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Abstract. Image segmentation based on convolutional neural networks
is proving to be a powerful and efficient solution for medical applications.
However, the lack of annotated data, presence of artifacts and variability
in appearance can still result in inconsistencies during the inference. We
choose to take advantage of the invariant nature of anatomical struc-
tures, by enforcing a semantic constraint to improve the robustness of
the segmentation. The proposed solution is applied on a brain struc-
tures segmentation task, where the output of the network is constrained
to satisfy a known adjacency graph of the brain regions. This criteria
is introduced during the training through an original penalization loss
named NonAdjLoss. With the help of a new metric, we show that the
proposed approach significantly reduces abnormalities produced during
the segmentation. Additionally, we demonstrate that our framework can
be used in a semi-supervised way, opening a path to better generalization
to unseen data.

Keywords: Medical Image Segmentation, Convolutional Neural Net-
work, Semi-Supervised Learning, Adjacency Graph, Constraint.

1 Introduction

In medical imaging, semantic segmentation is of major importance, it helps to
quantify the volume and positions of anatomical structures [1, 2] and lesions [3].
In the case of brain segmentation, it enables to track the volume of structures
over time, providing valuable evidences to hypothesize over a possible malfunc-
tion. Multi-atlas methods [4, 5] are established solutions for this problem, they
are based on the registration and fusion of image atlases, which results in con-
sistent segmentations that preserve the topology of the structures, taking into
account the inter-structures relationships. In CNN based approach [1], Moeskops
et. al. proposed a patch based segmentation architecture which leverages con-
textual information around the center pixel. Encoder-decoder model [6] has also
been used for the same task, by first pre-training on a different dataset anno-
tated with Freesurfer and then fine-tuning with a novel error corrective loss.
These pipelines are optimized to maximize the similarity between the segmenta-
tion and the ground truth, based on cost functions like the cross entropy and the
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dice similarity [6]. The precision and robustness of these methods are bounded by
the quality and quantity of the data. At best it should represent the variability
in appearance and the segmentations should bring consensus among examiners.
However the lack of annotations is a common factor in medical imaging, due to
the complexity of the task. Solutions have been explored to harness properties
such as anatomical invariance and semantic knowledge, allowing to improve the
modeling capacities of CNNs by constraining the loss. It can take the form of an
implicit knowledge (contextual information, spatial position) integrated as an
input of the model or a soft penalty (volume, shape) specified by an expert.
Previous works on learning under constraints [7–9] demonstrate the interest in
such method, Stewart et. al. [8] suggested to use physics laws as a domain prior
and proves its applicability to object tracking. In the medical community, [10]
trained a by-patch segmentation model by integrating a spacial representation of
the patch, implying that the position is correlated to the label of interest, enforc-
ing an automatically learned spatial constraint. In [9], Oktay et. al. went further
by learning a representation of the label space with an auto-encoder, extracting
shape and location priors of the structures. The final model is constrained to
minimize the label representation of the segmentation and the ground truth.
In this paper, we investigate how segmentation abnormalities can be reduced by
introducing knowledge about the connectivity of anatomical structures. We ap-
ply the proposed method to brain structures segmentation on MR T1w images.
First, an encoder-decoder model inspired from [6] is trained on a dataset. Second,
a labels adjacency prior is extracted from the training set, with the objective of
matching the network’s output with it. A novel loss function is applied on the
trained network, in a simple fine-tuning step. Finally, we take advantage of the
semi-supervised nature of this constraint by applying it on an external dataset.
Doing so provides better generalization, without compromising the quality.

In section 2. we introduce the segmentation architecture, together with the
adjacency constraint term. In section 3. we present the various experiments re-
alized to demonstrate the interest in such method. In section 4. the results of
the experiments are commented.

2 Methods

2.1 Encoder-Decoder architecture

The architecture of our 2D network (Fig. 1) is directly inspired by [6], with
some minor changes. This network is composed of an encoding path, followed by
a decoding path where the features are upsampled with max-unpooling. During
the decoding, features from the encoder are reused via skip-connections and
concatenated with the upsampled path, at each resolution level. The input of
the network is composed of 7 adjacent slices, while segmenting only the central
slice. The other difference is that we used convolution kernels of size 3x3, proving
to be more efficient in terms of parameters and with equal performance.
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Fig. 1: Encoder-decoder architecture

2.2 Adjacency graph of the anatomical structures

In this work, structural invariance of the segmentation map is assumed, the
connectivity between regions should be the same from one subject to another.
The adjacency graph of a segmentation map is defined as a graph where each
label of the map is a vertex and where edges are weighted by the number of voxels
joining two regions. Formally, the weight of the edge connecting the structures i
and j for a given subject is defined by:

Aij =
∑
x

∑
v∈V

δi,s(x)δj,s(x−v), (1)

where x is a voxel, s(x) the mapping to the corresponding label, δ the Kronecker
delta and V defines a neighborhood which does not include 0.

The matrix A ultimately describes how many contours are shared between
pairs of structures in the 3D volume. Although, this matrix can vary from one
subject to another, it is assumed in this work that its binary version Ã = (A > 0)
does not change. One can consequently define the set of forbidden transitions
between structures : F = {(i, j)| Ãij = 0}.

2.3 Loss functions

Constraint training Knowing which regions interact together allows to determine
which adjacencies should be considered as abnormal and finally not present in
the output of an automatic segmentation system. We propose in this work to
train the network φ such that its weights w minimize inconsistencies in the
output segmentation by solving the constrained optimization problem :

min
G(w)=0

1

|DS |
∑

(x,y)∈DS

L(φ(x,w), y)) (2)

where L is a segmentation loss (Dice or cross-entropy for example) and

G(w) =
∑

x∈DNA

∑
(i,j)∈F

aij(φ(x,w)). (3)

The aij function measures the adjacency between labels i and j from the network
probability output and will be discussed below. DS and DNA are respectively
the training dataset for the segmentation and the Non-Adjacency loss.



4 Semi-supervised learning for segmentation under semantic constraint

Computing the adjacency loss The aij function takes as input a map p(.) of
probability vectors (the output of the network) and should return, as Eq. 1, a
measure of connectivity between the i and j labels. A simple idea to build aij
would be to define an approximation f of the δ.,s(x) function from the p map
and plug it into Eq. 1. If f is such an approximation, aij can be computed as
follows :

aij(f) =
∑
x

∑
v∈V

fi(x)fj(x− v), (4)

=
∑
x

fi(x)
∑
v∈V

fj(x− v), (5)

=
∑
x

fi(x)f̃j(x) (6)

where f̃ = f ∗1V is the convolution of f and the indicatrix of the neighborhood
(a kernel with all one values in V , 0 /∈ V ).

Note that if fi(x) = δi,argmaxk pk(x)
, we obtain exactly aij(f) = Aij . However,

as the derivative of the argmax function is 0 a.e., gradient descent algorithms
such as SGD would not be possible for the training. We will investigate two
families of smooth approximation :

fp(p) = pβ and fnorm(p) =

(
p

maxk pk

)β
, (7)

where the exponent is meant component-wise.

Semi-supervised learning Evaluating the loss of the semantic constraint does
not require the ground truth segmentation, thus the framework of this method
is extended to semi-supervised learning, where the model is simultaneously opti-
mized to minimize the classical segmentation loss on the annotated dataset DS

and constrained by the connectivity term on an external non-annotated dataset
DNA complemented by the ground truth dataset DS .

2.4 Numerical resolution

Constrained optimization The constrained learning is performed by fine-tuning
a model trained to solve the original task (without any form of penalization).
During this second step, G(w) is weighted by a coefficient λ and added as a
penalization to the segmentation loss. The λ coefficient is linearly increased as
a function of the iteration index until it reaches a predefined λmax.

Multi-objective model selection A standard way to select the best network is to
choose the iteration with minimal loss on the validation dataset. In our case,
selecting the best model involves balancing between the quality of the segmen-
tation and its fidelity to anatomical properties. To solve this multi-objective
problem, we opt to pick the model that maximizes the average graph loss among
the five best average dice.
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3 Experiments

3.1 Data

The proposed method was evaluated on brain-region segmentation from T1-
weighted MR images, using the MICCAI 2012 multi-atlas challenge and IBSRv2
datasets. Each dataset was split into training/validation/test subsets as pre-
sented in table 1. The OASIS dataset [11] was used as the source of unlabelled
training data for the semi-supervised experiments, excluding the subjects who
also appear in MICCAI 2012. In IBSRv2, 6 of the 39 labels were removed from
the segmentation problem (such as Lesions, Blood vessel or Unknown).

Nb subjects Nb labels Nb train Nb validation Nb test
MICCAI12 35 135 10 5 20
IBSRv2 18 33 10 3 5
OASIS 406 284 122

Table 1: The three brain MRI datasets used for the experiments.
All the images were affine registered to a reference atlas in the MNI space.

Bias field correction was applied with N4ITK. The mean and standard deviation
were estimated on each of the datasets and respectively centered and reduced.

3.2 Implementation Details

The cross entropy and the average dice similarity [6] are the loss functions. The
numerical optimization is performed with SGD, with a batch size of 8, the initial
learning rate is set to 0.01 and updated following the poly rate policy[12], for
300 epochs. While applying the penalization, λmax (see 2.5) is set to 0.01, the
learning rate is lowered to 1e− 3, for 50 epochs.

Due to the number of classes and important volume variations between struc-
tures, we noticed that class imbalance was causing issues during the optimization
of the cross entropy. Following the work of Roy et. al. in [6], median frequency
weighting was applied with success. The dice loss is left unaffected by this prob-
lem. We used elastic deformation [13] as the main data augmentation method.
The code and the models’ parameters will be made available publicly 1.

3.3 Evaluation

To quantify how many abnormalities based on the adjacency prior are present,
we introduce two new metrics, CAunique and CAvolume :

CAunique(a) = 100
|O ∩H|
|H|

and CAvolume(a) =

∑
(i,j)∈(O∩H)

aij

volcontour

where a is the adjacency graph of a segmentation map, O = {(i, j) | aij > 0},
H = {(i, j) | Ãij = 0} and volcontour the volume of contours voxels in the inferred
segmentation.
1 https://github.com/trypag/NonAdjLoss
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Fig. 2: Binary adjacency graphs matrices. Blue shows correct connections, red
shows impossible adjacencies. From left to right: ground truth Ã for the MIC-
CAI12 dataset, after training without constraint, after training with NonAd-
jLoss, after semi-supervised training of NonAdjLoss with 100 images.

Fig. 3: Segmentation maps of one patient for :
ground truth, model without loss, model with
NonAdjLoss (from left to right). Red boxes high-
light areas where inconsistencies were corrected.

Fig. 4: Number of unique
abnormal connections as
a function of fp, fnorm
and β.

4 Results

To select the best approximation of f , we evaluated several values of β for fp
and fnorm. For these models optimized with NonAdjLoss on the train dataset
of MICCAI12, we measured the total number of unique abnormal connections
on part of the validation set (20 images from OASIS). Fig 4 shows that fnorm
is significantly better at reducing the number of forbidden transitions than fp.
The optimal value of β lies at 0.5, we opt to use this configuration for the rest
of the experiments. The effect of training with NonAdjLoss is demonstrated in
Fig 2, where the adjacency graphs obtained from the segmentation of the MIC-
CAI12 test dataset are presented. After optimizing with the penalty term, the
number of unique abnormalities (red dots) considerably decreases, while cor-
rect connections (blue dots) are preserved. We further improve the results by
performing semi-supervised training on 100 unannotated images from OASIS,
effectively showing that the true objective of minimizing inconsistent predic-
tions is achieved. It also demonstrates that semi-supervision has the ability to
strengthen the generalization of the constraint, by learning from unseen cases.

In table 2, we evaluate classical metrics to measure the quality of segmenta-
tion and quantify abnormalities. For the MICCAI12 dataset, we can see that the
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MICCAI12 Dice Hausdorff MSD CAunique CAvolume

Baseline 0.735 ± 0.11 21.19 ± 9.82 1.25 ± 0.43 2.57 ± 5.7e-2 7.6e-3 ± 2.5-e2
Our loss(0) 0.730 ± 0.10 13.20± 4.70 1.13 ± 0.35 0.21 ± 6.1e-3 2.7e-4 ± 1.0e-3
Our loss(20) 0.733 ± 0.10 11.42± 4.21 1.08 ± 0.33 0.02 ± 3.9e-4 7.3e-6 ± 2.4e-5
Our loss(100) 0.739 ± 0.10 11.20± 4.13 1.05 ± 0.34 0.01 ± 1.5e-4 1.5e-6 ± 2.4e-6
IBSRv2
Baseline 0.825 ± 0.11 20.86 ± 21.14 0.82 ± 0.36 5.44 ± 1.8e-2 5.4e-4 ± 1.7e-4
Our loss(0) 0.833 ± 0.10 15.45± 20.32 0.78 ± 0.31 0 ± 0 0 ± 0
Our loss(20) 0.833 ± 0.10 14.54± 19.57 0.77 ± 0.31 0 ± 0 0 ± 0
Our loss(50) 0.835 ± 0.10 15.16± 19.26 0.77 ± 0.30 0.12 ± 1.5e-3 2.2e-6 ± 4.2e-6

Table 2: Distance, similarity and connectivity metrics for each models. MSD is
the mean surface distance. All the metrics are averaged over the test dataset.
Our loss (n) = NonAdjLoss(n), where n is the number of images used for the
semi-supervised training. (average ± standard deviation).

proposed methodology does not harm the dice similarity, keeping a steady level,
while considerably lowering the Hausdorff distance (significantly better than the
baseline for all the proposed models, with 95% confidence). This means that
training with the NonAdjLoss enables to correct segmentation errors that are
spatially far away from their ground truth, thus reducing the level of inconsis-
tency. The CAunique metric provides a percentage of unique abnormal connec-
tions in the segmentations, for both datasets we prove to gradually decrease it
by applying the proposed loss, sometimes even resulting in no abnormality. The
only exception is the model trained with semi-supervision on 50 images of IB-
SRv2, we suggest that it is due to an optimization problem. CAvolume indicates
the overall volume of inconsistent segmentations, quantifying how many abnor-
malities were observed. Again we notice the same pattern as before, gradually
diminishing the errors.

5 Conclusion

To our knowledge, this is the first time in the literature that a loss constraint
based on a label connectivity prior is proposed. It can be applied to any image
segmentation problem where invariance in the label space is ensured, without
needing to modify the network’s architecture. Furthermore, while no segmen-
tation quality measure was impaired, the Hausdorff and MSD were clearly im-
proved. The higher the number of labels, the more constrained the problem is,
which leads to a potentially better efficiency of the method. Not requiring the
ground truth annotation is also a serious advantage to extend to semi-supervised
training, enforcing the generalization of the new loss on larger datasets.
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