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Powerful multiple testing procedures derived from hyperrectangular

confidence regions having a minimal volume
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2 INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.

Abstract

We study the control of the FamilyWise Error Rate (FWER) in the linear Gaussian model when the

n× p design matrix is of rank p. Single step multiple testing procedures controlling the FWER are derived

from hyperrectangular confidence regions. In this study, we aim to construct procedures derived from

hyperrectangular confidence regions having a minimal volume. We show that minimizing the volume seems a

fair criterion to improve the power of the multiple testing procedure. Numerical experiments demonstrate the

performance of our approach when compared with the state-of-the-art single step and sequential procedures.

We also provide an application to the detection of metabolites in metabolomics.

Keywords: Confidence region, Multiple testing procedure, Metabolomics

1 Introduction

Let us consider the linear Gaussian model

Y = Xβ∗ + ε, (1)

where X = (X1| . . . |Xp) is an n × p design matrix of rank p with p < n, ε ∼ N (0, σ2Idn), and β∗ ∈ Rp is

an unknown parameter. We aim to test the hypotheses Hi : β∗i = 0, with 1 ≤ i ≤ p. Several type I errors

can be controlled in such multiple testing procedures. In this study, we focus on the Familywise Error Rate

(FWER), defined as the probability of wrongly rejecting at least one hypothesis Hi. Let β̂mle := (X ′X)−1X ′Y

be the maximum likelihood estimator of the model (1). The usual multiple testing procedures are based on

the maximum likelihood estimator and reject Hi : β∗i = 0 when |β̂mle
i |/se(β̂mle

i ) > s, where s ≥ 0 is the

same threshold for all the hypotheses H1, . . . ,Hp. Let ζ be a random vector having the same distribution as
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(
β̂mle
1 /se(β̂mle

1 ), . . . , β̂mle
p /se(β̂mle

p )
)

when β∗ = 0. We observe that ζ is a Gaussian vector or a multivariate

student, depending on whether the standard errors se(β̂mle
1 ), . . . , se(β̂mle

p ) are known or estimated (thus, σ is

known or estimated). There are several ways to choose such a threshold s, assuring control of the FWER at a

significance level α ∈ (0, 1). For example, s can be chosen according to correlation-free inequalities such as the

Bonferroni inequality [Dunn, 1959] or the Gaussian correlation inequality1 [Royen, 2014, Šidák, 1967] (available

when ζ is Gaussian)

P

 ⋃
1≤i≤p

{|ζi| ≥ s}

 ≤ p∑
i=1

P(|ζi| ≥ s) and P(|ζ1| ≥ s, . . . , |ζp| ≥ s) ≥
p∏
i=1

P(|ζi| ≥ s).

These inequalities are extremely convenient and provide a threshold for controlling the FWER at the significance

level α. The first and second inequalities, respectively, provide the thresholds sbonf := q1−α/2p and ssidak :=

q(1+ p
√
1−α)/2, where qη denotes the η quantile of a ζ1. By taking into account the correlation, a smaller threshold

smax (thus, a better power) is given by setting smax as the 1− α quantile of max{|ζ1|, . . . , |ζp|}.

Confidence regions and testing procedures are closely related (see e.g. [Lehmann and Romano, 2005] page

72). Historically, the famous Bonferroni and Dunn-Šidák corrections for multiple testing procedures [Dunn, 1959,

Šidák, 1967] originated from the construction of hyperrectangular confidence regions (also called simultaneous

confidence intervals). Actually, taking s ∈ {sbonf , ssidak, smax} gives the hyperrectangular confidence region

[β̂mle
1 ± s × se(β̂mle

1 )] × · · · × [β̂mle
p ± s × se(β̂mle

p )], which contains β∗ with a probability larger than 1 − α.

Conversely, given a hypperectangular confidence region [β̂mle
1 ± s1 × se(β̂mle

1 )] × · · · × [β̂mle
p ± sp × se(β̂mle

p )]

containing β∗ with a probability larger than 1 − α provides a procedure by rejecting Hi : β∗i = 0 when

0 /∈ [β̂mle
i ± si × se(β̂mle

i )] (or equivalently, by rejecting Hi when |β̂mle
i |/se(β̂mle

i ) > si). This last procedure

controls the FWER at significance level α. We argue that none of the thresholds sbonf , ssidak and smax provides

a hyperrectangular confidence region with the smallest volume.

It is natural to attempt minimizing the volume for a confidence region. We aim to illustrate that deriving a

multiple testing procedure from a hyperrectangular confidence region having a minimal volume is an intuitive

way to improve power. In addition, we aim to present a new operational procedure through a numerical method

for volume minimization. This article is organized as follows. Section 2 contains some basic properties about

the optimal hypperectangular confidence region. We exhibit some cases in which it is convenient to perform the

computation of the optimal hypperectangular confidence region.

Section 3 presents a method to numerically minimize the volume of the hypperectangular confidence region.

Section 4 is devoted to simulation experiments: we compare our multiple testing procedure with the state-of-

the-art single step and sequential procedures.

1The inequality P(|ζ1| ≥ s1, . . . , |ζp| ≥ sp) ≥
∏p

i=1 P(|ζi| ≥ si) already proved in Šidák [1967] is a particular case of the Gaussian
correlation inequality P(|ζ1| ≥ s1, . . . , |ζp| ≥ sp) ≥ P(|ζi| ≥ s1, . . . , |ζi| ≥ sk)P(|ζi| ≥ sk+1, . . . , |ζi| ≥ sp). Recently, the Gaussian
correlation inequality was proved by Royen [2014].
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Section 5 details the analysis of metabolomic data, which motivated this study.

2 Minimization of volume

We use the following notations:

• The sets A0 and A1 are, respectively, A0 := {i ∈ {1, . . . , p} | β∗i = 0} and A1 := {i ∈ {1, . . . , p} | β∗i 6= 0}.

• The matrix Mp(a, b) is a p×p matrix for which the diagonal elements are a and the non-diagonal elements

are b.

• Given a random vector V := (V1, . . . , Vp), var(V ) denotes the covariance matrix of V and var(Vi) denotes

the marginal variance of Vi.

• The matrix Σ is a p× p semi-definite positive matrix and C is a p× p ‘correlation’ matrix, namely, C is

a semi-definite positive matrix, such that C11 = · · · = Cpp = 1.

• Note that ζ is a random vector having the same distribution as
(
β̂mle
1 /se(β̂mle

1 ), . . . , β̂mle
p /se(β̂mle

p )
)

when

β∗ = 0. Consequently, depending on whether or not se(β̂mle
1 ), . . . , se(β̂mle

p ) are known or estimated,

ζ ∼ N (0, C) or ζ ∼ tn−p(0, C) where C is a ‘correlation’ matrix.

We aim to construct a multiple testing procedure derived from a hyperrectangular confidence region for β∗

having the following expression: [β̂mle
1 ± s1× se(β̂mle

1 )]× · · ·× [β̂mle
p ± sp× se(β̂mle

p )]. To guarantee a significance

level of 1− α (with α ∈ (0, 1)) the thresholds s1, . . . , sp must satisfy the following inequality:

P(β∗ ∈ [β̂mle
1 ± s1 × se(β̂mle

1 )]× · · · × [β̂mle
p ± sp × se(β̂mle

p )]) = 1− α⇔ P(|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1− α.

Among these hyperrectangular confidence containing β∗ with a probability larger than 1 − α, we aim to pick

one for which the volume 2ps1 × · · · × sp is minimal, which leads to the following optimisation problem:

minimize

p∏
i=1

si subject to P (|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1− α. (2)

Thus far, the components of ζ are ‘standardized’ and the correlation matrix is invertible (since X ′X is invertible).

We will show that the construction of the hyperrectangular confidence region (thus, the derived multiple testing

procedure) does not depend on this standardization. The problem (2) is still meaningful when ζ has an arbitrary

covariance matrix Σ (a relevant example for Σ is σ2(X ′X)−1 the covariance matrix of β̂mle), and just for the

proposition 1, we assume that ζ ∼ N (0,Σ) or ζ ∼ tn−p(0,Σ), where Σ is a positive semi-definite p × p

matrix (thus, Σ not invertible is allowed in this proposition). The proposition 1 shows that there exist optimal

thresholds s∗1, . . . , s
∗
p solution of (2) and there is no loss of generality to restrict our attention to the particular

case in which Σ11 = · · · = Σpp = 1.
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Proposition 1 Let Σ be a p × p positive semi-definite matrix such that Σ11 6= 0, . . . ,Σpp 6= 0 and let ζ be a

Gaussian vector N (0,Σ) or a multivariate student tn−p(0,Σ). Then, the following properties hold

1. Existence of optimal thresholds: There exists at least one element s∗ ∈ [0,+∞)p, which is the solution

of the problem (2).

2. Standardization: If s∗ is a solution of the problem (2), then
(
s∗1/
√

Σ11, . . . , s
∗
p/
√

Σpp
)

is a solution of

the following problem:

minimize

p∏
i=1

si subject to P

(
|ζ1|√
Σ11

≤ s1, . . . ,
|ζp|√
Σpp
≤ sp

)
= 1− α. (3)

We do not need the uniqueness of the minimizer of (2), but only pick a particular optimal threshold s∗. Criteria

other than volume, such as the maximal length of the simultaneous confidence intervals (max{s1, . . . , sp})

[Benjamini et al., 2013], could be investigated. However, contrarily to the volume, this last criterion does

not provide a minimizer satisfying the standardization property. Indeed, if s∞ and s̄∞, respectively, are the

solutions of problems (2) and (3) when
∏p
i=1 si is substituted by max{s1, . . . , sp} then s∞1 = · · · = s∞p and

s̄∞1 = · · · = s̄∞p , and consequently, s̄∞ 6= (s∞1 /
√

Σ11, . . . , s
∞
p /
√

Σpp). Thus, the procedure rejecting β∗i = 0

when |β̂mle
i | > s∞ is not equivalent to the procedure rejecting β∗i = 0 when |β̂mle

i |/
√

Γii > s̄∞. As we do not

intend to present a procedure that depends on the standardization of β̂mle, from a practical perspective, we do

not use criteria for which the standardization property does not hold.

Henceforth, we assume that the components of ζ are ‘standardized’, and thus, ζ ∼ N (0, C) or ζ ∼ tn−p(0, C),

where C is a ‘correlation’ matrix. In the Gaussian framework, given a minimizer s∗, the following proposition

holds:

Proposition 2 Let ζ be a Gaussian vector N (0, C) with C an invertible correlation matrix, let s∗ =
(
s∗1, . . . , s

∗
p

)
be a solution of the optimisation problem (2). Let T s

∗
denote the truncated Gaussian vector on S∗ = [−s∗1, s∗1]×

· · · × [−s∗p, s∗p] having the following density:

fT s∗ (u) =
1

(1− α)
√

(2π)p det(C)
exp

(
−1

2
uC−1u

)
1u∈S∗

then all the diagonal coefficients of C−1var(T s
∗
) are equal.

Note that if the covariance matrix of T s
∗

(here denoted by var(T s
∗
)) was equal to C, all the diagonal coefficients

of C−1var(T b
∗
) would be equal, indicating that s∗ is a solution of (2). Because the diagonal terms of var(T s

∗
)

are always smaller than the diagonal terms of C, var(T b
∗
) cannot be equal to C. However, the condition given

by proposition 2 can be intuitively interpreted. The optimal (with respect to the volume) hyperrectangular

should be such that the covariance of the truncated Gaussian vector ζ restrained to [−s∗1, s∗1]× · · · × [−s∗p, s∗p] is
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as close as possible to the non-constraint covariance of the random vector ζ. The Gaussian framework has some

simple yet interesting cases where the computation of the optimal thresholds s∗1, . . . , s
∗
p can be performed by

hand. Note that in the special case p = 2 (i.e. where β̂mle has only two components), basic algebra shows that,

whatever the correlation between the two components, the optimal hyperrectangular is an hypercube. This

property does not hold true when p > 2. Let us give the optimal thresholds in the following three examples.

For convenience, we denote Mp(a, b), a p × p matrix whose diagonal coefficients are equal to a and whose

non-diagonal coefficients are equal to b.

1) In the independent case: Let us set C = Idp. From the proposition 2, the vector s∗ must satisfy

var(T s
∗

1 ) = · · · = var(T s
∗

p ).

Let c1−α be the 1 − α quantile of the random variable max{|ζ1|, . . . , |ζp|}. The unique minimizer of the

problem (1) is s∗, where s∗1 = · · · = s∗p = c1−α.

2) In the equicorrelated case: Let us set C = Mp(1, ρ), it follows that C−1 = Mp(a, b) for some a and b.

Let c1−α be the 1 − α quantile of the random variable max{|ζ1|, . . . , |ζp|} and let us set s∗ such that

s∗1 = · · · = s∗p = c1−α. Because var(T s
∗
) = M(c, d) for some c and d, all the diagonal coefficients of

C−1var(T s
∗
) = M(a, b)M(c, d) are equal; thus, s∗ is a minimizer of (1).

3) In the block diagonal equicorrelated case: Let us set C = diag(Mk(1, ρ),Mp−k(1, ρ′)). It follows that

C−1 is block diagonal with C−1 = diag(Mk(a, b),Mp−k(a′, b′)) for some a, b, a′, b′. If we set s∗1 = · · · =

s∗k = c1 and s∗k+1 = · · · = s∗p = c2, one deduces that var(T s
∗
) is block diagonal with var(T s

∗
) =

diag(M(c, d),M(c′, d′)) for some c, d, c′, d′. Consequently, whatever c1 and c2, the k first diagonal co-

efficients of C−1var(T s
∗
) are equal and the p− k last diagonal coefficients of C−1var(T s

∗
) are equal. We

only need to tune c1 and c2 such that all diagonal coefficients of C−1var(T s
∗
) become equal.

As an illustration of the proposition 2, the thresholds prescribed in Dunnett’s procedure are optimal.

Example: Dunnett’s procedure compares the mean of treatment groups with the mean of the control group

[Dunnett, 1955]. When each group (control and treatment) has the same number of observations, the proposition

2 shows that the thresholds given by Dunnett’s procedure are the optimal ones.

Let us denote p as the number of treatment groups and n as the number of observations, under the as-

sumptions of Dunnett (Gaussianity, homoscedasticity), the empirical means M̂0, M̂1, . . . , M̂p of each group

are independent and distributed according to N (µ0, σ
2/n),N (µ1, σ

2/n), . . . ,N (µp, σ
2/n) distributions (with σ

known to simplify).

In Dunnett’s procedure, whatever i ∈ {1, . . . , p}, the null hypothesis H0
i : µi = µ0 is rejected for the alterna-

tive H1
i : µi 6= µ0 as soon as |M̂i − M̂0| > c1−ασ

√
2/n, where c1−α is the 1− α quantile of max{|ζ1|, . . . , |ζp|}.
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In the later expression, ζ := (ζ1, . . . , ζp) is distributed according to N (0,C), where C is a p× p equicorrelated

correlation matrix defined by Cij = 1 if i = j and Cij = 1/2 otherwise. Because C is an equicorrelated corre-

lation matrix, the threshold prescribed in Dunnett’s procedure (the same for each hypothesis) is optimal with

respect to the volume.

Except for these three particular cases, we do not have a closed form for the optimal thresholds. Therefore,

we develop a numerical method to compute these optimal thresholds efficiently.

3 Numerical solver for the optimal thresholds

The optimal thresholds are provided by the solution of the following problem (equivalent to (2))

min f(s) =

p∑
i=1

ln(si) subject to F (s) = P (|ζ1| ≤ s1, . . . , |ζp| ≤ sp) = 1− α.

Let u ∈ (0,+∞)p, the notation 1/u denotes (1/u1, . . . , 1/up). The Lagrange multiplier theorem assures that at

s∗, the minimizer of (2), the vector ∇f(s∗) is collinear to ∇F (s∗), where ∇ denotes the gradient. Consequently,

the following equivalences hold:

1

s∗
∝ ∇F (s∗)⇔ s∗ ∝ 1

∇F (s∗)
⇔ s∗ ∝ s∗ +

1

∇F (s∗)
where u ∝ v means that u is collinear to v.

This collinearity motivates us to consider the following iterative sequence:

Let us set s(0) = (c1−α, . . . , c1−α), where c1−α is the 1− α quantile of max {|ζ1|, . . . , |ζp|} and let us define the

iterative sequence (s(i))i∈N, where s(i+1) is given by


u(i) =

(
s(i) + 1

∇F (s(i))

)
,

s(i+1) = λ1−αu
(i) where λ1−α is the 1− α quantile of max

{
|ζ1|
u
(i)
1

, . . . ,
|ζp|
u
(i)
p

}
.

In the previous expression, because ∇F (s(i)) ≥ 0, then u(i) ≥ s(i) (these two inequalities are given as per com-

ponent). The parameter λ1−α shrinks u(i) in order to recover an element s(i+1) so that P(|ζ1| ≤ s(i+1)
1 , . . . , |ζp| ≤

s
(i+1)
p ) = 1 − α. Thus far, this numerical method is available whatever ζ having a continuous distribution on

Rp and a covariance matrix Σ. However, the naive computation of the gradient ∇F (s(i)) through simulation

is time expensive. Roughly, the components of s(i) are large; thus, P(s
(i)
j ≤ |ζj | ≤ s

(i)
j + h) is very small, and

consequently, a good estimation of (F (s1, . . . , sj−1, sj + h, sj+1, . . . , sp)− F (s1, . . . , sp)) /h through simulations

is very time consuming. Fortunately, there is a trick to compute ∇F in the Gaussian and student frameworks.

For example, let us explain how this trick provides the first component of ∇F . When ζ is Gaussian, the condi-
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tional distribution L(ζ1|ζ2 = x2, . . . , ζp = xp) is a Gaussian distribution with density fm(x),σ2 (the mean m(x)

depends on x := (x2, . . . , xp) while the variance σ2 does not depend on x). Precisely, let A = (C1j)2≤j≤p and

let B = (Cij)2≤i,j≤p, then m(x) = C12B
−1x and σ2 = C11 − AB−1A′. Let fζ1( . | |ζ2| ≤ s2, . . . , |ζp| ≤ sp) be

the density of L(ζ1||ζ2| ≤ s2, . . . , |ζp| ≤ sp) and let fζ2,...,ζp be the density of (ζ2, . . . , ζp), the first component of

∇F is given hereafter

∂F

∂s1
(s) = 2fζ1(s1 | |ζ2| ≤ s2, . . . , |ζp| ≤ sp) = 2

∫ s2

−s2
. . .

∫ sp

−sp
fζ2,...,ζp(x)fm(x),σ2(s1).

Finally, the last expression is easy to compute by simulation. Notice that this trick requires C to be invertible.

However, when C is no longer invertible, one can use the solver with the correlation matrix C̃ = (eIdp+C)/(1+e),

where e > 0. The matrix C̃ is invertible and when e is very small the optimal thresholds associated with C̃

are almost equal to those associated with C. When ζ ∼ tn−p(0, C) then ζ has the same distribution as

Z/
√
V/(n− p), where Z ∼ N (0, C) is independent of V ∼ χ2

d with d = n − p. In the student framework, the

first component of ∇F is given hereafter

∂F

∂s1
(s) = 2fζ1(s1 | |ζ2| ≤ s2, . . . , |ζp| ≤ sp) =

∫ +∞

0

2fZ1

(
s1

√
v

d
| |Z2| ≤ s2

√
v

d
, . . . , |Zp| ≤ sp

√
v

d

)
fV (v)dv.

This integral is still easy to infer through simulation, by adding, with respect to the Gaussian framework,

simulations of V . Now, in the Gaussian framework, we illustrate the performance of our solver using two

examples.

Setting 1: We set C := diag(M500(1, 0.9), Id500). Because C is block diagonal equicorrelated, the optimal

thresholds satisfy s∗1, . . . , s
∗
500 = c1 and s∗501, . . . , s

∗
1000 = c2 where c1 and c2 are handily computable.

Thus, in this setting, it is easy to compare the theoretical optimal thresholds with the thresholds given

by the solver of the problem (2).

Setting 2: We set C = (Cij)1≤i,j≤1000 with Cij = min{i, j}/max{i, j}. The matrix C is the correlation matrix

of a Brownian motion discretized on the set {1, . . . , 1000}.

The left panel of the figure 1 shows that in setting 1 after i = 5 iterations, the threshold s(i) almost recovers the

optimal thresholds. The right panel shows that in setting 2, s
(5)
1 ≥ · · · ≥ s

(5)
999 (there is a singularity for s

(5)
1000

that is not a numerical problem).

As described in the figure 1, in both settings, the gain between the volume of the hypercube associated with

the initial threshold s(0) (for which s
(0)
1 = · · · = s

(0)
1000) and that of the hyperrectangular region associated with

the threshold s(5) is very large.

Given optimal thresholds s∗1, . . . , s
∗
p, the solution of the problem (2), one derives a multiple testing procedure

for the null hypotheses Hi : β∗i = 0, i ∈ {1, . . . , p}. The hypothesis Hi is rejected when 0 /∈ [β̂mle
i ±s∗i × se(β̂mle

i )]
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Figure 1: The figure on the left provides the optimal thresholds associated with setting 1 described above. A
handy computation of the optimal thresholds gives s∗1 = · · · = s∗500 = 2.94 and s∗501 = · · · = s∗1000 = 4.16. The y-

axis of the figure provides the thresholds s
(5)
1 , . . . , s

(5)
1000 given by the iterative sequence s(i) after i = 5 iterations.

Observe that our solver almost recovers the optimal thresholds. With respect to the initial and classical threshold

s(0), the gain in volume is very large, as
∑1000
j=1 log(s

(0)
j ) = 1360.650 while

∑1000
j=1 log(s

(5)
j ) = 1251.031. The figure

on the right provides the optimal thresholds associated with setting 2 described above. The y-axis of the figure

provides the thresholds s
(5)
1 , . . . , s

(5)
1000 given by the iterative sequence s(i) after i = 5 iterations. Again, the gain

in volume is also large in setting 2, as
∑1000
j=1 log(s

(0)
j ) = 1124.615 while

∑1000
j=1 log(s

(5)
j ) = 1064.401.

or equivalently, when |β̂mle
i |/se(β̂mle

i ) > s∗i . Because the confidence region [β̂mle
1 ± s∗1 × se(β̂mle

1 )]× · · · × [β̂mle
p ±

s∗p × se(β̂mle
p )] contains β∗ with a probability larger than 1 − α, the previous procedure controls the Family-

Wise Error Rate (FWER) at significance level α. Note that A0 := {i ∈ {1, . . . , p} | β∗i = 0}, the FWER is

the probability P
(⋃

i∈A0
|β̂mle
i |/se(β̂mle

i ) > s∗i

)
. The following inequality assures the control of the FWER at

significance level α.

P

( ⋃
i∈A0

|β̂mle
i |

se(β̂mle
i )

> s∗i

)
= P

( ⋃
i∈A0

β∗i /∈ [β̂mle
i ± s∗i × se(β̂mle

i )]

)
≤ P

(
p⋃
i=1

β∗i /∈ [β̂mle
i ± s∗i × se(β̂mle

i )]

)
≤ α.

Intuitively, because the volume of the hyperrectangular confidence region is minimal, one should expect to

recover a multiple testing more powerful than the classical single step procedures. The numerical experiments

given in the following section confirm this intuition.

4 Comparison of multiple testing procedures

The more famous single-step procedures controlling the FWER are Bonferroni’s procedure [Dunn, 1961] (here-

after, procedure 1) and the procedure described in Lehmann and Romano [2005] page 352 (hereafter, procedure

2).

Procedure 1: Whatever i ∈ {1, . . . , p}, the null hypothesis Hi : β∗i = 0 is rejected in favour of the alternative

β∗i 6= 0 when |β̂mle
i |/se(β̂mle

i ) > sbonf . The threshold sbonf is the 1− α/(2p) quantile of a ζ1.

Procedure 2: Whatever i ∈ {1, . . . , p}, the null hypothesis Hi : β∗i = 0 is rejected in favour of the alternative

8



β∗i 6= 0 when |β̂mle
i |/se(β̂mle

i ) > smax. The threshold smax is the 1− α quantile of max{|ζ1|, . . . , |ζp|}.

Sequential procedures have better power than single step procedures, especially when β∗ has many large com-

ponents. Hereafter, we describe the StepDown (SD) counterpart of procedures 1 and 2.

The generic stepdown procedure defined by Romano and Wolf [2005], Lehmann and Romano [2005] p. 352

and Dudoit and Van Der Laan [2007] p. 126 is a generalization of Holm’s sequential procedure [Holm, 1979]

(hereafter, procedure 1 SD). To describe the generic stepdown procedure, let us denote Ti = β̂mle
i /se(β̂mle

i ). The

statistical tests are sorted from the most significant to the least significant, namely, |Tr(1)| ≥ · · · ≥ |Tr(p)|. The

rejection of the hypotheses Hr(1), . . . ,Hr(p) is done sequentially, as explained hereafter.

Procedure 1 SD: The hypothesis Hr(1) is rejected if |Tr(1)| > q1−α/(2p). The hypothesis Hr(2) is rejected if

|Tr(1)| > q1−α/(2p) and |Tr(2)| > q1−α/(2(p−1)) and so on. In the previous expressions, qη is the η quantile

of ζ1.

Procedure 2 SD: The hypothesis Hr(1) is rejected if |Tr(1)| ≥ tr(1). The hypothesis Hr(2) is rejected if

|Tr(1)| > tr(1) and |Tr(2)| > tr(2) and so on. In the previous expressions, the threshold tr(s) is the 1 − α

quantile of max{|ζr(s)|, . . . , |ζr(p)|}.

We will compare procedures 1, 2, 1 SD and 2 SD with procedure 3, described hereafter, which is derived

from the computation of the optimal thresholds.

Procedure 3: Whatever i ∈ {1, . . . , p}, the null hypothesis Hi : β∗i = 0 is rejected in favour of the alternative

β∗i 6= 0 when |β̂mle
i |/se(β̂mle

i ) > s∗i . The thresholds s∗1, . . . , s
∗
p are the optimal ones given in (2).

By construction of the thresholds sbonf , smax and s∗1, . . . , s
∗
p, the single step procedures 1, 2 and 3 control the

FWER at a significance level α ∈ (0, 1). In addition, the procedures 1 SD and 2 SD also control the FWER at

a significance level α ∈ (0, 1) (see e.g. Lehmann and Romano [2005] pages 351 to 353). A comparison of these

five procedures based on the average power is carried out on the following setting:

The Gaussian vector ζ has a N (0, C) distribution, where C := diag(M900(1, ρ), Id100). We set β∗ ∈ R1000

with card(A1) = k ∈ {50, 500} and for all i ∈ A1, β
∗
i = t, where t > 0. For the different values of ρ ∈

{0, 0.5, 0.9, 1}, the optimal thresholds s∗1, . . . , s
∗
1000 given by the proposition 1 are as follows.

• When ρ = 0 then s∗1 = · · · = s∗900 = c1 ≈ 4.0553 and s∗901 = · · · = s∗1000 = c2 ≈ 4.0553.

• When ρ = 0.5 then s∗1 = · · · = s∗900 = c1 ≈ 3.7628 and s∗901 = · · · = s∗1000 = c2 ≈ 4.0961.

• When ρ = 0.9 then s∗1 = · · · = s∗900 = c1 ≈ 2.9284 and s∗901 = · · · = s∗1000 = c2 ≈ 4.3327.

• When ρ = 1 then s∗1 = · · · = s∗900 = c1 ≈ 1.9950 and s∗901 = · · · = s∗1000 = c2 ≈ 4.4061.
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Let I1 = {1, . . . , 900}, let I2 = {901, 1000} and let V ∼ N (t, 1). In this framework, the average power of

procedure 3 is

card(A1 ∩ I1)

card(A1)
Pt (|V | > c1) +

card(A1 ∩ I2)

card(A1)
Pt (|V | > c2) .

We observe that the average power of procedure 3 depends on the location of the non-null components of β∗.

Intuitively, when the non-null components of β∗ are located on I1 (i.e. A1 ⊂ I1) then, because the thresholds

s∗1, . . . , s
∗
900 are small, procedure 3 should be powerful. On the other hand, when the non-null components of

β∗ are located on I2 (i.e. A1 ⊂ I2) then, because the thresholds s∗901, . . . , s
∗
1000 are large, procedure 3 should

not be powerful. Thus, to perform a fair comparison, instead of computing the average power for a particular

A1, we will examine the expected value of the average power when ‘A1’ is a random set uniformly distributed

on the set of combination of k elements among 1000. Let U be a random set with a uniform distribution on the

set {I ⊂ {1, . . . , 1000} | card(I) = k}, the expected value of the average power of procedure 3 is given hereafter

EU
(

card(U ∩ I1)

k
Pt (|V | > c1) +

card(U ∩ I2)

k
Pt (|V | > c2)

)
=

9

10
Pt (|V | > c1) +

1

10
Pt (|V | > c2) . (4)

In the figure 2, we compare the average power of procedures 1, 2, 3, 1 SD and 2 SD.

A stepdown procedure is merely a sequential application of a single step procedure. Precisely, in the first

stage of stepdown procedure 1 SD (resp. 2 SD), the rejections are the ones given by the single step procedure 1

(resp. 2). The second stage of stepdown procedure 1 SD (resp. 2 SD) is an application of single step procedure

1 (resp. 2) on the hypotheses not rejected in the first stage, and so on. Intuitively, when β∗ has many very

large components, a large number of hypotheses are rejected in the first stage, implying that the number of

hypotheses tested in the second stage becomes small, allowing the stepdown procedure to become powerful.

The most favourable setting for the stepdown procedures is when card(A) = 500 and t is large, as in this

case, there exist a large number of large components for β∗. Note that our procedure is at least as competitive

as the other ones in this situation, and depending on ρ, our procedure can be much more powerful than the

state-of-the art procedures.

In summary, when β̂mle has correlated components, our procedure should always give better results (with

respect to the average power) than all existing ones. When some components of β̂mle are hightly correlated,

if β∗ is sparse (i.e. has a large number of null components) our method outperforms the other ones. In the

non-sparse and slightly correlated setting, stepdown procedure 2 SD gives mildly better results than ours.

It could appear as appealing to construct a stepdown procedure based on the procedure 3. Unfortunately, as

illustrated in the appendix the application of the generic stepdown method on the procedure 3 (as described in

Lehmann and Romano [2005] page 353) does not control the FWER. The construction of a stepdown procedure

based on the procedure 3 and controlling the FWER is, for the authors, an open question.
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Figure 2: This figure provides the average power of procedures 1, 2, 1 SD, 2 SD and 3 (the average power of
procedure 3 is reported in (4)). When ρ = 0, these fives procedures have approximately the same power. When
ρ increases, the difference between the average power of procedure 3 increases in comparison with the average
power of the other procedures.
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5 Application in metabolomics: detection of metabolites

Metabolomics is the science of detection of metabolites (small molecules) in biological mixtures (e.g. blood and

urine). The most common technique for performing such characterization is proton nuclear magnetic resonance

(NMR). Each metabolite generates a characteristic resonance signature in the NMR spectra with an intensity

proportional to its concentration in the mixture. The number of peaks generated by a metabolite and their

locations and ratio of heights are reproducible and uniquely determined: each metabolite has its own signature in

the spectra. Each signature spectrum of each metabolite can be stored in a library that could contain hundreds

of spectra. A major challenge in NMR analysis of metabolic profiles is automatic metabolite assignment from

spectra. To identify metabolites, experts use spectra of pure metabolites and manually compare these spectra

to the spectrum of the biological mixture under analysis. Such a method is time-consuming and requires

domain-specific knowledge. Furthermore, complex biological mixtures can contain hundreds or thousands of

metabolites, which can result in highly overlapping peaks. Figure 3 gives an example of an annotated spectrum

of a mixture.

Figure 3: An annotated mixture spectrum with overlaps between peaks of lipides and valine and between peaks
of glutamine and lysine.

Recently, automatic methods have been proposed, for example, Metabohunter [Tulpan et al., 2011], BAT-

MAN [Astle et al., 2012, Hao et al., 2012], Bayesil [Ravanbakhsh et al., 2015] or the software Chenomx [Weljie

et al., 2006]. Most of these methods are based on modelling using a Lorentzian shape and a Bayesian strategy.

Nevertheless, most are time-consuming, and thus, cannot be applied to a large library of metabolites, and/or

their statistical properties are not proven. Thus, the establishment of a gold-standard methodology with proven

12



statistical properties for identification of metabolites would be very helpful for the metabolomic community.

Because the number of tests is not very large (one can expect to analyse a mixture with about 200 metabo-

lites), and as NMR experts want to recover all metabolites present in the mixture, but to prevent a false

discovery, we developed a multiple testing procedure controlling the FWER.

5.1 Modelling

The spectrum of a metabolite (or a mixture) is a nonnegative function defined on a compact interval T. We

assume that we have a library of spectra containing all p = 36 metabolites {fi}16i6p (with
∫
T
fi(t)dt = 1)

that can be found in a mixture. This family of p spectra is assumed to be linearly independent. In the

first approximation, the observed spectrum of the mixture Y can be modelled as a discretized noisy convex

combination of the pure spectra:

Yj =

(
p∑
i=1

β∗i fi(tj)

)
+ εj with 1 6 j 6 n and t1 < · · · < tn a subdivision of T .

The random vector (ε1, . . . , εn) is a Gaussian vector N (0,Γ), where Γ is a known and invertible covariance

matrix. The covariance structure (ε1, . . . , εn) is described in [Tardivel et al., 2017, Tardivel, 2017].

5.2 Real dataset

The method for the detection of metabolites was tested on a known mixture. The NMR experts supplied us

with a library of 36 spectra of pure metabolites and a mixture composed of these metabolites. The number of

used metabolites and their proportions were unknown to us. The results are presented in Table 1.

Metabolites Actual proportions Significantly not null
Choline chloride 0.545 Yes
Creatinine 0.209 Yes
Benzoic acid 0.086 Yes
L-Proline 0.069 Yes
D-Glucose 0.060 Yes
L-Phenylalanine 0.029 Yes
30 other metabolites 0 No

Table 1: This table presents the results for the 36 metabolites of the library. The actual proportions of each
metabolite are presented in the first column. For each metabolite, evidence against the nullity of the proportion
is given in the second column.

The six metabolites present in the complex mixture are detected, including those with small proportions.

There is no false discovery because any hypothesis associated with the 30 other metabolites was rejected.

Because the whole procedure is fast, lasting only a few seconds, it could be easily applied to a library containing

several hundred metabolites. We refer the interested reader to Tardivel et al. [2017] on this application to

metabolomics, where our procedure is compared to existing ones on more complex datasets.
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6 Conclusions

This study takes a new look at an old problem: the construction of multiple testing procedures derived from

hyperrectangular confidence regions. Our purpose is to derive such a procedure based on hyperrectangular

confidence regions having a minimal volume. These regions depend on an optimal threshold s∗, which is a

solution of the constraint problem (2); we provide a solver giving a numerical solution to this problem. When

p ≤ 1000, the optimal threshold s∗ (thus, the optimal hyperrectangular confidence region) is easily tractable.

With respect to standard hypercube confidence regions, the gain in volume obtained with our method is huge.

Based on simulations, we show that deriving a multiple testing procedure from a hyperrectangular region having

a minimal volume is an intuitive way to increase the average power. Indeed, simulations show that our procedure

is at least as powerful as the other procedures, and depending on the correlation matrix, our procedure can be

much more powerful than the state-of-the-art procedures. However, it is still a challenge to provide a stepdown

counterpart to our procedure.

7 Appendix

7.1 Proofs:

Proof of the proposition 1:

Proof of 1. We see that the volume cannot be minimal when ‖s‖∞ is too large. Let qi > 0 be the 1 − α

quantile of |ζi|, let q = min{q1, . . . , qp} > 0 and let us set S := {s ∈ Rp | P(|ζ1| ≤ s1, . . . , |ζ1| ≤ sp) = 1 − α}.

Whatever s ∈ S the following inequality holds
∏p
i=1 si ≥ ‖s‖∞qp−1, consequently, the function s ∈ S 7→

∏p
i=1 si

is coercive and continuous. Finally, by lemma 2 page 64 of Dentcheva [2006], S is closed; Thus, the minimum

of the problem (2) is reached.

Proof of 2. It is straightforward that (s∗1/
√

Σ11, . . . , s
∗
p/
√

Σpp) is a feasible point of the problem (3). Let

s̃ ∈ [0,+∞)p be another feasible point of (3); thus, the following equivalence holds

P

(
|ζ1|√
Σ11

≤ s̃1, . . . ,
|ζp|√
Σpp
≤ s̃p

)
= 1− α⇔ P

(
|ζ1| ≤

√
Σ11s̃1, . . . , |ζp| ≤

√
Σpps̃p

)
= 1− α.

Consequently, (
√

Σ11s̃1, . . . ,
√

Σpps̃p) is a feasible point for the problem (1). Because s∗ is a minimizer of the

problem (2), one deduces that
p∏
i=1

√
Σiis̃i ≥

p∏
i=1

s∗i ⇔
p∏
i=1

s̃i ≥
p∏
i=1

s∗i√
Σii

.

�

Proof of the proposition 2:
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To simplify the computation of the gradients, we consider the following problem, which has the same solution

as (2)

min f(s) =

p∑
i=1

ln(si) subject to F (s) = P (|ζ1|/s1 ≤ 1, . . . , |ζp|/sp ≤ 1) = 1− α.

As this problem reaches its minimum at s∗, ∇f(s∗) is collinear to ∇F (s∗). Let us set D the matrix D =

diag(s1, . . . , sp), we have the following expression for F (s1, . . . , sp), namely,

F (s1, . . . , sp) =

∫
[−1,1]p

R exp

(
−1

2
xTDC−1Dx

)
det(D)dx =

∫
[−1,1]p

R exp

(
−1

2
xTDC−1Dx+ ln(det(D))

)
dx,

with R = 1/((2π)p/2 det(C)1/2). Next, the expression of the partial derivative

∂

∂si

(
−1

2
xTDC−1Dx+ ln(det(D))

)
=

1

si
−

p∑
j=1

C−1i,j xixjbj ,

implies that the gradient of F is equal to

∂F

∂si
(s1, . . . , sp) =

1

si
F (s1, . . . , sp)−R

p∑
j=1

∫
[−1,1]p

(C−1i,j xixjbj) exp

(
−1

2
xTDC−1Dx

)
det(D)dx,

=
1− α
si
−R

p∑
j=1

∫
[−1,1]p

(C−1i,j xixjsj) exp

(
−1

2
xTDC−1Dx

)
det(D)dx.

Thus, ∇F (s) = (1− α)∇f(s) + v(s), where v(s) ∈ Rp is the following vector

v(s) :=

 p∑
j=1

C−1i,j

∫
[−1,1]p

xixjs
∗
jR exp

(
−1

2
xTDC−1Dx

)
det(D)dx


16i6p

.

Consequently, ∇f(s∗) and ∇F (s∗) are collinear if and only if ∇f(s∗) and v(s∗) are collinear.

∃k ∈ R such that v(s∗) = k∇f(s∗),

⇔ ∀i ∈ [[1, p]],

p∑
j=1

C−1i,j

∫
[−1,1]p

xis
∗
i xjs

∗
jR exp

(
−1

2
xTDC−1Dx

)
det(D)dx = k,

⇔ ∀i ∈ [[1, p]],

p∑
j=1

C−1i,j

∫
u∈Rp

uiuj
R

1− α
exp

(
−1

2
uC−1u

)
1u∈s∗du =

k

1− α
. (5)

The expression (5) is obtained via the change of variables ∀i ∈ [[1, p]], ui = xis
∗
i . To conclude, one recognizes

that ∫
u∈Rp

uiuj
R

1− α
exp

(
−1

2
uC−1u

)
1u∈S∗du = E

(
T s

∗

i T s
∗

j

)
= cov

(
T s

∗

i , T s
∗

j

)
.

Thus, the diagonal coefficients of C−1var(Ts∗) are equal to k/(1− α). �
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7.2 Application of the generic stepdown method to procedure 3 does not control

the FWER

Let us assume that the maximum likelihood estimator β̂mle is distributed according to a N (β∗, C) distribution

where C and β∗, as given hereafter,

C = (C1|C2|C3) :=


1 1 0

1 1 0

0 0 1

 and β∗ = (+∞, 0, 0).

Let us apply the generic stepdown method to our procedure based on the optimal thresholds. The solution of

the problem (2) with the matrix C and α = 0.05 is s
(0)
1 = s

(0)
2 = 2.10 and s

(0)
3 = 2.43. In the first step, the

hypothesis Hi is rejected if |β̂mle
i | > s

(0)
i with i ∈ {1, 2, 3}. Obviously, because β∗1 = +∞, the hypothesis H1 is

rejected; let us assume that H2 and H3 are not rejected. Consequently, there is no false discovery in the first

step; thus, |β̂mle
2 | ≤ s

(0)
2 and |β̂mle

2 | ≤ s
(0)
3 . Let us set C̃ = (C2|C3) = Id2, the solution of the problem (2) with

C̃ is s
(1)
2 = s

(1)
3 = 2.23. In the second step, the hypothesis Hi is rejected if |β̂mle

i | > s
(1)
i with i ∈ {2, 3}. Let

us assume that H2 and H3 are not rejected. Consequently, there is no false discovery in the second step; thus,

β̂mle
2 ≤ s(1)2 and β̂mle

2 ≤ s(1)3 . Finally, the probability of no false discovery is

P(|β̂mle
2 | ≤ 2.10 ∩ |β̂mle

3 | ≤ 2.23) < P(|β̂mle
2 | ≤ 2.23 ∩ |β̂mle

2 | ≤ 2.23) = 0.95.

Consequently, the FWER is not controlled at the significance level α = 0.05.
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