C

F
(rk)
ik

2 nd−1

}
+M3M

2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
≤ b1 e−b2n

1−3/2d

+b′1 e−b
′
2n

+ Cdn
M(d−2)

M∑
m=1

3M
2

max
r1,...,rm

{
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)

ik
1

θp
e−C

F
(rk)
ik

2 nd−1

}
+M3M

2

Cdn
M(d−2)

(
Mc1 e−c2n

1−3/2d

+D1 e−D2n
(d−1)/2d

)
(64)

where Cd is a constant depending only on the dimension and the maximum is
over r1, . . . , rm ∈ {1, . . . , 3M}. We recall that M , N and the number of ways of
choosing r1, . . . , rm are finite and independent of n.
Remark 6.1. To obtain inequality (64), it is crucial to use a covering of Cβ that
is uniform in y1, . . . , ym.

Let us assume µn /∈ V(W,Fn, 2ε). Let ν ∈ Wξ, we can write ν = νx+rWp

with x ∈ Rd and r ∈ [1− λ, 1 + 2ξ]. We have for all f ∈ Fn

|νx+Wp
(f)− νx+rWp

(f)| ≤ max
(
Ld(Wp \ (1− λ)Wp), Ld((1 + 2ξ)Wp \Wp)

)
≤ c(p, d, ξ) (65)

where c(p, d, ξ) is a constant that goes to 0 when ξ goes to 0. So that

sup
f∈Fn

|νx+Wp
(f)− νx+rWp

(f)| ≤ c(p, d, ξ) .

As µn /∈ V(W,Fn, 2ε), we have

sup
f∈Fn

|µn(f)− νx+Wp(f)| > 2ε .

So that up to choosing a smaller ξ, we have

c(p, d, ξ) ≤ ε (66)

and so

P[∃Gn ∈ Gn, ∀ν ∈ W, sup
f∈Fn

|µn(f)− νx+Wp
(f)| > 2ε]

≤ P[∃Gn ∈ Gn, ∀ν ∈ Wξ, sup
f∈Fn

|µn(f)− νx+Wp(f)| > ε] .

Finally, using (64), there exist positive constants C1 and C2 depending on ε, u,
p and d such that for all n ≥ 1,

P
[
∃Gn ∈ Gn, µn /∈ V(W,Fn, 2ε)

∣∣ 0 ∈ C∞] ≤ C1 e−c2n
1−3/2d

and the result follows.
To conclude, let us sum up the order in which the constants are chosen. We

first choose ε > 0. Next, we choose ξ small enough such that it satisfies both
inequalities (54) and (66), and δ′ such that it satisfies inequality (53). Next,
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we choose δ such that η(δ) satisfies inequalities (36), (50) and (52). We choose
δ2 depending on w (and so on ε) and G. The parameter δ2 has to satisfy some
inequalities that we do not detail here, we refer to section 7 in [8]. Finally, to
each r in {1, . . . , 3M}, to each F ∈ C(r)

β , we choose εF in such a way it satifies
inequality (57).

6.2 Proof of Theorem 4
In this section we prove Theorem 4. Thanks to Theorem 5, we know that

with high probability µn is close to the set W and so it is close to the measure
of a translate of the Wulff shape. In fact, as µn has its support included in
B(0, nd−1), the measure µn is close to Wn, the set of measures defined as:

Wn =
{
νx+Wp

, x ∈ B(0, nd−1)
}
.

The continuous set Wn can be approximated by a finite set W̃ containing a
polynomial number of measures such that µn is close to W̃ and so is close to at
least one measure in W̃. Let ε > 0 and let w > 0 be a real number depending
on ε that we will choose later. We first use Lemma 6, to cover Wp by a finite
number of balls of small radius such that Wp is almost flat in each ball. Let
δ2 that will be chosen later and let (B(xk, ρk, vk))k∈J be a family associated
to Wp, δ2, ε that satisfies the conditions stated in Lemma 6. We will use this
covering for all the translates of the Wulff shape. We set εW = mink∈J αdρ

d
kδ2.

We now cover Wn by a polynomial in n number of balls of radius less than εW .
Let ξ > 0 small enough such that

∀x, y ∈ Rd, ‖x− y‖2 ≤ ξ =⇒ Ld ((x+Wp)∆(y +Wp)) ≤
εW
4
.

By construction, µn has its support included in B(0, nd−1). We can cover
B(0, nd−1) by a polynomial in n number of balls of radius ξ. More precisely,
there exist z1, . . . , zM ′ ∈ B(0, nd−1), such that M ′ is polynomial in n and

B(0, nd−1) ⊂
M ′⋃
i=1

B(zi, ξ) .

We set
W̃ =

{
νzi+Wp , i = 1, . . . ,M ′

}
.

Let δ > 0 we will choose later. We define W δ
p and W−δp as

W δ
p = {x ∈ Rd : d2(x,Wp) ≤ δ} and W−δp = {x ∈Wp : d2(x, ∂Wp) ≥ δ} .

Let us define g as

g(x) =

{
min(d2(x,Wp)/δ, 1) if x ∈ Rd \Wp

−min(d2(x, ∂Wp)/δ, 1) if x ∈Wp
.

The function g is uniformly continuous and satisfies ‖g‖∞ ≤ 1. For each i ∈
{1, . . . ,M ′}, we define gi by gi(x) = g(x− zi) for x ∈ Rd, and F = {gi, 1 ≤ i ≤
M ′} ∪ {1}. The set F is a set made of translates of g and the constant function
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equal to 1. If the measure µn is in the local weak neighborhood V(W,F, εW4 ),
then there exists νx+Wp

in V(Wn,F,
εW
4 ) such that

sup
f∈F
|νx+Wp(f)− µn(f)| ≤ εW

4
.

Moreover there exists an i ∈ {1, . . . ,M ′} such that x ∈ B(zi, ξ) and so

sup
f∈F
|νx+Wp

(f)− νzi+Wp
(f)| ≤ Ld ((x+Wp)∆(zi +Wp)) ≤

εW
4

and also
µn ∈ V

(
W̃,F, εW /2

)
.

Let us choose r > 0 large enough so that the ball B(0, r − 2d) contains Wp.
For x ∈ Rd, we define bxc to be the closest point to x in Zd for the Euclidean
distance. For any i ∈ {1, . . . ,M ′}, we have

W + zi ⊂ B(bzic, r) .

Let us define the function u such that for all ι > 0,

u(ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |g(x)− g(y)| ≤ ι

}
, 1
)
.

As the function g is uniformly continuous, the function u is positive. Moreover,
as F is made of translated of g and the constant function equal to 1, it is
clear that this set satisfies the condition stated in Proposition 5.5 associated
with the function u. Using Proposition 5.5 with the function u, there exist
positive constants C1, C2 depending only on r, u, p and εW such that for all
i ∈ {1, . . . ,M ′}

P

[
max
Gn∈Gn

sup
f∈F
|µn(f1B(bzic,r))− νn(f1B(bzic,r))| > εW /4

]
≤ C1 e−c2n

1−3/2d

.

(67)

The point of choosing such a set F is that we can deduce from the fact that
the quantity supf∈F |µn(f)− νW+zi(f)| is small that the associated symmetric
difference Ld((Pn ∩B(bzic, r))∆(zi +Wp)) is small. Indeed, we have

Ld((Pn ∩B(bzic, r))∆(zi +Wp))

=

∫
(Pn∩B(bzic,r))\(zi+Wp)

1dLd(x) +

∫
(zi+Wp)\Pn

1dLd(x)

≤
∫

(Pn∩B(bzic,r))\(zi+Wp)

gi(x)dLd(x)−
∫

(zi+Wp)\Pn

gi(x)dLd(x)

+ Ld(W δ
p \W−δp )

= |νn(gi1B(bzic,r)))− νW+zi(gi1B(bzic,r)))|+ L
d(W δ

p \W−δp )

≤ sup
f∈F
|µn(f1B(bzic,r))− νn(f1B(bzic,r))|

+ sup
f∈F
|µn(f1B(bzic,r))− νW+zi(f1B(bzic,r))|+ L

d(W δ
p \W−δp ) . (68)
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So we choose δ small enough so that

Ld(W δ
p \W−δp ) ≤ εW

4
. (69)

Moreover, we have

P
[
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)n

d−1, µn ∈ V
(
W̃,F, εW /2)

]
≤

M ′∑
i=1

P
[
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)n

d−1,
supf∈F |µn(f)− νW+zi(f)| ≤ εW /2

∣∣∣ 0 ∈ C∞] . (70)

Using inequalities (67), (68) and (69), we obtain

P
[
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

supf∈F |µn(f)− νW+zi(f)| ≤ εW /2

∣∣∣ 0 ∈ C∞]
≤ P

[
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

supf∈F |µn(f1B(bzic,r))− νW+zi(f1B(bzic,r))| ≤ εW /2

]
≤ P

[
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

Ld((Pn ∩B(bzic, r))∆(zi +Wp)) ≤ εW

]
+ C1 e−c2n

1−3/2d

.

(71)

Finally, we proceed as in inequality (62) in the proof of Theorem 5:

P
[
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)n
d−1,

Ld((Pn ∩B(bzic, r))∆(zi +Wp)) ≤ εW

∣∣∣ 0 ∈ C∞]
≤ 1

θp

∑
k∈J

P
[
G(zi + xk, ρk, nWp

(xk), w, δ2)
]
. (72)

It is possible to choose δ2 depending on W , G and w (see again section 6 in [8])
such that there exist positive constants C1,k and C2,k depending on G, d, W , k
and w so that for all k ∈ J ,

P[G(xk, ρk, nWp(xk), w, δ2)] ≤ C1,k exp(−C2,kn
d−1) .

So combining inequalities (70), (71) and (72), we obtain

P
[
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)n

d−1, µn ∈ V
(
W̃,F, εW /2)

]
≤M ′

(
C1 e−c2n

1−3/2d

+
1

θp

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
. (73)

Moreover, we have

P
[
∃Gn ∈ Gn,

|Gn|
nd
≥ (1 + w)θpLd(Wp), µn ∈ V

(
W̃,F, εW /2)

]

≤
M ′∑
i=1

P
[
∃Gn ∈ Gn, |Gn|

nd ≥ (1 + w)θpLd(Wp),
|µn(1)− νW+zi(1)| ≤ εW /2

∣∣∣ 0 ∈ C∞]

≤
M ′∑
i=1

P

[
∃Gn ∈ Gn, |Gn|

nd ≥ (1 + w)θpLd(Wp),∣∣∣ |Gn|
nd − θpLd(Wp)

∣∣∣ ≤ εW /2
∣∣∣ 0 ∈ C∞] (74)
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where we recall that θpLd(Wp) = 1, so up to choosing a smaller εW , we assume
that εW ≤ 2w so that the probability in the sum is equal to 0. Finally, combining
inequalities (73) and (74), we obtain

P
[
nϕn ≥

1− w
1 + w

Ip(Wp)

θpLd(Wp)

∣∣∣ 0 ∈ C∞] ≤ P
[
∃Gn ∈ Gn, µn /∈ V

(
W̃,F, εW /2

)]
+M ′

(
C1 exp(−C2n) +

1

θp

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
. (75)

Thanks to Theorem 5, there exist positive constants C ′1, C ′2, depending on p, u,
εW and d such that

P
[
∃Gn ∈ Gn, µn /∈ V

(
W̃,F, εW /2

) ∣∣∣ 0 ∈ C∞] ≤ C ′1 exp(−C ′2n1−3/2d) .

By choosing w small enough, we obtain

P
[
nϕn ≥ (1− ε) Ip(Wp)

θpLd(Wp)

∣∣∣ 0 ∈ C∞]
≤ C ′1 exp(−C ′2n1−3/2d) +M ′

(
C1 exp(−C2n) +

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
.

As M ′ is polynomial in n, the result follows.

6.3 Proof of Theorem 2
Let ε > 0. As in the proof of Theorem 4, there exists an integer M ′ that

is polynomial in n and z1, . . . , zM ′ points of B(0, nd−1) such that for any finite
set F of continuous functions of infinite norm at most 1, if µn ∈ V(W,F, ε)
then µn ∈ V(W̃,F, 2ε) where W̃ =

{
νzi+Wp

, i = 1, . . . ,M ′
}
. Let δ > 0 we will

choose later. Let us define f and g as

f(x) = min(d2(x,Rd \W δ
p )/δ, 1), for x ∈ Rd

and
g(x) = min(d2(x,Wp)/δ, 1), for x ∈ Rd .

The functions f and g are uniformly continuous and satisfy ‖f‖∞ ≤ 1 and
‖g‖∞ ≤ 1. For each i ∈ {1, . . . ,M ′}, we define fi by fi(x) = f(x − zi) and gi
by gi(x) = f(x− zi) for x ∈ Rd. We define

F = {fi, 1 ≤ i ≤M ′} ∪ {gi, 1 ≤ i ≤M ′} .

Let Gn ∈ Gn. Let i ∈ {1, . . . ,M ′}. We have

|Gn∆((n(Wp + zi)) ∩ C∞)| = |Gn \ n(Wp + zi)|+ |(n(Wp + zi) ∩ C∞) \Gn| .
(76)

Using a renormalization argument as in the proof of Theorem 3, there exist
positive constants C1 and C2 depending on p, ε and d such that for all i ∈
{1, . . . ,M ′},

P
[∣∣∣∣ |(n(W + zi)) ∩ C∞|

nd
− θpLd(Wp)

∣∣∣∣ ≥ ε ∣∣∣ 0 ∈ C∞] ≤ C1 exp(−C2n) .
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As Gn ∩ (n(Wp + zi)) ⊂ (n(Wp + zi)) ∩ C∞, we have with probability at least
1− C1 exp(−C2n),

|((n(Wp + zi)) ∩ C∞) \Gn|
= |(n(Wp + zi)) ∩ C∞| − |Gn ∩ (n(Wp + zi))|
≤ θpLd(Wp)n

d + ndε− ndµn(fi) + |n((W δ
p + zi) \ (Wp + zi)) ∩ Zd| .

We can find a constant c(δ) depending only on δ, p and d, such that c(δ) goes
to 0 when δ goes to 0 and for all z ∈ Rd

|n((W δ
p + z) \ (Wp + z)) ∩ Zd| ≤ c(δ)nd ,

so that,

|((n(Wp + zi)) ∩ C∞) \Gn| ≤ nd|νWp+zi(fi)− µn(fi)|+ (ε+ c(δ))nd

≤ nd sup
h∈F
|νWp+zi(h)− µn(h)|+ (ε+ c(δ))nd . (77)

Moreover, noticing that νWp+zi(gi) = 0, we obtain

|Gn \ n(W + zi)| ≤ ndµn(gi) + |n((W δ
p + zi) \ (Wp + zi)) ∩ Zd|

≤ nd|µn(gi)− νWp+zi(gi)|+ ndc(δ)

≤ nd sup
h∈F
|νWp+zi(h)− µn(h)|+ ndc(δ) . (78)

Combining inequalities (76), (77) and (78), with high probability, we have

inf
z∈Rd

1

nd
|Gn∆((n(Wp + z)) ∩ C∞)|

≤ min
1≤i≤M ′

1

nd
|Gn∆((n(Wp + zi)) ∩ C∞)|

≤ min
ν∈W̃

{
sup
h∈F
|ν(h)− µn(h)|+ sup

h∈F
|ν(h)− µn(h)|

}
+ ε+ 2c(δ)

≤ 2 min
ν∈W̃

sup
h∈F
|ν(h)− µn(h)|+ ε+ 2c(δ) .

Let us define for any ι > 0,

ug(ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |g(x)− g(y)| ≤ ι

}
, 1
)
,

uf (ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |f(x)− f(y)| ≤ ι

}
, 1
)

and u = min(uf , ug). This function is positive because the function f and g are
uniformly continuous. It is easy to check that F satisfies the condition required in
Theorem 5 associated with the function u. Thus, there exist positive constants
c1 and c2 depending on p, u, ε and d such that

P
[
∃Gn ∈ Gn, inf

ν∈W
sup
h∈F
|ν(h)− µn(h)| ≥ ε

∣∣∣ 0 ∈ C∞] ≤ c1 e−c2n
1−3/2d

and so

P
[
∃Gn ∈ Gn, min

ν∈W̃
sup
h∈F
|ν(h)− µn(h)| ≥ 2ε

∣∣∣ 0 ∈ C∞] ≤ c1 e−c2n
1−3/2d

.
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We now choose δ small enough such that c(δ) ≤ ε so that

P
[
∃Gn ∈ Gn, inf

z∈Rd

1

nd
|Gn∆((n(Wp + z)) ∩ C∞)| ≥ 7ε

∣∣∣ 0 ∈ C∞]
≤ c1 e−c2n

1−3/2d

+M ′C1 exp(−C2n) .

As M ′ is polynomial in n, this yields the result.
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