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Abstract  9 

Recent research results suggest that soil organic carbon mineralization and stabilization depend to a 10 

substantial degree on the soil geochemistry and the degree of weathering. We hypothesized that 11 

this dependence can be translated to decay rate modifiers in a model context, and used data from 12 

the Merced chronosequence (CA, U.S.A., 100 yr -  3 Myr), representing a weathering sequence, to 13 

test, on a 1000 year time scale, a simple soil organic carbon (SOC) model based on the RothC26.3 14 

model concepts. Four information levels were identified: (1) known decay rates per model SOC pool 15 

at individual chronosequence locations, obtained by calibrating the model to measured SOC-16 

fractions and measured fresh OC-inputs; (2) average decay rates per SOC-pool, corrected per 17 

location with rate modifiers based on geochemical proxies; (3) uncorrected average decay rates per 18 

SOC-pool; (4) uncorrected average decay rates per SOC-pool and averaged OC-inputs. A lumped root 19 

mean square error (RMSE) statistic was calculated per information level. We found that using local 20 

measurements of fresh OC-input led to a decrease in RMSE of near 15% relative to information level 21 

(4). Applying geochemical rate modifiers led to a further reduction of 20%. Thus, we conclude that 22 
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there is a benefit of including geochemical rate modifiers in this SOC-model. We repeated this 23 

analysis for a five-pool and a four-pool SOC model that either included or excluded an inert organic 24 

matter pool. In terms of the lumped RMSE both models performed similarly, but by comparing 25 

measured and simulated percentage Modern Carbon (pMC) for bulk SOC we concluded that 26 

measured pMC was best approximated using a four-pool SOC model (without an Inert Organic 27 

Matter pool), and that it is likely that a five-pool model including a very slowly decaying pool would 28 

further improve model performance.  29 

 30 

Keywords: Soil Organic Carbon; Modelling; Pedogenesis; Weathering; Chronosequence 31 

 32 

1. INTRODUCTION  33 

Most earth system models (e.g., Goosse et al., 2010; Kaplan et al., 2011) consider both the input of 34 

plant litter in the soil and the decay of Soil Organic Carbon (SOC) as functions of climate, vegetation 35 

and land use. It was found (Doetterl et al. 2015; Lawrence et al. 2015; Mathieu et al., 2015) that, 36 

under similar vegetation, soil organic carbon mineralization and stabilization is mostly dependent on 37 

the soil geochemistry and the degree of weathering (i.e., reactive surface area, texture, Total 38 

Reserve of Bases, Si, Fe and Al contents, etc.). However, it is not known how these soil age related 39 

attributes quantitatively relate to the age structure (age per type of SOC) of soil organic matter. 40 

According to these studies, climate is just one of the drivers. Climate, vegetation as well as 41 

geochemical soil composition, resulting from parent material as well as climatic history, may 42 

interactively affect the soil microbiological community composition, which are the actual SOC 43 

decomposers (e.g. Doetterl et al., 2018). For these experimental findings to be applicable, the effects 44 

of mineral weathering and resulting geochemical composition and clay mineralogy on SOC 45 

decomposition need to be translated into a model context. This necessarily involves the 46 

identification of influential geochemical variables and linking these to model parameters. This study 47 

is an attempt to do so in a chronosequence with known gradients in weathering.  48 
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Working hypothesis is that decomposition rates of SOC-pools are different along a chronosequence 49 

because of different degrees of weathering of primary minerals and formation of secondary mineral 50 

products along this chronosequence, and that these differences can be partly explained by 51 

quantitative expressions of weathering and soil geochemistry, and partly by site-specific C-input to 52 

the soil. 53 

We test this hypothesis on soils from a chronosequence of soils developed on alluvial sediments 54 

near Merced, California (Harden 1982, 1987) and use the SoilGen implementation (Finke and 55 

Hutson, 2008) of the RothC-concept (Jenkinson and Coleman, 1994; Coleman and Jenkinson, 2005). 56 

Essentially, RothC dynamically re-allocates organic matter over different pools having unique 57 

decomposition rates (c.f. section 2.2).  The implementation in SoilGen follows the RothC-concept, 58 

but is discretized over soil depth. RothC was developed to describe SOC-evolution in agricultural 59 

field trials covering ca. 150 years and in young parent materials, thus the development domain 60 

(time, vegetation and parent materials) is not the same as the application domain in this study. As 61 

the temporal range of this chronosequence is far greater than the range for which RothC-pools were 62 

defined, the Inert Organic Matter (IOM) pool used in the RothC-model may not be truly “inert”. 63 

Radiocarbon studies (Sanderman et al., 2016) have shown that measured ages of soil carbon do not 64 

support the presence of truly “inert” organic matter. More generally, the mere existence of Inert 65 

Organic Matter has been questioned by the biogeochemistry community (Schmidt et al., 2011). To 66 

allow evaluation of the usefulness of IOM as a model pool, we use two versions of this model: with 67 

and without IOM. On the Merced chronosequence, SOC-pools have been measured by Doettrl et al. 68 

(2018) and mapped onto the pools of C identified in RothC: Resistant Plant Material (RPM), 69 

Decomposable Plant Material (DPM), Biomass (BIO), Humus (HUM) and Inert Organic Matter (IOM); 70 

described below. 71 

The working hypothesis is tested in a four-step approach:  72 

1) we apply parameter estimation onto the SOC-model, containing RPM, DPM, BIO, HUM and 73 

IOM-pools, at 5 sites of varying age along the chronosequence to obtain site-specific rate 74 
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coefficients. The SOC-model is run for 1000 years on each site to obtain independence of the 75 

result on initial pool values;  76 

2) we correlate these rates to soil characteristics at these sites to find good candidate 77 

(“influencing”) soil properties to be used as rate-modifiers;  78 

3) we predict the rate-modifiers with linear regression from the measured soil characteristics 79 

at the sites. Linear regression may not capture all possible relationships, but as the data set 80 

is small, exploring non-linear methods was not feasible. The predicted rate-modifiers are 81 

applied to SoilGen and by comparing simulated to measured pools in extra 1000-year runs, 82 

with all other inputs equal to step 1, we evaluate how well the measured DPM, RPM, BIO 83 

and HUM pools can be reproduced. This tells us how well rate modifiers perform when local 84 

measurements of soil variables are available;  85 

4) we evaluate the effect of having site-specific (and likely soil-dependent) organic matter C-86 

inputs to simulation quality.  87 

As an independent check, we compare measured and calculated radiocarbon (percentage modern 88 

carbon) of the calibrated SOC-model for bulk SOC, using the site-specific rate modifiers. This is done 89 

for longer time periods (several millenniums) to include the potential effect of old SOC on pMC for 90 

those sites in older parts of the chronosequence. 91 

 92 

2. MATERIALS AND METHODS  93 

2.1. Merced Chronosequence data summary 94 

Soil data were partly collected in 2013, partly taken from previous studies (Harden, 1982, 1987) on a 95 

chronosequence of five terrace levels near Merced, California (Table 1) with BSk-climate according 96 

to the Köppen-Geiger classification, with average annual temperature of 16.3 °C and 315 mm annual 97 

rainfall. The chronosequence spans 0.1 to 3000 ka, where age constraints and associated 98 

uncertainties were obtained by stratigraphic correlation, fossils of Hemphillian fauna, 14C, U-series 99 

and K-Ar dating and the occurrence of the Gilbert-Gauss magnetic reversal (Marchand and Allwardt, 100 
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1981; Harden, 1987: p. A8). Parent materials are felsic, magmatic and metamorphic alluvial 101 

sediments with fine sandy and silty texture, which were field described and analyzed for basic soil 102 

properties (texture, color, structure, consistence) allowing calculation of the profile development 103 

index (Harden, 1982; Supplementary Information: Table S1). Only the oldest site has substantial 104 

amounts of quartz-rich pebbles. Age differences correspond to different weathering intensities, as 105 

shown by element ratios, pedogenic iron contents and type of clay minerals (Harden, 1987; Doetterl 106 

et al., 2018; Supplementary Information: Table S2). Over the chosen simulation time of 1000 years, 107 

we consider the sites to be geomorphologically stable: The sites are on level terrain and surface 108 

runoff and water erosion are negligible. Wind erosion is also negligible due to the vegetation cover. 109 

Perched water tables of short duration may occur at site PM24II. Over longer time spans this 110 

geomorphological stability may not be the case, however. Data used for simulation of soil formation 111 

in general and the evolution of soil organic carbon (SOC) are:  112 

(i) for model initialization: depth patterns of texture fractions, bulk density, (clay) mineralogy, 113 

Cation Exchange Capacity (CEC), root density distribution;  114 

(ii) for model calibration and verification: depth patterns of SOC and its fractions (see below) 115 

and percentage Modern Carbon (pMC). The pMC is defined as 𝑝𝑀𝐶 = 100 ∗
𝐴𝑆𝑁

𝐴𝑂𝑁
 , where ASN 116 

is the specific activity (decay counts per minute) of the sample normalized to 13C, and AON 117 

is the specific activity of the oxalic acid standard normalized to 13C;  118 

(iii) to satisfy model boundary conditions: evolution of precipitation, potential evaporation, 119 

temperature, litter-C input, bioturbation.  120 

Data from categories (i) and (ii) are taken from Harden (1987) and Doetterl et al. (2018). In category 121 

(iii), weather data were taken from http://www.usclimatedata.com for Merced and the year 2010 122 

(precipitation, daily minimum and maximum temperature) and the daily potential evaporation was 123 

calculated using the Hargreaves equation (Hargreaves and Samani, 1985). Average rain water 124 

composition for 2010 was taken from the National Atmospheric Deposition Program 125 

(http://nadp.sws.uiuc.edu/) for Yosemite National Park-Hodgdon Meadow (site CA99). For the 126 

http://www.usclimatedata.com/
http://nadp.sws.uiuc.edu/
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simulation period (1000 years), we assumed a constant climate, constant vegetation type and 127 

constant litter-C input. This model spin-up period and the stable model boundary inputs have the 128 

function to obtain independency of the size of the SOC-pools at the end of the simulation from the 129 

(unknown) initial situation.  130 

To obtain C-input, first the aboveground net primary production (ANPP) was estimated using the 131 

Normalized Difference Vegetation Index from 2010-2015 derived from the MOD13Q1 Modis (TERRA) 132 

vegetation index from NASA. Carbon biomass was then derived from reference values from 133 

literature for grassland in the study region (Berhe, 2012).  The ANPP-C was used to estimate the 134 

belowground litter production by a standard value for grassland (86% of litter production 135 

belowground) as in Kononova (1975). This root litter production was then distributed over the root 136 

profile using the root density fractions per depth interval, while the aboveground litter production 137 

contributes to the ectorganic layer.  138 

Bioturbation, the soil mixing activity by soil meso- and macrofauna or treefalls, is of importance 139 

because of the associated vertical transport of soil matter. It was shown to be an important factor in 140 

soil horizonation in both field- and simulation studies (e.g. Phillips, 2007; Finke, 2012). Bioturbation 141 

also creates macro-pores, which influence CO2-transport (Singer et al., 2001). No bioturbation data is 142 

available for the study area. However, Wilkinson et al. (2009) reported values between 10 -50 143 

Mg ha-1 y-1 and Gobat (2004) reported values in the range of 13 to 75 Mg ha -1 y-1 for Kansas (Tallgrass 144 

Prairie, temperature between 6-19 °C). We decided to take 30 Mg ha-1 y-1 of bioturbation for all 145 

chronosequence soils, equally distributed over the root zone compartments and assumed 146 

bioturbation independent of soil fertility levels as major bioturbators in the area are mammals 147 

(ground squirrels and pocket gophers) that do not consume soil materials. 148 

At the sites, from a mass perspective, dust input is minor over the simulation period of 1000 years. 149 

There are some indications (Aciego et al., 2017) that Phosphorus (P) inputs by dust may be 150 

important. P-input would affect plant biomass production, but as litter production was a simulation 151 

input based on measured ANPP, this fertilization effect by P was implicitly taken into account. 152 
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 153 

Table 1- General data for Merced chronosequence (Harden, 1982, 1987), WRB2014 classification by the authors. 154 

Site name 

and code 

WGS84 N /  

WGS84 W 

Altitude 

(m) 

Sampled 

depths (cm) 

topsoil / 

subsoil 

Age and 

uncertainty 

range (ky) 

WRB, 2014 USDA, 1975 

(great 

group) 

Vegetation 

Post Modesto 

PM24II 

37.62072 / 

-120.61555 
57 

0-9 /  

19-30 
0.1 [0-1] 

Eutric Gleyic 

Fluvisols Typic 

Xerorthents 

Grassland 

with scattered 

oak (Quercus 

lobata) 

Post Modesto 

PM22 

37.48854 / 

-120.52946 
56 

0-13 /  

13-35 
3 [1-8.3] 

Eutric 

Cambisols 

Modesto M1 
37.52861 / 

-120.40640 
90 

0-5 /  

22-53 
35 [20-70] 

Haplic 

Luvisols Typic 

Haploxeralfs 

Riverbank R 
37.52449 / 

-120.45434 
94 

0-12 /  

12-39 
300 [250-570] 

Chromic 

Luvisols 

China Hat CH 
37.46767 / 

-120.36948 
224 

2-12 /  

12-30 
3000 [730-4000] 

Rhodic 

Luvisols 

Typic 

Palexeralfs 

 155 

SOC fractions were measured in the bulk soil in topsoil and subsoil with the purpose to comply with 156 

the four conceptual fractions proposed by Stewart et al. (2008):  (i) free particulate organic matter 157 

[POM], considered as unprotected; (ii) microaggregate-associated [S+A] SOC, considered as 158 

physically protected; (iii) silt- and clay-associated [s+c] SOC, considered as mineral associated, 159 

geochemically protected and (iv) nonhydrolyzable [rSOC] SOC equivalent to biochemically protected. 160 

The chronosequence soils do not contain carbonates. Physical separation (sieving) techniques 161 

(Doetterl et al., 2015) resulted in estimates of particulate organic matter (POM; >250 μm), C 162 

associated to stable microaggregates (S+A; 53-250 μm) and C associated to non-aggregated clay and 163 

silt (s+c; <53 μm). Additionally, a <63 μm fraction was ultrasonically dispersed (energy level of 22 164 

J/mL) from a separate bulk sample and the dispersed solution was then wet sieved over a 63 μm 165 

sieve. The suspension < 63 μm was filtered through a 0.45 μm nylon mesh and material >0.45 μm 166 

was dried at 40 °C and weighted. This fraction was hydrolyzed with 25mL 6N HCl at room 167 
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temperature for 24 h. The hydrolysis residue after washing was used as estimate of resistant organic 168 

carbon (rSOC). The amount of Dissolved Organic Carbon (DOC) was considered negligible under the 169 

semi-arid climate at Merced and was not measured. The measured SOC fractions were converted to 170 

the C-pools (DPM+RPM), (BIO+HUM) and IOM using the protocol of Zimmermann et al. (2007), c.f. 171 

Figure 1. Percentage Modern Carbon (pMC) was measured for topsoil and subsoil in bulk SOC and in 172 

the fractions from the physical fractionation. The water used during the fractionation might contain 173 

some dissolved organic matter. This would be measured as part of the smallest fraction (s+c; Figure 174 

1). DPM/RPM and BIO/HUM ratios for temperate grassland under equilibrium conditions 175 

(Zimmerman et al., 2007: table 1: DPM/RPM=0.1271 and BIO/HUM=0.0259) were used to split the 176 

pools (DPM+RPM) and (BIO+HUM) obtained from measurements into the RothC-pools.   177 

For a more comprehensive description of the collected data we refer to Harden (1987) and Doetterl 178 

et al. (2018); for a data summary see Supplementary Information: Table S3. 179 

 180 
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 181 

Figure 1- Analyzed SOC fractions (Stewart et al., 2008; Doetterl et al., 2015) and conversion to four-pool and five-pool 182 

RothC-models.  indicates distribution over RothC-pools according to Zimmerman et al. (2007) for temperate grassland. 183 

RothC-pools are DPM=Decomposable Plant Material; RPM=Resistant Plant Material; BIO=Biomass; HUM=Humus and 184 

IOM=Inert Organic Matter. Analytical SOC-fractions are POM=particulate organic Matter; (S+A)= C associated to stable 185 

microaggregates (53-250 μm); (s+c)= C associated to non-aggregated clay and silt (<53 μm); and rSOC= resistant organic 186 

carbon measured after cold acid hydrolysis (<63 μm). 187 

 188 

2.2. Soil model 189 

The effect of mineralogy, climate and vegetation on the depth distribution of SOC over time was 190 

simulated with the SoilGen2.15 model (Finke and Hutson, 2008; Opolot and Finke, 2015). 191 

SoilGen2.15 simulates flows of water, heat, solutes and CO2 in unconsolidated geomaterials by 192 

numerically solving partial differential equations (the Richards equation, heat flow equation, 193 

advection-dispersion equation and CO2-diffusion equation respectively), where the column is 194 

vertically discretized in equal compartments of five cm thickness in this study. Additionally, transport 195 

of solid matter occurs in the form of clay migration (a leaching process) and as a consequence of 196 
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bioturbation (a mixing process). Besides the flow of matter, for each soil compartment various sink 197 

and source terms are calculated: (i) Soil texture is modified by physical weathering driven by 198 

temperature fluctuations; (ii) soil mineralogical composition is modified by chemical weathering of 199 

15 predefined and two user-defined silicate minerals; (iii) equilibriums of calcite and gypsum control 200 

the precipitation or dissolution of these salts; (iv) amounts of SOC in the pools RPM, DPM, BIO and 201 

HUM are dynamically calculated (see below). These combined processesmimic soil formation (Figure 202 

2). The time step for water flow calculations is less than one hour (depending on the rainfall 203 

dynamics), for heat flow and physical weathering it is one hour, for solute transport and dissolution 204 

chemistry it is less than one day (depending on water flow dynamics) and for the SOC-cycle and 205 

chemical weathering it is one day. Bioturbation is calculated for annual time steps. These time steps 206 

are matching the dynamics of the individual processes, so that highly dynamic processes (e.g. water 207 

flow) as well as relatively slow processes (e.g. weathering of minerals) are simulated efficiently.  208 

Several studies confronted outputs of the SoilGen model in multi-millennium simulations to 209 

measurements: Finke (2012), Sauer et al. (2012), Yu et al. (2013) Zwertvaegher et al. (2013), Finke et 210 

al. (2015) and Keyvanshokouhi et al. (2016) quantified model accuracy at more than 100 locations 211 

for SOC, texture, Cation Exchange Capacity, Calcite content, Base Saturation and pH, and concluded 212 

fair to good performance.  Keyvanshokouhi et al. (2016) concluded that the SoilGen model is suitable 213 

for global change effect studies on soils. 214 

 215 
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 216 

Figure 2- Simplified process flowchart of SoilGen model. Copied from Minasny et al. (2015). P=precipitation, 217 

PE=evaporation, T=temperature, CDE=convection diffusion equation, CEC=cation exchange capacity , h--K relations 218 

describe the relations between soil water pressure head, soil water content and hydraulic conductivity.  219 

For the SOC-cycle, the concepts and pools of the RothC26.3 model (Jenkinson and Coleman, 1994; 220 

Coleman and Jenkinson, 2005) are implemented for each one of the vertical compartments (in this 221 

case, of five cm thickness) and using daily timesteps: 222 

 Litter arrives at the soil surface as leaf litter or in belowground compartments as root litter. 223 

SoilGen uses the simulated root mass density depth pattern (an exponential function declining 224 

with depth) to distribute the total root litter over the compartments. The total amount of root 225 

and leaf litter is user input per vegetation type.  226 
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 All incoming litter is divided by a fixed DPM/RPM ratio (0.67; Jenkinson and Coleman, 1994) into 227 

Resistant Plant Material (RPM) and Decomposable Plant Material (DPM) pools. Both these pools 228 

decay with rates kRPM and kDPM  229 

 The resulting decay products from RPM and DPM are split over the Humus (HUM), Biomass (BIO) 230 

and mineralized (CO2) pools using the clay content and a fixed BIO/HUM ratio (46/54; Jenkinson 231 

and Coleman, 1994).  232 

 HUM and BIO decay with rates kHUM and kBIO into HUM, BIO and CO2. This cycling of SOC mimics a 233 

food web.  234 

 All rates are modified by factors calculated using temperature and moisture deficit in each soil 235 

compartment, as in Jenkinson and Coleman (1994). Both temperature and moisture content are 236 

simulated at sub-daily timesteps. The moisture deficit is distributed over the root 237 

compartments, using the air-filled porosity per compartment as a proxy for the relative water 238 

stress. We assume no other depth dependencies of rates besides those related to differences in 239 

temperature and moisture deficit, even though there are indications that these do exist (see 240 

Mathieu et al., 2015, but also see Solly et al., 2015 with a contrasting conclusion for Beech forest 241 

soils). To mimic effect of the rhizosphere on abundance of micro-organisms, no SOC-decay is 242 

assumed to occur below the root zone. SOC-pools may be redistributed over depth as a 243 

consequence of bioturbation. 244 

 The Inert Organic Matter pool (IOM) accounts for stable (non-decaying) organic matter, present 245 

at the start of the simulation period and inert during the period covered by the simulation.  246 

All SOC-pools in SoilGen contain C, but also the cations and anions taken up by the vegetation via the 247 

transpiration stream migrate through the pools, thus finally not only CO2 but also these ions are 248 

released (in the soil solution). Parallel to the C-cycle, a 14C cycle is simulated. Litter inputs use the 249 

Δ14C of the atmosphere at the year of input t (Hua et al., 2013; Reimer et al., 2013) to construct an 250 

extra 14C-related input pool of new litter by LitterCt * (1+ Δ14Ct/1000), where LitterCt is the litter-C 251 

input in year t. The 14C follows the same pathway as C, thus the 14C pools degrade as the SOC-pools, 252 
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but additionally radioactive decay takes place, which results in dynamic pools representing 253 

radiocarbon coined as RPMx, DPMx, BIOx, HUMx and the static pool IOMx. This allows the 254 

calculation of Δ14C of total SOC by: 255 

  ∆ 𝐶14 = (
RMPx+DPMx+BIOx+HUMx+IOMx

RPM+DPM+BIO+HUM+IOM
-1) ∗ 1000      (eq.1) 256 

in any subsequent year. For comparison to measurements, pMC is calculated by: 257 

 𝑝𝑀𝐶 = 100 ∗ ((∆ 𝐶14 /1000) + 1) ∗ 𝑒((𝑦−1950)/(5730/𝐿𝑁(2)))    (eq.2), 258 

where y is the year of sampling. 259 

We apply two variants of this SOC-model (Figure 1): (i) the full five-pool model and (ii) a four-pool 260 

model in which IOM is absent and all SOC is subject to decay. The major unknowns that are used in 261 

the SOC-module are the decay rates for the four pools. 262 

 263 

2.3. Research Layout and parameter fitting protocol 264 

The available data permit calculation of the size of the individual SOC-pools at the five 265 

chronosequence sites. The litter-C input and various geochemical properties are also measured at 266 

these sites (Doettrl et al., 2018). This data-rich environment permits an analysis of SOC-decay by 267 

site-specific model parametrization and calibration, but does not correspond to more common 268 

situations where no individual SOC-pools can be obtained from measurements. We therefore 269 

consider various information levels, from data-rich to relatively data-poor, to evaluate the quality 270 

lost by decreasing data-richness. Figure 3 summarizes the corresponding research layout.  271 

 At the highest information level (info level 1), a site-specific calibration of the decay rate factors 272 

for RPM, DPM, HUM and BIO is performed, using the local profile data to parametrize SoilGen 273 

including local estimates of the SOC-input by plant litter. The calibration protocol follows a 274 

downstream scheme, which means that the pathway of SOC-decay via RPM and DPM to HUM 275 

and BIO determines the calibration order of the decay rate factors. Additionally, rate speeds are 276 

considered (slower rates are calibrated first). This results in the calibration sequence 277 

kRPM-kDPM-kHUM-kBIO. For each rate, eight equidistant values are taken in a range reported in 278 
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previous calibration studies (e.g. Yu et al., 2013). The value of the best performing rate factor 279 

was obtained by (i) selecting the two consecutive simulated rates with one positive and one 280 

negative deviation between measurements and simulations, and (ii) interpolating between these 281 

rates to find the rate with an error of near zero. This approach assumes a monotonously 282 

decreasing or increasing relation between model error and rate value, which was checked to be 283 

true by graphical analysis of the simulations for five sites, eight different values for all four rate 284 

coefficients for both the four- and five-pool models, thus for 320 cases. A still better match 285 

between simulated and measured pools could have been obtained by an iterative approach to 286 

search the optimal parameter value (e.g. by a bisection procedure with a convergence criterion), 287 

but this would have added little precision to this study (c.f. Fig. 4) and would have greatly 288 

increased computation time. The quality of a calibration run for each pool was expressed via the 289 

(absolute) difference between the measured and simulated SOC-pools (Mg ha-1 cm-1 soil) over 290 

the same depth intervals combined over topsoil and subsoil. As an example, if measurements 291 

apply to 0-9 cm for topsoil and to 19-30 cm for subsoil, values for the same depth intervals were 292 

taken from the simulations. SOC is expressed per cm soil to allow comparisons between soils 293 

that had unequal sampling layer thickness.  294 

 The rates obtained by calibration were correlated to geochemical and mineralogical data from 295 

the same profiles, to test if these data provide proxies for physico-chemical protection of SOC. 296 

We used profile-averages for these proxy-data to avoid weighting for unequal layer thicknesses 297 

and because one of the proxies was at the profile-scale. Strong and significant correlations 298 

indicate candidate proxies for a next step where rate modifiers are calculated by linear 299 

regression. The rate modifiers are applied onto each pool to calculate the loss from that pool by 300 

 loss=Y*(1-e-x1*x2* kp̅̅ ̅*t)      (eq.3),  301 

where Y is the size of a pool (RPM, DPM, BIO, HUM) at the start of the (daily) time step for the C-302 

cycle sub-model (Mg ha-1 y-1), 𝑘𝑝
̅̅ ̅ is the average rate constant (y-1) obtained from the calibrations 303 

for pool p; x1 is a (dynamic) rate modifier for the combined effect of moisture, soil cover and 304 
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temperature, fluctuating over time and depth; x2 is an additional rate modifier representing the 305 

physico-chemical protection; t is the period of decay (1/365 year). The rate modifier x2 gradually 306 

changes over time because of weathering processes affecting geochemical soil properties. The 307 

value of x2 is calculated for each site i by:  308 

𝑥2𝑖 =
𝛽0 + 𝛽1 ∗𝐺𝑖

�̅�
,        (eq.4), 309 

where βo and β1 are regression coefficients, Gi is the value of the geochemical proxy at i and �̅� is 310 

the average of the calibrated rate constants (y-1) over all locations. In long-term simulations, Gi 311 

would be time-dependent to reflect the effect of geochemical weathering processes.  In 312 

addition, local estimates of the SOC-input by plant litter are input to SoilGen. These simulations 313 

applying the rate modifier (one per site) correspond to a second, lower information level (info 314 

level 2) where no site-specific rate constants are known but the mineralogy and geochemistry is 315 

known and can be used to modify rates. 316 

 A next lower information level (info level 3) corresponds to the usage of averaged rate constants 317 

in combination with local estimates of the SOC-input by plant litter. We distinguished two 318 

variants: the literature value for the rate constants (Coleman & Jenkinson, 2005, c.f. Table 2) and 319 

the average of the calibrated rate constants. The former is expected to perform worse than the 320 

latter as the averages of calibrated constants would give unbiased (average of zero) simulation 321 

errors in the study area, but the default rates would likely yield biased (non-zero) simulation 322 

errors. 323 

 The lowest information level (info level 4) corresponds to the usage of average rate constants 324 

and of the same SOC-litter inputs at all sites, assuming net primary production does not depend 325 

on soil but only on climate. Again, we distinguished two variants: the rates from literature and 326 

the averaged rates from calibration. 327 

The effects of the information levels on the quality of SOC-simulations over all pools at an individual 328 

site is calculated by the site Root Mean Square Error: 329 
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𝑅𝑀𝑆𝐸 = √
1

4
∑ (𝑆𝑝 − 𝑂𝑝 )24

𝑝=1  ,       (eq.5), 330 

where Sp and Op are simulated and observed SOC-amounts (Mg ha-1 cm-1 soil) in pool p. We do not 331 

consider the difference between measured and simulated IOM because both are either zero (four-332 

pool model) or equal (five-pool model) since IOM does not decay (Figure 1).  333 

All model simulations covered 1000 years to obtain a stable distribution of SOC over the pools and to 334 

avoid an effect of the (unknown) initial SOC-content on final SOC-pools. We compared 100 and 335 

1000-year simulations for the young soil PM24II (0.1 ka) and found a minor effect of simulation 336 

duration on pool sizes. The SOC-content at the start of the simulations reflected the measured rSOC. 337 

In the five-pool model, rSOC was set equal to the IOM-pool, in the four-pool model it was set equal 338 

to the initial HUM pool.  339 

An over-all index of simulation quality over the five sites is calculated by: 340 

 𝑅𝑀𝑆�̃� = √
1

5
∑ (𝑅𝑀𝑆𝐸𝑖 )25

𝑖=1       (eq.6) 341 

We acknowledge that other accuracy indices could also have been applied, but as we are interested 342 

in the decrease of accuracy as a function of information level rather than accuracy itself, we 343 

restricted ourselves to RMSE. Adding a penalty for extra parameters needed (at information level 2) 344 

could be done by using a statistic such as the Akaike Information Criterion, but this would not inform 345 

on the additional cost, which may strongly vary per soil (or weathering) parameter. 346 
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 347 

Figure 3- Research layout, applied onto both the 4-pool and the 5-pool SOC-model. k* refers to rate constants; RPM, DPM, 348 

HUM, BIO and IOM are Soil Organic Carbon (SOC-) pools (described in Fig.1); 𝑅𝑀𝑆�̃�=Root Mean Square Error over 4 pools 349 

and 5 sites. Sampling depths for topsoil and subsoil in Table 1. Information levels 1 to 4 are described in section 2.3. 350 

 351 

 352 

3. RESULTS AND DISCUSSION  353 

3.1. Information level 1: Site-specific calibration 354 

Primary purpose of the site-specific calibration was to see if rate constant values would differ by 355 

location along the chronosequence. This was found to be the case (Table 2). Figure 4 shows that the 356 

pool sizes are reproduced accurately. RMSE- and RMSẼ -values in Table 2 indicate that the five-pool 357 

model was calibrated slightly more accurately than the four-pool model, but the difference is 358 

minimal. In the four-pool model, the kHUM and kBIO indicate slower decay than in the five-pool model, 359 

which might be expected because the recalcitrant OC is part of the HUM pool in this model version.  360 

kDPM and kRPM did not change because measurements of DPM and RPM are the same for both the 361 
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four- and five-pool models. At 1000 simulation years, an IOM pool (five-pool model) apparently 362 

hardly influences the simulation quality when compared to the four-pool model, even when the IOM 363 

equals between 30 and 50% of SOC in the five-pool model simulation results (Figure 4) and the BIO 364 

and HUM-pools are consequently smaller in the five-pool model than in the four-pool model. The 365 

fastest decomposition rates for fresh organic matter (kRPM and kDPM) are found at the oldest site CH. 366 

This can be explained by a relatively high amount of 1:1 (low activity) clay minerals (Supplementary 367 

Information: Table S2) that have a weaker capacity to form organo-mineral assemblages and thus 368 

result in less protection of relatively fresh (RPM, DPM) SOC than by soils with higher amounts of 2:1 369 

minerals (Baldock & Skjemstad, 2000). Slightly faster decay of the HUM and BIO pools is found in the 370 

older site R, but only in the site CH with the five-pool model. Finally, it should be noted that 371 

differences in total SOC between sites are partly explained by different Litter-C inputs (Table 2; 372 

Supplementary Information Table S3; c.f. section 3.3). 373 

 374 

Table 2- Litter-C input, calibrated rate constants (k, expressed in y-1) and RMSE per site for the five-pool and the four-pool 375 

model. Italic values in brackets are calibration domain within which the optimal value for k was found. RPM, DPM, HUM, 376 

BIO are pools described in Fig.1. C-inputs are based on Doetterl et al., 2018. Default rates RothC-model are taken from 377 

Coleman & Jenkinson (2005). 378 

Site C-input 

Mg C ha-1 y-1 

5-pool model  4-pool model 

 

kRPM kDPM kHUM kBIO RMSE  kRPM kDPM kHUM kBIO RMSE  

[0.075; 

0.525] 

[0.100; 

1.600] 

[0.005; 

0.035] 

[0.100; 

0.800] 

  [0.075; 

0.525] 

[0.100; 

1.600] 

[0.005; 

0.035] 

[0.100; 

0.800] 

 

y-1 Mg ha-1 cm-1  y-1 Mg ha-1 cm-1 

PM24II 1.3 0.070 0.370 0.008 0.333 0.0246  0.070 0.370 0.005 0.200 0.0090 

PM22 1.3 0.059 0.286 0.009 0.370 0.0452  0.059 0.286 0.005 0.217 0.0429 

M1 1.0 0.068 0.345 0.009 0.385 0.0093  0.068 0.345 0.010 0.303 0.0260 

R 1.2 0.060 0.286 0.023 1.000 0.0265  0.060 0.286 0.012 0.526 0.0283 

CH 0.8 0.185 1.000 0.011 0.526 0.0063  0.185 1.000 0.007 0.294 0.0197 

      RMSẼ       RMSẼ  
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Average rate 𝑘 0.089 0.455 0.012 0.526 0.0264  0.089 0.455 0.008 0.303 0.0275 

Default k RothC-model 0.30 10.0 0.02 0.66 0.2721  0.30 10.0 0.02 0.66 0.4213 

 379 

 380 

 381 

Figure 4- Pool sizes derived from converted measurements (meas; c.f. section 2.1) and from simulations (sim) along the 382 

chronosequence for the five-pool model (top) and the four-pool model (bottom) expressed per sampled cm depth. Sampled 383 

depth intervals in Table 1. RPM, DPM, HUM, BIO and IOM are pools described in Fig.1. 384 

 385 

3.2. Identification of influencing soil properties 386 

Calibrated rate constants were correlated to various measured soil properties to identify candidate 387 

properties for rate modifiers (Table 3). Despite the small number of sites, strong and significant 388 

correlations were found. Results for the five-pool and four-pool models are similar. It should be 389 

noted that the results for the much larger pools RPM and HUM are more relevant than those of the 390 

volatile pools of DPM and BIO, which may be more responsive to climate fluctuations. 391 

First, important observations are the high and significant correlations between kRPM (and kDPM) and 392 

age and the profile development index (PDI, c.f. Supplementary Information; Harden, 1982). The PDI 393 

is assessed using basic field soil data, which makes it an easily available rate-modifier in other areas 394 

as well.   395 
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Good geochemical candidates for rate modifiers in the five-pool model are 1:1 clay mineral content 396 

and 2:1 clay mineral content. The Fe/Si-ratio is a reasonable candidate. These properties are model 397 

outputs of SoilGen. Age is of less relevance because it is not a model output, but an input and is not 398 

easily estimated for field sites which makes it a less attractive predictor for rate modifiers.  399 

The 1:1 clay mineral content correlates positively with all four rates, thus decay of all four pools is 400 

faster with higher 1:1 clay mineral content. This is mainly of significance and importance for the 401 

large RPM-pool. The positive correlations may be explained by the weak bonding between OM and 402 

these low-activity clay minerals and results in less protection of the OM in organo-mineral 403 

assemblages. The 2:1 clay mineral content correlates negatively with all four rates, thus decay of all 404 

four pools is slower with higher 2:1 clay mineral content. This is explained by the stronger bonding 405 

between these high-activity clay minerals and OM, resulting in protection against decomposers, as 406 

also stated by others (e.g. Barré et al., 2014; Cuadros, 2017). 407 

Fe/Si as well as Al/Si ratios correlate negatively with all four rates, thus soils with higher Fe- or Al-408 

content and lower Si-content had slower decay. This holds especially for BIO and to a lesser degree 409 

for HUM, and may be explained by OM-stabilization due to organo-mineral interactions at metal 410 

surfaces (Kögel-Knabner et al., 2008). Similarly, higher Si contents are positively correlated (though 411 

not at high significance) with decay rates, most importantly that of RPM and DPM. 412 

In the four-pool model, a significant negative correlation between silt content and kHUM was found.  413 

Additionally, BS% correlates negatively (but not at high significance) to kRPM , indicating that soils 414 

with a high base saturation have a slower decay of RPM. This might indicate that a higher BS, 415 

stimulating biological activity of macrofauna, results in stronger aggregation of the soil and thus 416 

better physical protection of RPM from decomposers (Ewing et al., 2006). This effect inverts for kHUM 417 

and kBIO (no significant correlations), which may indicate that microfauna can access the HUM and 418 

BIO pools. In B-horizons (below the sampled layers in this profile) with stable aggregates, this 419 

pattern may inverse to slow decay of SOC, as found by Ewing et al., 2006 for Californian soils. A non-420 

significant correlation between KHUM and clay content, additional to the effect already part of the 421 
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RothC26.3 correction for rates, was found for the four-pool model, which suggests that the 422 

RothC26.3 correction for clay content may be improved. 423 

 424 

Table 3- Pearson correlation coefficients between calibrated rate constants (k_RPM, k_DPM, k_HUM and k_BIO, in y-1) and 425 

measured soil properties at five sites. Underlined: significant at α=10%; double underlined: significant at 5%; yellow-marked 426 
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field: correlation switched from non-significant to significant or vice versa on change from five-pool to four-pool model. 427 

RPM, DPM, HUM, BIO and IOM are defined in Fig.1 and in the introduction. 428 

 five-pool model  four-pool model 

Pearson correlations k_RPM k_DPM k_HUM k_BIO IOM  k_RPM k_DPM k_HUM k_BIO 

kRPM (y -1) 1.00      1.00    

kDPM (y -1) 1.00 1.00     1.00 1.00   

kHUM (y -1) -0.12 -0.14 1.00    -0.23 -0.25 1.00  

kBIO (y -1) -0.05 -0.07 1.00 1.00   -0.09 -0.11 0.88 1.00 

IOM (Mg ha-1 cm-1 soil) -0.14 -0.13 -0.67 -0.67 1.00      

Age (y) 0.99 0.98 0.02 0.09 -0.21  0.99 0.98 -0.13 0.04 

Log Age (y) 0.63 0.61 0.52 0.56 -0.70  0.63 0.61 0.54 0.61 

Profile Development Index (-) 0.96 0.95 0.13 0.20 -0.37  0.96 0.95 0.04 0.18 

C-input (Mg ha-1 y-1) -0.75 -0.73 -0.56 -0.62 0.63  -0.75 -0.73 -0.38 -0.59 

Clay (%) -0.04 -0.06 0.18 0.15 -0.76  -0.04 -0.06 0.76 0.40 

Silt (%) 0.63 0.64 -0.55 -0.49 0.66  0.63 0.64 -0.82 -0.64 

Sand (%) -0.62 -0.62 0.54 0.50 0.02  -0.62 -0.62 0.16 0.39 

Total Reserve of Bases  

(cmolc kg-1 cm-1 soil) -0.57 -0.54 -0.40 -0.44 0.55 

 

-0.57 -0.54 -0.47 -0.50 

Specific Surface Area treated 

(m2 g-1) -0.36 -0.46 -0.41 -0.47 0.02 

 

-0.46 -0.46 0.18 -0.26 

Specific Surface Area untreated 

(m2 g-1) -0.35 -0.35 -0.29 -0.34 -0.25 

 

-0.35 -0.35 0.38 -0.09 

1:1 clay mineral (%) 0.89 0.88 0.32 0.39 -0.43  0.89 0.88 0.14 0.34 

2:1 clay mineral (%) -0.92 -0.91 -0.26 -0.33 0.40  -0.92 -0.91 -0.08 -0.29 

Si (g/kg) 0.77 0.75 0.45 0.50 -0.51  0.77 0.75 0.32 0.49 

Fe/Si -0.47 -0.45 -0.77 -0.81 0.77  -0.47 -0.45 -0.66 -0.82 

Al/Si -0.77 -0.74 -0.37 -0.43 0.39  -0.77 -0.74 -0.22 -0.39 

P (mg/kg) -0.18 -0.14 -0.65 -0.66 0.67  -0.18 -0.14 -0.74 -0.74 

Base Saturation (%) -0.65 -0.68 0.52 0.48 0.06  -0.65 -0.68 0.33 0.43 

Cation Exchange Capacity 

(cmolc/kg soil) -0.46 -0.45 -0.60 -0.65 0.10 

 

-0.46 -0.45 -0.02 -0.46 

 429 
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 430 

3.3. Simulation quality at different information levels  431 

Soil properties with significant correlations to one or more calibrated rate constants (Table 3) were 432 

considered suitable candidates to estimate rate modifiers x2 (eq. 3) by linear regression. Thus, using 433 

the contents of 1:1 clay minerals and 2:1 clay minerals, the Fe/Si ratio and (for the four-pool model) 434 

the silt content, rate modifiers were estimated, the model was run and simulated pools were 435 

compared to measured pools (information level 2). Interaction effects of suitable candidate 436 

modifiers were also investigated (Fe/Si x 1:1 clay minerals and silt content x 1:1 clay minerals).  437 

Results (Figure 5) clearly show that the RMSẼ  reduces (and quality increases) with addition of 438 

information. The best results were obtained by local calibration (information level 1), and the worst 439 

when rates as well as C-inputs were assumed the same at all sites (information level 4). We scaled 440 

the RMSẼ  at information level 4a (average of measured rates and average of measured C-inputs) to 441 

100% in the discussion below. 442 

Estimating rate modifiers by geochemical parameters (information level 2) increased RMSẼ  by 45-443 

50% (compared to information level 1) for the best performing geochemical proxy, the Fe/Si ratio. 444 

This ratio is a proxy for bonding in pedogenic hydroxides. Slightly worse results were obtained by 445 

using 1:1 or 2:1 clay mineral content to modify rates. Interaction terms of clay mineralogy and Fe/Si 446 

ratio did not give better (lower) values of RMSẼ  . From the Fe/Si based rate modifiers to the usage 447 

of average rates (information level 3a) the RMSẼ  increased by about 20%, which illustrates the 448 

added value of including geochemical properties in SOC-modelling, and the importance of 449 

incorporating the degree of weathering in SOC-modelling. It should be noted that using the default 450 

RothC-rates (information levels 4b and 3b) led to a much worse performance in terms of the RMSẼ  451 

(30% to 70% higher than at information level 4a), as these default rates added a bias component to 452 

the error relative to the usage of locally-averaged rates. Thus, the 20% is a conservative estimate of 453 

the gain in quality that can be realized by using rate modifiers, and usage of the default rate 454 

constants of RothC introduces large errors in the simulations of the individual pools. Finally, at the 455 
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4th information level (4a) another substantial increase of ca. 15% in the RMSẼ  occurred when, in 456 

addition to averaged rates, average values for Litter-C inputs are used instead of local values, a 457 

situation corresponding to the usage of literature values. Again, the scenario 4b based on default 458 

RothC-rates performs much worse than scenario 4a based on the average of the calibrated rates. 459 

The decrease in RMSẼ  over the information levels from 4 to 1 show that using local estimates of C-460 

input contributes positively to simulation quality, though less than when geochemical proxies are 461 

used as rate modifiers. C-inputs were found to decrease with greater soil age (Table 2), which is, 462 

under the same climate, likely related to less available nutrients with increased degree of 463 

weathering. This confirms that the SOC-model should include adequate C-inputs by either 464 

accounting for soil fertility in simulating biomass production or by using local measurements.  465 
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 466 

Figure 5- 𝑅𝑀𝑆�̃� at different information levels: 1=site calibration; 2=site rate modifiers (BS=Base Saturation, c.m.=clay 467 

mineral content, interaction a= silt x 1:1 clay mineral content, interaction b= Fe/Si x 1:1 clay mineral content); 3a=average 468 

rates; 3b (dotted bars)=default rates RothC26.3; 4a=average rates with average litter-C input; 4b (dotted bars)=default 469 

rates RothC26.3 with average C-input. High 𝑅𝑀𝑆�̃� denotes low model performance. Values for 𝑅𝑀𝑆�̃� at information level 470 

4a are given at 100% scale.  471 

The quality of simulations at all information levels depends on the root depth distribution. Since this 472 

is used to distribute belowground litter inputs it will determine the litter input in the sampled soil 473 
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depth compartments. Additionally, the simulation quality depends on the bioturbation. As simulated 474 

bioturbation mixes the SOC-pools over the rooted profile, it will decrease the sensitivity of simulated 475 

SOC-pools over depth to the root profile. Because the rooting profile and the bioturbation settings 476 

were the same for all simulations per site, we assume with confidence that the differences between 477 

the information levels are hardly dependent on assumptions on rooting profile and bioturbation.  478 

Rate constants (before modification by x1 and x2) in this model study do not vary with depth. Rate 479 

modifier x1 depends on temperature and moisture deficit and these do vary with depth. Rate 480 

modifier x2 could be estimated per depth compartment using a geochemical proxy, but in this study, 481 

we estimated x2 for the whole profile. Since not all geochemical proxies (e.g. newformed clay 482 

minerals) can be simulated with SoilGen we used measured values. Although this study shows the 483 

value of including geochemical proxies to correct rate constants, the actual gain in quality over long 484 

time periods will depend on the accuracy of simulations of these geochemical proxies. For short and 485 

recent periods (a few millenniums, c.f. the Fe/Si ratios in Table S2), measured proxy values will 486 

suffice. 487 

In SoilGen, the uncorrected rate constant is set to zero below the rooting depth, which is below the 488 

sampled subsoil layers in this study. Both a constant x2 and no-decay below the rooting zone are 489 

over-simplifications and may contribute to the RMSE at all information levels when deeper profiles 490 

would be considered. For instance, Mathieu et al. (2015) inventoried turnover rates of deeper 491 

carbon (below 20 cm depth) and found different rates for different soil types. Balesdent et al. (2017) 492 

measured turnover rates in cultivated soils using 13C labeling techniques, and found turnover rates in 493 

subsoils (below 30 cm depth) to be about four times slower than in topsoils. Thus, future models 494 

might benefit from exploring the candidate mechanisms that govern dynamic depth adaptation of 495 

rate constants. Associations of microbial-mineralogical-root dynamics are likely key to these 496 

mechanisms. 497 

 498 

3.4. Radiocarbon 499 



27 

 

Values for pMC were measured in topsoil and subsoil bulk samples (Doetterl et al., 2018; 500 

Supplementary Information; Table 3) and were also calculated from additional simulations, using the 501 

best performing geochemical rate modifiers at information level 2 (i.e. Fe/Si ratio). Simulation 502 

periods for these additional simulations were 0.1 ka for site PM24II, 3 ka for PM22 and 10 ka for the 503 

other (older) sites. The measured values of pMC (Figure 6) are generally close to or above 100% 504 

which indicates that most of the SOC is young. The reason for the exceptional measured value for 505 

pMC-bulk soil for the subsoil of site R (300 ka) is that the sample had a large POM content of young 506 

age, which was likely due to some root fragments that were, unintendedly, still in the sample in 507 

combination with a low total SOC content.  508 

Results show that simulations with the four-pool model better match the pMC measurements (RMSE 509 

of 10.9%) than those with the five-pool model (RMSE of 30.3%). Topsoil pMC-simulation results are 510 

better than those from the subsoil. Assuming an IOM-pool that exists for 10 ka time extent gives a 511 

poor estimation of the pMC, which suggests that this SOC cannot be considered inert over several 512 

millennia. This was also concluded by Sanderman et al. (2016). Considering IOM to be older than 10 513 

ka years leads to worse results. A theoretical limiting case with all IOM as non-radioactive IOM, 514 

calculating by setting IOMx in eq.1 equal to zero, is depicted in Figure 6. Thus, it can be concluded 515 

that probably the four-pool model is more appropriate for the chronosequence than the five-pool 516 

model with inert SOC. However, a modified five-pool model including slow decay of SOC (in a pool 517 

replacing IOM) might lead to more accurate results than the results that we obtained. However, the 518 

pathways towards such pool then still need to be defined.  519 

 520 
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 521 

Figure 6- Percentage Modern Carbon (pMC) obtained from measurements in bulk soil (solid red) and fractions (solid brown 522 

and green) and by simulation with the four-pool model (solid black line, solid rectangles) and five-pool model (dashed black 523 

line, open rectangles) for topsoil (left) and subsoil (right). Solid black line with open markers indicate a limiting case without 524 

14C in IOM.  525 

 526 

CONCLUSIONS AND OUTLOOK  527 

1. Decay rates for the RothC-pools showed significant correlations to both a soil development 528 

index (PDI) based on basic field observations as on geochemical weathering metrics. The 529 

correlation to PDI would allow rate-modification at large point data sets, as PDI is a function of 530 

commonly recorded soil data. This possibility needs to be further explored. 531 

2. Over-all, using decay-rate modifiers based on geochemical weathering indices (clay mineralogy 532 

and element ratios) significantly improved simulations for SOC storage, but requires measuring 533 

and/or modelling these parameters 534 

3. Both the five-pool SOC-model, including inert IOM, and the four-pool model without IOM were 535 

improved by decay rate modifiers.  Comparisons of measured and simulated pMC of bulk SOC 536 

samples showed that the inert IOM-pool degrades over periods of time, which provides further 537 

evidence that inclusion of an inert pool is not appropriate at millennial timescales. 538 
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4. Local, site specific estimations of C-input generally increased simulation quality, suggesting an 539 

impact of the degree of weathering and soil development. Further research should be 540 

performed to evaluate this conclusion.  541 

5. Major limitation of this study was the small number of sites; thus, results need re-examination at 542 

additional sites with varying age and geochemical properties. 543 

 544 
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Supplementary Information 690 

 691 

Table S1: Basic soil data aggregated to the upper meter of soil to enable correlation with decay rates. Profile Development 692 

Index calculated according to Harden (1982) for the closest characterized location in the same unit of the 693 

chronosequence, sd relate to the variation inside each unit in the chronosequence.  694 

Profile Age (years) Log Age Profile 

Development 

Index (sd) 

C_input clay silt sand 

   

- Mg ha-1 yr-1 % % % 

PM24II 100 2.00 6.20 (7.19) 1.27 8.7 60.7 29.1 

PM22 3000 3.48 13.72 (7.19) 1.29 10.9 65.8 22.5 

M1 35000 4.54 60.95 (21.13) 1.2 24.5 53.4 18.2 

R 300000 5.48 85.85 (39.37) 0.97 16.1 51.8 31.6 

CH 3000000 6.48 324.40 (62.68) 0.84 14.3 68.6 16.1 

Note: The Profile Development Index (Harden, 1982) combines eight soil properties estimated in the 695 

field with soil thickness: (1) clay films, (2) texture plus wet consistence, (3) color hue and 696 

chroma as proxy for rubification, (4) structure, (5) dry consistence, (6) moist consistence, (7) 697 

color value, and (8) pH. After the eight field properties are quantified (method in Table II in 698 

Harden, 1982), they are normalized onto a scale of 0-100%, where 100% indicates a strong 699 

development of the property. and averaged per soil horizon. The result per horizon is 700 

multiplied by the horizon thickness to give the soil profile soil development index. 701 

 702 

Table S2: Soil chemical data averaged for the upper meter of soil. Ka=kaolinite, Il=illite, Sm=smectite, Vm=vermiculite. 703 

Specific Surface Area is the total surface area of soil per unit of mass. Analytical methods in Doetterl et al., 2018.  704 

Profile Total Reserve 

of Bases 

Specific 

Surface 

Area 

treated 

Specific 

Surface 

Area 

untreated 

1:1 clay 

minerals 

(Ka) 

2:1 clay 

minerals 

(Il-Sm-Ve) 

Si Fe/Si Al/Si P Base 

Saturation 

Cation 

Exchange 

Capacity 

  cmolc kg-1 cm-1 m2 g-1 m2 g-1 % % g kg-1 - - mg kg-1 % cmolc kg-1 soil 
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PM24II 33.76 11.38 6.10 16 81 260 0.14 0.34 1186 79.8 14.65 

PM22 16.80 19.97 10.75 19 81 300 0.12 0.23 553 100.0 11.20 

M1 14.37 27.42 21.69 20 78 302 0.10 0.26 433 83.1 24.16 

R 11.41 10.24 6.94 30 67 343 0.05 0.19 191 100.0 2.87 

CH 3.95 8.91 5.87 49 41 391 0.06 0.08 391 75.7 2.96 

Explanation of the weathering data (see also Doetterl et al., 2018): Weathering from 2:1 to 1:1 clays 705 

releases Si. We observed quartz-rich pebbles at the oldest site, which are likely 706 

accumulations of Si released from weathering of the smaller particles (e.g. 2:1 to 1:1 clays). 707 

Data (not shown, but see Supplementary Information for Doetterl et al. ,2018), show an 708 

increase with age in pedogenic Fe, but not in total Fe.  The common view is that weathering 709 

releases Si and concentrates Fe and Al, but Harden (1988) concluded for these soils that this 710 

does not occur at all particle size classes equally and that this explains the Si, Fe/Si and Al/Si 711 

ratios observed in bulk samples. 712 

 713 

Table S3: Sampling depths, measured pools and calculated RothC-pools: DPM=Decomposable Plant Material; 714 

RPM=Resistant Plant Material; BIO=Biomass; HUM=Humus and IOM=Inert Organic Matter. Analytical SOC-715 

fractions are POM=particulate organic Matter; (S+A)= C associated to stable microaggregates (53-250 μm); (s+c)= 716 

C associated to non-aggregated clay and silt (<53 μm); and rSOC= resistant organic carbon measured after cold 717 

acid hydrolysis (<63 μm). pMC=percent Modern Carbon. Analytical methods in Doetterl et al., 2018. 718 

Pofile Sampled 

Depth 

Bulk 

density 

Total SOC Measured C-pools SoilGen_RothC pools pMC 

 Top Bot  

 

POM s+c -rSOC S+A rSOC  

DPM + 

RPM 

BIO + 

HUM IOM Bulk SOC s+c S+A 

 
(cm) (cm) g cm-3 (g kg-1 soil) (% of SOC) (% s+c) (g kg-1 soil) (%) (%) (%) 

Topsoil               

PM24II 0 9 1.30 23.6 40 38 22 77.83 9.4 10.1 4.0 111 108 113 

PM22 0 13 1.21 36.2 48 26 26 70.70 .7.4 12.2 6.7 106 103 106 

M1 0 5 1.28 24.5 48 32 20 85.83 11.8 8.5 4.2 108 107 110 

R 0 12 1.65 12.8 67 10 22 67.54 8.6 2.3 1.9 93 103 107 
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CH 2 12 1.62 6.6 33 16 52 79.67 2.2 1.7 2.7 97 96 101 

Subsoil               

PM24II 19 30 1.41 8.1 3 33 64 83.82 0.2 3.5 4.3 96 103 99 

PM22 13 35 1.36 7.8 0 31 69 78.84 0.0 3.6 4.2 87 87 86 

M1 22 53 1.61 4.6 15 44 41 82.58 0.7 2.4 1.6 89 89 88 

R 12 39 1.88 2.5 25 13 62 68.54 0.6 0.8 1.1 106 84 88 

CH 12 30 1.65 4.2 0 35 64 78.56 0.0 .2.1 2.1 87 87 88 

 719 
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