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Abstract

Motivation: RNA quantification experiments result in compositional data, however usual methods

for compositional data analysis [additive log ratio (alr), centered log ratio (clr), isometric log ratio

(ilr)] do not apply easily and give results difficult to interpret. To handle this, a method based on

disjoint subgraphs in a graph whose nodes are the quantified RNAs is proposed. Edges in the

graph are defined by lack of change in ratios of the corresponding RNAs between conditions.

Results: The methods is suited for qRT-PCR and RNA-Seq data analyses, and leads to easy-to-

interpret, graphical results and the identification of set of genes that share a similar behavior when

the studied condition changes. For qRT-PCR data, it has better statistical properties than the com-

mon DDCq method.

Availability and implementation: Construction of all pairwise ratio analysis P-values matrix, and

conversion into a graph was implemented in an R package, named SARP.compo. It is freely avail-

able for download on the CRAN repository. Example R script using the package are provided as

Supplementary Material; the R package includes the data needed. One of these scripts reproduces

the Figure 2 of this paper.

Contact: emmanuel.curis@parisdescartes.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Determination of gene-expression level is a key step in understand-

ing cell function under physiological or pathological conditions.

Gene-expression level is often defined as the amount of correspond-

ing ribonucleic acid (RNA) transcript that is present in the cell. In

differential expression experiments, these amounts are to be com-

pared between several conditions, such as cell type, tissue, patho-

logical versus physiological condition, before and after treatment for

example.

Several methods are used to determine these RNA amounts:

quantitative reverse transcription polymerase chain reaction (qRT-

PCR), microarrays and RNA-seq are amongst the most used, with

amounts given as arbitrary units. Over the last two decades qRT-

PCR has become the method of choice for quantification of RNA

molecules. Its simplicity of use and versatility in terms of starting

material has allowed its implementation to gene-expression studies

not only in research but also in diagnostic tests, forensic or biotech-

nology applications. However, even if it became the ‘gold standard’,
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due to technical variations, a large number of published results are

not replicated (Bustin and Nolan, 2017). Microarray have been ex-

tensively used but it is now outclassed by a more sensitive and repro-

ducible technique: RNA-Seq (Costa et al., 2013; Xu et al., 2016).

However, qRT-PCR remains the method of choice to confirm results

from RNA-Seq or microarray data.

The number of different transcripts that can be simultaneously

quantified varies from a few tens, for qRT-PCR, to several thou-

sands, for RNA-seq and microarrays. These three techniques are

based on different physical backgrounds, however in all three meth-

ods the result is a number that is assumed to be proportional to the

(molar) amount of a specific kind of RNA in a complex mixture of

several thousands of different RNAs. However, in all three methods,

an experimental constraint is made on the total (mass) quantity of

RNA in the sample. Indeed, each step of the isolation of the total

RNA to be analyzed involves a loss (e.g. unspecific binding to the

plastic materials, columns, pipettes, etc.). Therefore, after biological

sample pre-processing a fixed amount of RNA (1 lg of total RNA

for example) is taken to perform quantification in all three methods.

Despite being necessary for practical reasons, this constraint has

strong consequences on the results that can be obtained. After detail-

ing these consequences, this paper presents a method to overcome

these limitations and several applications, with a special emphasis

on qRT-PCR.

1.1 Experimental model
In a given experimental condition, c, the cell culture contains a mix-

ture of K different RNA molecules, of which K� < K will be quanti-

fied. The value of interest is qi;c, the quantity of RNA i in this

condition. It corresponds to a mass mi;c ¼ qi;c Mi, where Mi is the

molar mass of RNA i. Hence, RNA i represents a molar fraction

of xi;c ¼ qi;cPK

k¼1
qk;c

of the mixture, and a mass fraction of

yi;c ¼ mi;cPK

k¼1
mk;c

¼ qi;c MiPK

k¼1
qk;c Mk

.

Before performing the RNA quantification, a given mass of

RNA, Mc, is extracted. This step changes neither the mass fraction,

yi;c, nor the molar fraction, xi;c, (assuming the sample is homoge-

neous before extraction and all RNA have the same extraction prob-

abilities), but the mass becomes m�i;c ¼Mc yi;c and the amount,

q�i;c ¼
m�i;c
Mi
¼ McPK

k¼1
Mk qk;c

qi;c.

The quantification step quantifies the amount of RNA i after ex-

traction, that is q�i;c: the quantification result is di;c ¼ fi;cðq�i;cÞ, where

fi;c is a function depending on the quantification method, expected

to be monotonous. Ideally, fi;c is linear: fi;cðq�i;cÞ ¼ ki;c q�i;c; only this

case will be considered hereafter. Hence, experimental expression

levels are given by Equation (1)—this expression shows that any

change in any of the RNA amount, even not amongst the K� that are

quantified, will modify the quantification of all RNAs. In other

words, changes in quantified amounts are not directly interpretable.

di;c ¼ ki;c
McPK

k¼1 Mk qk;c

qi;c (1)

1.2 Compositional data methods
This limitation comes from the extraction step, which turns amounts

into molar (or mass) fractions and constrains the sum of all masses

to Mc. This is typical of problems dealing with compositions of a

mixture (here, a RNA mixture) and is frequent in various fields of

chemistry. Recently, compositional data analysis received focused

attention for the analysis of microbial flora composition (Friedman

and Alm, 2012; Gloor et al., 2016; Silverman et al., 2017;

Tsilimigras and Fodor, 2016). It leads to so-called compositional

data; various methods were proposed to overcome this difficulty

(Aitchison, 1982, 1984; Filzmoser et al., 2009). It is well estab-

lished, however, that whatever the method is, only relative changes

can be determined (Aitchison, 2003) and that usual statistical meth-

ods do not apply directly on these data.

These methods are based on the following ideas: first, compos-

itional data are described by the K-dimensional vector of the molar

(or mass) fractions, xi;c ¼ ðx1;c; . . . ; xK;cÞ, which is constrained to be-

long to a portion of an hyper-plane in ½0; 1�K � R
K. Second, this

vector is transformed in a vector in R
K�1 without constraint and,

hopefully, independent components, on which usual statistical ana-

lysis tools can be used.

The most simple method is to select a reference RNA, let’s

say i ¼ 1, divide all values by x1;c, and take the logarithm: za
c ¼

0; log
x2;c

x1;c
; . . . ; log

xK;c

x1;c

� �
of which the first column is useless. This is

called the additive log ratio (alr) method. However, it does not com-

pletely remove the correlations induced by the constraint on xc,

hence is mainly suited for multivariate analysis of the results. In

such a context, the whole results do not depend on the choice of the

reference RNA (Aitchison, 2003); however, results for invididual

RNAs may depend on this choice. In addition, interpretation is not

as straightforward as would be expected (Pawlowsky-Glahn and

Egozcue, 2016).

An alternative method is to divide each component by

the geometric mean of all components, xgm
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQK
k¼1 xk;c

K

q
: zc

c ¼

log
x1;c

xgm
c
; . . . ; log

xK;c

xgm
c

� �
. Known as centered log ratio, it gives a

K-dimensional vector, hence strong correlations remains between

the components. In addition, in typical gene-expression experiment,

not all of the components of xc are known, which makes this trans-

formation intractable.

The isometric log ratio (ilr) method is more complex, leading

to a ðK� 1Þ-dimensional vector zi
c ¼ ðzkÞ1�k<K with zk ¼ffiffiffiffiffiffiffiffiffiffiffiffi

K�k
K�kþ1

q
log

xk;cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQK

j¼kþ1
xj;c

K�k

q . Since, in general, K is not known, this

method cannot be used in expression experiments. With this

method, each individual component of the result vector mixes infor-

mation from all original components. Consequently, this method is

only suited to detect whole changes in the composition, but cannot

answer questions about changes in specific components. Hence,

even if possible, it would be of little interest for RNA quantification

experiments, where questions are on individual RNAs.

2 Materials and methods

As seen above, direct interpretation of observed amounts, di;c, is not

possible whatever the experimental method, because results are

compositional data. Besides, traditional compositional data analysis

method either are difficult to interpret and suited to overall compari-

sons without trying to identify which component changes, or do not

apply, because the total number of components (K) is unknown, sev-

eral components are not quantified (K� < K) and results are almost

always expressed in arbitrary units (‘Quantification Point’ for qRT-

PCR, ‘counts’ for RNA-seq), so that the total sum that imposes the

constraint is also unknown.

2.1 Expression ratios can be interpretated
Let consider the ratio of two RNA amounts in a given condition,

ri;i0 ;c ¼ qi;c

qi0 ;c
. This ratio is unchanged by the extraction process:
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q�i;c
q�

i0;c
¼ qi;c

qi0 ;c
¼ ri;i0 ;c. Hence, any change in the ratio after sample process-

ing can be tracked down to a change of the ratio in the original

sample.

The quantified amount ratio are then, ro
i;i0;c ¼

di;c

di0 ;c
¼ ki;c qi;c

ki0 ;c qi0 ;c
. Let as-

sume that the proportionality constants, ki;c and ki0 ;c, do not change

between experimental conditions—a condition which is almost al-

ways assumed, since any violation to it would prevent any compari-

son of the results, anyway. Then, changes in quantified amount

ratios are due only to changes in the ratio in the original sample.

However, the change magnitude may be different unless ki0;c ¼ ki;c—

that is, quantification yield is the same for all RNAs—a much more

stringent hypothesis that will not be made in the following paper.

Hence, the whole set of (quantified) ratios, or of their logarithm,

is the natural dataset to retrieve information about the effects of the

experimental conditions on the gene-expression levels. This set can

be seen as a K� �K� matrix (limiting to the effectively quantified

ones). Since ri;i0 ;c ¼ 1=ri0 ;i;c and ri;i;c ¼ 1, the matrix of the logarithm

of the ratios is antisymmetric and it is sufficient to consider its

upper-right or lower-left part only.

2.2 Statistical model for expression ratio
Because of the multiplicative shape of the expressions above, a log-

linear model is best suited for the analysis. In this model, it is

assumed that the column-vector qi;•, where • stands for ‘all experi-

ments’, is the realization of a random vector Qi;•, such that

log Qi;• ¼ X bi þ ei;•, where X is a matrix giving the value of all

required covariates describing the changes between experiments

(‘design matrix’), bi the vector of effects of these covariates and ei;• a

random vector of null expectation. The ei;• vector is often assumed

to be Gaussian and with covariance matrix r2 IK��K� , but these

assumptions are not required for the developments below.

Using the notations defined above, and assuming each lower-

case value is the realization of a random variable given by the same

letter in uppercase, we then have for quantified amounts

Di;• ¼ Ki;• M•PK

k¼1
MkQk;•

Qi;•. Here, Ki;• is a column-vector that gives the

proportionality constant for each experiment and can also be

described by a log-linear model, log Ki;• ¼ Xk bk
i þ ek

i;•: this allows to

account for eventual changes in quantification conditions between

experiments, either ‘intentional’ (bk
i ) or resulting from uncertainties

in the experiment set up (ek
i;•).

Consequently, the column-vector of the logarithm of the ratio of

two RNAs is given by

log Ri;i0 ;• ¼ ðlog Ki;• þ log Qi;•Þ � ðlog Ki0 ;• þ log Qi0 ;•Þ

¼ Xkðbk
i � bk

i0Þ þXðbi � bi0 Þ þ ei;i0 ;•

where ei;i0 ;• ¼ ek
i;• � ek

i0;• þ ei;• � ei0 ;•:

From this generic model, several observations can be drawn:

• using ratios allows to eliminate the variability coming from the

uncertainty in the extraction of the total RNA mass (the M• term

disappears),
• using ratios allows to cancel out systematic changes in quantifi-

cation methods between experiments, like changes in sequencing

depth in RNA-Seq or changes in total quantity of fluorescent

probe in qRT-PCR, as far as these effects are the same for all

RNAs—that is, if bk
i ¼ bk

i0; however, it somehow doubles the un-

certainty introduced by quantification steps (term ek
i;• � ek

i0;• in

ei;i0 ;•),
• using ratios, no absolute change can be determined, but one can

determine if two RNAs experience the same change in amount

(that is, bi ¼ bi0 , except eventually for the intercept) or not

(bi 6¼ bi0 ).

This model applies to virtually any experimental setting, from

the most simple comparison between two experimental conditions

to complex designs with longitudinal follow-up of gene expression

and several cofactors—as much as the linear model applies to such

designs. Examples of such complex designs will be given in the

applications part. Inbetween, the simplest case will be considered.

2.3 Simplest case formalization
The simplest case is, in fact, a typical differential expression experi-

ment: two conditions A and B are compared, and several experi-

ments are done in each condition. For sake of simplicity, the case of

two experiments for each condition will be detailed here; it immedi-

ately generalizes to any number of experiment for each condition.

Assuming the two results in condition A are given first, the model

gives

log Qi;• ¼

log Qi;1

log Qi;2

log Qi;3

log Qi;4

0BBBBB@

1CCCCCA ¼
1 0

1 0

1 1

1 1

0BBBBB@

1CCCCCA
li;A

di;B

 !
þ

ei;1

ei;2

ei;3

ei;4

0BBBBB@

1CCCCCA
and li;A is the average amount (in log scale) of RNA i in condition A

and di;B the change in amount of RNA i induced by condition B. A

similar expression can be given for Ki;•. Then, the model for the

ratio of RNAs i and i0 is given by (using the notation Dn ¼ ni � n0i)

log Ri;i0 ;• ¼

1 0

1 0

1 1

1 1

0BBBBB@

1CCCCCA
Dlk

A þ DlA

Ddk
B þ DdB

 !
þ ei;i0;•

In that model, the effect of condition B on the quantified amount

ratio is given by the term Ddk
B þ DdB, in which only DdB contains the

relevant, biological information: if DdB ¼ 0, then changing A in B

does not change the qi

q0
i
ratio—either expressions of genes i and i0 are

not modified, or they are modified in the same way.

This assumes that Ddk
B is null, that is that the change in (the log

of) the proportionality constant of the quantification method be-

tween conditions A and B is the same for RNAs i and i0—that is,

dk
i;B ¼ dk

i0;B. Note that this does not assume that these constants are

the same for the two conditions (that would require dk
i;B ¼ dk

i0;B ¼ 0),

nor that they are the same for the two RNAs (that would require D
lk

A ¼ 0 in addition).

2.4 Building groups of equivalent genes
The nature of expression experiments imposes that only changes in

ratio can be interpreted. The proposed model allows to test if a given

ratio changes between two conditions, using classical statistical

methods related with the linear model, either assuming the Gaussian

assumption or not. However, interpretation of the results is not

straightforward, especially when the number of quantified RNAs,

K�, increases.

To help interpretation, we propose a network-based visualiza-

tion and analysis method. The idea is as follow:

1. consider the K� RNAs as the K� nodes of a fully connected

graph.
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2. update the connexion matrix of this graph using the results of

the tests of the ratio: nodes i and i0 are disconnected if the test

shows a significant change of the ratio di

d0
i
.

3. find groups of strongly connected nodes.

Of note, an alternative approach could be considered to build

the graph: starting from a fully disconnected graph and adding con-

nections only between nodes with significant lack of change in the

ratio. This would however require the use of equivalence tests and

the a priori definition of what is a relevant minimal change in the

ratio. As this approach is currently seldomly used in biology, only

the approach with significant changes will be presented in the

applications.

With this approach, if two RNAs are in the same group, their

ratio is unchanged so they share the same kind of adaptation to the

difference between conditions. If they are in distinct groups, their

ratio change between the conditions, so one of them has its amount

modified in a different way than the other—either in different direc-

tions, or in the same direction but with a different magnitude.

At the group levels, if there is more than one group in the final

result, it can be said that at most one of them correspond to a group

of RNAs of which the amounts are not influenced by the condition.

All other groups correspond to RNAs whose amount is modified by

the condition.

Since any method to detect groups could be used on the graph,

and any definition of what means a ‘significant change’ could be

used to disconnect nodes, this approach is very general. However,

since these choices can have a great impact on the results, they

should be decided before analysis. A few guidelines about that are

given in the application part. Typically, three classes of methods

exist: partitioned graphs, cliques detections and communities

detections.

A graph is partitioned if it is possible to find two set of nodes

(‘subgraphs’) such that there is no edge between any node of one set

and any node of the other set. In other words, the graph is made by

the assembly of two disjoint graphs.

A clique is a subset of nodes that are fully connected, that is any

node in the clique is connected to all other nodes of this clique.

Maximal cliques correspond to the cliques with the highest number

of nodes. Non-overlapping maximal cliques can be good candidates

of groups of different behavior. Maximal cliques may however over-

lap, that is have nodes in common, which makes the interpretation

difficult. In addition, finding maximal cliques is a NP-complete

problem, which means that the computation time exponentially

increases with the size of the graph, K�: such an approach is current-

ly intractable with graphs of more than a few dozens of nodes.

Communities detection algorithms allow to avoid both difficul-

ties. A community is a set of nodes that are more connected between

them than with other communities in the graph. Several mathemat-

ical formalizations exist, leading to a different algorithm; reviewing

them is outside the scope of this paper. Some methods are very time-

consuming [like modeling the network as a spin glass and finding its

ground state, Reichardt and Bornholdt (2006), or modularity opti-

mization, Brandes et al. (2008)], other are less [like Clauset et al.

method based on the modularity index, Clauset et al. (2004)], and

different methods often lead to different results for the same graph.

Hence, interpretation of the result may be difficult.

A special case of both communities and maximal cliques detec-

tion is the detection of disconnected subgraphs. When it occurs,

each subgraph correspond to a distinct community, and it contains

maximal cliques that are distinct than those of other subgraphs, and

the interpretation is straightforward.

2.5 Adjusting P-values
Typical usage would be to use a statistical test at a given, pre-

specified level (for instance, Pi;i0 < 0:05), for each ratio, and discon-

nect two edges if the test is significant for the corresponding ratio.

The question of selecting the test level is then crucial to ensure a con-

clusion with a correct type I error, P.

This is a difficult question, since the relevant P is for a sentence

like ‘the graph has two communities’ and not for each individual

test. Several aspects play in opposite directions: multiple testing

problems, correlations between tests, exact formulation of the hy-

pothesis tested. . . To illustrate this, let assume, that the result is

‘one node is isolated’ (let us say node 1) in a K-nodes graph, and

one would like to be confident at the 0.05 level that it is not a

chance result. To isolate this node, all the tests of the K� 1 ratios

between this node and the other nodes should be significant; that

is, multiplicity correction is not necessary from this point of

view—assuming K� 1 independent tests, all under the null hypoth-

esis, the probability of all of being simultaneously significant

would be Pð\K�1
i¼2 fp1;i < 0:05gÞ ¼

QK�1
i¼2 Pðp1;i < 0:05Þ ¼ 0:05K�1,

well below the desired level, and one could consider to use 0:05
1

K�1

as the level of individual tests. However, the tests are not complete-

ly independent because they all share the same denominator, so

that would inflate the real type I error. Besides, the test of ‘is the

node isolated’ should be performed for each of the K nodes, hence

the type I error for a given node should be, here, corrected for

multiplicity. But since the tests are not independent at all, usual

corrections like Holm or Bonferroni corrections would overcor-

rect. Things are even less clear when the results are expressed as

communities.

Simulations may help to calibrate the choice of the Pi;j-value cut-

off for individual ratio tests. Assuming that all nodes are in the same

class as the null hypothesis (which means that either the experimen-

tal conditions induce no change on the RNA levels, or—less likely—

that all of them change in exactly the same way), Figure 1 shows the

evolution of the type I error with the number of nodes and the

choice of the Pi;j cut-off, when detecting disjoint sub-networks (see

Supplementary Material figure_01.R for the corresponding code).

This figure illustrates that the error decreases quickly with the num-

ber of nodes (that is, of tested RNAs) and, for instance, for an ex-

periment with 15–20 different RNAs as typical in qRT-PCR,

individual test should be conducted with Pi;j < 0:25 to maintain an

overall type I error (of falsely detecting more than one group)

around 0.05.

Similar simulations should be done for other definition of RNA

group detection.

Fig. 1. Evolution of type I error of detecting two completely disjoint groups of

RNAs with the number of RNA in the experiment, for individual tests of ratio

changes with Pi;i 0 < 0:05 (left) or Pi ;i 0 < 0:25 (right). Upper line: individual

tests level a0; lower dotted line: P ¼ 0:05). Vertical segments are �95% confi-

dence intervals of the type I error estimated from 10 000 simulations
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3 Applications to qRT-PCR

In qRT-PCR, the number of quantified RNAs, K�, is typically small,

<100 and typically not more than a few tens. In most cases, refer-

ence RNAs are included amongst the K� RNA quantified. The result

is then a ‘small’ graph, and even time-consuming methods to detect

groups can be used. Typically, this means than maximal cliques can

be searched for, and that all community detection algorithm can

apply. However, since partitioned graphs are the easiest to interpret,

this will be the criterion used in the application shown.

Quantification is made by selective amplification of target sequen-

ces, assuming more or less complex models (Carr and Moore, 2012;
�Ciko�s and Koppel, 2009; Platts et al., 2008). Roughly, along amplifi-

cation, fluorescence increases, leading to a S-shaped curve, and RNA

is quantified as the abscissa of a special point on this curve: the cycle

at which the curvature of the amplification curve is maximal (quanti-

fication point, Cq), the first cycle that gives a detectable fluorescence

(cycle threshold, Ct), the position of first derivative maximum (cross-

ing point, Cp). . . This quantification can be interpreted as log di;c. We

will not consider here the various models that may be used to convert

fluorescence signal into arbitrary unit, quantified RNA level—as all

other analysis methods, our proposed methods expects reliable quan-

tifications, whatever their origin. See for instance (Ruijter et al., 2013;

Spiess et al., 2015, 2016; Tellinghuisen and Spiess, 2014) for discus-

sions and comparisons of quantification methods.

The traditional analysis method is the so-called ‘DDCt’ method

(Livak and Schmittgen, 2001), where one D correspond to the div-

ision of di;c by the quantified amount of a reference gene dir ;c (nor-

malization step), and the second to the difference of the logarithms

between two conditions.

This method only applies when two conditions are compared. In

that case, it is equivalent to the ‘additive log ratio’ method in compos-

itional data, and shares the same limitations. Compared to the ‘all

ratios’ approach, it gives only one line (or one column) of the ratios ma-

trix. Hence, it only allows to detect RNAs that behave differently from

the reference gene. Since the reference gene RNA level is expected not

to be affected by the condition tested, it may detect RNAs with changed

expression, but does not allow to classify them in different groups.

Besides, the fact that the reference gene RNA is not modified is a strong

assumption that is rarely verified in all samples and conditions tested,

and selecting appropriate reference genes is a complicated matter (Ling

and Salvaterra, 2011; Radoni�c et al., 2004; Xu et al., 2015).

To limit the impact of unexpected variations in reference gene

amounts, the use of the geometric mean of the expression levels of sev-

eral reference genes is advised (Vandesompele et al., 2002). However,

interpretation of such ratios is not straightforward, unless all the refer-

ence genes share the same behavior (and in that case, using several genes

would add little value). This neither overcomes the other limitations.

Our method can be seen as a generalization of the DDCt method

that bypasses all the limitations given above: any experimental design

can be handled and interpretation of the resulting graph gives all the

available information in the data. In addition, using several reference

gene allows to test the hypothesis that they indeed have the same vari-

ation: they should belong to the same group. Because this method has

less assumptions and is less sensitive to unexpected changes between

experiments, it is expected to increase reproducibility of the conclusions

obtained, expressed as groups of genes, in agreement with MIQE

Guidelines, point 8.1 ‘Normalization’ (Bustin et al., 2009).

3.1 Application to a complex two factors design
This example considers the data published in Geoffroy et al. (2017),

that also presents the rational for the experiment. Briefly it aimed to

compare expression levels in cells of two kind of patients suffering

from bipolar disorders and treated by lithium, a reference treatment

for this pathology: patients who resolve their symptoms using lith-

ium (‘excellent responders’, ER, n ¼ 20) and patients who do not

(‘non-responders’, NR, n ¼ 16)—see the publication for the classifi-

cation criteria. Lymphoblastoid cell lines from these patients were

cultivated with and without lithium for 4 days (original experiment

also includes 8 days and 2 days, that are not considered here), then

qRT-PCR is performed on a set of 17 candidate RNA (transcripts of

circadian genes) and 2 reference genes (HPRT and SDHA). In this

design, RNA levels may change between patients (factor P), between

ER and NR in average (factor G) or because of lithium (factor L). It

is expected that either ER and NR patients should have different

RNA levels at baseline, or that lithium effect on RNA level should

differ between ER and NR patients, hence the G: Li interaction term

is of interest. P is a nuisance, but important, factor.

To analyze this complex design, a linear mixed effects model is

suitable, where the patient is a random effect on the intercept. This

writes, using a reference-level (ER patients, without lithium) con-

trast coding, and after log-transformation, as

Qi;p;l;g ¼ li;0 þUi;pþ

di;NR 1g¼NR þ di;Liþ 1l¼Liþþ

di;I 1g¼NR 1l¼Liþþ

ei;p;l;g

where p is the patient, Ui;p its random effect for RNA i, li;0 the aver-

age level of RNA i (in log-space) for ER patients in absence of lith-

ium, di;NR the difference between average level of RNA i between

NR and ER patients without lithium, di;Liþ the effect of lithium on

RNA i level in ER patients and di;I the additional effect of lithium on

RNA i level in NR patients, compared to ER patients. 1y¼Y is an in-

dicator function, that ¼1 if y ¼ Y is true for the given data, ¼0

otherwise, and ei;p;l;g is the residual error term.

With this model, terms of interest are di;NR (which is non-null if

and only if ER and NR patients have different basal levels of RNA i)

and di;I (which is non-null if and only if lithium has different effects

on RNA i level between ER and NR patients).

When applied to ratio of RNA i and j levels, the model becomes

(with Dn ¼ ni � nj)

Ri;j;p;l;g ¼ Dl0 þ DUpþ

DdNR 1g¼NR þ DdLiþ 1l¼Liþþ

DdI 1g¼NR 1l¼Liþþ

Dei;p;l;g

:

Hence, testing the model coefficients will say if two RNAs have

the same change in basal level between ER and NR (DdNR ¼ 0) or

the same differential lithium effect between ER and NR patients

(DdI ¼ 0). Consequently, RNAs can be grouped using either the first

or the second criteria, leading to two different graphs. Since refer-

ence genes were used at three different dilutions, the graph contains

17þ 2� 3 ¼ 23 nodes, hence a P < 0:25 cut-off should be used to

have a < 0:05, according to simulation results presented in

Figure 1. However, since P-values were obtained through Wald tests

that assume an infinite sample size and are known to be liberal be-

cause of this, a conservative P < 0:20 cut-off value was used, lead-

ing to the graphs given in Figure 2. All analyses were done using R

(R Core Team, 2016) (Supplementary Material figure_02.R). The

model was fitted using restricted maximum-likelihood with the lmer

function (package lme4) (Bates et al., 2015). The graph was built
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and analyzed using the igraph package (Csardi and Nepusz, 2006).

Sets of genes with similar behavior were defined using disjoint sub-

networks (partitioned graph). Supplementary Material

exemple_shiny.R provides the code to build an interactive version of

Figure 2, using shiny. Results of the analysis using normalization by

the geometric average of the expression levels of the two reference

RNAs are given in Table 1.

At baseline, the network displays only one graph, with all nodes

being connected to at least another one. There is no evidence for

any change in basal circadian gene expression between excellent

responders and non-responders patients. The dendrogram shows

that a minimal threshold of 0.24 would be needed to cut the link be-

tween BHLHE41 and ARNTL2, making BHLHE41 a potential can-

didate. The next scission needs a much higher threshold of 0.60,

isolating ARNTL2, suggesting no other clear candidate. The classic-

al analysis neither detects any change, even before any multiplicity

correction.

In contrary, differential lithium effects graph shows that the

BHLHE41 gene is isolated, connected with no other node. This

suggests that lithium effect on this gene expression is different be-

tween excellent responders and non-responders, at the 0.05 type I

error level used to select the threshold. Of note, classical analysis

detects two genes (BHLHE41 and CRY1) without multiplicity cor-

rection, but none of them is kept after multiplicity correction by

Holm’s method, so it is not possible with the classical analysis to

confirm any of them. The analysis of the dendrogram shows that

the next cut occurs for a threshold of about 0.63, far above from

the selected one, and this cut isolates CRY1. This suggests that

CRY1 detection using uncorrected classical analysis may be a

false-positive, whereas significance of BHLHE41 may be related to

a true signal. To confirm this, a simulation was made to compare

the two methods (see Supplementary Material tableau_02.R for

details). Its results, given in Table 2, confirm that the uncorrected

classical analysis has an unacceptably high false-positive rate and,

despite a high power, a very low probability of finding the correct

genes. At comparable type-I error rate, our method has a compar-

able power than the multiplicity corrected classical analysis and,

when detecting something, the probability that it is correct is ac-

ceptable (	 2:1
6:7 ¼ 31 %), without relying on the reference gene in-

variance hypothesis.

4 Applications to RNA-Seq

Basically, in a RNA-Seq experiment, RNAs extracted from the cul-

ture are retro-transcribed into DNA. This DNA is splitted in small

size fragments and these fragments are sequenced. Each obtained se-

quence is then mapped on a reference library to identify the original

transcript. Amounts of a given RNA are expressed in number of

times a given fragment was associated to this RNA sequence—

‘counts’.

A

B

Fig. 2. (A) Graphs of candidate circadian genes in qRT-PCR, for basal differen-

ces (left) and differential lithium effects (right) between ER and NR patients.

Circles with green background correspond to candidate circadian genes,

circles with orange background to reference genes (HPRT_x and SDHA_x). (B)

Corresponding dendrogramms. Red line is the threshold used to obtain the

graphs above

Table 1. Results of qRT-PCR analysis using the changes in ratio of

RNAs of interest with the geometric average of reference RNAs

(‘classical analysis’)

Gene Basal Diff. Li effect

Raw Holm Raw Holm

ARNTL 0.505 1 0.685 1

ARNTL2 0.345 1 0.250 1

BHLHE40 0.734 1 0.924 1

BHLHE41 0.092 1 0.037 0.589

CLOCK 0.258 1 0.766 1

CRY1 0.390 1 0.006 0.098

CRY2 0.588 1 0.720 1

CSNK1D 0.934 1 0.567 1

CSNK1E 0.744 1 0.765 1

DBP 0.725 1 0.935 1

GSK3B 0.424 1 0.938 1

NR1D1 0.636 1 0.621 1

PER1 0.707 1 0.951 1

PER2 0.246 1 0.495 1

PER3 0.988 1 0.657 1

RORA 0.990 1 0.464 1

TIMELESS 0.037 0.631 0.915 1

Note: P-values are expressed without (‘raw’) and after multiplicity correc-

tion by Holm’s method (‘Holm’).

Table 2. Comparison of analysis methods to detect that 1 gene

changes between two conditions amongst 23 genes, including 6

reference genes

Method a 1� b c

DDCt 56.3 % 62.5 % 7.9 %

(55.3; 57.2) (61.6; 63.5) (7.4; 8.4)

H-DDCt 5.2 % 7.0 % 2.2 %

(4.8; 5.6) (6.5; 7.5) (1.9; 2.5)

Graphs, P ¼ 0:30 5.2 % 6.7 % 2.1 %

(4.7; 5.6) (6.2; 7.2) (1.8; 2.4)

Notes: Results of 10 000 simulations; DDCt: ‘classical analysis’, without

multiplicity correction; H-DDCt: ‘classical analysis’, with multiplicity correc-

tion by Holm’s method; graphs: our method, with the given threshold. a:

type-I error rate; 1� b: power (probability of rejecting the null hypothesis

that no gene-expression changes); c: probability of correctly detecting the

gene that changes, and only that gene. Values are given with their 95% confi-

dence intervals.

Building networks of covariating gene expression 263

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/2/258/5053322 by Bibliotheque interuniversitaire de sante user on 20 D
ecem

ber 2019

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty629#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty629#supplementary-data


The conversion of this values in quantities raises several issues, and

there is numerous discussions on the methods to have meaningful and

comparable values, known as normalization steps (Li et al., 2015;

Risso et al., 2014). Discussion of these methods and issues is outside

the scope of this paper; as for qRT-PCR, we will assume that a method

that gives reliable di;c was used. Let’s just note that, since the changes

in ratios do not depend on having the same quantification yield for all

RNAs and all conditions, but only that these yields do not change dif-

ferently between RNA between the different conditions, our method

should be less sensitive to the choice of the normalization method, as

far as this method still leads to an approximate linear relationship be-

tween the true amount and the quantified, normalized amount.

However, in RNA-Seq, an additional difficulty arises: quite

often, several transcripts are separately quantified for a given gene,

but interest is on the gene level. If gene g has ng different transcripts,

ng 
 K, then its expression level could be defined as qg
c ¼

Png

j¼1 qj;c

(assuming its transcripts are numbered first), and the corresponding

quantified amount is dg
c ¼ McPK

k¼1
Mk qk;c

Png

j¼1 kj;c qj;c. Hence, the ratio

of quantified amounts between genes g and g0 is dg
c

d
g0
c
¼
Png

j¼1
kj;c qj;cPngþng0

j¼ng
kj;c qj;c

.

This is in general different from the original ratio, unless the pro-

portionality constants are the same for all transcripts of each genes,

hence factorizes. This is however a reasonable hypothesis, since the

different transcripts should be chemically close. Hence, we will not

consider this difficulty in the applications below.

Since the number of different RNAs detected, K�, is huge, the

network is too large for several methods of group detection, espe-

cially the maximal cliques method and several algorithms of com-

munity detection. However, this huge number of nodes also

guarantees than even high individual P-value cutoffs can be used to

detect disconnected sub-networks.

Another difficulty is the discrete nature of the quantification

data, at least as given by most normalization methods. This is usual-

ly handled using count process models, like Poisson law or negative

binomial law (Love et al., 2014) and a generalized linear model ap-

proach. However, there is no such standard model for ratio of

counts data. Hence, we instead suggest the use of a log-normal law,

which is often a good continuous approximation of the negative bi-

nomial law, allowing for skewness and independent position and

dispersion parameters. This should work well unless very low counts

are obtained, with the special case of 0 counts that is difficult to han-

dle since it leads to infinite ratios. However, since the way to decide

if two nodes are connected or not is free, this limitation can be over-

come by replacing the test on counts by, for instance, a test on the

proportion of values below the quantification limit.

5 Discussion

Expression data are by nature compositional, due to the way these

experiments are done: a pre-defined mass of total RNA is analyzed

for quantification. This is a basic limitation of these studies that

remains whatever the quantification method used. Hence, it should

be taken into account in the analysis and the interpretation of the

results. To our knowledge, this was not yet done for microarray and

RNA-Seq experiments.

In qRT-PCR experiments, this limitation is handled through the

use of a set of reference, ‘housekeeping’, genes. This approach has sev-

eral drawbacks, including the assumption that reference gene RNA

levels are not modified across the various conditions, the difficulty to

choose the number and the nature of these reference genes.

Furthermore, it only allows a partial interpretation of the results, since

it only detects candidate genes that behave differently than reference

genes, but cannot easily detect that two candidate genes behave in dif-

ferent ways. Last, because each candidate gene is tested separately,

corrections for multiple testing are needed (like Bonferroni or Holm

methods), which make the detection of a signal all the more difficult,

than there are different genes tested in the experiment.

The method proposed here allows to interpret the data respecting

their compositional status, whereas overcoming most of these limita-

tions. First, since groups of genes of homogeneous behavior are built,

interpretation of the results is easy and can be done graphically, with

the drawing of the obtained network. Second, reference genes if pre-

sent are handled similarly to candidate genes. If all reference genes be-

long to the same final set of nodes, then assumption that they all

behave similarly (in particular that they are not affected) is reasonable,

and using this set as a reference ‘no change’ set, interpretation of the

other sets can be done. However, if the reference genes are splitted be-

tween different sets of nodes, then the underlying assumption for the

selection does not hold. But this does not prevent the interpretation of

each set of genes as behaving differently. Last, if set of nodes are

defined as disjoint subgraphs, as demonstrated by the simulations

done and the application, this method keeps a good power to detect

signal when the number of candidate genes increases. This is because

it does not need multiplicity correction. Instead, to keep a ‘P<0.05’

threshold for the global test ‘disjoint graphs do exist’, individual tests

should be performed with a P-value cut-off that increases with the

number of nodes, ensuring a reasonable power.

Compared to the usual DDCt method, often used in qRT-PCR, it

also presents the advantage to be usable in any experimental con-

text, and not only in paired samples, two-conditions experiments.

Since the DDCt is a special case of the ‘reference gene’ method,

remarks of the previous paragraph also apply.

Concerning RNA-Seq and microarrays experiments, the

method is time and place-consuming, because the number of tests

to be done on the ratios increases as K�ðK��1Þ
2 eK�2, where K� is the

number of quantified RNAs—for a typical RNA-Seq experiment

that detects around 16 000 different RNAs, that means around

128 million comparisons and a 16 000 nodes graph to analyze.

Because of this, simulations are tedious and the optimal cut-off se-

lection difficult. Besides, one may expect that the risk of having

genes that present intermediate variations between other pairs of

genes increases, meaning that disjoint subgraph are harder to find

and that the power of the method is diminished. Consequently,

despite the principle and necessity of analyzing ratios holds, further

investigations are needed to select more powerful graph analysis

methods.

6 Conclusion

There is still work to be done to fully characterize the method, espe-

cially concerning its power in different situations and its properties

when other definition of nodes sets are used than disjoint subgraphs.

However, in its current state, the method seems ready to be used in

several contexts. It is easy to implement in any statistical software,

for the individual ratios comparisons part, and the graph can be

built with any devoted software.
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