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In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the
instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive
optics (AO) is presented. Expressions for the probability density function and the cumulative distribution func-
tion as well as for the average fading duration and fading duration distribution of the corrected coupled flux are
given. These results are of prime interest for the computation of metrics related to coded transmissions over
correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchro-
nous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact
of different AO performances on the aforementioned fading duration distribution is analytically investigated for
both scenarios.

OCIS codes: (010.1080) Active or adaptive optics; (010.3310) Laser beam transmission; (060.0060) Fiber optics and optical

communications; (060.2605) Free-space optical communication.
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1. INTRODUCTION

While future satellite-to-ground laser communication systems
promise extremely high data rates, reasonable costs of imple-
mentation in the short term will be attainable only by leverag-
ing the benefits of existing single-mode components developed
for fiber telecommunication. Yet, atmospheric turbulence se-
verely degrades the injection efficiency of the incoming optical
wave into such components, leading to signal fades and channel
impairments. On one hand, the use of adaptive optics (AO)
should contribute to reducing substantially the criticality of
these fades by partially compensating turbulence-induced phase
fluctuations. However, when very high injection stability is
needed, complex and expensive AO systems have to be consid-
ered. On the other hand, the use of numerical mitigation tech-
niques such as interleaving and forward error-correcting (FEC)
codes, while limited by on-board resources, could scale down
the specifications and cost of AO systems. In order to effectively
and simultaneously assess the performances of AO and
numerical techniques, quality of service metrics such as the
coded packet (or symbol) error rates must be computed.
The computation of such metrics will require the knowledge

of the distribution of the fades’ as well as interfades’ durations
of the instantaneous AO-corrected coupled flux into a single-
mode fiber (SMF). The latter is subjected to variations condi-
tioned by the turbulent wavefront distortions, themselves
characterized by phase as well as log-amplitude fluctuations.
Assuming stationary turbulence conditions, increasing the
diameter of the receiver will tend to decrease the coupled flux
fluctuations thanks to aperture averaging at the expense of a
more demanding AO system. Under such circumstances, the
influences of residual phase fluctuations and aperture-averaged
scintillation have to be studied jointly. Furthermore, particu-
larly in satellite-to-ground transmission scenarios, AO error
budgets should not take the fitting error solely into account,
as it may roughly overestimate the overall system performance.
A more realistic error budgeting, representative of a partial
AO correction, needs to be considered by including the fitting,
aliasing, and the temporal errors of the control loop. This is
especially important when considering transmission links from
satellites with significant orbital velocities such as low earth or-
bit satellite (LEO)-to-ground downlinks. If not by experiments,
the statistics of the aforementioned coupled flux fading after
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partial AO correction can usually be obtained by means of
wave-optics numerical simulations that are nonetheless very
time-consuming or too complex to implement when a good
depiction of the involved physical phenomena is required.

Recently, an expression of the probability density function
(PDF) of the instantaneous SMF coupling efficiency in the pres-
ence of atmospheric turbulence was suggested in [1]. Assuming
that phase variations were dominant over log-amplitude fluctu-
ations, the authors found that a Ricean distribution was a rea-
sonable statistical approximation. This result can be found as
well in [2], in which the effects of both wavefront distortion
and amplitude scintillation are taken into account. The under-
lying hypothesis common to both of these contributions is that
the distorted light propagating to the pupil is composed of
statistically independent cells (or speckle) [3]. This may be a
sufficiently good approximation when studying a perfect AO
correction for which residual phase variance is, indeed, domi-
nated by the fitting error. In the case of a partial AO correction,
the lower-order residuals corresponding to low spatial frequen-
cies are nonzero and are thus intrinsically highly correlating.

Determining the statistics of the turbulent instantaneous
coupling efficiency is to some extent similar to determining
those of the short-exposure Strehl ratio (SR). A simple analyti-
cal model that assumes perfect AO correction, and is based on
the central limit theorem describing the probability distribu-
tion of the latter while taking into account log-amplitude
and phase fluctuations can be found in [4]. The SR statistics
give a rough estimation of the coupling efficiency statistics. The
SR can, however, be shown to be a pessimistic estimator of the
coupling efficiency [5]. The SR statistics are therefore not
sufficient for the purpose of dimensioning data reliability
mechanisms such as time interleavers and other coding tech-
niques. Nevertheless, both quantities depend approximately
on the variance of the residual wavefront [6], which can be
directly expressed in terms of the coefficients of the modal
decomposition of the wavefront. This approach was adopted
in [7], where it was found that the residual wavefront variance
is distributed as the sum of two independent χ2 random
variables: the first characterizing the residual tip-tilt and the
second higher-order modes. The final result of such an analysis
presents similarities with the gamma distribution characterizing
the temporal variability of the short-exposure SR derived in [8].
In both of these contributions, important statistical assump-
tions are made about the independence and/or identical distri-
bution of residual modes or phase values measured by the
wavefront sensor. Although these assumptions appear very
appealing because of their convenience, they may not stem
from a proper physical justification. Therefore, using similar
modal decomposition [9] adapted to the problem at hand as
well as widespread hypotheses regarding the wavefront statis-
tics, the present paper emphasizes the derivation of analytical
expressions of the coupled flux’s probability density function
(PDF), cumulative distribution function (CDF) and temporal
characteristics [temporal autocovariance, average fading dura-
tion (AFD), average interfading duration (AIFD), fading dura-
tion distribution (FDD), and interfading duration distribution
(IFDD)] and their validation by end-to-end wave-optics
simulations.

The present contribution aims to remedy a shortfall in the
literature regarding the modeling options of these statistics,
which are needed for dimension data reliability mechanisms
such as interleavers and/or error-correcting codes for future
satellite-to-ground optical links. In this regard, the temporal
characteristics of the propagation channel and the effect of
AO correction on them have to be accurately modeled.
Consequently, consideration should be given to the correlation
of lower-order wavefront aberration residuals induced by the
limitations of realistic AO systems. For instance, it is noted later
in this paper that neglecting the latter can lead to relative var-
iations of several tens of percent in terms of AFD and AIFD.
Thus, the novelty of our contribution is to provide an analytical
model that will allow one to infer the efficiency of such data
reliability mechanisms accurately while accurately taking into
account the impact of the temporal correlation of the coupled
flux fluctuations, and the joint effect of fiber injection losses
due to partial AO correction residuals and aperture-averaged
scintillation. To the best of our knowledge, these features have
not been taken into account in any previously published work,
which either dealt with the statistics of the SR in the framework
of imaging applications or did not consider the low-order AO
residuals’ (temporal and aliasing errors) impact on the temporal
characteristics of the coupled flux. Therefore, in comparison to
the models proposed in the aforementioned contributions, the
model described in the present paper, although more complex,
is more accurate and particularly relevant to satellite-to-ground
optical communication applications.

After the introduction of some mathematical definitions and
notations in Section 2, the coupling efficiency between the AO
corrected wavefront and the SMF is given in Subsection 3.A. In
Subsection 3.B, the addition of the log-amplitude fluctuations,
so as to take into account the influence of scintillation on the
coupled flux into the SMF, is presented. Statistical results in-
cluding the PDF, CDF of the coupled flux, as well as the AFD/
AIFD and FDD/IFDD, all essential prerequisites to computing
coded-transmission performance metrics over correlated chan-
nels, are derived in Subsection 3.C. They are confronted by
end-to-end simulation results in Section 4, mainly for assessing
the accuracy of the underlying physical models, for a LEO as
well as a geosynchronous satellite (GEO) downlink scenario.
Finally, these statistical and analytical results are exploited in
Section 5 by investigating, in a case study, the influence of three
distinct AO performances in each scenario (LEO and GEO) on
the FDD and IFDD.

2. MATHEMATICAL DEFINITIONS

A. Notations

Bold lowercase and uppercase variables will denote, respec-
tively, vectors and matrices and, throughout this paper, when
not used as a subscript, the letter j will denote the imaginary
unit. In the following, the operator h·j·iZ denotes a scalar prod-
uct with weight Z defined as

hX jY iZ ≜
ZZ

Z �r� · X �r� · Y ��r�d2r; (1)

where X �r�, Y �r�, Z �r� ∈ C are functions of the spatial coor-
dinates r, and Y ��r� denotes the complex conjugate of Y �r�.



Following this notation, instantaneous “spatial” normalized
averages and variances are defined as

hX iZ ≜
hX j1iZ
h1j1iZ

; (2)

σ2Z �X � ≜ hX 2iZ − hX i2Z : (3)

This normalization ensures that h1iZ � 1. The usual
statistical average (or time average when time occurrences
are considered) as well as statistical variance of the random
variable X �t� will be denoted, respectively, as μX and σ2X .
The autocovariance of the wide-sense stationary temporal
process V �t� is defined as

RV �τ� ≜ COV�V �t�; V �t�� � E �V �t�V �t � τ�� − μ2V : (4)

B. Definitions

Let us consider an incident beam (unbounded plane wave) after
propagation through turbulence and before reaching the tele-
scope pupil of diameter D. Its electromagnetic field’s complex
amplitude is characterized by

Ψ�r; t� � A0 exp�χ�r; t� � jϕ�r; t��; (5)

where A0 denotes the complex field amplitude without pertur-
bation, χ�r; t� corresponds to the log-amplitude fluctuations,
and ϕ�r; t� represents the phase variations (aberrations). For
a perfect plane wave in the absence of turbulence, the incident
field would simply be given by Ψ0�r; t� � A0 and, without loss
of generality, the normalization of A0 is chosen to ensure
hA0jA0iP � 1, where P represents the pupil transmittance
P�r� defined as

P�r� �
�
1 if 0 ≤ 2jrj

D ≤ 1

0 otherwise
: (6)

The SMF mode expressed in the pupil plane, denoted asM 0

in the following, is a Gaussianmode whose waist is set in order to
maximize its instantaneous matching with the unperturbed in-
cident beamΨ0�r; t� [10]. This matching is characterized in the
pupil plane by the following normalized overlap integral [11]:

Ω0 �
hΨ0jM 0iP

�hΨ0jΨ0iP × hM 0jM 0iP �1∕2
; (7)

where, for notational convenience, the time dependence of
Ψ0�r; t� and hence Ω0�t� have been omitted. In the absence
of turbulence, the instantaneous coupling efficiency is therefore
given by

ρ0 � jΩ0j2: (8)

Similarly, the matching between the perturbed incident
wave Ψ�r; t� and the SMF mode is given by

Ω � hΨjM 0iP
�hΨjΨiP × hM 0jM 0iP �1∕2

: (9)

The squared modulus of the aforementioned overlap inte-
gral corresponds to the instantaneous coupling efficiency of the
perturbed incident beam,

ρ � jΩj2; (10)

and hence, the instantaneous coupled flux into the SMF is

f SMF � jΩj2 × hΨjΨiP: (11)

3. ANALYTIC MODEL

In order to properly assess the impact of turbulence on the
coupled flux f SMF, both log-amplitude (scintillation) and phase
fluctuations (aberrations) must be considered while taking into
account partial correction. In the following, this is done analyti-
cally as well as by Monte Carlo simulation. An estimator of the
coupling efficiency without the impact of scintillation is derived
first in Subsection 3.A. The contributions of both scintillation
and phase aberrations are taken into account in the derivation
of the flux coupled into the SMF in Subsection 3.B, and
eventually the analytical statistical properties of the latter are
derived in Subsection 3.C.

A. Coupling Efficiency Estimator Neglecting
Scintillation

Neglecting turbulence-induced log-amplitude fluctuations, the
electromagnetic field’s complex amplitude of the incident beam
is given by

ΨΦ�r; t� � A0 exp�jϕ�r; t��: (12)

After defining W 0 � PM 0, the matching between ΨΦ�r; t�
and the SMF mode can be expressed as the following spatial
normalized average:

ΩΦ

Ω0

� hΨΦjM 0iP
hΨ0jM 0iP

� hexp�jϕ�iW 0
: (13)

The right-hand term of Eq. (13) can always be written as

hexp�jϕ�iW 0
� exp�jhϕiW 0

�hexp�j�ϕ − hϕiW 0
��iW 0

: (14)

Taking the second multiplicative term of the right-hand side
of Eq. (14) in the form of its power series expansion yields

hexp�jϕ�iW 0
� exp�jhϕiW 0

�
X∞
l�0

h�j�ϕ − hϕiW 0
��l iW 0

l !
: (15)

By invoking the ergodic hypothesis of the phase, one could
assume that it is normally distributed over the pupil. Hence, the
moment of order l of ϕ − hϕiW 0

would be given by

h�ϕ − hϕiW 0
�l iW 0

�
�
0 if l odd
σlW 0

�ϕ��l − 1�!! if l even (16)

and one could write

hexp�jϕ�iW 0
� exp�jhϕiW 0

� exp
�
−
σ2W 0

�ϕ�
2

�
: (17)

However, when the normality of the spatial distribution
of the phase over the pupil cannot be justified, Eq. (17) is
not exact. Nevertheless, when ϕ − hϕiW 0

≪ 1, Ruilier and
Cassaing have shown that it could still be a good approximation
[5], and Meimon et al. experimentally confirmed it [12].
Therefore, an approximation of the instantaneous normalized
coupling efficiency is given by

ρΦ ≃ ρ0 exp�−σ2W 0
�ϕ��: (18)

In theory, over a circular pupil, at a given instant t , the
turbulent phase ϕ�r� can always be expanded on the set con-
stituted by the Zernike polynomials Z i [9] as



ϕ�r� �
X∞
i�1

aiZ i

�
2r
D

�
; (19)

where ai is the Zernike coefficient associated with the Zernike
mode Z i. However, in practice, the phase is expanded on a
truncated Zernike decomposition constituted of a finite num-
ber N polynomials that should be chosen large enough in order
to minimize the turbulent wavefront aberrations not taken into
account by such a truncation. Moreover, when one considers
the coupling of the incident field with an SMF, the set of
Zernike polynomials over the weighted pupil does not consti-
tute an orthonormal basis anymore [13]. In that case, by work-
ing with Zernike polynomials, one would not be able to take
advantage of the properties of a set of polynomials in their
orthonormal form. More precisely, the spatial variance of the
turbulent phase over the pupil would not be equal to the
sum of the squares of the Zernike coefficients (without the pis-
ton term) anymore. Dai and Mahajan [14,15] have derived a
simple and convenient method that permits the computation of
a conversion matrix linking the decomposition coefficients of
the Zernike polynomials to the coefficients of a new basis of
orthonormal polynomials. For the sake of the self-sufficiency
of this paper, it is summarized in Appendix A. Eventually,
the orthonormal polynomials’ coefficients b can be obtained
from the initial Zernike coefficients a, given the lower triangu-
lar conversion matrix M,

b � �MT �−1a; (20)

and the coupling efficiency given by Eq. (18) can be expressed
directly in terms of these coefficients,

ρΦ ≃ ρ0 exp

�
−
XN
i�2

b2i

�
: (21)

Histograms of Monte Carlo computations of the temporal
variations of instantaneous coupling efficiency attenuation ρΦ
are presented in Figs. 1(a) and 1(b) for a GEO as well as a LEO
downlink scenario. The link parameters corresponding to both
scenarios are detailed in Table 1. Note that the Monte Carlo
simulation software used here is different from the end-to-end
wave-optics simulator mentioned in the introduction. The for-
mer is based upon analytical models that are described in [16]
as well. It relies on the computation of random occurrences of
centered normally distributed Zernike coefficients for describ-
ing the corrected phase. This is done by following an analogous
version of the algorithm described in [17], however, without
taking into account the nondiagonal terms of the covariance
matrix between the Zernike modes. Knowing the Zernike co-
efficients’ temporal spectra [18], the temporal correlation of the
residual phase is induced by filtering the temporal power spec-
tra densities of the corrected phase. The residual phase variance
characterizing the performance of the simulated AO system
comprises terms related to the finite number of actuators
(fitting error), wavefront sensing precision (aliasing error)
and control-loop frequency (temporal error). In Fig. 1, these
simulated residual phase occurrences were used for assessing
the accuracy of the approximations given by the squared
modulus of Eq. (15) as well as Eqs. (18) and (21) through

the computation of their respective Jensen–Shannon (JS) dis-
tances [19] with the histogram of ρΦ.

The results corresponding to Eqs. (18) and (21) are perfectly
equivalent, and hence validate the reorthonormalization proc-
ess of the Zernike polynomials weighted by the Gaussian mode
of the SMF. For comparison, the expansion in Eq. (15) is
carried up to the fourth and sixth orders as well by computing
the corresponding l th central moment of the phase using the
orthonormal polynomial decomposition approach:

h�j�ϕ−hϕiW 0
��l iW 0

� j
XN
j�2

			
XN
k�2

bj 			bkhF j 			FkiW 0
: (22)

Table 1. Characteristic Link, Turbulent, and AO
Parameters for the GEO-to-Ground and LEO-to-Ground
Downlink Scenarios

Downlink Scenario GEO LEO

Elevation 30 deg 20 deg
Range 38,000 km 1584 km
Orbital velocity 3.0 km · s−1 7.5 km · s−1
Rx aperture diameter 50 cm 25 cm
Fried parameter r0 0.069 m 0.056 m
Log-amplitude variance σ2χ 0.067 0.135

AO parameters

8>><
>>:

Nr 9 6
f s 1 kHz 2 kHz
σ2res 0.4 0.5
μf SMF

−2.7 dB −3.2 dB

Fig. 1. Histograms of Monte Carlo simulated coupling efficiency
for (a) GEO-to-ground downlink scenario and (b) LEO-to-ground
downlink scenario.



This requires the expensive calculation of l nested sums of
the products of l polynomials and their expansion coefficients
and quickly leads to intractable analytical statistical results.
Owing to the nonnormality of the phase distribution over
the pupil, carrying the expansion in Eq. (15) up to the sixth
order yields more accurate results than Eq. (18). On the other
hand, while providing a simpler expression, Eq. (21) yields re-
sults as precise as a fourth-order expansion, hence justifying the
choice made in the following analytical developments to use the
former instead of a slightly more precise expression related to
Eq. (22). This is true at least for the two cases presented here.
Finally, note that the accuracy of such Monte Carlo simulations
depends on the finite number of modes representing the
turbulent wavefront, which, as it gets larger, requires a higher
number of pixels describing the pupil for proper sampling.
Accurate results, depending on the scenario and turbulent con-
ditions under consideration, hence may come at the expense
of computing time that can be comparable to those related
to end-to-end wave-optics-based simulations, thus motivating
the recourse to precise analytical expressions.

B. Coupled Flux

In the ideal case, where the phase fluctuations induced by the
atmosphere are completely corrected (or otherwise neglected),
it is shown in Appendix B that by using the results of [20], the
statistical average of the coupled flux thus impacted only by
scintillation can be approximated by

μf Scint
SMF

≃ exp�−Cχ�0��

×
�
1�

R
F �C χ�r���ω��F �W 0�r���ω��2d2ω

ρ0 × h1j1iP

�
; (23)

where Cχ�r� is the log-amplitude spatial covariance function.
In this equation, the numerator of the last term on the right-
hand side corresponds to the spectral power density of the log-
amplitude fluctuations in the pupil filtered by the instrument
(that is the pupil and the SMF) and represents the influence of
the spatial correlation of the speckles in the pupil on the mean
coupled flux attenuation. Because the difference has been
verified numerically to be negligible for the downlink scenarios
presented in the remainder of this paper, it is approximated by
the spectral power density of the log-amplitude fluctuations
filtered by the pupil only. Furthermore, as long as one does
not consider strong fluctuation regimes of χ�r; t�, it is widely
accepted that the aperture-averaged irradiance fluctuations are
log-normally distributed [21,22]. The random generation of
the latter is done using an algorithm analogous to the one
described in [23]. These irradiance fluctuations, denoted
exp�2χAp�t�� in the following, depends on the Gaussian ran-
dom variable χAp�t�, representing the aperture-averaged log-
amplitude fluctuations that are characterized by their variance
σ2χAp . The analytic model describing this variable, including its
temporal power spectrum, can be found in [24].

The log-normality assumption of the aperture-averaged
irradiance can be used to state that in this regime the com-
pletely corrected coupled flux into the SMF can be described
as well by a log-normal random variable. By setting the mean
of the aperture-averaged log-amplitude fluctuations equal to

−σ2χAp , it is ensured that μexp�2χAp� � 1. Thence, the random
variable μf Scint

SMF
× exp�2χAp�t�� represents the scintillation-only

induced variations of the coupled flux, whose mean is fixed
by Eq. (23). By considering the different origins of the fluctua-
tions of the log-amplitude and the phase (that is, the former
is mostly caused by distant turbulence, whereas the latter is
mostly introduced close to ground [25]), one can assume
statistical independence of scintillation and phase effects.
Therefore, after combining the results characterizing the
completely corrected case described above and those of
Subsection 3.A, the instantaneous coupled flux in an SMF after
partial AO correction is approximated by

f SMF�t� ≃ ρ0μf Scint
SMF

exp�2χAp�t�� exp
�
−
XN
i�2

bi�t�2
�
: (24)

For the sake of clarity, hereafter the principle of the Monte
Carlo process developed to generate temporally correlated ran-
dom fluctuations of the coupled flux is summarized. The ran-
dom generation of aperture-averaged irradiance fluctuations is
implemented as in [23] and assumes weak-to-moderate turbu-
lence conditions. These fluctuations are temporally correlated
by filtering them by the spectrum described in [24]. The im-
pact of scintillation on the coupled flux is statistically taken into
account on average, thanks to Eq. (23). Phase fluctuations are
initially generated thanks to an algorithm close to the one de-
scribed in [17], which simulates atmospherically distorted
wavefronts using a Zernike expansion. The temporal correla-
tion of the residual phase is induced by filtering the Zernike
coefficients according to the temporal spectra given in [18].
Injection efficiency fluctuations are obtained by directly com-
puting the weighted scalar product between the residual phase
and the Gaussian mode of the SMF. The analytical approxima-
tion counterpart of the injection efficiency is obtained after
converting the correlated Zernike coefficients into orthonormal
polynomials coefficients [see Eq. (20)] and using the approxi-
mation given by Eq. (21). Eventually, assuming statistical inde-
pendence between scintillation and phase effects, the product
of the aperture-averaged irradiance random variables with those
of the injection efficiency yields random variables of coupled
flux. Analytically, this is approximated by Eq. (24), for which
statistical laws are found next.

C. Statistical Properties of the Coupled Flux

1. Statistical Distribution Functions: PDF and CDF

Let us first derive the PDF and CDF of the quantityPN
i�2 b

2
i �t�. Since the Zernike coefficients faig are Gaussian

random variables [26], in light of Eq. (20), it is clear that
the coefficients fbig are Gaussian as well. Therefore, the square
of each one of the latter is gamma-distributed with constant
shape parameter α � 0.5 and scale parameter βi � 2σbi, where
σbi is the statistical variance of the coefficient corresponding to
mode i. In consequence, the sum of these coefficientsPN

i�2 b
2
i �t� is characterized by a sum of independent and non-

identical gamma random variables. Note that in light of
Eq. (20), it might be argued that the coefficients fbig are not
completely independent. However, it is shown in Appendix A
that �MT �−1 is nearly diagonal, and hence, the dependence
between the aforementioned coefficients is negligible.



The marginal characteristic function of such a process can be
written as

φ�u� �
YN
i�2

�
1 −

ju
βi

�
−α

: (25)

By performing the inverse Laplace transform of this charac-
teristic function, the PDF of z�t� � PN

i�2 b
2
i �t� can be

obtained using Gil-Pelaez’s result [27]:

pZ �z� �
1

π

Z
∞

0

cos
�PN

i�2 α arctan�βiu� − zu
�

QN
i�2 �1� u2β2i �

α
2

du: (26)

The CDF can be determined as well:

PZ �z� �
1

2
−
1

π

Z
∞

0

Im
nQN

i�2 �1 − βi ju�−α exp�−juz�
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To the best of our knowledge, this result was first published
by Efthymoglou and Aalo [28]. More recently, several authors
have presented alternative forms characterizing the distribution
of such random variables [29,30]. However, although they may
seem more tractable, these solutions can be more difficult to
compute numerically. Using a simple change of variable, the
PDF and CDF of the normalized coupling efficiency given
by Eq. (21) are, respectively,
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On the basis of the assumption of the independence of log-
amplitude and phase fluctuations, the PDF and the CDF of the
random variable defined by Eq. (24) are given, respectively, by
Eqs. (30) and (31), in which σ2I is the aperture-averaged log-
irradiance variance (approximated by the scintillation index
in the weak fluctuation regime) and μI � μexp�2χAp� � 1 (see
Subsection 3.B). These analytical PDFs and CDFs of the in-
stantaneous coupled flux attenuation are, per se, useful results in

deriving the channel capacity and probability of outages of free-
space optical (FSO) transmissions [31].

2. Fade Duration Distribution

Temporal autocovariance approximation: Let us first derive an
approximation of the autocovariance of the coupling efficiency
ρΦ�t� given by Eq. (21). It is by definition a wide-sense
stationary random process. The first-order expansion of its
autocovariance is hence given by

RρΦ�τ� ≃ ρ20

�
E
�XN
i�2

b2i �t�
XN
i�2

b2i �t � τ�
�
− μ2PN

i�2
b2i

�
: (32)

Since every fbig is a centered normal random variable,
μ2PN

i�2
b2i
� �PN

i�2 σ
2
bi
�2. By assuming that intermodal cova-

riances are negligible when compared to the modal covariances
and by subsequently using the theorem of Isserlis [32,33],
allowing one to express higher-order moments of Gaussian ran-
dom variables in terms of their covariances, it becomes

RρΦ�τ� ≃ 2ρ20
XN
i�2

E ��bi�t�bi�t � τ��2: (33)

A simple approximation of the autocovariance of the cou-
pling efficiency ρΦ�t� is therefore obtained, since the analytical
models describing the Zernike coefficients temporal spectra are
well known [18], whereas Zernike’s interspectrum can be ob-
tained as in [34]. Figure 2 compares the autocorrelation func-
tions corresponding to the approximations given by Eqs. (32)
and (33) and the Monte Carlo simulations. Bartlett’s 95% con-
fidence intervals are shown as well [35]. For both LEO and
GEO links, the first-order approximation of the instantaneous

coupling efficiency yields fairly accurate results. Neglecting
intermodal correlations provides a less accurate approximation
that is, nevertheless, still inside the confidence bands. The
errors on the correlation time (width at half-maximum) are
inferior to 3%. Using the result of [36] dealing with the auto-
covariance of the product of two stationary time series, the
autocovariance of the coupled flux after partial AO correction
is given by



Rf SMF
�τ� � μ2f Scint

SMF

�RρΦ�τ�Rexp�2χAp��τ�
� μ2ρΦRexp�2χAp��τ� � RρΦ�τ��: (34)

As mentioned in Subsection 3.B, the aperture-averaged
irradiance’s temporal characteristics are modeled as in [24],
and μρΦ can be obtained thanks to the PDF given by Eq. (28).

Average level-crossing rate and average fade duration: For an
arbitrary stationary differentiable random process such as
f SMF�t� with a given PDF pF SMF

�f SMF�, it is possible to com-
pute an approximation of the average unidirectional (upward or
downward) level-crossing rate ν�f 0

SMF� at a given threshold
f 0
SMF by using the result of [37],
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1

2
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where σ _f SMF
is the variance of the time derivative of f SMF�t�,

which is, by definition [38], given by the second time derivative
of the autocovariance function in the vicinity of 0,

σ2_f SMF

� −R̈f SMF
�τ�j

τ�0
: (36)

The function h�·� depends on the CDF of f SMF�t�, i.e.,
PF SMF

�f SMF� given by Eq. (31),
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p
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whereas γ depends on the PDF of f SMF�t�, i.e., pF SMF
�f SMF�

given by Eq. (30),
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The average fade duration under the threshold f 0
SMF is

finally equal to

τ̄fade�f 0
SMF� �

PF SMF
�f 0

SMF�
ν�f 0

SMF�
: (39)

The average interfade duration corresponding to threshold
f 0
SMF is obtained by replacing the CDF PF SMF

�f 0
SMF� in the

previous equation by the complementary cumulative distribu-
tion 1 − PF SMF

�f 0
SMF�.

Fade duration distribution: The AFD is an important param-
eter for the design of efficient numerical fading-mitigation tech-
niques such as interleaving and forward error-correction codes
on bursty channels. The AFD can be used to infer the distri-
bution of the fades’ duration, the latter being essential to the
evaluation of coded error probability on correlated fading
channels without interleaving or with imperfect interleaving
[39–41]. In [42], these distributions were obtained from exper-
imental links data and compared to those generated by a two-
state Markov (Gilbert–Erasure) model. This kind of model was
also validated through experimentation for the atmospheric
channel in [43,44]. Assuming the Markovian nature of the fad-
ing process as well, a similar two-state discrete time Markov
model is used here to analytically compute the exceedance
probability of fades’ duration (i.e., the probability of facing a
fade duration greater than the one considered) of the SMF-
coupled flux after partial AO correction:

Pr�τfade > τ0fade� �
�
1 −

1

τ̄fade�f 0
SMF�

�
τ0
fade

: (40)

Interfade duration distributions are computed by replacing
the AFD τ̄fade�f 0

SMF� by the AIFD corresponding to the same
threshold f 0

SMF.

4. COMPARISON TO END-TO-END WAVE-
OPTICS SIMULATIONS

The analytic results described in Subsection 3.C are hereafter
compared to end-to-end wave-optics simulation results for a
GEO-to-ground as well as a LEO-to-ground link. This end-
to-end simulation software has been previously validated exper-
imentally [45,46]. The transmission wavelength is 1.55 μm.
The turbulence and wind profiles used here are given in
[16]. The parameters characterizing the simulated AO systems,
such as the number of corrected radial orders, N r the control
loop frequency f s, and the residual phase variance σ2res, as well
as other link parameters, are given in Table 1. Both links are
representative of an AO performance level corresponding to a
mean coupled flux attenuation of roughly 3 dB.

The results obtained from the simpler numerical tool based
on a Monte Carlo approach introduced in Subsection 3.A and,
based on the analytic framework described in Subsection 3.B
for the treatment of scintillation effects, are presented as well.
Figures 3(a) and 3(b) show the residual phase spectra, respec-
tively, for the GEO and LEO links. Partial AO is characterized
by the combined effect of fitting, aliasing, and temporal
errors of the loop. For every system simulated in this paper,

Fig. 2. Numerically computed autocorrelation functions of Monte
Carlo simulation results for (a) GEO-to-ground downlink scenario
and (b) LEO-to-ground downlink scenario.



the proportion of temporal errors equals the proportion of spa-
tial error (fitting error plus aliasing error). In both figures, a
good agreement between the predicted analytic residual varian-
ces and the end-to-end simulations can be observed. It should
be noted, however, that in both Monte Carlo simulation and
analytic results, the influence of noise and scintillation on wave-
front sensing has been neglected. In the end-to-end simulation,
the wavefront sensor noise is ignored, but the impact of scin-
tillation is taken into account in the modeling process of the
images in the focal plane of the wavefront sensor. As evidenced
by the point-specific log-amplitude variances in Table 1, scin-
tillation under these weak turbulence conditions negligibly
affects the accuracy of wavefront measurement [26,47]. This
is especially true, since the influence of noise on the wavefront
sensor is neglected. In the presence of significant noise—for
cases of low signal-to-noise ratio—this analysis should be re-
considered. However, given the typical optical power required
for high data-rate satellite-to-ground communication [48], the
signal levels required for the wavefront analysis remain very rea-
sonable and allow one to consider high signal-to-noise ratios.
To fine-tune the analysis, consideration should be given to the
limited dynamics of the sensor, the flux allocated to the wave-
front analyzer, the sensitivity of the sensors used, as well as the
slope calculation algorithms.

A. Statistical Results: GEO-to-Ground Scenario

First, in order to validate Eq. (23), let us consider the case of a
full and perfect correction of the turbulent wavefront or, in

other words, neglect phase fluctuations. In that case, the
coupled flux attenuation is given by Eq. (24) with the sum
of the modal coefficients in the last term being equal to zero
and therefore follows a log-normal distribution. Figure 4(a)
shows the corresponding analytic density and the simulated
(end-to-end and Monte Carlo) distributions. In order to ensure
stochastic convergence, a temporal series of 8000 samples with
a correlation time of 7.3 ms over a time horizon of 8 s was
generated. For the end-to-end simulation, 26 phase screens
of 3.3 m and 512 pixels were simulated. This corresponds
to a 6.4 mm pixel size, small enough to appropriately sample
the Fried parameter. The absolute difference between the end-
to-end simulated and theoretical average coupled flux attenu-
ation is less than 0.1%. Furthermore, Kolmogorov–Smirnov
(KS) goodness-of-fit tests [49,50] performed between the
analytical and empirical CDFs yielded statistically conclusive
results, hence confirming the relevance of the approach regard-
ing the treatment of the log-amplitude fluctuations’ effect on
the coupled flux in that case. The distributions corresponding
to both the effect of scintillation and phase fluctuations on the
coupled flux are presented in Fig. 4(b). Due to the numerical
precision variability of the Monte Carlo-based simulation
discussed in Subsection 3.A, the latter provides results that
differ slightly from the end-to-end results. Regarding the aver-
age coupled power and its coefficient of variation, the afore-
mentioned discrepancies are about 5%, depending on the
precision desired and hence, at the expense of computing time.

Fig. 3. Residual modal variances obtained by end-to-end wave-
optics simulations as well as analytic models for (a) GEO-to-ground
downlink scenario and (b) LEO-to-ground downlink scenario.

Fig. 4. Comparison of the analytical PDF to end-to-end as well as
Monte Carlo simulations histograms of (a) coupled flux without phase
fluctuations (fully compensated turbulent wavefront) and (b) partially
corrected coupled flux for the GEO scenario.



The analytic model, statistically validated anew by goodness-of-
fit tests, on the other hand, yields fairly accurate results. While
there are differences on the order of 0.5% and 3% when com-
paring, respectively, the first two moments of the analytic and
end-to-end distributions, these differences stem from the stat-
istical convergence of such estimators and comprise the stan-
dard errors related to their accuracy [51,52]. Consequently,
for the GEO-to-ground scenario considered here, where partial
AO as well as scintillation effects are considered, our analytic
model adequately captures the statistical behavior of the trans-
mission channel. The temporal characteristics of the latter are,
as mentioned earlier, important as well in optimizing coding
strategies. For instance, the AFD/AIFD and FDD/IFDD are
required for the computation of higher layer packet error rates
while considering an imperfect interleaving of the channel
[40,53]. An important parameter for the computation of the
AFD and AIFD is the value of the second time derivative of
the autocovariance (i.e., a measure of its concavity) at zero time
lag, R

̈
f SMF

�τ�jτ�0. Hereinafter, the evolution of the autocovar-
iance of the coupled flux against time lag obtained by both sim-
ulation models as well as the analytic approximation given by
Eq. (34) is presented in Fig. 5. The overall good agreement
between our analytic results and simulations models regarding
the autocovariance as well as the probability distribution of the
coupled flux allow for a fairly precise prediction of the evolution
of the AFD and AIFD with respect to the fading/interfading
threshold, as presented in Figs. 6(a) and 6(b). From an overall
system point of view, relevant fading levels depend on the link
budget as well as the detection and modulation/coding schemes
considered. Nevertheless, for the GEO-to-ground scenario pre-
sented here, one can see that the AFD corresponding to the
mean level fading threshold (−2.73 dB) is about 10 ms (it is
roughly equal to the AIFD for this threshold, as expected)
and that it is divided by a factor of 3 when the mean level fading
threshold is roughly −4.5 dB. Figures 7(a) and 7(b) show, re-
spectively, the end-to-end FDD and IFDD for the mean level
fading threshold. A fine agreement between these distributions
and the analytic geometric law described by Eq. (40) can be
observed. KS goodness-of-fit tests have been performed, and
the geometric densities are well inside the 95% confidence
bands. Combined with the experimental results presented in
[42], this tends to corroborate the hypothesis that two-state
Markov channels could emulate the correlated burst-like fades

Fig. 5. Autocovariance of the partially corrected coupled flux given
by the analytic approximation as well as the end-to-end and Monte
Carlo simulations for the GEO scenario.

Fig. 6. Comparison of the evolution against the fading threshold of
analytic and end-to-end (a) average fade duration and (b) average
interfade duration for the GEO scenario.

Fig. 7. Comparison of the analytic and end-to-end exceedance dis-
tributions of (a) fade duration and (b) interfade duration for a fading
threshold corresponding to the average coupled flux attenuation for
the GEO scenario.



induced by turbulence over the free-space optical channel. Our
results extend the relevance of such modeling options to the
case of AO-corrected SMF coupled signals for the GEO down-
links and will therefore permit an accurate and rigorous joint
optimization of AO systems and numerical mitigation tech-
niques of interest.

B. Statistical Results: LEO-to-Ground Scenario

A similar analysis is done in the LEO scenario, for which a tem-
poral series 2 s long, with 8000 occurrences and a correlation
time of 0.6 ms, was generated. For the end-to-end simulation,
36 phase screens of 2.13 m and 256 pixels were simulated. This
corresponds to an 8.3 mm pixel size, small enough to appro-
priately sample the Fried parameter. Figure 8(a) shows the
distribution of the coupled flux when phase fluctuations are
completely compensated. The absolute relative difference
between the end-to-end simulated and predicted theoretical
average attenuation is around 0.3%. The distributions of the
partially corrected attenuation are presented in Fig. 8(b).
Analogous to the GEO case, if reasonable computation times
are required, the Monte Carlo simulations are less precise than
the analytic results. The latter were, again, statistically validated
by KS tests at a 95% confidence level. The difference in terms
of average coupled flux is less than 1%. However, one can
deduce from the autocovariances presented in Fig. 9 that
the absolute difference between the analytically and end-to-
end computed variances is about 8%. This discrepancy is

statistically relevant, since the standard error related to the
accuracy of the sample variance is only about 5%. This exposes
a certain inaccuracy in our analytic model that stems from the
underlying treatment of the log-amplitude fluctuations’ impact
on the coupling efficiency. The latter is taken into account by
averaging the log-amplitude spatial structures smaller than the
pupil through the derivation of μf Scint

SMF
. In doing so, the effect of

these log-amplitude fluctuations on the variations of the cou-
pling efficiency is neglected. The fact that such an assumption
has a noticeable impact in the LEO rather than in the GEO
scenario is not surprising, since neglecting log-amplitude fluc-
tuations in the LEO case is fundamentally a worse approxima-
tion owing to less aperture averaging (smaller pupil diameter)
combined with more challenging turbulence conditions (lower
elevation). In spite of the discrepancies described above, the
value of the second time derivative in the vicinity of zero pre-
dicted by the analytic model is quite close to both end-to-end
and Monte Carlo results (less than 5% of difference). This
yields analytic predictions of the evolution of the AFD and
AIFD with respect to the fading threshold, presented, respec-
tively, in Figs. 10(a) and 10(b), that are in good agreement with
the simulated fading durations. The AFD and AIFD corre-
sponding to the mean level fading threshold (−3.2 dB) are
about 2 ms. As with the GEO downlink, the end-to-end results
reveal a departure from the analytic calculation as the threshold
get closer to extreme values due to lower numbers of simulated
fading events in these regions.

Figures 11(a) and 11(b) show, respectively, the end-to-end
FDD and IFDD for the average coupled flux threshold. The
analytic geometric law still gives fairly close results for average
to long fading durations. For the shorter durations, the analytic
distribution is less precise, as it does not capture a clear inflec-
tion in the empirical distribution and slightly crosses the 95%
confidence bands. Such a bump in the exceedance probability
of very short fade duration events means that the latter are
statistically underrepresented in the end-to-end results and
therefore, to the contrary, are incorrectly overrepresented by
the geometric law. Although still allowing for predictions in
terms of orders of magnitude, the precise origin of such a fea-
ture should be investigated further, as it may, in this scenario,
question the accuracy of modeling options based on such an
underlying Markovian assumption.

Fig. 8. Comparison of the analytical PDF to end-to-end as well as
Monte Carlo simulations histograms of (a) coupled flux without phase
fluctuations (fully compensated turbulent wavefront) and (b) partially
corrected coupled flux for the LEO scenario.

Fig. 9. Autocovariance of the partially corrected coupled flux given
by the analytic approximation as well as the end-to-end and Monte
Carlo simulations for the LEO scenario.



5. AO PERFORMANCE IMPACT ON FADES
TEMPORAL CHARACTERISTICS

In this section, for both the formerly discussed GEO and LEO
scenarios, an analysis of the influence of three distinct AO
system performances, denoted high (HP), medium (MP),
and low performance (LP), on the analytic FDD and IFDD
is presented. The specifications of the AO systems studied
are reported in Table 2. The turbulence parameters, link
parameters, as well as pupil diameters are unchanged with re-
spect to those given in Table 1. For, respectively, the GEO and
LEO downlinks, Figs. 12(a) and 12(b) show the analytic ex-
ceedance probability distributions of fading durations as well
as interfading durations (dashed lines) for the mean normalized
coupled flux attenuation corresponding to the different AO sys-
tems. This normalization is adopted in order to emphasize AO

Fig. 11. Comparison of the analytic and end-to-end exceedance dis-
tributions of (a) fade duration and (b) interfade duration for a fading
threshold corresponding to the average coupled flux attenuation for
the LEO scenario.

Table 2. AO System Parameters Corresponding to the
Three Performance Levels of Both GEO and LEO
Scenarios

N r f s σ2res μf SMF

GEO

8<
:

HP:
MP:
LP:

9 1.0 kHz 0.4 rad2 −2.7 dB
5 0.4 kHz 1.3 rad2 −5.2 dB
4 0.3 kHz 1.9 rad2 −6.7 dB

LEO

8<
:

HP:
MP:
LP:

6 2.0 kHz 0.5 rad2 −3.2 dB
3 0.8 kHz 1.3 rad2 −5.2 dB
2 0.5 kHz 2.0 rad2 −6.7 dB

Fig. 10. Comparison of the evolution against the fading threshold
of analytic and end-to-end (a) average fade duration and (b) average
interfade duration for the LEO scenario.

Fig. 12. Fade duration (plain lines) and interfade duration (dashed
lines) analytic exceedance distributions for each AO performance level
and for (a) GEO-to-ground downlink scenario and (b) LEO-to-
ground downlink scenario.



systems’ ability to mitigate the coupled signal fluctuations only,
therefore neglecting the impact of distinct AO systems on the
average coupled flux. The AFD and AIFD corresponding to
each case are directly reported on the graph by thin vertical
lines. The fading thresholds chosen for computing these prob-
ability distributions are selected in order to ensure a fractional
fade duration (FFD), defined as the overall proportion (in per-
cent) of time spent below the threshold, of 0.5% for the LEO as
well as GEO highest performance systems. These thresholds
correspond to −1.5 dB in GEO and −5 dB in LEO for the
highest performance systems. For the lower performance sys-
tems, thresholds of −1.5 dB in GEO and −5 dB in LEO yield
drastically increased FFD for the less well-performing systems:
14% and 25%, respectively, for the MP and LP systems in the
GEO case and 4% and 14% in the LEO case. It is convenient
to infer the importance of considering the impact of lower-
order residuals instead of an ideal AO model—characterized
by its fitting error only—on the temporal characteristics of
the coupled flux by considering the LP systems. Indeed, for
these systems, the coupled flux fluctuations are globally domi-
nated by the injection efficiency fluctuations. The AFDs,
reported in Figs. 12(a) and 12(b), resulting from the partial
AO model are roughly 10 ms in GEO and 1.5 ms in LEO.
It was found that for an equivalent average level of correction
and the same thresholds, neglecting the lower-order residuals
yields AFDs approximately 50% smaller. The AIFDs are
10 ms in LEO and 30 ms in GEO when considering the partial
AO correction, whereas they are, respectively, 150% and 75%
larger when using an ideal AO model. These differences are not
negligible when assessing data reliability mechanisms options
and specifications (e.g., allowed latencies or required memory
for time interleavers), especially given the very high data rates
envisioned for satellite-to-ground optical communication.

On one hand, from the transmission system overall design
point of view, these FFDs can be compensated by increasing the
average coupled power. Not including the average loss specific
to each AO correction, it would require for the MP and LP
systems an additional 3 and 5 dB in GEO, 5 and 9 dB in
LEO, in order to reach a 0.5% FFD. The average loss specific
to each AO system can be taken into account using the values
of μf SMF

reported in Table 2. For instance, in the GEO sce-
nario, when compared to the HP correction, the MP correction
requires 5.2� 3 − 2.7 � 5.5 dB of additional mean optical
power in order to guarantee a 0.5% FDD. On the other hand,
while limiting such a recourse to increasing the average coupled
power, numerical interleaving combined with FEC coding can
overcome the information loss related to the decrease in AO
correction by taking advantage of the channel correlation
and adding redundancy in the transmitted data. The FFD
as a metric does not capture the temporal distribution of fading
events and therefore, by itself, does not allow for an assessment
of interleaved and coded transmissions’ reliability. For the latter,
parameters such as average, maximum, and minimum fade/
interfade durations are needed as well. For the three AO
performance levels presented here, Tables 3 and 4 synthesize
the characteristic fade and interfade durations corresponding
to 99% and 1% exceedance probabilities for, respectively,
the GEO and LEO scenarios. For the GEO-to-ground link,

dividing the total residual variance σ2res of the HP system by
a factor of 3 or 5, respectively, increases the minimum, maxi-
mum and AFDs by a factor of 2 or 3. This may seem a notably
small improvement in light of the specifications required by the
HP system. However, the gain with respect to the interfading
durations is remarkably significant, as the HP system outper-
forms by several orders of magnitude the other AO corrections,
hence, not only making fading events shorter to some extent,
but drastically spreading them further apart. Regarding the
LEO downlink, reducing the total residual phase variance of
the HP system in roughly the same proportions as for the
GEO case leads to similar observations in terms of fading du-
rations and their distribution. The impact of AO performance
on interfading durations is again striking, since that downgrad-
ing from the HP to the MP and LP systems yields, respectively,
maximum, minimum, and AIFDs roughly 10 times smaller.

Finally, in each scenario, the MP and LP AO systems present
close performances in terms of temporal characteristics that are
relevant for the optimization of numerical mitigation tech-
niques. The HP AO systems, on the contrary, seem to mitigate
fading events more acutely at the cost of only roughly twice the
control-loop frequency and 4 times the number of actuators of
the medium correction. These results highlight the importance,
for AO-corrected laser links, of not solely considering average
AO performance parameters such as the residual variance or
average attenuation, originally used in the context of astronomy
or imagery applications. Furthermore, analyses such as the
one exposed in this section emphasize the interest of the
presented analytical model, which provides a relevant order
of magnitudes, if not accurate results, while avoiding time-
consuming and complex simulations.

Table 3. Characteristic Fade and Interfade Durations for
the Three Performance Levels in the GEO Scenario

Fading Duration
[ms]

Interfading
Duration [ms]

Pr�τfade > τ0fade� � :99

8<
:

HP:
MP:
LP:

0.032 10
0.065 0.4
0.098 0.3

Pr�τfade > τ0fade� � :01

8<
:

HP:
MP:
LP:

15 4500
30 190
45 140

Table 4. Characteristic Fade and Interfade Durations for
the Three Performance Levels in the LEO Scenario

Fading
Duration [ms]

Inter-Fading
Duration [ms]

Pr�τfade > τ0fade� � :99

8<
:

HP:
MP:
LP:

0.003 1.3
0.008 0.2
0.014 0.1

Pr�τfade > τ0fade� � :01

8<
:

HP:
MP:
LP:

1.4 611
3.7 90
6.4 45



6. CONCLUSION

An analytical model describing the temporal variations of the
coupled flux into a SMF for satellite-to-ground laser links
partially corrected by AO has been presented. The modeling
of the AO correction is representative of a realistic error budget-
ing that includes fitting, aliasing, as well as temporal errors of
the system. Taking advantage of the decomposition of the
residual phase over an orthonormal basis of polynomials, an
approximation of the coupling efficiency of partially corrected
wavefronts into an SMF has been derived. Furthermore,
in order to take into account scintillation effects in addition
to the residual phase fluctuations on the instantaneous coupled
flux, an approximation of the latter has been derived by con-
sidering the aperture-averaged log-amplitude spatial structures
smaller than the pupil. Analytical expressions of its PDF and
CDF as well as an estimation of its temporal autocovariance
have been provided. These results were exploited in order to
obtain relevant temporal parameters such as the average fading/
interfading duration and fading/interfading durations distribu-
tion. All of these analytical developments have been confronted
with end-to-end wave-optics simulations in the case of GEO as
well as LEO-to-ground link scenarios. In the case of the former,
this confrontation validated the underlying physical hypotheses
made. In the LEO case, due to the more challenging conditions
of this scenario with respect to the impact of scintillation on the
coupled flux (smaller aperture and lower elevation), our analyti-
cal model seems to be statistically less accurate, providing, none-
theless, a reasonable order of magnitudes. Eventually, a case
study illustrating the relevance of such a model in evaluating
analytically the performance of three distinct AO systems while
emphasizing characteristic fading and interfading durations
has been presented. The latter constitutes intermediate yet es-
sential parameters for the computation of coded-transmission
performance metrics over correlated channels, such as, for
instance, the packet error rate after imperfect interleaving.
Additionally, in the framework of joint-optimization studies
of AO and numerical mitigation techniques, these characteristic
durations should always be investigated, since it has been
shown that considering typical AO correction estimators
such as the residual phase variance might not entirely suffice
to infer the influence of AO on telecom performance. More
precisely, it has been shown that a significant gain in terms
of interfading durations is expected from the use of HP AO
systems in addition to a much more favorable average power
penalty.

APPENDIX A: MODAL DECOMPOSITION OF THE
COUPLED TURBULENT PHASE ONTO AN
ORTHONORMAL BASIS

The efficient yet simple method derived in [14,15] for comput-
ing a conversion matrix linking the decomposition coefficients
of the Zernike polynomials to the coefficients of a new basis of
orthonormal polynomials is summarized hereafter. Let us first
write the complete set of Zernike polynomials as fZ ig over
the intensity domain Σ comprising a circular pupil and the
backpropagated Gaussian SMF on the pupil as well. Because
of the completeness of fZ ig, one can represent any other set
of polynomials as a linear combination of fZ ig, including a

set fF ig that is indeed orthonormal over Σ. These two sets
are related to each other according to

F i �
XN
j�1

MijZ j; (A1)

where M is a conversion matrix and N is the number of poly-
nomials arbitrarily determined in order to represent a given
aberration. One can always write

hF ijZkiW 0
�

XN
j�1

MijhZ jjZkiW 0
(A2)

or

hZkjF iiW 0
�

XN
j�1

�MijhZ jjZkiW 0
�T �

XN
j�1

hZkjZ jiW 0
�Mij�T

(A3)

written in matrix form as

CZF � CZZMT ; (A4)

where CZF is an N × N matrix of the inner products between
the first N polynomials of Zk and the first N polynomials of
F i, and CZZ is an N × N matrix of the inner products between
the first N polynomials of Zk with themselves. Similarly, one
can write

hF ijFkiW 0
�

XN
j�1

MijhZ jjZkiW 0
� δik; (A5)

where δik is the Kronecker symbol, and which can be written in
matrix form as well:

MCZF � 1: (A6)

Substituting Eq. (A4) in Eq. (A6) yields

MCZZMT � 1: (A7)

Now, let

M � �QT �−1: (A8)

Then Eq. (A7) can be written as

QTQ � CZZ : (A9)

The inner product matrix CZZ is symmetric positive definite.
Therefore Eq. (A9) can be solved for Q uniquely with a simple
Cholesky decomposition, and eventually the conversion matrix
M can be obtained from Eq. (A8). The inverse of the transpose
of this conversion matrix, �MT �−1, is required to express the
orthonormal coefficients in terms of the original Zernike coef-
ficients [see Eq. (20)]. This matrix (the absolute values of its
elements) is represented in Fig. 13 for the first 50 modes (pis-
ton included). One can see that it is nearly diagonal, but terms
with the same azimuthal frequency such as tip-tilt and comas or
piston, defocus, and spherical aberration are not completely
null and hence induce some correlation among the orthonor-
mal coefficients. The latter is nevertheless relatively weak and
can be neglected in a first approximation.



APPENDIX B: AVERAGE COUPLED FLUX WITH
A FULL AO CORRECTION

Adapting the results related to the average of the long-exposure
images’ modulation transfer function presented in [20], an
expression for the average coupled flux into an SMF while
neglecting phase aberrations of the turbulent wavefront is
given by

μf Scint
SMF

�A2
0

ρ0
exp�−C χ�0��

ZZ
W 0�r�W 0�r�s�exp�Cχ�s��d2rd2s:

(B1)

This equation can always be written as

μf Scint
SMF

� A2
0

ρ0
exp�−Cχ�0��

Z
exp�Cχ�s���W 0 �W 0��s�d2s;

(B2)

where the symbol � denotes convolution. The term �W 0 �
W 0��s� corresponds to the autocorrelation of the apodized
pupil (i.e., weighted by the Gaussian mode of the SMF), which
is in fact the transfer function of the instrument (i.e., telescope
and SMF). Approximating exp�Cχ�s�� by its first two series
terms yields

μf Scint
SMF

≃
A2
0

ρ0
exp�−Cχ�0��

�Z
�W 0 �W 0��s�d2s

�
Z

Cχ�s��W 0 �W 0��s�d2s
�
: (B3)

This approximation tends to be less accurate, as the log-
amplitude fluctuation regime is stronger. Using the generalized
Parseval theorem, and remembering that hA0jA0iP � 1, yields

μf Scint
SMF

≃ exp�−Cχ�0��

×
�
1�

R
F �Cχ�r���ω��F �W 0�r���ω��2d2ω

ρ0 × h1j1iP

�
; (B4)

where the symbol F denotes the Fourier transform. Note that
the term F �Cχ�r���ω��F �W 0�r���ω��2d 2ω corresponds to the
spectral power density of the log-amplitude fluctuations in the
pupil filtered by the instrument. It represents the influence of
the spatial correlation of the speckles in the pupil on the
coupled flux attenuation.

Funding. Centre National d’Etudes Spatiales (CNES);
Thales Group (Thales) Alenia Space; Airbus Defense and
Space.

Acknowledgment. This work was conducted in the
framework of a PhD thesis supervised by ISAE-Supaéro and
ONERA, and co-funded by CNES, Airbus Defense and
Space, and Thales Alenia Space.

REFERENCES

1. J. Ma, L. Ma, Q. Yang, and Q. Ran, “Statistical model of the efficiency
for spatial light coupling into a single-mode fiber in the presence of
atmospheric turbulence,” Appl. Opt. 54, 9287–9293 (2015).

2. A. Belmonte and J. M. Kahn, “Performance of synchronous optical
receivers using atmospheric compensation techniques,” Opt.
Express 16, 14151–14162 (2008).

3. J. W. Goodman, Speckle Phenomena in Optics: Theory and
Applications (Ben Roberts, 2007).

4. G. A. Tyler, “Assessment of the statistics of the Strehl ratio: predictions
of central limit theorem analysis,” J. Opt. Soc. Am. A 23, 2834–2844
(2006).

5. C. Ruilier and F. Cassaing, “Coupling of large telescopes and single-
mode waveguides: application to stellar interferometry,” J. Opt. Soc.
Am. 18, 143–149 (2001).

6. A. Maréchal, “Étude des effets combinés de la diffraction et des aber-
rations géometriques sur l’image d’un point lumineux,” Rev. Opt.
Theor. Instrum. 26, 257–277 (1947).

7. J. Huang, C. Liu, K. Deng, Z. Yao, H. Xian, and X. Li, “Probability of the
residual wavefront variance of an adaptive optics system and its
application,” Opt. Express 24, 2818–2829 (2016).

8. S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, Jr.,
“Temporal variability and statistics of the Strehl ratio in adaptive-optics
images,” Publ. Astron. Soc. Pac. 120, 1132–1143 (2008).

9. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt.
Soc. Am. 66, 207–211 (1976).

10. C. Ruilier, “A study of degraded light coupling into single-mode fibers,”
Proc. SPIE 3350, 319–329 (1998).

11. S. Shaklan and F. Roddier, “Coupling starlight into single-mode fiber
optics,” Appl. Opt. 27, 2334–2338 (1988).

12. S. Meimon, F. Cassaing, and G. Prévôt, “Experimental study of dis-
torted beams coupling in a single mode waveguide,” J. Opt. 15,
035707 (2013).

13. V. N. Mahajan, ed., Optical Imaging and Aberrations. Part III:
Wavefront Analysis (SPIE, 2013).

14. G. Dai and V. N. Mahajan, “Nonrecursive determination of orthonor-
mal polynomials with matrix formulation,” Opt. Lett. 32, 74–76 (2007).

15. G. Dai and V. N. Mahajan, “Orthonormal polynomials in wavefront
analysis: error analysis,” Appl. Opt. 47, 3433–3445 (2008).

16. N. Vedrenne, J.-M. Conan, C. Petit, and V. Michau, “Adaptive optics
for high data rate satellite to ground laser link,” Proc. SPIE 9739,
97390E (2016).

17. N. A. Roddier, “Atmospheric wavefront simulation using Zernike poly-
nomials,” Opt. Eng. 29, 1174–1181 (1990).

Fig. 13. Absolute values of the inverse of the transpose of the con-
version matrix, j�MT �−1j.



18. J.-M. Conan, G. Rousset, and P.-Y. Madec, “Wave-front temporal
spectra in high-resolution imaging through turbulence,” J. Opt. Soc.
Am. A 12, 1559–1570 (1995).

19. S. Cha, “Comprehensive survey on distance/similarity measures
between probability density functions,” Int. J. Math. Models Methods
Appl. Sci. 1, 300–307 (2007).

20. D. L. Fried, “Optical resolution through a randomly inhomogeneous
medium for very long and very short exposures,” J. Opt. Soc. Am.
56, 1372–1379 (1966).

21. V. Tatarski, Wave Propagation in a Turbulent Medium (Dover, 1961).
22. J. W. Strohbehn, Modern Theories in the Propagation of Optical

Waves in a Turbulent Medium (Springer, 1978), pp. 45–106.
23. B. Epple, “Simplified channel model for simulation of free-space opti-

cal communications,” J. Opt. Commun. Netw. 2, 293–304 (2010).
24. C. Robert, J.-M. Conan, V. Michau, J.-B. Renard, C. Robert, and F.

Dalaudier, “Retrieving parameters of the anisotropic refractive index
fluctuations spectrum in the stratosphere from balloon-borne observa-
tions of stellar scintillation,” J. Opt. Soc. Am. A 25, 379–393 (2008).

25. N. Perlot, “Turbulence-induced fading probability in coherent optical
communication through the atmosphere,” Appl. Opt. 46, 7218–7226
(2007).

26. F. Roddier, “V the effects of atmospheric turbulence in optical
astronomy,” Prog. Opt. 19, 281–376 (1981).

27. J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika 38,
481–482 (1951).

28. G. Efthymoglou and V. Aalo, “Performance of RAKE receivers in
Nakagami fading channel with arbitrary fading parameters,” Electron.
Lett. 31, 1610–1612 (1995).

29. I. S. Ansari, F. Yilmaz, M. S. Alouini, and O. Kucur, “On the sum of
gamma random variates with application to the performance of maxi-
mal ratio combining over Nakagami-m fading channels,” in 13th
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC) (2012), pp. 394–398.

30. V. A. Aalo, T. Piboongungon, and G. P. Efthymoglou, “Another look at
the performance of MRC schemes in Nakagami-m fading channels
with arbitrary parameters,” IEEE Trans. Commun. 53, 2002–2005
(2005).

31. L. Canuet, N. Vedrenne, J.-M. Conan, G. Artaud, A. Rissons, and J.
Lacan, “Evaluation of communication performance for adaptive optics
corrected geo-to-ground laser links,” Proc. SPIE 10562, 1056248
(2016).

32. L. Isserlis, “On certain probable errors and correlation coefficients of
multiple frequency distributions with skew regression,” Biometrika 11,
185–190 (1916).

33. L. Isserlis, “On a formula for the product-moment coefficient of any
order of a normal frequency distribution in any number of variables,”
Biometrika 12, 134–139 (1918).

34. M. R. Whiteley, M. C. Roggemann, and B. M. Welsh, “Temporal prop-
erties of the Zernike expansion coefficients of turbulence-induced
phase aberrations for aperture and source motion,” J. Opt. Soc.
Am. A 15, 993–1005 (1998).

35. M. S. Bartlett, “On the theoretical specification and sampling proper-
ties of autocorrelated time-series,” Suppl. J. R. Stat. Soc. 8, 27–41
(1946).

36. W. E. Wecker, “A note on the time series which is the product of two
stationary time series,” Stochastic Process. Appl. 8, 153–157 (1978).

37. H. T. Yura and S. G. Hanson, “Mean level signal crossing rate for an
arbitrary stochastic process,” J. Opt. Soc. Am. A 27, 797–807 (2010).

38. J. S. Bendat and A. G. Piersol, Stationary Random Processes (Wiley,
2012), pp. 109–171.

39. J. P. Adoul, “Error intervals and cluster density in channel modeling
(corresp.),” IEEE Trans. Inf. Theory 20, 125–129 (1974).

40. L. Wilhelmsson and L. B. Milstein, “On the effect of imperfect interleav-
ing for the Gilbert-Elliott channel,” IEEE Trans. Commun. 47, 681–688
(1999).

41. G. Liva, B. Matuz, Z. Katona, E. Paolini, and M. Chiani, “On construc-
tion of moderate-length LDPC codes over correlated erasure chan-
nels,” in IEEE International Conference on Communications (2009),
pp. 1–5.

42. H. Henniger, “Transmission performance analysis of free-space opti-
cal communications using Gilbert-erasure channel,” IEEE Trans.
Commun. 60, 55–61 (2012).

43. A. Puryear, R. Jin, E. Lee, and V. W. S. Chan, “Experimental analysis
of the time dynamics of coherent communication through turbulence:
Markovianity and channel prediction,” in International Conference
on Space Optical Systems and Applications (ICSOS) (2011),
pp. 28–37.

44. E. J. Lee and V. W. S. Chan, “Performance of the transport layer
protocol for diversity communication over the clear turbulent atmos-
pheric optical channel,” in IEEE International Conference on
Communications (ICC) (2005), vol. 1, pp. 333–339.

45. N. Vedrenne, M. T. Velluet, C. Petit, V. Michau, J. Chabe, A. Ziad,
D. H. Phung, N. Maurice, E. Samain, G. Artaud, J. L. Issler, M.
Toyoshima, M. Akioka, D. Kolev, Y. Munemasa, H. Takenaka, and
N. Iwakiri, “First results of wavefront sensing on SOTA,” in IEEE
International Conference on Space Optical Systems and Applications
(ICSOS) (2015), pp. 1–8.

46. M. Toyoshima, H. Takenaka, Y. Shoji, and Y. Takayama, “Frequency
characteristics of atmospheric turbulence in space-to-ground laser
links,” Proc. SPIE 7685, 76850G (2010).

47. V. V. Voitsekhovich, V. G. Orlov, and L. J. Sanchez, “Influence of
scintillations on the performance of adaptive astronomical systems
with Hartmann-like wavefront sensors,” Astron. Astrophys. 368,
1133–1136 (2001).

48. F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical commu-
nications for high-altitude platforms,” J. Sel. Top. Quantum Electron.
16, 1058–1070 (2010).

49. M. A. Stephens, “Use of the Kolmogorov-Smirnov, Cramer-Von Mises
and related statistics without extensive tables,” J. R. Stat. Soc. Ser. B
32, 115–122 (1970).

50. C. R. Jerkins and J. V. Wall, Practical Statistics for Astronomers,
Vol. 3 of Cambridge Observing Handbooks for Research
Astronomers, 2nd ed. (Cambridge University, 2012).

51. M. Priestley, Spectral Analysis and Time Series, Probability and
Mathematical Statistics (Academic, 1989).

52. P. M. T. Broersen, “Estimation of the accuracy of mean and variance
of correlated data,” in IEEE Instrumentation and Measurement
Technology Conference (IMTC/98). Where Instrumentation Is Going
(1998), vol. 1, pp. 36–41.

53. J. R. Yee and E. J. Weldon, “Evaluation of the performance of error-
correcting codes on a Gilbert channel,” IEEE Trans. Commun. 43,
2316–2323 (1995).


	XML ID funding

