
HAL Id: hal-01904571
https://hal.science/hal-01904571

Submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Ancestral acquisitions, gene flow and multiple
evolutionary trajectories of the type three secretion

system and effectors in Xanthomonas plant pathogens
Déborah Merda, Martial Briand, Eran Bosis, Céline Rousseau, Perrine

Portier, Matthieu Barret, Marie-Agnès Jacques, Marion Fischer-Le Saux

To cite this version:
Déborah Merda, Martial Briand, Eran Bosis, Céline Rousseau, Perrine Portier, et al.. Ancestral acqui-
sitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors
in Xanthomonas plant pathogens. Molecular Ecology, 2017, 26 (21), pp.1-14. �10.1111/mec.14343�.
�hal-01904571�

https://hal.science/hal-01904571
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


This is the accepted version of the following article Merda D, Briand M, Bosis E, et al. Ancestral 

acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and 

effectors in Xanthomonas plant pathogens. Mol Ecol. 2017;26:5939–5952. 

https://doi.org/10.1111/mec.14343, which has been published in final form at 

https://onlinelibrary.wiley.com/doi/full/10.1111/mec.14343. This article may be used for non-

commercial purposes in accordance with the Wiley Self-Archiving Policy 

https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html 

https://doi.org/10.1111/mec.14343


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/mec.14343 
This article is protected by copyright. All rights reserved. 

DR. MARION  FISCHER-LE SAUX (Orcid ID : 0000-0002-9567-9444) 

 

Article type      : Original Article 

 

Title 

Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three 

secretion system and effectors in Xanthomonas plant pathogens 

 

Authors 

Déborah Merdaa, Martial Brianda, Eran Bosisb, Céline Rousseaua, Perrine Portiera, Matthieu 

Barreta, Marie-Agnès Jacquesa§, and Marion Fischer-Le Sauxa§ 

a
IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 49071, 

Beaucouzé, France 

b
Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel. 

  

§ authors for correspondence. 

Correspondence: Marie-Agnès Jacques, marie-agnes.jacques@inra.fr and Marion Fischer-

Le Saux, marion.le-saux@inra.fr ; Fax : +33 2 41 22 57 55 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Keywords : 

comparative genomics, phylogenomics, homologous recombination, horizontal gene transfer, 

hrp cluster, pathogen emergence 

  

Running title 

Evolution of the T3SS in Xanthomonas 

  

Abstract   

Deciphering the evolutionary history and transmission patterns of virulence determinants is 

necessary to understand the emergence of novel pathogens. The main virulence determinant 

of most pathogenic proteobacteria is the type three secretion system (T3SS). The 

Xanthomonas genus includes bacteria responsible for numerous epidemics in agroecosystems 

worldwide and represents a major threat to plant health. The main virulence factor of 

Xanthomonas is the Hrp2 family T3SS, however this system is not conserved in all strains 

and it has not been previously determined whether the distribution of T3SS in this bacterial 

genus has resulted from losses or independent acquisitions. Based on comparative genomics 

of 82 genome sequences representing the diversity of the genus, we have inferred three 

ancestral acquisitions of the Hrp2 cluster during Xanthomonas evolution followed by 

subsequent losses in some commensal strains and re-acquisition in some species. While 

mutation was the main force driving polymorphism at the gene level, inter-species 

homologous recombination of large fragments expanding through several genes shaped Hrp2 

cluster polymorphism. Horizontal gene transfer of the entire Hrp2 cluster also occurred. A 

reduced core effectome composed of xopF1, xopM, avrBs2 and xopR was identified that may 
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allow commensal strains overcoming plant basal immunity. In contrast, stepwise 

accumulation of numerous type 3 effector genes was shown in successful pathogens 

responsible for epidemics. Our data suggest that capacity to intimately interact with plants 

through T3SS would be an ancestral trait of xanthomonads. Since its acquisition T3SS has 

experienced a highly dynamic evolutionary history characterized by intense gene flux 

between species that may reflect its role in host adaptation. 

 

Introduction 

Unraveling the evolution and transmission of virulence factors is crucial to 

understanding how pathogens emerge. Type three effectors (T3Es) of Gram negative bacteria 

are major virulence factors in interactions with both plant and animal hosts. These proteins 

are secreted directly in host cells by the type three secretion system (T3SS) which is a 

complex protein structure anchored in the bacterial membrane (Diepold & Armitage, 2015). 

In pathogenic interactions, T3SS may enable the development of disease (via neutralization 

of plant defenses and manipulation of host cellular processes) or trigger host resistance 

(through recognition inducing hypersensitive response). The T3SS is also widespread in 

mutualistic and commensal bacteria of protist, fungal and animal hosts (Abby & Rocha, 

2012). As the T3SS and T3Es play a crucial role in prokaryote-eukaryote interactions, 

knowledge of their origin and evolution is likely to be crucial to deepen our understanding of 

host adaptation. 

The origin and evolution of the T3SS has been extensively studied and it has been 

shown to share a common evolutionary history with the flagellar cluster required for 

swimming motility. Abby and Rocha (2012) recently proposed that the T3SS evolved by 

exaptation from the flagellar cluster. Further T3SS diversification then lead to seven distinct 
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families of T3SSs (Ysc, SPI-1, SPI-2, Chlamy, Hrp1, Hrp2 and Rhizo) (Troisfontaines & 

Cornelis, 2005). Diversification of the T3SS is not explained simply by vertical evolution. 

Indeed, it was shown that the evolution of the T3SS cluster has included numerous horizontal 

gene transfers (HGTs) (Troisfontaines & Cornelis, 2005). These HGT events are facilitated 

by localization of T3SS in plasmids or chromosomal pathogenicity islands. 

Extensive diversification of the T3SS seems to be driven by bacteria ecology, as T3SS 

families correlate with the host type. Indeed, Rhizo, Hrp1 and Hrp2 seem to be more 

frequently involved in interactions with plants, whereas Ysc, Chlamy, SPI-1 and SPI-2 

appear to be specific to interactions with mammals, insects and amoeba (Abby & Rocha, 

2012; Diepold & Armitage, 2015; Troisfontaines & Cornelis, 2005). In general, each 

bacterial genus harbors a T3SS from a specific family but some bacteria with complex 

lifestyles harbor several T3SS from different families. These contrasting patterns of T3SS 

content could be explained by ancient vertical inheritance mixed with T3SS gain and loss 

events (Kirzinger, Butz, & Stavrinides, 2015). The main T3SS families found in 

phytopathogens are Hrp1 (in Pseudomonas and Erwinia) and Hrp2 (in Xanthomonas, 

Ralstonia, Acidovorax, and Burkholderia), however alternative non-canonical T3SS have also 

been described in some plant-associated bacteria such as commensal pseudomonads 

associated with plants (Barret et al., 2013). These two main families of T3SS clusters, Hrp1 

and Hrp2, differ in gene content, synteny, and transcriptional regulation. Approximately 20 

protein-coding genes, called hrp (hypersensitive reaction and pathogenicity) and hpa (hrp-

associated) genes, are involved in the biogenesis of T3SS. Among them, nine genes, which 

were renamed hrc (hrp conserved), are highly conserved in plant and animal pathogens and 

eight have homologs in the flagellar cluster (Tampakaki et al., 2010). 
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T3E repertoires are highly diverse within each genus and even within single bacterial 

species (McCann & Guttman, 2008). They vary both in terms of content and size, for instance 

a given X. axonopodis strain may have any between six and 26 T3E genes (Hajri et al., 2009). 

It has been suggested that this high variability could be the consequence of the host 

adaptation process. Indeed, in Pseudomonas and Xanthomonas, the pathogenic strains are 

highly host specific and the T3E repertoire composition is correlated with host range (Hajri et 

al., 2009; Sarkar, Gordon, Martin, & Guttman, 2006). The plasticity of T3E repertoire within 

a species could be explained by frequent HGTs (McCann & Guttman, 2008) as many T3E 

genes have been found associated with mobile genetic elements. Understanding the diversity 

and evolution of T3E repertoires in pathogenic bacteria is essential to gain insight into host 

adaptation mechanisms. However, identification of T3E genes in whole genome sequences 

remains a challenge as T3Es are structurally and functionally highly diverse with more than 

50 families identified so far in Xanthomonas and Pseudomonas (Lindeberg, Cunnac, & 

Collmer, 2012; Ryan et al., 2011). Recently, machine learning approaches have been 

developed. They rely on multiple criteria such as the presence of a secretion signal necessary 

for recognition by T3SS machinery that is found in N-terminal region of T3E (McDermott et 

al., 2011) or specific amino-acid composition (Lower & Schneider, 2009). In Xanthomonas, 

these approaches have enabled the identification of seven novel T3Es in the reference strain 

85-10 (Teper et al., 2016), exhibiting great promise for future discoveries with the 

exponential growth of genomic data. 

Xanthomonas are major plant pathogens, devastating crops worldwide. The major 

pathogenicity determinants of xanthomonads arethe Hrp2 type-T3SS and its effectors (White, 

Potnis, Jones, & Koebnik, 2009). X. albilineans is an exception in the genus as it has no Hrp2 

family gene cluster, but a SPI-1 T3SS (Marguerettaz et al., 2011). Four Xanthomonas species 

lacking any Hrp-T3SSs and associated T3Es, namely X. sacchari (Studholme et al., 2011), 
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“X. cannabis” (Jacobs, Pesce, Lefeuvre, & Koebnik, 2015), “X. pseudalbilineans” (Pieretti et 

al., 2015) and X. maliensis (Triplett et al., 2015) were recently described. Moreover, some X. 

arboricola strains were also found without any T3SS (Cesbron et al., 2015; Merda et al., 

2016). The X. arboricola strains lacking any T3SSs are considered commensal, since no 

pathogenicity on their respective hosts has been observed. The X. arboricola species has an 

epidemic population structure, where epidemic clones are represented by successful 

pathovars (defined as pathovars responsible for epidemics worldwide). They infect stone and 

nut fruit trees and the recombinant network is represented by commensal strains and 

unsuccessful pathovars (defined by a limited geographical and potentially temporal 

expansion) (Merda et al., 2016). Epidemic clone emergence seems to be correlated with the 

acquisition of T3Es whereas in the recombinant network, strains would have lost T3E coding 

genes and the T3SS cluster. 

The recent discovery of several Xanthomonas species and strains that lack the Hrp2 

cluster has raised questions about the evolution of virulence and the origin of the T3SS in this 

genus. Are pathogenicity and Hrp2 clusters ancestral features of Xanthomonas that have been 

vertically inherited and lost in some species or do they represent more recent acquisitions? 

Contrasting with our deep knowledge of ancient evolutionary history of T3SS, little is known 

about recent origin and evolution of T3SS and its role in plant pathogen emergence. Given 

the pivotal role of T3SS and T3Es in xanthomonads pathogenicity and host specificity, and 

given their heterogeneous distribution at genus and species scales, the Hrp2 cluster and its 

effectors in Xanthomonas genus appear to be a good model to study T3SS origin and 

evolution at a fine evolutionary scale. In this study, we conducted our analyses on a 

collection of strains representing all valid species from the two phylogenetic groups of the 

genus (group 1 and 2) as defined by Young, Park, Shearman, & Fargier (2008). We inferred 

their phylogenetic relatedness based on the core genome of the whole genus. Moreover, to get 
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insights into T3SS evolution, we studied not only cluster synteny, hrc gene phylogeny, and 

homologous recombination, but we also considered the genomic environment of the T3SS 

cluster. Finally, to unveil the evolution of T3E repertoires in relation with pathogen 

emergence, we determined the T3E repertoires in a collection of 44 X. arboricola genomes 

representing both commensal and pathogenic strains using a machine learning approach 

designed to detect T3E coding genes in Xanthomonas genome sequences. 

 

Materials and methods 

Genome sequencing and annotation 

We used a collection of 82 genome sequences (see Data Set S1, Supporting 

information) representing the diversity of Xanthomonas genus (36 strains belonging to 

Xanthomonas spp.) and the known diversity of X. arboricola (44 additional strains; 23 strains 

being commensal and 21 pathogens) (Merda et al., 2016). Genomes were sequenced using the 

Illumina technology and HiSeq 2500 (Genoscreen, Lille, France) or MiSeq instruments. 

Libraries of genomic DNA were performed using the Kit Nextera XT (Illumina, USA). 

Paired-end reads of 2 x 100 bp were assembled in contigs using SOAPdenovo 1.05 (R. Li et 

al., 2010) and Velvet 1.2.02 (Zerbino & Birney, 2008). Annotation was performed using 

EuGene-PP (Sallet, Gouzy, & Schiex, 2014). 
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Prediction of T3SS cluster and T3E repertoires  

The T3SS coding genes representing all T3SS families (Ysc, SPI-1, SPI-2, Chlamy, 

Hrp1, Hrp2, Rhizo) and their diversity were identified in genome sequences using BLASTp 

searches with the query sequences presented in the Data Set S2 (Supporting information).  

We included in our search T3SS encoding genes from Rhizobiales, Burkholderiales, 

Ralstonia, Bordetella, Xanthomonas, Pseudomonas, Escherichia coli, Erwinia, Salmonella, 

Shigella, Yersinia and Chlamydia. Candidate T3SS  genes were assigned to a T3SS family 

when the percent of identity was higher than 80% on at least 80% of the length of the query 

sequence. Lower thresholds were used to highlight putative pseudogenes. The T3E gene 

detection was performed in all genomes of X. arboricola by a machine-learning approach 

adapted from Teper et al. (2016) (E. Bosis, unpublished data, manuscript in preparation). 

 

Genomic environments of genes 

The genomic environments flanking and encompassing the T3SS cluster were 

analyzed using the R package GenoplotR (Guy, Roat Kultima, & Andersson, 2010). BLASTn 

between contigs encompassing the T3SS cluster were performed and only BLAST hits with 

e-values below 0.01 were used to highlight conserved regions on the plots. First, this analysis 

was performed only using strains having a T3SS cluster to detect conserved flanking regions 

upstream and downstream of the cluster between phylogenetic neighbors. For strains lacking 

T3SS, a BLASTn search was used to find if regions flanking T3SS in T3SS positive strains 

were also present in T3SS negative strains. 5 Kb T3SS-flanking regions identified in the 

closest phylogenetic neighbors of each T3SS negative strain were used as query sequences to 

identify the contig to use in further analyses. To study the synteny in the genomic 

environments of T3SS insertion site, both contigs from strains with and without T3SS cluster 
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were included in the final analysis. Similar genomic environments of T3SS cluster were 

defined based on synteny and shared conserved regions spreading over at least four CDS in a 

20 Kb window at the left and right side of T3SS cluster and using X. arboricola CFBP 7179 

as a reference (Fig. S1, Supporting information). Similar genomic environments of the T3SS 

cluster were highlighted with the same colour as shown in Fig. S1 (Supporting information). 

The same approach but using a 200 Kb window upstream and downstream the cluster was 

used to define the genomic context of T3SS insertion site. For the genomic environments of 

T3E genes, these T3E genes were located by their locus tag obtained during the search with 

the machine learning approach. The same strategy as described above was used to study the 

genomic environment of avrBs2 insertion site. 

 

Mapping T3E genes on whole genome sequences 

To locate the T3E genes in the genomes of X. arboricola pathogenic strains of group 

A, the contigs of genome sequences were ordered using MAUVE (Darling, Mau, Blattner, & 

Perna, 2004). The sequence of CFBP 2528 was used as reference because among group A 

strains of X. arboricola, the number of contigs was the lowest for this strain (8 contigs). For 

each genome, the contigs were concatenated using Geneious (Kearse et al., 2012) according 

to the order obtained with MAUVE. The circular representations were obtained using 

DNAPlotter (Carver, Thomson, Bleasby, Berriman, & Parkhill, 2009). The localization of 

each T3E genes in pathogenic strains was identified using their locus tag. 
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Determination of core proteomes 

The core proteome of Xanthomonas was identified with orthoMCL-companion 

(Carrere, Cottret, Rancurel, & Briand, 2015). The core proteome of X. arboricola was 

identified with orthoMCL V2.0.9 analyses on predicted full-length proteins (L. Li, Stoeckert, 

& Roos, 2003). OrthoMCL clustering analyses were performed using the following 

parameters: P-value Cut-off = 1 × 10−5; Percent Match Cut-off = 80; MCL Inflation = 1.5; 

Maximum Weight = 316. 

 

Phylogenies of core and T3SS coding genes 

Phylogenies were performed using maximum likelihood in the phyML software 

package. The phylogeny of the Xanthomonas genus was performed using the concatenated 

core proteome obtained with orthoMCL-companion. For X. arboricola phylogeny, the 

concatenated orthologous groups were used. Each orthologous group in X. arboricola was 

aligned using MACSE (Ranwez, Harispe, Delsuc, & Douzery, 2011). Only alignments with 

more than 75% sequence identity were kept for the phylogeny reconstruction. These 

alignments were concatenated using Geneious (Kearse et al., 2012). For organism maximum 

likelihood phylogenies the JTT model was used. For the T3SS coding genes phylogeny, each 

hrc gene (with the exception of hrcL for which some CDS were truncated) was aligned using 

MUSCLE (Edgar, 2004), taking into account sequence translation in proteins to conserve the 

reading frame. The 10 hrc genes were concatenated according to their order in T3SS cluster. 

The phylogenic analysis was performed with the GTR + I + gamma model, corresponding to 

the best model identified by jModelTest (Posada, 2008). 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Phylogeny comparisons and recombination analyses 

The topology of the concatenated hrc tree was compared to the core proteome tree of 

Xanthomonas genus with a Shimodaira-Hasegawa test (Shimodaira & Hasegawa, 1999) 

implemented in  R package phangorn (Schliep, 2011). In the same way, topologies of each 

individual hrc/hrp tree were compared to each other and to the topology of the concatenated 

hrc/hrp tree. The impact of recombination (r) relative to mutation (m) was analyzed with the 

ρ/θ statistics using RDP v.3.44 (Martin et al., 2010) for each hrc/hrp gene located in the core 

region of the cluster (16 genes between hrcC and hrpE). The origins of recombinant 

sequences were identified by examining the concatenated sequences of hrp and hrc genes 

(concatenated according to their order in T3SS cluster) using RDP 3, GENECONV, 

BOOTSCAN, MAXIMUM CHI SQUARE, CHIMAERA, SISCAN, and 3SEQ implemented 

in RDP v. 3.44 (Martin et al., 2010). We considered that a recombination event was 

statistically supported when it was detected by at least two methods (Merda et al., 2016). The 

recombination event representation was visualized using Circos (Krzywinski et al., 2009). 

  

Results 

Organism- and T3SS-evolutionary histories in Xanthomonas 

The presence of T3SS genes was investigated in 82 genome sequences of 

Xanthomonas strains (Data Set S1, Supporting information) through BLASTp searches of 

295 proteins representing the diversity of T3SS families (Data Set S2, Supporting 

information). The Hrp2 cluster was detected in 61 genome sequences, SPI-1 was identified in 

the genome sequence of X. albilineans, and 20 genome sequences were free of any T3SS 

encoding genes whatsoever, with fourteen of which belonging to X. arboricola (12 
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commensal strains and two strains of the pathovar populi). T3SS clusters were also missing 

in X. pisi and X. melonis genomes, and as previously shown in some “X. cannabis” strains, X. 

maliensis and the group 1 species X. sacchari. 

A robust phylogenetic tree of the Xanthomonas genus, based on the core proteome, 

was constructed to provide a reference point to infer evolutionary scenarios of T3SS gains 

and losses (Fig. 1). According to this phylogenetic reconstruction, X. maliensis and X. 

campestris diverged very early from other species in group 2. This isolated phylogenetic 

position of X. campestris clade was unexpected as previous multilocus sequence analyses on 

whole genus diversity placed X. campestris in the core of group 2 (Triplett et al., 2015; 

Young et al., 2008). However, in a genome-based phylogeny of a limited number of species a 

similar phylogenetic relationship has been inferred (Naushad & Gupta, 2013; Rodriguez et 

al., 2012). Three major clades supported by 100% bootstrap values grouped nearly all other 

group 2 species: (i) clade A encompassing X. arboricola, X. gardneri, X. cynarae, X. 

hortorum and X. populi; X. fragariae appeared as an isolated branch at the base of this clade. 

(ii) clade B encompassing species of the X. axonopodis complex (ie X. alfalfae, X. perforans, 

X. euvesicatoria, X. axonopodis, X. fuscans and X. citri), X. oryzae, X. vasicola and X. bromi, 

and (iii) clade C encompassing “X. cannabis”, X. codiaei, X. cassavae, X. melonis, X. 

cucurbitae, X. pisi, X. dyei and X. vesicatoria (Fig. 1). Hrp2-negative strains were 

interspersed in the phylogenetic tree of the genus; a distribution pattern that could be either 

explained by ancestral acquisition and subsequent losses or by numerous recent independent 

Hrp2 acquisitions. 

A comparison of upstream and downstream genomic environments (20 Kb on each 

side) of the T3SS cluster in the different Xanthomonas species allowed us to define similar 

genomic environments based on synteny and similarities of DNA fragments (Fig. S1, 

Supporting information). Strains exhibiting similar flanking regions around the T3SS cluster 
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were considered to have vertically inherited a T3SS cluster following a single acquisition 

event in their common ancestor. This analysis revealed three ancestral acquisitions of this 

cluster. One of these acquisitions would have occurred in the ancestor of the three group-2 

clades (A, B, C). The same genomic environments of Hrp2 clusters were highlighted in 

strains belonging to clade A and X. bromi (clade B) (Figs 1 and S1, Supporting information). 

Given the divergence between these strains, it is tempting to speculate that Hrp2 cluster was 

acquired through a single acquisition event in a common ancestor. However, except in the 

case of clade A and X. bromi, the hrp cluster was retrieved in several different genomic 

environments in clades B and C (Figs 1 and S1, Supporting information). Two scenarios 

could explain this situation: the first scenario involves the loss of the ancestral Hrp2 cluster 

and re-acquisition at a different genomic context, and the second scenario includes 

rearrangements in the 20 Kb flanking regions of the ancestral Hrp2 cluster without affecting 

the genomic context of T3SS insertion site. To decipher which scenario is the most probable, 

genomic contexts of the T3SS insertion site (ie broader genomic environments spreading over 

200 kb upstream and downstream) were compared in clades B and C strains selected for the 

quality of their genome assembly (Figs. 1 and S2, Supporting information). We showed that 

rearrangements occurred in the direct flanking regions of T3SS cluster of these strains but 

that the genomic context of T3SS cluster was similar to those of clade A strains and X. bromi. 

Insertions of large fragments (80 kb for X. euvesicatoria, X. alfalfae and X. fuscans and 50 kb 

for “X. cannabis” strain CFBP 7912) in T3SS flanking regions broke synteny in the 20 kb 

window but this synteny with the direct genomic environment of X. bromi and clade A was 

observed further away from T3SS cluster in the clade B and C genome sequences. Thus, 

genomic rearrangement events and gene insertions affected the 20 Kb genomic environment 

of the T3SS cluster but not its location in the genome; the genomic contexts of T3SS cluster 

remained similar. These rearrangements differed between different clades and were 
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sometimes supported by the presence of insertion sequences (ISs) and tRNAs (Figs S1 and 

S2, Supporting information). Altogether, these results support the hypothesis that there was 

an ancestral acquisition of the T3SS cluster in the common ancestor of clades A, B, and C 

and subsequent rearrangements in flanking regions of the Hrp2 cluster (Fig. 1). 

The second acquisition most likely occurred in X. campestris ancestor. In this clade 

the T3SS cluster was found in a different genomic context as no synteny could be found even 

when flanking regions as broad as 200 kb were compared with those of other Xanthomonas 

species (Figs. 1 and S2, Supporting information). The phylogenetic tree of T3SS encoding 

genes (Fig. 2B) showed that X. campestris T3SS genes were phylogenetically related to those 

of clade A strains. Thus the common ancestor of X. campestris might have acquired the hrp 

cluster by HGT from a clade A strain. However, the T3SS encoding genes underwent 

homologous recombination (see below) that altered the phylogenetic signal of the hrp genes. 

Thus, we can not exclude the possibility that an ancestral X. campestris hrp cluster would 

have been replaced by homologous recombination with a clade A strain. Thus, we favor the 

most parsimonious scenario of an independent acquisition in X. campestris ancestor as 

opposed to an acquisition by the common ancestor of all group 2 strains followed by the loss 

of this T3SS cluster in X. campestris and its re-acquisition in a different genomic context. 

The third acquisition of the T3SS cluster would have occurred in group 1. In this case, 

the T3SS cluster included the genes encoding the master regulators HrpX and HrpG. In 

contrast, in group 2 species, these two genes were located outside the T3SS cluster. 

Moreover, all T3SS encoding genes are highly divergent from those of group 2 strains (Figs 

2B and S3, Supporting information). While the genomic environments of the T3SS clusters 

among group 1 strains shared similarities, the T3SS genomic context had no similarity to 

those of group 2 strains (Figs 1, S1 and S2, Supporting information). Altogether, this suggests 
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an independent acquisition event of the T3SS in the common ancestor of X. translucens, X. 

hyacinthi and X. theicola. 

Ancestral acquisitions of T3SS clusters imply that the absence of Hrp2 clusters in the 

19 strains of Xanthomonas group 2 was the result of multiple loss events. The X. arboricola 

strains lacking T3SSs were dispersed in five monophyletic lineages indicating at least five 

loss events during diversification of this species (Fig. 1). One loss event could have occurred 

in the common ancestor of the two strains belonging to “X. cannabis” and two independent 

loss events could have occurred in X. melonis and X. pisi. As X. maliensis was the most 

divergent species of group 2, it was impossible to hypothesize any event responsible for 

absence of the T3SS cluster, and this species might have never had any T3SS cluster. In the 

19 strains without T3SSs, the entire T3SS cluster was missing. No traces of 

pseudogenization, which could be identified by a weak homology with T3SS coding genes 

with a BLASTn approach, were detected. BLASTn searches with the flanking regions of the 

Hrp2 cluster in strains lacking it and synteny analysis allowed us to identify the probable 

excision sites of the DNA fragment containing the Hrp2 encoding genes (Fig. S1, Supporting 

information). Excision would have occurred between trpG and ltaE. Nevertheless, we did not 

find any mobile genetic elements between these loci. 

A loss followed by a re-acquisition of the whole T3SS cluster should have taken place 

in the evolutionary history of X. fragariae and X. cassavae. Despite their phylogenetic 

positions in Xanthomonas group 2, the genomic context of T3SS insertion site was different. 

Indeed, a lack of synteny in T3SS flanking regions was observed among X. fragariae, X. 

cassavae and other group 2 Xanthomonas species, even when flanking regions as large as 200 

kb were considered (Figs S1 and S2, Supporting information). Because these species were 

localized in two different phylogenetic positions within group 2, this suggests independent re-

acquisition events (Fig. 1). However, for X. fragariae, another hypothesis could be put forth. 
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The position of this species is similar in the organism- and T3SS phylogenies indicating a 

probable ancestral T3SS acquisition. In this hypothesis the different genomic context of T3SS 

could be the result of a transposition of the cluster within X. fragariae genome. Four ISs were 

found upstream and downstream of the T3SS cluster in X. fragariae genome that 

corroborated either transposition or re-acquisition via HGT as a mechanism. As for strains 

devoid of the T3SS cluster, we looked at the insertion site of the ancestral T3SS acquisition 

in clades A, B and C and no remnants of the ancestral T3SS cluster were detected at this 

location. X. codiaei shared the same left border of T3SS cluster as X. cassavae, its sister 

species, suggesting that the loss and re-acquisition of T3SS cluster might have occurred in 

their common ancestor, but unfortunately contig interruption in X. codiaei precluded the 

analysis of a large genomic environment to confirm this hypothesis. 

  

Homologous recombination in the T3SS coding genes 

To determine if the T3SS cluster follows the same evolutionary history as the species, 

a phylogeny based on concatenated hrc coding genes was compared to the organism 

phylogeny based on the core proteome of Hrp2-positive strains (Fig. 2A and B). Numerous 

incongruences were observed and confirmed by the SH test (p-value = 0.00092). For 

instance, while most X. arboricola strains exhibited a monophyly for the T3SS coding genes, 

T3SS coding genes from the X. arboricola pv. guizotiae diverged from those of other X. 

arboricola strains (Fig. 2B) and they were closely related to those of “X. cannabis” strains 

CFBP 7912 and Nyagatare. Similar incongruences were observed for X. campestris, X. 

cassavae, X. codiaei, X. dyei and X. vesicatoria whose T3SS coding genes were 

phylogenetically related to those of clade A despite the high divergence among these species 
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in the organism phylogeny. These incongruences between hrc phylogeny and organism 

phylogeny can be explained by homologous recombination occurring during T3SS evolution. 

To determine if recombination events affected the whole cluster or only some genes, 

individual phylogenies were built for each hrc/hrp gene coding for the T3SS (Fig. S3, 

Supporting information). In all phylogenies, X. arboricola pv. guizotiae strains (CFBP 7408 

and CFBP 7409) did not group with other X. arboricola strains, but with “X. cannabis” 

strains CFBP 7912 and Nyagatare, suggesting that their whole T3SS cluster was acquired 

through a single homologous recombination event with these phylogenetically distant strains. 

Individual hrc/hrp phylogenies were compared in pairs using a SH test (Table S1, Supporting 

information). For half of the comparisons, the p-values were below 0.05, indicating that most 

topologies of these trees were significantly different, and that recombination occurred 

between hrc genes. For instance T3SS coding genes from X. campestris clustered with genes 

from clades A and C (Fig. 2B and Fig. S3, Supporting information) that did not reflect the 

intermediate position of X. campestris between group 1 and group 2 in the organism 

phylogeny (Fig. 2A). In contrast to clade B strains, which clustered together in most hrc 

phylogenies, strains from clades A and C were interspersed. This suggested numerous HGTs 

between these two latter clades. 

To characterize the gene flow affecting the T3SS cluster in Xanthomonas spp. strains, 

potential recombinant sequences and their likely parental sequences were detected based on 

phylogenetic incongruences (Martin et al., 2010). Identification of the likely origin of the 

recombinant fragment can be achieved if at least one sequence resembling the donor 

sequence is present in the data set. The identified exchanges concerned the entire sequence of 

one or two adjacent genes in the concatenated hrc genes. The two genes for which the 

number of exchanges were the highest were hrpE and hrpB2 (32 and 26 events, respectively) 

and the two genes for which the smallest number of exchange events were observed were 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

hrcC and hrcT (3 and 0 events, respectively). X. arboricola strains were the main recipients 

of recombination events (Fig. 3A). They mostly received genes from X. dyei and X. hortorum 

pv. hederae. Notably, most exchanges were detected within the recombinant network of X. 

arboricola and epidemic clones gave hrp/hrc alleles to strains belonging to this network, but 

no reverse events were detected. In contrast, only two X. arboricola strains were donors for 

other species (CFBP 1022 was donor for X. cassavae and CFBP 8149 for X. hortorum, X. 

gardneri and X. cynarae). T3SS gene exchanges were also detected between strains of the X. 

axonopodis species complex but remarkably no gene flow occurred between this clade and 

other clades. 

For each individual T3SS coding gene, we estimated the evolutionary force 

responsible for observed polymorphism using the ρ/θ ratio. For most genes (14 out of 16) 

mutation had more impact than recombination on generating new alleles (ρ/θ < 1) (Fig. 3B). 

Only two genes had a ρ/θ ratio above one, hrcJ (ρ/θ > 2) and hrcV (1 > ρ/θ > 2). In 

conclusion, within hrc/hrp genes, mutation was the major evolutionary force that have 

brought polymorphism and generated allelic variants at gene scale. This polymorphism was 

disseminated across the genus through homologous recombination of entire genes or 

contiguous genes. 

 

T3E repertoires in X. arboricola 

To decipher the diversity of T3E repertoires in X. arboricola, T3E coding genes were 

predicted for all genome sequences belonging to this species by a machine-learning approach 

dedicated to Xanthomonas organisms. Briefly, T3E encoding genes were searched for based 

on criteria referring to type three N-terminal secretion signal, structural disorder, regulation 

by HrpX/HrpG, GC content, codon usage, amino acid properties, and homology to known 
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and validated T3Es. Based on this prediction, a set of seven ancestral core T3E genes was 

observed. The predicted T3E repertoires were highly variable with some strains having no 

T3Es and others having up to 34 predicted T3Es (Fig. 4). Eight of the 14 strains lacking the 

T3SS cluster, were also deprived of T3E coding genes. In contrast, between one and two T3E 

genes (avrBs2 and xopR) were identified in the remaining six strains (Data Set S3, 

Supporting information). While synteny in the xopR genomic environments has previously 

been shown (Merda et al., 2016), here we observed that genomic environments of avrBs2 

were also highly syntenic between all strains, with the exception of strains CFBP 7408 and 

CFBP 7409 (Fig. S4), favoring an ancestral acquisition and subsequent losses of these T3Es 

during X. arboricola evolution. The two strains of pathovar guizotiae, CFBP 7408 and CFBP 

7409, probably lost and reacquired avrBs2. It has to be noted that avrBs2 was systematically 

accompanied by three CDSs, namely xylR, a TonB-dependent receptor and a hypothetical 

protein that presented the same distribution in our collection whatever the genomic context 

(see Fig. S4). In addition to xopR and avrBs2, five other T3E genes (already described in 

Xanthomonas strains) were found in all X. arboricola strains having a T3SS. These five T3E 

genes were located within the T3SS cluster (Fig. 3B) and their distribution strictly followed 

the distribution of the T3SS cluster. However, among them were XopA, HpaA and HrpW, 

which while listed as T3Es in some studies (Hajri et al., 2009; Merda et al., 2016), are 

secreted regulator (HpaA) or harpin-like proteins and their effector function remains unclear 

(Lorenz et al., 2008; White et al., 2009). Synteny in the flanking regions of avrBs2, xopR, and 

of the five T3E genes associated with the T3SS cluster suggested that they were most 

probably acquired by an ancient X. arboricola strain, thus these seven T3E genes will be 

designated as the ancestral repertoire thereafter. 
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Pathogenic strains had a higher number of predicted T3E genes than commensal 

strains (Fig. 4). However, pathogenic strains CFBP 3122 and CFBP 3123 of pathovar populi 

lacked T3SS and T3E genes and hence represented an exception. Therefore the pathogenicity 

of these bacteria, previously qualified as opportunistic pathogens (Haworth & Spiers, 1992), 

may rely on different virulence factors. The T3E repertoire of pathogenic strains 

encompassed the ancestral repertoire and a large number of additional predicted T3E genes. 

Indeed, the pan-T3 effectome of X. arboricola was composed of 57 predicted T3Es and 

among them only 11 were found in both pathogenic and commensal strains, with the 46 

others present exclusively in pathogenic strains. Most putative T3E genes identified in X. 

arboricola were already described in other Xanthomonas spp. This is the case for the seven 

T3E genes of the ancestral repertoire and 31 other T3E genes (Data Set S3, Supporting 

information). Among the 19 remaining T3E genes composing the pan-effectome, seven were 

known in other bacteria (Ralstonia and Pseudomonas) and 12 were putative novel T3E genes. 

Among these putative novel T3Es, six (T3E_14 to T3E_19) had a weak similarity (less than 

30 % of sequence similarity) to T3E genes known in Xanthomonas (xopAH, xopJ1, xopAO, 

xopAV, xopG, and xopM, respectively) and thus are not considered as orthologous of these 

genes, but they could share a common ancestor. 

The three successful pathovars (pvs. pruni, corylina and juglandis) shared ten T3E 

genes that were sequentially acquired in their common ancestor. These ten T3E genes were 

xopX, xopV, xopL, xopK, xopN, xopAV, xopQ, avrXccA2, xopZ and T3E_16 which shared 

27.2% sequence similarity with xopJ1. To determine if their ancestral acquisition resulted 

from one or several events, we analyzed their genomic context. Contig alignment using 

CFBP 2528 as reference revealed that these T3E genes were dispersed along the 

chromosome, except xopAV and xopQ which were colocalized (Figs S5 and S6, Supporting 

information). The dispersal of these T3E genes along the genome sequences suggested that 
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they were acquired following several acquisition events. Given the synteny observed in the 

flanking regions of each of these T3E genes in the genomes of the successful pathovars (Fig. 

S5, Supporting information), it is likely that these independent acquisition events probably 

occurred in their ancestor before separation into three distinct pathovars. 

  

Discussion 

The acquisition and evolution of the T3SS have played major roles in ecological adaptation 

of pathogens, and HGT has been a driving force in T3SS evolutionary history at multiple 

evolutionary time scales. We investigated T3SS evolution in the Xanthomonas genus, a major 

clade of plant pathogens. Comparative genomic analyses of a collection of 82 strains allowed 

us to infer three ancestral acquisitions of the Hrp2 gene cluster during Xanthomonas 

evolution, two in group 2 strains and one in group 1 strains. Indeed, we highlighted an 

ancestral acquisition in the common ancestor of all group 2 species excluding X. campestris. 

This species, which diverged early in group 2, has a T3SS cluster at a different chromosomal 

location, supporting an independent acquisition event. The third ancestral T3SS acquisition 

occurred in group 1. A different genetic organization of the T3SS cluster, a high divergence 

among T3SS coding genes from the group 2 species, and the different genomic contexts of 

the T3SS clusters all indicate that group 1 strains probably acquired a different Hrp2 cluster 

independently as previously proposed by Jacobs et al. (2015). Before this study, X. 

translucens was the only group 1 species known to harbor a Hrp2 cluster (F. Wichmann et 

al., 2013). Our results indicate that this atypical Hrp2 cluster is shared with X. theicola and X. 

hyacinthi and that it was probably acquired by their common ancestor. T3SS cluster 

acquisitions occurred before speciation of most xanthomonads; capacity to interact with 

plants through translocation of T3Es would thus be an ancient trait of xanthomonads as it is 
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the case for other important plant bacterial pathogens (Diallo et al., 2012; Kirzinger et al., 

2015). 

After ancestral acquisition the T3SS was lost in some strains and species scattered 

throughout in the Xanthomonas phylogenetic tree (Fig.1). The scattering of strains without 

T3SS in the tree, the conservation of similar genomic environments in the T3SS positive 

strains, and a similar genome sequence in strains without T3SS are three lines of evidence in 

favor of the T3SS loss hypothesis. Absence of pseudogenes or remnants of T3SS encoding 

genes might be surprising, but a similar observation was made in nonpathogenic P. syringae 

strains, from which the entire cluster has been excised (Mohr et al., 2008). The loss 

hypothesis in commensal strains of X. arboricola species was previously proposed (Merda et 

al., 2016) based on Bayesian inference of gene gains and losses. Such complex scenarios with 

ancestral acquisition, losses and regains, have also been proposed in Pantoea genus 

(Kirzinger et al., 2015) and P. syringae (Clarke, Cai, Studholme, Guttman, & Vinatzer, 

2010). 

Losses of T3SS could be explained by a loss of function (Abby & Rocha, 2012). 

Indeed it could be beneficial to lose this energetically costly machinery if it does not enhance 

bacterial fitness (Gophna, Ron, & Graur, 2003). Thus, for commensal strains colonizing 

various plant hosts and with a limited set of T3Es (like X. arboricola group B strains) (Merda 

et al., 2016), the fitness cost provided by T3SS might be high and consequently it could be 

lost. T3SS-negative strains may also act as profiteers and benefit from the presence of T3SS-

positive strains colonizing the same niche as demonstrated in murine infections by 

Pseudomonas aeruginosa (Czechowska, McKeithen-Mead, Al Moussawi, & Kazmierczak, 

2014). 
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Once acquired, we showed that T3SS coding genes were prone to homologous 

recombination events leading to replacement of large fragments encompassing one complete 

gene, adjacent genes or even the entire cluster. The two genes for which the number of 

recombination events was the highest were hrpE and hrpB2 which encode the Hrp pilin and 

the putative inner rod, respectively (Hartmann et al., 2012). These two proteins correspond to 

the early substrates of the secretion machinery. Weber and Koebnik (2006) observed positive 

diversifying selection in the hrpE sequence corresponding to the surface exposed part of the 

protein and interpreted it as an adaptative mechanism of the pathogen to escape recognition 

by the host. Homologous replacement of the hrpE gene by recombination could be an 

alternative mechanism to generate diversity and to escape host recognition. This latter 

mechanism has been extensively described in the mammalian pathogen Neisseria 

gonorrhoeae where it drives antigenic variation of the type IV pilus and avoidance of the host 

immune system (Obergfell & Seifert, 2015). The two genes that showed the fewest 

exchanges, hrcC and hrcT, encode highly conserved proteins located in the basal structure of 

the secretion system and embedded in the bacterial envelope. Within each gene, allelic 

polymorphism is mostly generated by mutation, except for hrcJ and hrcV (Fig. 3B). The 

study of genomic environment of the T3SS allowed us to distinguish two mechanisms of 

HGT: acquisition of a new cluster in a different chromosomal context as previously 

discussed, and homologous recombination within T3SS cluster. One homologous 

recombination event leading to entire T3SS cluster replacement was shown between X. 

arboricola pv. guizotiae and the phylogenetically distant strains CFBP 7912 and Nyagatare. 

Interestingly, all these strains originated from South-East Africa and were isolated from two 

crops (Niger seed and bean) used in mixed crop-livestock farming systems and as intercrops 

in maize production (Abera, Feyisa, & Friesen, 2009), making their co-occurrence plausible. 

Beside this single whole Hrp2 cluster replacement, numerous localized homologous 
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recombination events between strains of different species have perturbed the vertical 

inheritance signal. Similarly conflicts between phylogenies of some hrp/hrc genes and of 

housekeeping genes were observed in pseudomonads and enterobacterial plant pathogens 

(Sarris et al., 2013; Tegli, Gori, Cerboneschi, Cipriani, & Sisto, 2011) and a HGT event 

expanding through several hrp genes was previously suggested in pseudomonads (Sarris et 

al., 2013). 

Understanding gene flow within and between populations sheds light on bacterial 

ecology. The study of “donor” and “recipient” strains of recombinant fragments showed that 

X. arboricola strains were the main “recipient”, particularly in commensal strains, and X. dyei 

and X. hortorum were the two main donors (Fig. 3A). This suggests that commensal strains 

are found in sympatry with a large number of different Xanthomonas species because genetic 

material exchanges can only take place when individuals colonize the same niche. X. dyei and 

X. arboricola strains were isolated from the endemic species Dysoxylum spectabile in New-

Zealand (Young, Wilkie, Park, & Watson, 2010). These observations reinforce the hypothesis 

proposed by Merda et al. (2016) that the commensal strains in X. arboricola are generalist 

organisms colonizing many different plants. In contrast, no gene flow at T3SS locus occurred 

between clade B strains and other clades. Divergent evolution of the T3SS cluster in this 

clade may have led to an optimized allelic combination. This result reinforces the major role 

of T3SS in this important clade of devastating host specialized pathogens within which the 

presence of theT3SS is conserved. 

The function of T3SS is to deliver T3Es into host cells. In most strains devoid of 

T3SSs, no T3E genes could be detected in their genomes using machine learning approach 

and BLASTp (data not shown). Indeed, some T3E genes are housed in the T3SS cluster (Fig. 

3B) and thus were lost with it. xopR and avrBs2, which are not located in T3SS cluster were 

found in the genomes of some commensal Xanthomonas strains lacking T3SS. Their 
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conserved genomic environments, when compared to strains with T3SSs, suggest that they 

are remnants of an ancestral T3E repertoire (Fig. S4, Supporting information) (Merda et al., 

2016). A recent loss of the T3SS could explain why the T3Es were present despite the lack of 

theT3SS. Alternatively, xopR and avrBs2 secretion might be mediated by the flagellum 

apparatus as demonstrated for some non-flagellar proteins (Journet, Hughes, & Cornelis, 

2005). They might also have an additional function independent of the T3SS. 

We have highlighted an extremely reduced ancestral core repertoire and stepwise 

acquisition of numerous additional T3Es in pathogenic strains of X. arboricola. Five of the 

seven core T3E genes were located in the T3SS cluster as previously observed in other 

Xanthomonas species (da Silva et al., 2002; Noel, Thieme, Nennstiel, & Bonas, 2002; Potnis 

et al., 2011; Teper et al., 2016). Among them, XopA, HpaA and HrpW should be better 

considered as accessory or translocation proteins that help the translocation process (Lorenz 

et al., 2008; Roux et al., 2015; White et al., 2009). Taking this into account, the X. arboricola 

core effectome comprises only four T3E genes (xopF1, xopM, avrBs2 and xopR) and is 

comparable in size to that of X. campestris (Roux et al., 2015). Together, these results 

challenge the list of ten core T3E genes (avrBs2, xopF1, xopK, xopL, xopN, xopP, xopQ, 

xopR, xopX, xopZ) previously proposed (Ryan et al., 2011; White et al., 2009). xopM, missing 

in this list, was recently shown to be a T3E gene of X. euvesicatoria strain 85-10 (Schulze et 

al., 2012; Teper et al., 2016). Our BLASTp searches showed that it is present in most group 2 

Xanthomonas species (data not shown). Considering that xopR and avrBs2 were missing in 

only one and two strains, respectively, out of 13 X. campestris (Roux et al., 2015), we 

propose a list of four putative core Xanthomonas T3Es: AvrBs2, XopF1, XopM, and XopR. 

Interestingly, AvrBs2 contributes to bacterial fitness in field conditions, including epiphytic 

survival (G. Wichmann & Bergelson, 2004). It is required for full aggressiveness both in 

dicots and monocots and was shown to inhibit pathogen-associated molecular pattern-
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triggered immune (PTI) responses in rice (S. Li et al., 2015; Zhao, Dahlbeck, Krasileva, 

Fong, & Staskawicz, 2011). Similarly, XopM inhibits immunity-associated cell death 

mediated by MAP kinase cascades (Teper, Sunitha, Martin, & Sessa, 2015) and XopR 

inhibits plant basal defenses (Akimoto-Tomiyama et al., 2012). 

Besides the reduced ancestral core T3E repertoire, stepwise accumulation of 

additional T3Es has occurred in pathogenic strains and particularly in successful pathovars of 

X. arboricola. This accumulation appears to be a long-term evolutionary process as many 

T3Es were acquired before the radiation of the three successful pathovars. At the basal steps 

of pathogen emergence accumulation of numerous T3Es including XopL, XopN, XopQ, 

XopX, and XopZ occurred. These were shown to target PTI in addition to the ancestral T3Es, 

which are also involved in PTI suppression. This reinforces the idea that PTI suppression is 

crucial for pathogenic strains to achieve successful infection (Macho & Zipfel, 2015). 

In conclusion, we showed three ancestral acquisitions of the Hrp2 cluster 

demonstrating that an intimate interaction with plants is an ancestral trait of xanthomonads. 

During radiation most species retained this ancestral T3SS but some lost it and subsequently 

it was re-acquired in some strains. Mutation is the main evolutionary force generating new 

hrc/hrp alleles. In group 2 Xanthomonas, the inter- and intra-species homologous 

recombination of large fragments expanding through one or more genes shuffles this 

polymorphism generating new allelic combinations in Hrp2 clusters. A set of four ancestral 

core T3E genes is found in commensal strains and pathogens in X. arboricola that may 

approximate the Xanthomonas ancestral core effectome. We propose that these may allow the 

strains to overcome basal plant immunity under specific environmental conditions, but could 

have a fitness cost explaining why they were lost in some strains. In contrast, some strains 

experienced a different evolutionary pathway with stepwise accumulation of T3Es that 

probably accounts for their efficacy to overcome plant immunity and could explain the high 
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aggressiveness. X. arboricola represents the archetype of this evolutionary scenario, which 

seems to share similarities with the one proposed for P. syringae (Lindeberg et al., 2012) and 

culminates in a narrow host-range. 
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Figure Legends 

Fig. 1 Maximum likelihood phylogeny based on the concatenated sequences of the core 
proteome (993 proteins) of 80 strains representing the entire Xanthomonas genus and 
schematic representation of T3SS genomic environments. The T3SS cluster is represented by 
the letters HRP, its genomic environments (20 kb on each side) by coloured rectangles and its 
genomic contexts (200 Kb on each side) by hatched rectangles in the right column. Different 
colours correspond to different genomic environments or contexts (Fig. S1 and S2, 
Supporting information). The colour of the letters HRP represents the different cluster 
organisations; HRP written in red represents the cluster organisation found in group 2 
xanthomonads and HRP written in green represents the one found in group 1. Dotted line 
represents absence of information due to contig interruption. In Hrp-negative strains, HRP 
letters are replaced by the number of CDS found in place of T3SS cluster at the putative 
T3SS cluster insertion site. Genomic environments of the insertion site are represented as 
described above.  . Probable T3SS acquisition events are represented by red arrow, loss 
events by blue arrow, and genomic rearrangements by green circled arrow. A dotted arrow 
represents hypothesis of T3SS loss and re-acquisition. Bootstrap scores (100 bootstraps) 
higher than 85% are displayed at each node. 

  

Fig. 2 Comparison of organism and T3SS phylogenies and schematic representation of T3SS 
genomic environments. These two phylogenies were constructed in maximum likelihood. (A) 
The organism phylogeny is based on the concatenated sequences of the core proteome (1135 
proteins) of 61 Xanthomonas spp. strains harboring a T3SS cluster. (B) The T3SS phylogeny 
is based on the concatenated sequences of 10 hrc genes. For strains belonging to X. 
arboricola a colour code was used to represent the three genetic groups previously defined 
(Merda et al., 2016). Group A strains are indicated in red, group B strains in green, and group 
C strains in blue. Strains of all other species of Xanthomonas are indicated in black. 
Bootstrap scores (100 bootstraps) higher than 85% are displayed at each node. T3SS clusters 
and their genomic environments (20 kb on each side of T3SS cluster) are represented as 
explained in the legend of Fig. 1. 

  

Fig. 3 Gene flow affecting the T3SS cluster. (A) Representation of recombination events 
affecting 16 hrc/hrp genes of the T3SS cluster in Xanthomonas genus. The donor and 
recipient strains were identified with RDP software, and the representation was obtained 
using Circos. Each strain is represented by a rectangle of a different colour. The 
recombination events are represented by a link between donor and recipient strains. The 
colour of the link corresponds to the colour of the donor and indicates the direction of 
recombination event. The width of the links represents the number of genes involved in the 
recombination events. For strains belonging to X. arboricola a colour code was used to 
represent the three groups previously defined (Merda et al., 2016). Group A strains are 
indicated in red, group B strains in green, and group C strains in blue. (B) Representation of 
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ratios of recombination rate vs mutation rate (ρ/θ) along the T3SS cluster using 61 genomes 
representing the genus diversity. Ratios were calculated for the 16 hrc/hrp genes of the core 
region of T3SS cluster using RDP software. Arrows are shaded according to the shading 
scale which indicates the range of the ρ/θ value. The black arrows represent hpa and T3E 
genes for which ρ/θ was not calculated. Genetic organization of the cluster is based on the 
sequence of CFBP 2528. In red are represented the five core T3E genes located in the T3SS 
cluster of X. arboricola strains. 

  

Fig. 4 Representation of T3E repertoires in X. arboricola strains. The phylogeny was 
performed in maximum likelihood using the concatenated sequences of 1,705 CDS 
composing the core genome of these 44 strains. Bootstrap values (100 bootstraps) higher than 
85% are indicated at each node. Pathogenic strains are represented in red and commensal 
ones in blue. At the tip of each branch the orange triangles represent the presence of T3SS 
cluster and bars represent the composition of the T3E repertoire according to the legend.   

  

Supporting information 

Additional supporting information may be found in the online version of this article. 

Fig. S1 Comparisons of genomic environments of T3SS clusters in different Xanthomonas 
species. Genomic environments (20 kb on each side) were compared using the R package 
GenoplotR. The genes of the T3SS cluster are represented by red arrows. Pink arrows 
represent genes encoding transposases, orange arrows represent integrons, grey arrows 
represent phages. Other genes are represented by blue arrows. DNA fragments showing 
BLASTn similarities are connected with grey shading. (A) Comparison of strains 
representing all the phylogenetic clusters identified in the Xanthomonas genus. Strains are 
ordered according to their phylogenetic relationships. (B) to (F) : examples of comparisons 
showing similarities and differences between genomic environments of T3SS cluster. Similar 
genomic environments of the T3SS cluster were highlighted by bars of the same colour 
placed above the schematic representation of the sequences. (B) Comparison between the 
strain CFBP 7179 of X. arboricola used as reference (representing the genomic environment 
retrieved in X. arboricola strains), X. bromi (CFBP 1976) and X. oryzae (BAI3). This 
comparison reveals that the genomic environment of X. bromi T3SS cluster shares 
similarities with the one of X. arboricola but not with the one of X. oryzae (this latter is 
shared by other clade B species). (C). Comparisons showing the diversity of genomic 
environments of T3SS cluster in X. codiaei, “X. cannabis”, X. cassavae, and X. dyei and 
absence of similarities (except for X. dyei) with the genomic environment of clade B 
represented in green. (D). Comparisons showing the mosaic structure of the genomic 
environment of T3SS cluster in X. arboricola pv. guizotiae and in X. dyei. (E). Comparison 
showing that the genomic environment of T3SS cluster in the group 1 species X. translucens 
shares no similarity with the one retrieved in group 2 species from clades A and B. (F). 
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Comparison showing similarities between the genomic environments of T3SS cluster in the 
three group 1 species X. translucens, X. hyacinthi and X. theicola. 

  

Fig. S2 Comparisons of large genomic environments of the T3SS clusters in different 
Xanthomonas species using a window of 200 kb upstream and downstream of the cluster. 
Genomic environments were compared using the R package GenoplotR. The genes of the 
T3SS cluster are represented in red; other genes are represented in blue. DNA fragments 
showing similarities are connected with grey shading. 

  

Fig. S3 Individual maximum likelihood phylogenies built for each hrc/hrp gene coding for 
the T3SS. Bootstrap scores (1000 bootstraps) higher than 85% are displayed at each node. 

  

Fig. S4 Genomic environments of avrBs2 in Xanthomonas arboricola strains. On the left, the 
dendrogram corresponds to the phylogenetic relationship between strains inferred from the 
core genome. On the right, genomic environments of avrBs2 insertion site, within a window 
of 20 kb upstream and downstream of avrBs2. Red arrows represent avrBs2. Pink arrows 
represent genes encoding transposases. Blue arrows represent other genes within genomic 
environments. DNA fragments sharing similarities are connected with gray shading. 

  

Fig. S5 Genomic environments of 10 predicted type three effector (T3E) genes specific to 
Xanthomonas arboricola group A strains. On the left, the dendrogram corresponds to the 
phylogenetic relationship between strains. On the right, genomic environments of predicted 
T3E genes, within a window of 20 kb upstream and downstream of the gene, are represented. 
Red arrows represent predicted T3E genes. Pink arrows represent genes encoding 
transposases. Green arrows represent phages. Blue arrows represent other genes within 
genomic environments. DNA fragments sharing similarities are connected with gray shading. 

  

Fig. S6 Graphical circular representation of the draft genomes of Xanthomonas arboricola 
strains belonging to the three successful pathovars : pv. juglandis (CFBP 2528, CFBP 7179, 
CFBP 8253), pv. pruni (CFBP 3894) and pv. corylina (CFBP 2565, CFBP 1159). The contigs 
were ordered by Mauve using the CFBP 2528 genome sequence as reference. Blue arrows 
represent the core T3E genes, red arrows represent the 10 TE3 genes acquired by the 
common ancestor of these strains, and pink arrows represent the T3E genes independently 
acquired by the strains. Black arrows represent the T3SS coding genes. 

  

Data set S1 Whole genome sequences used in this study 
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Data set S2 T3SS coding genes used as query in BLAST searches 

  

Data set S3 Repertoires of predicted T3E genes in Xanthomonas arboricola 

  

Table S1 Results of Shimodaira-Hasegawa tests comparing phylogenies of T3SS coding 
genes in Xanthomonas  
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