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Abstract

We study the control of the FamilyWise Error Rate (FWER) in the linear Gaussian model when the

n× p design matrix is of rank p. Single step multiple testing procedures controlling the FWER are derived

from hyperrectangular confidence regions. In this study, we aim to construct procedure derived from hyper-

rectangular confidence region having a minimal volume. We show that minimizing the volume seems a fair

criterion to improve the power of the multiple testing procedure. Numerical experiments demonstrate the

performance of our approach when compared with the state-of-the-art single step and sequential procedures.

We also provide an application to the detection of metabolites in metabolomics.

Keywords: family wise error rate, multiple testing procedure, confidence region, linear model.

1 Introduction

Let us consider the linear Gaussian model

Y = Xβ + ε, (1)

where X is an n×p design matrix of rank p with p < n, ε ∼ N (0, σ2Idn), and β ∈ Rp is an unknown parameter.

We aim to test the hypothesesHi : βi = 0, with 1 ≤ i ≤ p. Several type I errors can be controlled in such multiple

testing procedures. In this study, we focus on the Familywise Error Rate (FWER), defined as the probability of

wrongly rejecting at least one hypothesis Hi. Let β̂mle := (X ′X)−1X ′Y be the maximum likelihood estimator of

the model (1). The usual multiple testing procedures are based on the maximum likelihood estimator and reject

Hi : βi = 0 when |β̂mle
i |/se(β̂mle

i ) > s, where s ≥ 0 is the same threshold as that for the hypotheses H1, . . . ,Hp.

Let ζ be a random vector having the same distribution as
(
β̂mle
1 /se(β̂mle

1 ), . . . , β̂mle
p /se(β̂mle

p )
)

when β = 0.
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We observe that ζ is a Gaussian vector or a multivariate student, depending on whether the standard errors

se(β̂mle
1 ), . . . , se(β̂mle

p ) are known or estimated (thus, σ is known or estimated). There are several ways to choose

such a threshold s, assuring control of the FWER at a significance level α ∈ (0, 1). For example, s can be

chosen according to correlation-free inequalities such as the Bonferroni inequality [Dunn, 1959] or the Gaussian

correlation inequality1 [Royen, 2014, Šidák, 1967]

P

 ⋃
1≤i≤p

{|ζi| ≥ s}

 ≤ p∑
i=1

P(|ζi| ≥ s) and P(|ζ1| ≤ s, . . . , |ζp| ≤ s) ≥
p∏
i=1

P(|ζi| ≤ s).

The inequality given on the left is available for Gaussian vector and multivariate student; the one on the right

is available for Gaussian vector and for some particular cases of multivariate student [Sidak et al., 1971]. These

inequalities are extremely convenient and provide a threshold for controlling the FWER at the significance

level α. The first and second inequalities, respectively, provide the thresholds sbonf := q1−α/2p and ssidak :=

q(1+ p
√
1−α)/2, where qη denotes the η quantile of a ζ1. By taking into account the correlation, a smaller threshold

smax (thus, a better power) is given by setting smax as the 1− α quantile of max{|ζ1|, . . . , |ζp|}.

Confidence regions and testing procedures are closely related (see e.g. [Lehmann and Romano, 2005] page

72). Historically, the famous Bonferroni and Dunn-Šidák corrections for multiple testing procedures [Dunn, 1959,

Šidák, 1967] originated from the construction of hyperrectangular confidence regions (also called simultaneous

confidence intervals). Actually, taking s ∈ {sbonf , ssidak, smax} gives the hyperrectangular confidence region

[β̂mle
1 ±s×se(β̂mle

1 )]×· · ·× [β̂mle
p ±s×se(β̂mle

p )] which contains β with a probability larger than 1−α. Conversely,

given a hyperrectangular confidence region [β̂mle
1 ±s1×se(β̂mle

1 )]×· · ·× [β̂mle
p ±sp×se(β̂mle

p )] containing β with a

probability larger than 1−α one may derive a multiple testing procedure which controls the FWER at significance

level α. Specifically, for any i ∈ {1, . . . , p}, this procedure rejects Hi : βi = 0 if 0 /∈ [β̂mle
i ± si × se(β̂mle

i )]. Of

course, when p = 1, the classical confidence interval [β̂mle
1 ± smax × se(β̂mle

1 )] = [β̂mle
1 ± q1−α/2 × se(β̂mle

1 )] has a

minimal length. Otherwise, when p ≥ 2, we claim that none of the thresholds sbonf , ssidak and smax provides a

hyperrectangular confidence region with the smallest volume. It is natural to attempt minimizing the volume

for a confidence region. To our knowledge, such a minimization has never been studied in the multivariate case

(in the univariate case, the minimization of the expected length of a confidence interval has been studied by

Pratt [1961]). Another theoretical justification for the volume minimization is the following:

Let A ⊂ Rp be an acceptance region defined as Pβ=0(β̂mle ∈ A) = 1−α. We consider the procedure rejecting

the null hypothesis β = 0 against the alternative β 6= 0 when β̂mle /∈ A. The power (and type II error) of

this procedure depends on β in the alternative. We would like to control some kind of “average” power that

would not depend on a specific value of β. To this end, we define an “average” type II error by integrating the

1The inequality P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) ≥
∏p

i=1 P(|ζi| ≤ si) already proved in Šidák [1967] is a particular case of the Gaussian
correlation inequality P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) ≥ P(|ζi| ≤ s1, . . . , |ζi| ≤ sk)P(|ζi| ≤ sk+1, . . . , |ζi| ≤ sp). Recently, the Gaussian
correlation inequality was proved by Royen [2014].
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type II error Pβ(β̂mle ∈ A) over all the possible values of β 6= 0. Let f be the density of β̂mle when β = 0, by

proceeding so and by using Fubini-Tonelli theorem, we obtained the following identity

∫
Rp\{0}

Pβ(β̂mle ∈ A)dβ =

∫
Rp\{0}

(∫
Rp

f(x− β)1(x ∈ A)dx

)
dβ

=

∫
Rp

(∫
Rp\{0}

f(x− β)dβ

)
1(x ∈ A)dx

=

∫
Rp

1(x ∈ A)dx = vol(A).

Therefore, a procedure having an acceptance region with a small volume has globally a small type II error.

Consequently, comparatively to classical single step multiple testing procedures (which are also derived from

hyperrectangular confidence regions), our procedure derived from a hyperrectangular confidence region having

a minimal volume is globally better to detect that the parameter β is not null when actually β 6= 0.

Theoretical results showing that a multiple testing procedure has an optimal power are quite rare [Fromont

et al., 2016, Lehmann et al., 2012, Romano et al., 2011]. For example, in the particular case where the covariance

of β̂mle is a scalar matrix then, the procedure described in section 4 of Romano et al. [2011] has a maximal

power for a specific class of alternatives. However, in the general setting, we are not aware of the existence of

an optimal testing procedure.

We illustrate that deriving a multiple testing procedure from a hyperrectangular confidence region having

a minimal volume is an intuitive way to improve power. In addition, we present a new operational procedure

through a numerical method for volume minimization. This article is organized as follows.

Section 2 contains some basic properties about the optimal hyperrectangular confidence region. We exhibit

some cases in which it is convenient to perform the computation of the optimal hyperrectangular confidence

region.

Section 3 presents a method to numerically minimize the volume of the hyperrectangular confidence region.

Section 4 is devoted to simulation experiments: we compare our multiple testing procedure with the state-of-

the-art single step and sequential procedures.

Section 5 details the analysis of metabolomic data, which motivated this study.

We use the following notations:

• The zero in bold 0 represents the null vector of Rn for some n ≥ 2, the transpose matrix of A is denoted

by A′ and Idp represents the p× p identity matrix.

• The sets A0 and A1 are, respectively, A0 := {i ∈ {1, . . . , p} | βi = 0} and A1 := {i ∈ {1, . . . , p} | βi 6= 0}.

• The matrix Mp(a, b) is a p×p matrix for which the diagonal elements are a and the non-diagonal elements

are b.
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• Given a random vector V := (V1, . . . , Vp), var(V ) denotes the covariance matrix of V and var(Vi) denotes

the marginal variance of Vi.

• The matrix Σ is a p × p positive definite matrix and C is a p × p ‘correlation’ matrix, namely, C is a

positive definite matrix, such that C11 = · · · = Cpp = 1.

• The covariance matrix of β̂mle is σ2(X ′X)−1 thus, for i ∈ {1, . . . , p}, the standard error of β̂mle
i is equal

to σ
√

[(X ′X)−1]ii. When σ is not known an estimator of the standard error is σ̂
√

[(X ′X)−1]ii where

σ̂ :=
(
‖Y −Xβ̂mle‖2/(n− p)

)1/2
. For i ∈ {1, . . . , p}, let us define se(β̂mle

i ) as follows

se(β̂mle
i ) :=


σ
√

[(X ′X)−1]ii when σ is known

σ̂
√

[(X ′X)−1]ii when σ is estimated

.

• Note that ζ is a random vector having the same distribution as
(
β̂mle
1 /se(β̂mle

1 ), . . . , β̂mle
p /se(β̂mle

p )
)

when

β = 0. Consequently, depending on whether σ is known or estimated, ζ ∼ N (0, C) or ζ ∼ tn−p(0, C)

where C is a ‘correlation’ matrix.

2 Minimization of volume

We aim to construct a multiple testing procedure derived from a hyperrectangular confidence region for β having

the following expression: [β̂mle
1 ± s1 × se(β̂mle

1 )]× · · · × [β̂mle
p ± sp × se(β̂mle

p )]. To guarantee a significance level

of 1− α (with α ∈ (0, 1)) the thresholds s1, . . . , sp must satisfy the following equality:

P(β ∈ [β̂mle
1 ± s1 × se(β̂mle

1 )]× · · · × [β̂mle
p ± sp × se(β̂mle

p )]) = 1− α⇔ P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1− α.

Among these hyperrectangular confidence containing β with a probability 1− α, we aim to pick one for which

the expected value of the volume2 2ps1 . . . spE(se(β̂mle
1 ) . . . se(β̂mle

p )) is minimal, which leads to the following

optimisation problem:

minimize

p∏
i=1

si subject to P (|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1− α. (2)

Note that, when p = 1, the optimal threshold is s∗1 = q1−α/2, the 1 − α/2 quantile of ζ1, which yields to the

confidence interval [β̂mle
1 ± q1−α/2 × se(β̂mle

1 )]. This optimization problem has at least one minimizer as proved

in Proposition 3 given in appendix. We do not need the uniqueness of the minimizer of (2), but only pick a

particular optimal threshold s∗. In the Gaussian framework, given a minimizer s∗, the following proposition

holds:
2Let us notice that the volume is not random when σ is known.
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Proposition 1 Let us consider the case where ζ has a Gaussian distribution. Let C be the invertible correlation

matrix of ζ, s∗ =
(
s∗1, . . . , s

∗
p

)
be a solution of the optimisation problem (2) and T s

∗
denote the truncated

Gaussian vector on S∗ = [−s∗1, s∗1]× · · · × [−s∗p, s∗p] having the following density:

fT s∗ (u) =
1

(1− α)
√

(2π)p det(C)
exp

(
−1

2
u′C−1u

)
1(u ∈ S∗)

then all the diagonal coefficients of C−1var(T s
∗
) are equal.

Assuming that the covariance matrix of T s
∗

(here denoted by var(T s
∗
)) was equal to C, all the diagonal

coefficients of C−1var(T s
∗
) would be equal, indicating that s∗ is a solution of (2). Because the diagonal terms of

var(T s
∗
) are always smaller than the diagonal terms of C, var(T s

∗
) cannot be equal to C. However, the condition

given by Proposition 1 can be intuitively interpreted. The optimal (with respect to the volume) hyperrectangular

should be such that the covariance of the truncated Gaussian vector ζ restrained to [−s∗1, s∗1] × · · · × [−s∗p, s∗p]

is as close as possible to the non-constraint covariance of the random vector ζ. The Gaussian framework has

some simple yet interesting cases where the computation of the optimal thresholds s∗1, . . . , s
∗
p can be performed

by hand. Note that in the special case p = 2 (i.e. where β̂mle has only two components), basic algebra shows

that s∗1 = s∗2. This property does not hold true when p > 2.

According to Proposition 1, diagonal coefficients of C−1var(T s
∗
) are equal is a necessary condition for s∗ to

be a minimizer of (2). We aim to illustrate this condition on the following three examples. For convenience, we

denote Mp(a, b), a p × p matrix whose diagonal coefficients are equal to a and whose non-diagonal coefficients

are equal to b.

1) In the independent case: Let us set C = Idp and s ∈ Rp where s1 = · · · = sp > 0 then diagonal

coefficients of C−1var(T s) are equal. This equality suggests (but does not prove) that components of s∗,

minimizer of (2), are all equal.

2) In the equicorrelated case: Let us set C = Mp(1, ρ) and s ∈ Rp where s1 = · · · = sp > 0. It follows that

C−1 = Mp(a, b) for some a and b and var(T s) = M(c, d) for some c and d. Consequently all the diagonal

coefficients of C−1var(T s) = M(a, b)M(c, d) are equal. Again, this equality suggests that components of

s∗ are all equal.

3) In the block diagonal equicorrelated case: Let us set C = diag(Mk(1, ρ),Mp−k(1, ρ′)). It follows that

C−1 is block diagonal with C−1 = diag(Mk(a, b),Mp−k(a′, b′)) for some a, b, a′, b′. Let s ∈ Rp where

s1 = · · · = sk = c1 and sk+1 = · · · = sp = c2, one deduces that var(T s) is block diagonal with var(T s) =

diag(Mk(c, d),Mp−k(c′, d′)) for some c, d, c′, d′. Consequently, whatever c1 and c2, the k first diagonal

coefficients of C−1var(T s) are equal and the p− k last diagonal coefficients of C−1var(T s) are equal. We

only need to tune c1, c2 such that all diagonal coefficients of C−1var(T s) become equal. This equality

suggests that s∗1 = · · · = s∗k and s∗k+1 = · · · = s∗p.
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According to Proposition 2, when correlation coefficients are non-negative, it is actually true that in settings 1)

and 2) components of s∗ are all equals and in setting 3) that s∗1 = · · · = s∗k and s∗k+1 = · · · = s∗p.

Proposition 2 Let us consider the case where ζ has a Gaussian distribution. Let C, the correlation matrix

of ζ, be the block diagonal matrix C = diag(Mk1(1, ρ1),Mk2(1, ρ2), . . . ,Mkl(1, ρl)) where k1 + · · · + kl = p and

ρ1, . . . , ρl ∈ [0, 1) and let α ∈ [0, 1). The optimisation problem (2) has a minimizer s∗ which satisfies

s∗ = ( c1, . . . , c1︸ ︷︷ ︸
k1 components

, . . . , cl, . . . , cl︸ ︷︷ ︸
kl components

).

Except for the particular cases mentioned above, we do not have a closed form for the optimal thresholds.

Therefore, we develop a numerical method to compute these optimal thresholds efficiently.

3 Numerical solver for the optimal thresholds

The optimal thresholds are provided by the solution of the following problem (equivalent to (2))

min g(s) =

p∑
i=1

ln(si) subject to F (s) = P (|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1− α.

Let u ∈ (0,+∞)p, the notation 1/u denotes (1/u1, . . . , 1/up). The Lagrange multiplier theorem assures that at

s∗, the minimizer of (2), the vector ∇g(s∗) is collinear to ∇F (s∗), where ∇ denotes the gradient. Consequently,

the following equivalences hold:

1

s∗
∝ ∇F (s∗)⇔ s∗ ∝ 1

∇F (s∗)
⇔ s∗ ∝ s∗ +

1

∇F (s∗)
where u ∝ v means that u is collinear to v.

Let us notice that whatever s ∈ [0,+∞)p the components of ∇F (s) are strictly positive. This collinearity

motivates us to consider the following iterative sequence:

Let us set s(0) = (c1−α, . . . , c1−α), where c1−α is the 1− α quantile of max {|ζ1|, . . . , |ζp|} and let us define the

iterative sequence (s(i))i∈N, where s(i+1) is given by


u(i) =

(
s(i) + 1

∇F (s(i))

)
,

s(i+1) = λ1−αu
(i) where λ1−α is such that F (λ1−αu

(i)
1 , . . . , λ1−αu

(i)
p ) = 1− α.

In the previous expression, because ∇F (s(i)) > 0, then u(i) > s(i) (these two inequalities are given as per

component). The parameter λ1−α, which is actually 1 − α quantile of max
{
|ζ1|/u(i)1 , . . . , |ζp|/u(i)p

}
, shrinks

u(i) in order to recover an element s(i+1) so that P(|ζ1| ≤ s
(i+1)
1 , . . . , |ζp| ≤ s

(i+1)
p ) = 1 − α. Thus far, this

numerical method is available whatever ζ having a continuous distribution on Rp and a covariance matrix
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Σ. However, the naive computation of the gradient ∇F (s(i)) through simulation is time expensive. Roughly,

the components of s(i) are large; thus, P(s
(i)
j ≤ |ζj | ≤ s

(i)
j + h) is very small, and consequently, a good esti-

mation of (F (s1, . . . , sj−1, sj + h, sj+1, . . . , sp)− F (s1, . . . , sp)) /h through simulations is very time consuming.

Fortunately, there is a trick to compute ∇F in the Gaussian and student frameworks. For example, let us

explain how this trick provides the first component of ∇F . When ζ is Gaussian, the conditional distribu-

tion L(ζ1|ζ2 = x2, . . . , ζp = xp) is a Gaussian distribution with density fm(x),σ2 (the mean m(x) depends

on x := (x2, . . . , xp) while the variance σ2 does not depend on x). Precisely, let A = (C1j)2≤j≤p and let

B = (Cij)2≤i,j≤p, then m(x) = AB−1x and σ2 = C11 − AB−1A′. Let fζ1( . | |ζ2| ≤ s2, . . . , |ζp| ≤ sp) be the

density of the conditional distribution L(ζ1||ζ2| ≤ s2, . . . , |ζp| ≤ sp) and let fζ2,...,ζp be the density of (ζ2, . . . , ζp),

the first component of ∇F is given hereafter

∂F

∂s1
(s) = 2fζ1(s1 | |ζ2| ≤ s2, . . . , |ζp| ≤ sp) = 2

∫ s2

−s2
· · ·
∫ sp

−sp
fζ2,...,ζp(x)fm(x),σ2(s1)dx2 . . . dxp.

Finally, the last expression is easy to compute by using Monte-Carlo simulations of the Gaussian vector

(ζ2, . . . , ζp). When ζ ∼ tn−p(0, C) then ζ has the same distribution as Z/
√
V/(n− p), where Z ∼ N (0, C)

is independent of V ∼ χ2
d with d = n − p. In the student framework, the first component of ∇F is given

hereafter

∂F

∂s1
(s) = 2 fζ1(s1 | |ζ2| ≤ s2, . . . , |ζp| ≤ sp)

=

∫ +∞

0

2fZ1

(
s1

√
v

d
| |Z2| ≤ s2

√
v

d
, . . . , |Zp| ≤ sp

√
v

d

)
fV (v)dv.

This integral is still easy to infer through simulation by adding, with respect to the Gaussian framework, Monte-

Carlo simulations of V . Now, in the Gaussian framework, we illustrate the performance of our solver using two

examples.

Setting 1: We set C := diag(M500(1, 0.9), Id500). Because C is block diagonal equicorrelated, the optimal

thresholds satisfy s∗1, . . . , s
∗
500 = c1 and s∗501, . . . , s

∗
1000 = c2 where c1 and c2 are handily computable.

Thus, in this setting, it is easy to compare the theoretical optimal thresholds with the thresholds given

by the solver of the problem (2).

Setting 2: We set C = (Cij)1≤i,j≤1000 with Cij =
√

min{i, j}/max{i, j}. The matrix C is the correlation

matrix of a Brownian motion discretized on the set {1, . . . , 1000}.

The left panel of the figure 1 shows that in setting 1 after i = 5 iterations, the threshold s(i) almost recovers the

optimal thresholds. The right panel shows that in setting 2, s
(5)
1 ≥ · · · ≥ s

(5)
999 (there is a singularity for s

(5)
1000

that is not a numerical problem).

As described in the figure 1, in both settings, the gain between the volume of the hypercube associated with
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the initial threshold s(0) (for which s
(0)
1 = · · · = s

(0)
1000) and that of the hyperrectangular region associated with

the threshold s(5) is very large.
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Figure 1: The figure on the left provides the optimal thresholds associated with setting 1 described above. A
handy computation of the optimal thresholds gives s∗1 = · · · = s∗500 = 2.93 and s∗501 = · · · = s∗1000 = 4.19.

The y-axis of the figure provides the thresholds s
(5)
1 , . . . , s

(5)
1000 given by the iterative sequence s(i) after i = 5

iterations and s
(0)
1 = · · · = s

(0)
1000 = 3.88. Observe that our solver almost recovers the optimal thresholds.

With respect to the initial threshold s(0), the gain in volume is very large, as
∑1000
j=1 log(s

(0)
j ) = 1358.07 while∑1000

j=1 log(s
(5)
j ) = 1255.20. The figure on the right provides the optimal thresholds associated with setting 2

described above. The y-axis of the figure provides the thresholds s
(5)
1 , . . . , s

(5)
1000 given by the iterative sequence

s(i) after i = 5 iterations and s
(0)
1 = · · · = s

(0)
1000 = 3.08. Again, the gain in volume is also large in setting 2, as∑1000

j=1 log(s
(0)
j ) = 1124.60 while

∑1000
j=1 log(s

(5)
j ) = 1063.71.

Given optimal thresholds s∗1, . . . , s
∗
p, the solution of the problem (2), one derives a multiple testing procedure

for the null hypotheses Hi : βi = 0, i ∈ {1, . . . , p}. The hypothesis Hi is rejected when 0 /∈ [β̂mle
i ± s∗i × se(β̂mle

i )]

or equivalently, when |β̂mle
i |/se(β̂mle

i ) > s∗i . Because the confidence region [β̂mle
1 ± s∗1 × se(β̂mle

1 )]× · · · × [β̂mle
p ±

s∗p × se(β̂mle
p )] contains β with a probability 1−α, the previous procedure controls the Family-Wise Error Rate

(FWER) at significance level α. Let us remind that A0 := {i ∈ {1, . . . , p} | βi = 0}, the FWER is the probability

P
(⋃

i∈A0
|β̂mle
i |/se(β̂mle

i ) > s∗i

)
. The inequality given hereafter assures the control of the FWER at significance

level α.

P

( ⋃
i∈A0

|β̂mle
i |

se(β̂mle
i )

> s∗i

)
= P

( ⋃
i∈A0

βi /∈ [β̂mle
i ± s∗i × se(β̂mle

i )]

)

≤ P

(
p⋃
i=1

βi /∈ [β̂mle
i ± s∗i × se(β̂mle

i )]

)
= α.

Intuitively, because the volume of the hyperrectangular confidence region is minimal, one should expect to

recover a multiple testing more powerful than the classical single step procedures. The numerical experiments

given in the following section confirm this intuition.
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4 Comparison of multiple testing procedures

One of the most famous single-step multiple testing procedure controlling the FWER is the procedure described

in Lehmann and Romano [2005] page 352 (hereafter, procedure 1).

Procedure 1: Whatever i ∈ {1, . . . , p}, the null hypothesis Hi : βi = 0 is rejected in favour of the alternative

βi 6= 0 when |β̂mle
i |/se(β̂mle

i ) > smax. The threshold smax is the 1− α quantile of max{|ζ1|, . . . , |ζp|}.

Sequential procedures have better power than single step procedures, especially when β has many large com-

ponents. Hereafter, we describe the StepDown (SD) counterpart of procedure 1.

The generic stepdown procedure defined by Romano and Wolf [2005], Lehmann and Romano [2005] p. 352,

Dudoit and Van Der Laan [2007] p. 126 is a generalization of Holm’s sequential procedure [Holm, 1979]. To

describe the generic stepdown procedure, let us denote Ti = β̂mle
i /se(β̂mle

i ). The statistical tests are sorted from

the most significant to the least significant, namely, |Tr(1)| ≥ · · · ≥ |Tr(p)|. The rejection of the hypotheses

Hr(1), . . . ,Hr(p) is done sequentially, as explained hereafter.

Procedure 1 SD: The hypothesis Hr(1) is rejected if |Tr(1)| ≥ tr(1). The hypothesis Hr(2) is rejected if

|Tr(1)| > tr(1) and |Tr(2)| > tr(2) and so on. In the previous expressions, the threshold tr(s) is the 1 − α

quantile of max{|ζr(s)|, . . . , |ζr(p)|} (see e.g. [Lehmann and Romano, 2005] pages 351 to 353).

We will compare procedures 1 and 1 SD with procedure 2, described hereafter, which is derived from the

computation of the optimal thresholds. Note that procedure 1 and 1 SD are respectively more powerful that

Bonferroni’s precedure [Dunn, 1961] and Holm’s procedure [Holm, 1979] . Therefore performances of Bonferroni

and Holm procedures are not reported.

Procedure 2: Whatever i ∈ {1, . . . , p}, the null hypothesis Hi : βi = 0 is rejected in favour of the alternative

βi 6= 0 when |β̂mle
i |/se(β̂mle

i ) > s∗i . The thresholds s∗1, . . . , s
∗
p are the optimal ones given in (2).

By construction of the thresholds smax and s∗1, . . . , s
∗
p, the single step procedures 1 and 2 control the FWER

at a significance level α ∈ (0, 1). In addition, the procedure 1 SD also controls the FWER at a significance level

α ∈ (0, 1) (see e.g. [Lehmann and Romano, 2005] pages 351 to 353 or [Romano and Wolf, 2005]). A comparison

of these three procedures based on the average power is carried out on the following setting:

We set var(β̂mle
1 ) = · · · = var(β̂mle

p ) = 1 and the Gaussian vector ζ has a N (0, C) distribution, where

C := diag(M900(1, ρ), Id100). We set β ∈ R1000 with card(A1) = k ∈ {50, 500} and for all i ∈ A1, βi = t,

where t > 0. For the different values of ρ ∈ {0, 0.5, 0.9, 0.999}, the optimal thresholds s∗1, . . . , s
∗
1000 given by

Proposition 2 are as follows.

• When ρ = 0 then s∗1 = · · · = s∗900 = c1 ≈ 4.0553 and s∗901 = · · · = s∗1000 = c2 ≈ 4.0553.

• When ρ = 0.5 then s∗1 = · · · = s∗900 = c1 ≈ 3.7628 and s∗901 = · · · = s∗1000 = c2 ≈ 4.0961.
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• When ρ = 0.9 then s∗1 = · · · = s∗900 = c1 ≈ 2.9284 and s∗901 = · · · = s∗1000 = c2 ≈ 4.3327.

• When ρ = 0.999 then s∗1 = · · · = s∗900 = c1 ≈ 2.0601 and s∗901 = · · · = s∗1000 = c2 ≈ 4.4542.

Hereafter, the average power of a multiple testing procedure represents the proportion of hypotheses associated

to non-null components of β which are correctly rejected. Let I1 = {1, . . . , 900}, let I2 = {901, . . . , 1000} and

let V ∼ N (t, 1). In this framework, the average power of procedure 2 is

card(A1 ∩ I1)

card(A1)
Pt (|V | > c1) +

card(A1 ∩ I2)

card(A1)
Pt (|V | > c2) .

We observe that the average power of procedure 2 depends on the location of the non-null components of β.

Intuitively, when the non-null components of β are located on I1 (i.e. A1 ⊂ I1) then, because the thresholds

s∗1, . . . , s
∗
900 are small, procedure 2 should be powerful. On the other hand, when the non-null components of β

are located on I2 (i.e. A1 ⊂ I2) then, because the thresholds s∗901, . . . , s
∗
1000 are large, procedure 2 should not

be powerful. Thus, to perform a fair comparison, instead of computing the average power for a particular A1,

we will examine the expected value of the average power when ‘A1’ is a random set uniformly distributed on

the set of combination of k elements among 1000. Let U be a random set with a uniform distribution on the

set {I ⊂ {1, . . . , 1000} | card(I) = k}, the expected value of the average power of procedure 2 is given hereafter

EU
(

card(U ∩ I1)

k
Pt (|V | > c1) +

card(U ∩ I2)

k
Pt (|V | > c2)

)
=

9

10
Pt (|V | > c1) +

1

10
Pt (|V | > c2) . (3)

In the figure 2, we compare the average power of procedures 1, 2 and 1 SD.

A stepdown procedure is merely a sequential application of a single step procedure. Precisely, in the first

stage of stepdown procedure 1 SD, the rejections are the ones given by the single step procedure 1. The second

stage of stepdown procedure 1 SD is an application of single step procedure 1 on the hypotheses not rejected in

the first stage, and so on. Intuitively, when β has many very large components, a large number of hypotheses

are rejected in the first stage, implying that the number of hypotheses tested in the second stage becomes small,

allowing the stepdown procedure to become powerful. The most favourable setting for the stepdown procedures

is when card(A1) = 500 and t is large, as in this case, β has lot of large components. Note that our procedure

is at least as competitive as the other ones in this situation, and depending on ρ, our procedure can be much

more powerful than the state-of-the art procedures.

In summary, when some components of β̂mle are strongly correlated, our method outperforms the other ones.

It could appear as appealing to construct a stepdown procedure based on the procedure 2. Unfortunately,

as illustrated in the appendix the application of the generic stepdown method on the procedure 2 (as described

in Lehmann and Romano [2005] page 353) does not control the FWER since the monotonicity assumption does
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Figure 2: This figure provides the average power of procedures 1, 1 SD and 2 (the average power of procedure
2 is reported in (3)). Average power of procedures 1 and 2 are explicit and thus can be computed without
using simulations whereas the average power of procedure 1 SD is computed based on 10000 simulations. When
ρ = 0, these three procedures have approximately the same power. When ρ increases, the difference between
the average power of procedure 2 increases in comparison with the average power of the other procedures.
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not hold. The construction of a stepdown procedure based on the procedure 2 and controlling the FWER is,

for the authors, an open question.

5 Application in metabolomics: detection of metabolites

Metabolomics is the science of detection of metabolites (small molecules) in biological mixtures (e.g. blood and

urine). The most common technique for performing such characterization is proton nuclear magnetic resonance

(NMR). Each metabolite generates a characteristic resonance signature in the NMR spectra with an intensity

proportional to its concentration in the mixture. The number of peaks generated by a metabolite and their

locations and ratio of heights are reproducible and uniquely determined: each metabolite has its own signature in

the spectra. Each signature spectrum of each metabolite can be stored in a library that could contain hundreds

of spectra. A major challenge in NMR analysis of metabolic profiles is automatic metabolite assignment from

spectra. To identify metabolites, experts use spectra of pure metabolites and manually compare these spectra

to the spectrum of the biological mixture under analysis. Such a method is time-consuming and requires

domain-specific knowledge. Furthermore, complex biological mixtures can contain hundreds or thousands of

metabolites, which can result in highly overlapping peaks. Figure 3 gives an example of an annotated spectrum

of a mixture.

Figure 3: An annotated mixture spectrum with overlaps between peaks of lipides and valine and between peaks
of glutamine and lysine.

Recently, automatic methods have been proposed, for example, Metabohunter [Tulpan et al., 2011], BAT-

MAN [Astle et al., 2012, Hao et al., 2012], Bayesil [Ravanbakhsh et al., 2015] or the software Chenomx [Weljie
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et al., 2006]. Most of these methods are based on modelling using a Lorentzian shape and a Bayesian strategy.

Nevertheless, most are time-consuming, and thus, cannot be applied to a large library of metabolites, and/or

their statistical properties are not proven. Thus, the establishment of a gold-standard methodology with proven

statistical properties for identification of metabolites would be very helpful for the metabolomic community.

Because the number of tests is not very large (one can expect to analyse a mixture with about 200 metabo-

lites), and as NMR experts want to recover all metabolites present in the mixture, but to prevent a false

discovery, we developed a multiple testing procedure controlling the FWER.

5.1 Modelling

The spectrum of a metabolite (or a mixture) is a nonnegative function defined on a compact interval T. We

assume that we have a library of known spectra containing all p = 36 metabolites {fi}1≤i≤p (with
∫
T
fi(t)dt = 1)

that can be found in a mixture. This family of p spectra is assumed to be linearly independent. In the

first approximation, the observed spectrum of the mixture Y can be modelled as a discretized noisy convex

combination of the pure spectra:

Yj =

(
p∑
i=1

βifi(tj)

)
+ εj with 1 ≤ j ≤ n, t1 < · · · < tn a subdivision of T and n = 6001.

The random vector (ε1, . . . , εn) is a Gaussian vector N (0,Γ), where Γ is a known and invertible covariance

matrix. The covariance structure (ε1, . . . , εn) is described in Tardivel et al. [2017].

5.2 Real dataset

The method for the detection of metabolites was tested on a known mixture. The NMR experts supplied us

with a library of 36 spectra of pure metabolites and a mixture composed of these metabolites. We first analysed

this mixture without any knowledge about the number of used metabolites and their proportions. The results

are presented in Table 1.

Metabolites Actual proportions Significantly not null
Choline chloride 0.545 Yes
Creatinine 0.209 Yes
Benzoic acid 0.086 Yes
L-Proline 0.069 Yes
D-Glucose 0.060 Yes
L-Phenylalanine 0.029 Yes
30 other metabolites 0 No

Table 1: This table presents the results for the 36 metabolites of the library. The actual proportions of each
metabolite are presented in the first column. For each metabolite, evidence against the nullity of the proportion
is given in the second column.

After analysing this mixture we have compared our results with the real composition of the mixture supplied
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by NMR experts. The six metabolites present in the complex mixture was detected, including those with small

proportions. Among the 30 other metabolites which are not present in the mixture, no one was wrongly

detected. Because the whole procedure is fast, lasting only a few seconds, it could be easily applied to a library

containing several hundred metabolites. For more detailed results on this application to metabolomics, we refer

the interested reader to Tardivel et al. [2017] where our procedure is compared to existing procedures on more

complex datasets and to Lefort et al. [2019] where the package ASICS, derived from this procedure and available

on the Bioconductor platform, is presented.

6 Conclusions

This study takes a new look at an old problem: the construction of multiple testing procedures derived from

hyperrectangular confidence regions. Our purpose is to derive such a procedure based on hyperrectangular

confidence regions having a minimal volume. These regions depend on an optimal threshold s∗, which is a

solution of the constraint problem (2); we provide a solver giving a numerical solution to this problem. When

p ≤ 1000, the optimal threshold s∗ (thus, the optimal hyperrectangular confidence region) is easily tractable.

With respect to standard hypercube confidence regions, the gain in volume obtained with our method is huge.

Based on simulations, we show that deriving a multiple testing procedure from a hyperrectangular region having

a minimal volume is an intuitive way to increase the average power. Indeed, simulations show that our procedure

is at least as powerful as the other procedures, and depending on the correlation matrix, our procedure can be

much more powerful than the state-of-the-art procedures. However, it is still a challenge to provide a stepdown

counterpart to our procedure.

7 Appendix

7.1 Proofs:

Proposition 3 Let C be a p × p correlation matrix and let ζ be a Gaussian vector N (0, C) or a multivariate

student tn−p(0, C). Then, there exists at least one element s∗ ∈ [0,+∞)p solution of the problem (2).

Proof: We see that the volume cannot be minimal when ‖s‖∞ is too large. Let qi > 0 be the 1 − α quantile

of |ζi|, let q = min{q1, . . . , qp} > 0 and let us set S := {s ∈ Rp | P(|ζ1| ≤ s1, . . . , |ζ1| ≤ sp) = 1− α}. Whatever

s ∈ S the following inequality holds
∏p
i=1 si ≥ ‖s‖∞qp−1, consequently, the function s ∈ S 7→

∏p
i=1 si is coercive

and continuous. Finally, since the function s ∈ [0,+∞)p 7→ P(|ζ1| ≤ s1, . . . , |ζ1| ≤ sp) is continuous then the

set S is closed and consequently the minimum of the problem (2) is reached. �

Proof of Proposition 1:

14



To simplify the computation of the gradients, we consider the following problem, which has the same solution

as (2)

min g(s) =

p∑
i=1

ln(si) subject to F (s) = P (|ζ1|/s1 ≤ 1, . . . , |ζp|/sp ≤ 1) = 1− α.

As this problem reaches its minimum at s∗, ∇g(s∗) is collinear to ∇F (s∗). Let us set D the matrix D =

diag(s1, . . . , sp), we have the following expression for F (s1, . . . , sp), namely,

F (s1, . . . , sp) =

∫
[−1,1]p

R exp

(
−1

2
x′DC−1Dx

)
det(D)dx

=

∫
[−1,1]p

R exp

(
−1

2
x′DC−1Dx+ ln(det(D))

)
dx,

with R = 1/((2π)p/2 det(C)1/2). Next, the expression of the partial derivative

∂

∂si

(
−1

2
x′DC−1Dx+ ln(det(D))

)
=

1

si
−

p∑
j=1

C−1i,j xixjsj ,

implies that the gradient of F is equal to

∂F

∂si
(s1, . . . , sp) =

1

si
F (s1, . . . , sp)−R

p∑
j=1

∫
[−1,1]p

(C−1i,j xixjsj) exp

(
−1

2
x′DC−1Dx

)
det(D)dx,

=
1− α
si
−R

p∑
j=1

∫
[−1,1]p

(C−1i,j xixjsj) exp

(
−1

2
x′DC−1Dx

)
det(D)dx.

Thus, ∇F (s) = (1− α)∇g(s) + v(s), where v(s) ∈ Rp is the following vector

v(s) :=

 p∑
j=1

C−1i,j

∫
[−1,1]p

xixjs
∗
jR exp

(
−1

2
x′DC−1Dx

)
det(D)dx


1≤i≤p

.

Consequently, ∇g(s∗) and ∇F (s∗) are collinear if and only if ∇g(s∗) and v(s∗) are collinear.

∃k ∈ R such that v(s∗) = k∇g(s∗),

⇔ ∀i ∈ {1, . . . , p},
p∑
j=1

C−1i,j

∫
[−1,1]p

xis
∗
i xjs

∗
jR exp

(
−1

2
x′DC−1Dx

)
det(D)dx = k,

⇔ ∀i ∈ {1, . . . , p},
p∑
j=1

C−1i,j

∫
u∈Rp

uiuj
R

1− α
exp

(
−1

2
u′C−1u

)
1(u ∈ S∗)du =

k

1− α
. (4)

The expression (4) is obtained via the change of variables ∀i ∈ {1, . . . , p}, ui = xis
∗
i . To conclude, one recognizes

that ∫
u∈Rp

uiuj
R

1− α
exp

(
−1

2
u′C−1u

)
1(u ∈ S∗)du = E

(
T s

∗

i T s
∗

j

)
= cov

(
T s

∗

i , T s
∗

j

)
.

Thus, the diagonal coefficients of C−1var(Ts∗) are equal to k/(1− α). �
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7.2 Proof of Proposition 2

Let us remind that Mp(a, b) represents a p × p matrix whose diagonal coefficients are a and non-diagonal

coefficients are b. Our main purpose is to prove Lemma 1.

Lemma 1 Let ζ be a Gaussian vector of Rp having a N (0,Mp(1, ρ)) distribution where ρ ∈ [0, 1) and let

α ∈ [0, 1). The following problem

minimize

p∏
i=1

si subject to P (|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1− α. (5)

has a unique minimizer s∗ = (c1−α, . . . , c1−α) where c1−α is the 1−α quantile of the random variable max{|ζ1|, . . . , |ζp|}.

Proposition 2 is a straightforward consequence of lemma 1

Sketch of the proof

First le us notice the Gaussian vector ζ given in Lemma 1 has the same distribution as (
√
ρZ0 +

√
1− ρZi)1≤i≤p

where Z0, . . . , Zp are i.i.d N (0, 1) random variables. Consequently, conditionally to {Z0 = z0}, the Gaussian

vector (
√
ρZ0 +

√
1− ρZi)1≤i≤p has i.i.d components having N (

√
ρz0, 1 − ρ) distribution. Lemmas 2 and 3

provide some geometrical results associated to this conditional distribution N (θ, a2Idp) for some θ ∈ Rp and

some a ≥ 0. More precisely, when θ = 0, Lemma 2 shows that among hyperrectangle with volume 2pV ,

the hypercube [−V 1/p, V 1/p]p has a maximal probability with respect to the Gaussian measure N (0, a2Idp).

Lemma 2 is a consequence of Proposition 1 but a specific and easier proof for this lemma is given here. Lemma

3 extends the result given by Lemma 2 to the case in which θ 6= 0. Technical details to prove this second lemma

are different than the ones used for the first lemma. Actually, the result given by Lemma 2 and an application

of the Gronwall’s inequality [Gronwall, 1919] are key steps to prove the Lemma 3. The proof of Lemma 1 is a

quite straightforward consequence of lemmas 2 and 3.

Proof of Lemma 1

Lemma 2 Let W be a Gaussian vector having a N (0, a2Idp) distribution where a > 0 and let V > 0. The

following optimization problem

maximize P (|W1| ≤ s1, . . . , |Wp| ≤ sp) subject to

p∏
i=1

si = V (6)

has a unique maximizer s̄ ∈ (0,+∞)p which is s̄ = (V 1/p, . . . , V 1/p).

Proof: Similar arguments than the ones given in proof of Proposition 1 shows that the optimization problem

(6) has at least one maximizer in (0,+∞)p. Let us denote φ and Φ be respectively the density and cumulative

distribution function of a N (0, 1) distribution.
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Let us introduce the following optimization problem equivalent to (6) which allows to reduce technical

computation difficulties.

maximize L(s) =

p∑
i=1

ln(2Φ(si/a)− 1) subject to g(s) =

p∑
i=1

ln(si) = ln(V ).

At s̄, maximizer of (6), according to Lagrange multipliers theorem, gradient vectors ∇L(s̄) and ∇g(s̄) are

collinear. Consequently the following collinearity holds

(
2φ(s̄i/a)

a(2Φ(s̄i/a)− 1)

)
1≤i≤p

∝
(

1

s̄i

)
1≤i≤p

where ∝ means collinear to.

Thus there exists λ ∈ R such that the following equalities occurs

∀i ∈ {1, . . . , p}, 2s̄iφ(s̄i/a)

a(2Φ(s̄i/a)− 1)
= λ. (7)

Whatever a > 0, the function h : t > 0 7→ (2tφ(t/a)) / (a(2Φ(t/a)− 1)) is strictly decreasing on (0,+∞).

Consequently, if s ∈ (0,+∞)p is a vector for which equalities s1 = · · · = sp do not occur then the condition

(7) is not met implying thus that s is not a maximizer. One may deduce that s̄, maximizer of (6), satisfies the

equalities s̄1 = · · · = s̄p which implies that s̄ = (V 1/p, . . . , V 1/p). �

Lemma 3 Let W1, . . . ,Wp be i.i.d random variable having N (θ, a2) distribution, where θ ∈ R and a > 0 and

let V > 0. The following optimization problem

maximize Pθ (|W1| ≤ s1, . . . , |Wp| ≤ sp) subject to

p∏
i=1

si = V

has a unique minimizer s̄ ∈ [0,+∞)p which is s̄ = (V 1/p, . . . , V 1/p).

Proof: Let S be the hypercube S := [−V 1/p, V 1/p]p, let s1 > 0, . . . , sp > 0 not simultaneously equal and such

that
∏p
i=1 si = V , let S be the hyperrectangle S := [−s1, s1]× · · · × [−sp, sp] and let W be the Gaussian vector

W := (W1, . . . ,Wp). Since S is not an hypercube, according to Lemma 2, when θ = 0 we already know that

P0(W ∈ S) > P0(W ∈ S). We are going to show that this inequality remains true when θ 6= 0. Let us set G be

the following function

∀θ ∈ R, G(θ) := (2π)p/2
(
Pθ(W ∈ S)− Pθ(W ∈ S)

)
=

∫
x∈Rp

exp

(
−1

2

p∑
i=1

(θ − xi)2
)(

1(x ∈ S)− 1(x ∈ S)
)
dx.
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We aim to prove that G is strictly positive. The derivative of G is the following function

G′(θ) =

∫
x∈Rp

p∑
i=1

(xi − θ) exp

(
−1

2

p∑
i=1

(θ − xi)2
)(

1(x ∈ S)− 1(x ∈ S)
)
dx,

= −pθG(θ) +

∫
x∈Rp

p∑
i=1

xi exp

(
−1

2

p∑
i=1

(θ − xi)2
)(

1(x ∈ S)− 1(x ∈ S)
)
dx.

Since
∑p
i=1 xi is bounded over the set S ∪ S, there exists a constant K ≥ 0 such that whatever x ∈ S ∪

S, |
∑p
i=1 xi| ≤ K. From this inequality one deduces the differential inequality G′(θ) ≥ −pθG(θ) − K|G(θ)|.

Now, let us prove, by contradiction, that G is positive on [0,+∞). Let us assume that G is not positive on

[0,+∞) then, because G is continuous and G(0) > 0, there exists θ0 > 0 such that G(θ0) = 0 and G is non-

negative on [0, θ0]. Therefore on this interval G′(θ) ≥ G(θ)(−pθ − K) and thus, according to the Gronwall’s

inequality [Gronwall, 1919], this differential inequality implies the following result

∀θ ∈ [0, θ0], G(θ) ≥ G(0) exp

(∫ θ

0

(−pt−K)dt

)
.

One may deduce the contradiction G(θ0) > 0 and thus, because G is even, G is positive on R. Consequently,

whatever θ ∈ R, the inequality Pθ(W ∈ S) > Pθ(W ∈ S) occurs implying thus that s̄ = (V 1/p, . . . , V 1/p) is the

unique maximizer of the problem (3). �

Proof of Lemma 1:

First, let us notice that when Z0, . . . , Zp are i.i.d N (0, 1) random variables, the Gaussian vector (
√
ρZ0 +

√
1− ρZi)1≤i≤p has the same distribution as ζ. Let us assume that a minimizer s∗, solution of the problem (5),

does not satisfy inequalities s∗1 = · · · = s∗p and let us set v = (s∗1 × · · · × s∗p)1/p (thus s∗ 6= (v, . . . , v)). According

to Lemma 3, conditionally to the event {Z0 = z0}, the following inequality occurs

P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρZ0 +
√

1− ρZi
∣∣∣ ≤ s∗i |Z0 = z0

)
= P

(
∀i ∈ {1, . . . , p},

∣∣∣√ρz0 +
√

1− ρZi
∣∣∣ ≤ s∗i)

< P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρz0 +
√

1− ρZi
∣∣∣ ≤ v) .

Let φ be the density of the N (0, 1) distribution, since the previous inequality holds whatever z0 ∈ R, one may
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deduce that

P(∀i ∈ {1, . . . , p}, |ζi| ≤ v)

=

∫
z0∈R

P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρZ0 +
√

1− ρZi
∣∣∣ ≤ v|Z0 = z0

)
φ(z0)dz0

>

∫
z0∈R

P
(
∀i ∈ {1, . . . , p},

∣∣∣√ρZ0 +
√

1− ρZi
∣∣∣ ≤ s∗i |Z0 = z0

)
φ(z0)dz0

> P(∀i ∈ {1, . . . , p}, |ζi| ≤ s∗i ) = 1− α.

Because P(|ζ1| ≤ v, . . . , |ζp| ≤ v) > 1 − α, there exists t ∈ [0, 1) such that P(|ζ1| ≤ tv, . . . , |ζp| ≤ tv) = 1 − α.

Finally, since tpvp < s∗1 × · · · × s∗p, one deduces that s∗ = (s∗1, . . . , s
∗
p) is not a minimizers of (5). Consequently,

every components of a minimizer s∗ of (5) are equal which implies that s∗1 = · · · = s∗p = c1−α. �

7.3 Dunnett’s procedure is optimal

As an illustration of Proposition 1, the thresholds prescribed by Dunnett’s procedure are optimal.

Dunnett’s procedure compares the mean of treatment groups with the mean of the control group [Dunnett,

1955]. When each group (control and treatment) has the same number of observations the thresholds given by

Dunnett’s procedure are the optimal ones.

Let us denote p the number of treatment groups and n the number of observations, under the assumptions

of Dunnett (Gaussianity, homoscedasticity), the empirical means M̂0, M̂1, . . . , M̂p of each group are indepen-

dent and distributed according to N (µ0, σ
2/n),N (µ1, σ

2/n), . . . ,N (µp, σ
2/n) distributions (with σ known to

simplify). In Dunnett’s procedure, whatever i ∈ {1, . . . , p}, the null hypothesis H0
i : µi = µ0 is rejected

for the alternative H1
i : µi 6= µ0 as soon as |M̂i − M̂0| > c1−ασ

√
2/n, where c1−α is the 1 − α quantile of

max{|ζ1|, . . . , |ζp|}. In the later expression, ζ := (ζ1, . . . , ζp) is distributed according to N (0, C) distribution,

where C is a p × p equicorrelated correlation matrix defined by Cij = 1 if i = j and Cij = 1/2 otherwise.

Because C is an equicorrelated correlation matrix, the threshold prescribed in Dunnett’s procedure (the same

for each hypothesis) is optimal with respect to the volume.

7.4 Application of the generic stepdown method to procedure 2 does not control

the FWER

The following example illustrates that an application of the generic stepdown method to procedure 2 does not

control the FWER. Let us assume that the maximum likelihood estimator β̂mle is distributed according to a
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N (β,C) distribution where C and β, as given hereafter,

C = (C1|C2|C3) :=


1 0.999 0

0.999 1 0

0 0 1

 and β = (+∞, 0, 0).

Let us apply the generic stepdown method to our procedure based on the optimal thresholds. The solution of

the problem (2) with the matrix C and α = 0.05 is s
(0)
1 = s

(0)
2 = 2.10 and s

(0)
3 = 2.43. In the first step, the

hypothesis Hi is rejected if |β̂mle
i | > s

(0)
i with i ∈ {1, 2, 3}. Obviously, because β1 = +∞, the hypothesis H1 is

rejected; let us assume that H2 and H3 are not rejected. Consequently, there is no false discovery in the first

step; thus, |β̂mle
2 | ≤ s

(0)
2 and |β̂mle

2 | ≤ s
(0)
3 . Let us set C̃ = (C2|C3) = Id2, the solution of the problem (2) with

C̃ is s
(1)
2 = s

(1)
3 = 2.23. In the second step, the hypothesis Hi is rejected if |β̂mle

i | > s
(1)
i with i ∈ {2, 3}. Let

us assume that H2 and H3 are not rejected. Consequently, there is no false discovery in the second step; thus,

β̂mle
2 ≤ s(1)2 and β̂mle

2 ≤ s(1)3 . Finally, the probability of no false discovery is

P(|β̂mle
2 | ≤ 2.10 ∩ |β̂mle

3 | ≤ 2.23) < P(|β̂mle
2 | ≤ 2.23 ∩ |β̂mle

2 | ≤ 2.23) = 0.95.

Consequently, the FWER is not controlled at the significance level α = 0.05. Note that, in this example, optimal

thresholds are not decreasing in the sense that (s
(1)
2 , s

(1)
3 ) is not per component smaller than (s

(0)
2 , s

(0)
3 ). This

fact is the reason why the application of the generic stepdown method to procedure 2 fails to control the FWER.
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cordet, and Rémi Servien. ASICS: an automatic method for identification and quantification of metabolites

in complex 1D 1H NMR spectra. Metabolomics, 13(10):109, 2017.
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automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures. BMC

Bioinformatics, 12(1):400, 2011.

Aalim M. Weljie, Jack Newton, Pascal Mercier, Erin Carlson, and Carolyn M. Slupsky. Targeted profiling:

Quantitative analysis of 1H-NMR metabolomics data. Analytical Chemistry, 78(13):4430–4442, 2006.

22


