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Efficient Estimation of Equilibria of
Large Congestion Games with Heterogeneous Players

Cheng Wan, Paulin Jacquot, Olivier Beaude, Nadia Oudjane

Abstract—Computing an equilibrium in congestion games can
be challenging when the number of players is large. Yet, it is a
problem to be addressed in practice, for instance to forecast the
state of the system and be able to control it. In this work, we
analyze the case of generalized atomic congestion games, with
coupling constraints, and with players that are heterogeneous
through their action sets and their utility functions. We obtain an
approximation of the variational Nash equilibria—a notion gener-
alizing Nash equilibria in the presence of coupling constraints—of
a large atomic congestion game by an equilibrium of an auxiliary
population game, where each population corresponds to a group
of atomic players of the initial game. Because the variational
inequalities characterizing the equilibrium of the auxiliary game
have smaller dimension than the original problem, this approach
enables the fast computation of an estimation of equilibria in a
large congestion game with thousands of heterogeneous players.

Index Terms—Atomic Congestion Game - Variational Nash
Equilibrium - Variational Inequalities - Population Game

I. INTRODUCTION

a) Motivation: Congestion games form a class of non-
cooperative games [1]. In a congestion game, each player
chooses a certain quantity of each of the available resources,
and pays a cost for each resource obtained by the per-unit cost
of that resource multiplied by the quantity she has chosen.
A congestion game is said to be atomic if there is a finite
number of players, and nonatomic if there is a continuum of
infinitesimal players. The particularity of congestion games is
that the per-unit cost of each resource depends only on its total
demand.

Congestion games find practical applications in various
fields such as traffic management [2], communications [3, 4]
and more recently in electrical systems [5, 6].

The concept of Nash equilibrium (NE) [7] has emerged as
the most credible outcome in the theory of noncooperative
games. However, it is shown that computing a NE, when it
exists, is a hard problem [8, 9]. NEs are often characterized
by some variational inequalities. Therefore, the efficiency of
the computation of NEs depends on the dimension of the
variational inequalities in question, hence on the number of
players and the number of constraints. The problem can
be intractable at a large scale, when considering several
thousands of heterogeneous agents, which is often the case
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when describing real situations. The case of generalized Nash
equilibria [10], when one considers coupling constraints—
for instance capacity constraints—makes the problem even
harder to solve. Meanwhile, coupling constraints commonly
exist in real world. For example, in transportation, roads and
communication channels have a limited capacity that should
be considered. In the energy domain, production plants are
also limited in the magnitude of variations of power, inducing
some “ramp constraints” [11].

However, estimating the outcome situation—supposed to
correspond to an equilibrium—is often a priority for the
operator of the system. For instance, the operator controls
some variables such as physical or managerial parameters,
of a communication or transport network and wishes to
optimize the performance of the system. The computation of
equilibria or their approximation is also a key aspect in bi-
level programming [12], where the lower level corresponds to
a usually large scale game, and the upper level corresponds to a
decision problem of an operator choosing optimal parameters.
These parameters, such as prices or taxes, are to be applied
in the low level game, with the aim of maximizing the rev-
enue in various industrial sectors and public economics, such
as highway management, urban traffic control, air industry,
freight transport and radio network [13–17].

In this paper, we consider atomic congestion games with
a finite but large number of players. We propose a method
to compute an approximation of NEs, or variational Nash
equilibria (VNEs) [18] in the presence of coupling constraints.
The main idea is to reduce the dimension of the variational
inequalities characterizing NEs or VNEs. The players are
divided into groups with similar characteristics. Then, each
group is replaced by a homogeneous population of nonatomic
players. To provide an estimation of the equilibria of the
original game, we compute a Wardrop equilibrium (WE) [19]
in the approximating nonatomic population game, or a vari-
ational Wardrop equilibrium (VWE) in the case of coupling
constraints. The quality of the estimation depends on how well
the characteristics, such as action set and cost function, of
each homogeneous population approximate those of the atomic
players it replaces.

In addition to the reduction in dimension, another advantage
of WE is that it is usually unique in congestion games, in
contrast to NEs. In bi-level programming, the uniqueness of a
low level equilibrium allows for clear-cut comparative statics
and sensitivity analysis at the high level.

b) Related works: The relation between NEs in large
games and WEs has been studied in Gentile et al. [20]. In their
paper, the authors also consider atomic congestion games with
coupling constraints and show, using variational inequalities
approach, that the distance between a NE and a WE converges
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to zero when the number of players tends to infinity. Their WE
corresponds to an equilibrium of the game where each atomic
player is replaced by a population. The objective of our paper
is different. We look for an approximation of NEs by reducing
the dimension of the original game. To this end, we regroup
many players into few homogeneous populations. Our results
apply to the subdifferentiable case in contrast to the differential
case considered in [20].

In [21], Jacquot and Wan show that, in congestion games
with a continuum of heterogeneous players, the WE can be
approximated by a NE of an approximating game with a
finite number of players. In [22], those results are extended to
aggregative games, a more general class of games including
congestion games, furthermore with nonsmooth cost functions.

Different algorithms have been proposed to solve monotone
variational inequalities corresponding to NE or WE, such as
[23–27], and more recently [28–31] and the references therein.

The approach developed in the present paper is actually the
inverse of the one taken in [21] and [22]: here, the WE in the
auxiliary game serves as an approximation of an NE of the
original large game.

c) Main contributions: The contributions of this paper
are the following.
• We define an approximating population game (Sec. III-B).

The idea is that the auxiliary game has smaller dimension but
is close enough to the original large game—quantified through
the Hausdorff distance between action sets and between sub-
gradients of players’ objective functions.
• We show theoretically that a particular variational

Wardrop equilibrium (VWE) of the approximating population
game is close to any variational Nash equilibria (VNE) of the
original game with or without coupling constraints, while the
computation of the former is much faster than the later because
of the dimension reduction. We provide an explicit expression
of the error bound of the approximating VWE (Thm. 5).
• We give auxiliary results on variational equilibria: when

the number of players is large, VNEs are close to each other
(Thm. 2) and that VNEs are close to the approximating VWE
(Thm. 6). This last theorem extends [20, Thm. 1] in the
case of nondifferentiable cost functions, in the framework of
congestion games.
• Last, we provide a numerical illustration of our results

(Sec. IV) based on a practical application: the decentralized
charging of electric vehicles through a demand response
mechanism [32]. This example illustrates the nondifferentiable
case through piece-wise linear electricity prices (“block rates
tariffs”), with coupling constraints of capacities and limited
variations on the aggregate load profile between time periods.
This example shows that the proposed method is imple-
mentable and that it reduces the time needed to compute an
equilibrium by computing its approximation (six times faster
for an approximation with a relative error of less than 2%).

The remainder of this paper is organized as follows: Sec. II
specifies the framework of congestion games with coupling
constraints, and recalls the notions of variational equilibria
and monotonicity for variational inequalities, as well as several
results on the existence and uniqueness of equilibria. Sec. III
formulates the main results: Sec. III-B shows that a VWE

approximates VNEs in large games and then, Sec. III-B
formulates the approximating population game with the ap-
proximation measures, and gives an error bound on the VWE
of the approximating game with respect to the original VNEs.
Sec. IV presents a numerical illustration in the framework of
demand response for electric vehicle smart charging.

II. CONGESTION GAMES WITH COUPLING CONSTRAINTS

A. Model and equilibria

The original game throughout this paper is an atomic
splittable congestion game, a particular sort of aggregative
games where a set of resources is shared among finitely many
players, and each resource incurs a cost increasing with the
aggregate demand for it. The formal definition is as follows.

Definition 1. An atomic splittable congestion game G is
defined by:
• a finite set of players: I = {1, . . . , i, . . . , I},
• a finite set of resources: T = {1, . . . , t, . . . , T},
• for each resource t, a cost function ct : R+ → R,
• for each player i, a set of feasible choices: Xi ⊂ RT+, an
element xi = (xi,t)t∈T ∈ Xi signifies that i has demand xi,t
for resource t,
• for each player i, an individual utility function ui : Xi → R,
• a coupling constraint set A ⊂ RT .

We denote by X̃ , X1 × · · · × XI the product set of
action profiles. An action profile x = (xi)i∈I ∈ X̃ induces
a profile of aggregate demand for the resources, denoted by
X = (Xt)t∈T , (

∑
i∈I xi,t)t∈T . We denote the set of

feasible aggregate demand profiles by:

X , {X ∈ RT : ∀i ∈ I,∃xi ∈ Xi s.t.
∑
i∈I xi = X} .

With coupling constraints, the set of feasible aggregate demand
profiles with coupling constraints is X ∩ A, and the set of
feasible action profiles is denoted by X̃ (A) = {x ∈ X̃ :∑
i∈I xi ∈ X ∩A}.
Let the vector of cost functions denoted by c(X) =

(ct(Xt))t∈T , where ct(Xt) is the (per-unit of demand) cost
of resource t when the aggregate demand for it is Xt.

Player i’s cost function fi : Xi ×X → R is defined by:

fi(xi,Y ) =
∑
t∈T

xi,tct(Yt)−ui(xi), ∀xi ∈ Xi, Y ∈ X . (1)

Given x−i ∈
∏
j 6=i X̃j and X−i ,

∑
j 6=i xj , player i’s cost

is fi(xi,xi +X−i), composed of the network costs and her
individual utility.

This atomic congestion game with coupling constraints is
defined as the tuple (I, T , X̃ , A, c, (ui)i∈I).

In an atomic game, there are finitely many players whose
actions are not negligible on the aggregate profile and on the
objectives of other players. The term “atomic” is opposed to
“nonatomic” where players have an infinitesimal weight [1].
The term “splittable” refers to the infinite number of choices
of pure actions xi ∈ Xi for each player i, as opposed to
the unsplittable case where each player can only choose one
action in a finite subset of 2T [33]. Besides, atomic splittable
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congestion games are particular cases of aggregative games
[20]: each player’s cost function depends on the actions of the
others only through the aggregate profile X .

The following standard assumptions are adopted in this
paper.

Assumption 1.
(1) For each player i ∈ I, the set Xi is a convex and

compact subset of RT with nonempty relative interior.
(2) The cost function ct for each resource t ∈ T is

continuous, convex and non-decreasing on (−η,+∞) for a
positive η > 0.

(3) For each player i ∈ I, individual utility function ui is
continuous and concave in xi on Xi.

(4) A is a convex closed set of RT , and X ∩A is not empty.

An important class of atomic splittable congestion games
corresponds to the case where resources constitute a parallel-
arc network [34]. There, each player i has a total demand
and specific bounds on the demand that she can have for each
resource so that her strategy set is given by Xi = { xi ∈
RT+ :

∑
t xi,t = mi and xi,t ≤ xi,t ≤ xi,t}. Here, mi can

represent the mass of data to send over different canals, or the
amount of energy to consume over several time periods [6].
In particular, the demand is continuous and splittable, as the
mass mi is split over the resources t ∈ T .

O D

t = 1, c1
t = 2, c2
· · ·

t = T, cT

Fig. 1: A parallel-arc network with T arcs/resources.

Our model is more general than the one in [34], not
only because the network topology can be arbitrary, but also
because it allows for elastic demands from the players. For
example, player i’s action set can be Xi = { xi ∈ RT+ :
mi ≤

∑
t xi,t ≤ mi}. Indeed, the individual utility function

counterbalances the network cost: a player may be willing to
pay more congestion cost by increasing the demand, because
she profits from a higher individual utility, and vice versa.

Let us cite two common forms of individual utility function.
The first one measures the distance between a player’s choice
and her preference yi ∈ Xi: ui(xi) = −ωi ‖xi − yi‖2, where
ωi > 0 is the value that the player attaches to her preference.
The second one is ui(xi) = ωi log (1 +

∑
t xi,t), which is

increasing in the player’s total demand.
Finally, in congestion games, aggregate constraints are very

common. For example, in routing games, there can be a
capacity constraint linked to each arc. In energy consumption
games, due to the operational constraints of the power grid,
there can be both minimum and maximum consumption level
for each time slot, and ramp constraints on the variation of en-
ergy consumption between time slots. This is why congestion
games with aggregate constraints are of particular interest.

To separate player i’s choice from those of the other players
in her cost function, define

f̂i(xi,Y ) , fi(xi,Y + xi)

for xi in Xi and Y in X−i = {
∑
j∈I\{i} xj : xj ∈ Xj}.

Since c and ui’s are not necessarily differentiable, we need
to define the subdifferential of the players’ utilities w.r.t. their
actions for the characterization of equilibrium.

Let us define two correspondences, H and H ′, from X̃ to
RIT : for any x ∈ X̃ ,

H(x) , {(hi)i∈I ∈ RIT : hi ∈ ∂1f̂i(xi,X−i), ∀i ∈ I}
=
∏
i∈I ∂1f̂i(xi,X−i) ;

H ′(x) , {(hi)i∈I ∈ RIT : hi ∈ ∂1fi(xi,X), ∀i ∈ I}
=
∏
i∈I ∂1fi(xi,X) ,

where ∂1 signifies the partial differential w.r.t. the first variable
of the function. The interpretation of H(x) is clear: hi is a
subgradient of player i’s utility function f̂i w.r.t. her action
xi. Let us leave the interpretation of H ′(x) till Def. 3. For
the moment, let us write the explicit expression of H and H ′:

Lemma 1. For each x ∈ X̃ :
• h ∈ H(x) if and only if there are g′i ∈ ∂(−ui)(xi) and
ai ∈

∏
t∈T ∂ct(Xt) ∀i s.t.:

hi = c(X) + (xi,tai,t)t + g′i , ∀i ∈ I ;

• h′ ∈ H ′(x) if and only if there is g′i ∈ ∂(−ui)(xi) ∀i s.t.:

h′i = c(X) + g′i , ∀i ∈ I .

where ∂(−ui)(xi) is the subdifferential of convex function
−ui at xi and ∂ct(Xt) the subdifferential of ct at Xt.

Proof. See Appendix A.

In our framework with coupling constraints, the notion of
Nash equilibrium (NE) [7] is replaced by that of Generalized
Nash Equilibrium (GNE): x ∈ X̃ (A) is a GNE if, for
each player i, f̂i(xi,X−i) ≤ f̂i(yi,X−i) for all yi s.t.
yi+X−i ∈ X ∩A. For atomic games, a special class of GNE
is called Variational Nash Equilibria [10, 35], which enjoys
some symmetric properties and can be easily characterized as
the solution of the VI (2) below.

Definition 2 (Variational Nash Equilibrium (VNE), [18]). A
VNE is a solution x̂ ∈ X̃ (A) to the following GVI problem:

∃g ∈ H(x̂) s.t.
〈
g,x− x̂

〉
≥ 0, ∀x ∈ X̃ (A). (2)

In particular, if X ⊂ A, a VNE is a NE.

In this paper, we adopt VNE as the equilibrium notion in
the presence of aggregate constraints.

As the first step of approximation, let us define a nonatomic
congestion game G(A)′ associated to G(A). Let each player
i be replaced by a continuum of identical nonatomic players,
represented by interval [0, 1] with each point thereon corre-
sponding to a nonatomic player. Each player in population i
has action set Xi and individual utility function ui.
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Definition 3. A symmetrical variational Wardrop equilibrium
(SVWE) of G(A)′ is a solution to the following GVI:

∃g ∈ H ′(x∗) s.t. 〈g,x− x∗〉 ≥ 0, ∀x ∈ X̃ (A) . (3)

For the definition of variational Wardrop equilibrium
(VWE) and further discussion, we refer to [22]. In particular,
a VWE is characterized by an infinite dimensional variational
inequality. Here, we consider only those VWE where all the
nonatomic players in population i take the same action xi.
Such a SVWE exists because the players are identical in the
same population.

The second interpretation of SVWE is the following: when
the number of players is very large so that the individual
contribution of each player on the aggregate action X is
almost negligible, the term xi,tai,t in h ∈ H(x) is so small
that H(x) can be approximated by H ′(x) (cf. Lemma 1).
This is the interpretation adopted in [20]. However, note that
a SVWE of G(A)′ is not an equilibrium of G(A) in the sense
of a “stable state” for the atomic congestion game.

The existence of equilibria defined in Defs. 2 and 3 are
obtained without more conditions than Asm. 1:

Proposition 1 (Existence of equilibria). Under Asm. 1, G(A)
(resp. G(A)′) admits a VNE (resp. SVWE).

Proof. : see Appendix B.
Before discussing the uniqueness of equilibria, let us recall

some relevant monotonicity assumptions.

Definition 4. A correspondence Γ : X̃ ⇒ RT is:
• monotone if for all x,y ∈ X̃ ,g ∈ Γ(x),h ∈ Γ(y):∑

i∈I〈gi − hi,xi − yi〉 ≥ 0 ; (4)

• strictly monotone if the equality in (4) holds iff x = y;
• aggregatively strictly monotone if the equality in (4) holds
iff
∑
i xi =

∑
i yi;

• α-strongly monotone if α > 0 and, for all x,y ∈ X̃ :∑
i∈I
〈gi−hi,xi−yi〉≥α‖x−y‖2, ∀g∈Γ(x),h∈Γ(y) ; (5)

• β-aggregatively strongly monotone on X̃ if β > 0 and, for
all x,y ∈ X̃ with X =

∑
i xi, Y =

∑
i yi:∑

i∈I
〈gi−hi,xi−yi〉≥β‖X−Y ‖2, ∀g∈Γ(x),h∈Γ(y) . (6)

If T = 1, “monotone” corresponds to “increasing”. Be-
sides, (aggregatively) strict monotonicity implies monotonic-
ity, while strong (resp. aggregatively strong) monotonicity
implies strict (resp. aggregatively strict) monotonicity.

In Prop. 2 below, we recall some existing results concerning
the uniqueness of VNE and SVWE, according to the mono-
tonicity of H and H ′:

Proposition 2 (Uniqueness of equilibria). Under Asm. 1:
(1) if H (resp. H ′) is strictly monotone, then G(A) (resp.
G(A)′) has a unique VNE (resp. SVWE);
(2) if H (resp. H ′) is aggregatively strictly monotone, then
all VNE (resp. SVWE) of G(A) (resp. G(A)′) have the same
aggregate profile;

(3) if H (resp. H ′) is only aggregatively strictly monotone
but, in addition, for each i ∈ I, ui(x) is strictly concave,
then there is at most one NE (resp. WE) in the case without
aggregative constraint.

Proof. see Appendix C.
Prop. 3 below gives sufficient conditions for the (strong)

monotonicity to hold for H ′.

Proposition 3 (Monotonicity of H ′). Under Asm. 1,
(1) H ′ is monotone.
(2) If for each i ∈ I, ui is αi-strongly concave, then H ′ is
α-strongly monotone with α , mini∈I αi.
(3) If for each t ∈ T , ct is βt-strictly increasing, then H ′ is
β-aggregatively strongly monotone with β , mint∈T βt.

Proof. See Appendix D.

As opposed to the monotonicity of H ′ shown in Prop. 3,
H is rarely monotone (except in some particular cases, e.g.
with c linear [34, 36]): even in the case where c is piece-wise
linear, the Ex. 1 below shows that H can be non monotone.

Example 1. Let I = 2 and T = 1, X1 = X2 = [0, 4]. Consider
the cost function c(X) = X for X ≤ 4 and c(X) = 3X − 8
for X ≥ 4. Asm. 1 holds. Consider the profiles x1 = 3, x2 = 1
and y1 = 4, y2 = 0, then g , (c(4)+3x1, c(4)+3x2) ∈ H(x)
and h , (c(4) + 1y1, c(4) + 1y2) ∈ H(y), but:∑

i∈{1,2}〈gi − hi, xi − yi〉 = −2 < 0 .

In view of Prop. 2, the absence of monotonicity of H can
result in multiple VNEs [37].

In [6], a particular case with parallel arc network is shown
to have a unique NE. However, in the next section, we shall
prove that, when the number of players is very large, all VNEs
are close to each other and they can be well approximated by
the unique SVWE.

III. APPROXIMATING VNES OF A LARGE GAME

A. Considering SVWE instead of VNE

The approximation of VNEs is done in two steps. The first
step consists in replacing VNE by SVWE. According to the
second interpretation of SVWE, the SVWE should be close
to the VNEs in a large game. Now, let us formulate this idea
and bound the distance between the two.

Denote by X0 ⊂ RT the convex closed hull of
⋃
i∈I Xi, by

m = maxx∈X0 ‖x‖ and M = Im ≥ maxX∈X ‖X‖. Define
compact set M = [0,M + δI]T , where δ > 0 is a constant to
be specified later.

Denote by C , sup{b ∈ R : b ∈ ∂ct(Xt),X ∈ X , t ∈ T }
the upper bound on the subgradients of c.

Prop. 2 and Prop. 3 show that, in general, VNEs are not
unique. However, when the set of players is large, VNEs are
indeed close to each other:

Theorem 2 (VNEs are close to each other). Under Asm. 1,
let x and y in X̃ (A) be two distinctive VNEs of G(A). Then
(1) if for each i ∈ I, ui is αi-strongly concave, then:

‖x− y‖ ≤ 2M
√

TC
αI , (7)
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with α , mini∈I αi;
(2) if for each t ∈ T , ct is βt-strictly increasing, then:

‖X − Y ‖ ≤ 2M
√

TC
βI , (8)

with β , mint∈T βt.

Proof. : See Appendix E.

The first step of approximation is based upon the following
theorem which gives an upper bound on the distance between
a VNE and the unique SVWE.

Theorem 3 (SVWE is close to VNE). Under Asm. 1, let
x ∈ X̃ (A) be a VNE of G(A) and x∗ ∈ X̃ (A) a SVWE of
G(A)′, then:
(1) if for each i ∈ I, ui is a αi-strongly concave, then x∗ is
unique and:

‖x− x∗‖ ≤M
√

2TC
αI , (9)

with α , mini αi ;
(2) if for each t ∈ T , ct is βt-strictly increasing, then X∗ is
unique and:

‖X −X∗‖ ≤M
√

2TC
βI , (10)

with β , mint βt.

Proof. Similar to the proof of Thm. 2.

An upper bound on the distance between two VNEs can
also be derived from Thm. 3, applying the triangle inequality.
However, Thm. 2 gives a tighter upper bound.

Thm. 3 shows that, if the number of players I is large,
then the SVWE will provide a good approximation of a VNE
of G(A). Similar results are obtained in [20]. However, this
does not reduce the dimension of the GVI to resolve: the GVI
characterizing the VNE and those characterizing the SVWE
have the same dimension. For this reason, the second step of
approximation consists in regrouping similar populations.

B. Classification of populations

In this subsection, we shall regroup the populations in G(A)′

with similar strategy sets Xi and utility subgradients ∂(−ui)
(w.r.t. the Hausdorff distance, denoted by dH ) into larger
populations, endow them with a common strategy set and
a common utility function, so that the SVWE of this new
population game approximates the SVWE of G(A).

At the SVWE of the new population game with a reduced
dimension, all the nonatomic players in the same population
play the same action, by the definition of SVWE. Therefore,
in order for this new SVWE to well approximate the SVWE in
G(A)′, we must ensure that populations with similar character-
istics in G(A)′ do play similar actions at the SVWE of G(A)′.
Prop. 4 formulates this results in the case without coupling
constraint.

Without loss of generality, we assume that for each i ∈ I,
ui can be extended to a neighborhood of MI = [0,m]T ,
and is bounded on M

I . Denote Bui
= sup{‖g′i‖ : g′i ∈

∂(−ui)(xi),xi ∈ Xi}, and Bc = sup{‖c(X)‖ : X ∈ X}.

Proposition 4. Under Asm. 1, let x∗ ∈ X̃ be a SVWE of
G′ (without coupling constraints). For two populations i and
j in I, if ui is αi-strongly concave, dH(Xi,Xj) ≤ δ, and
supxj∈Xj

supg′j∈∂(−uj)(xj) d(g′j , ∂(−ui)(xj)) ≤ λ, then∥∥x∗i − x∗j∥∥2 ≤ 1
αi

(
(Bui

+Buj
+ 2Bc)λ+ 2δm

)
.

Proof. : See Appendix F.
In the case with coupling constraints, the proof for a similar

result is more complicated. Let us leave it to Cor. 1.
Let us now present the regrouping procedure.
Denote an auxiliary game G̃N (A), with a set N of N pop-

ulations. Each population n ∈ N corresponds to a subset of
populations in game G(A)′, denoted by In, and

⋃̇
n∈NIn = I.

Denote In = |In| the number of original populations now
included in n. By abuse of notations, let n also denote the
interval [0, In], so that each nonatomic player in population n
is represented by a point θ ∈ [0, In]. The common action set
of each nonatomic player in n is a compact convex subset of
RT , denoted by Xn.

Each player θ in each population n having chosen action
xθ, let X ,

∑
n∈N

∫
θ∈n xθ dθ denote the aggregate action

profile. The aggregate action-profile set in RT is then:
XN = {

∑
n∈N

∫
θ∈n xθ dθ : xθ ∈ Xn, ∀θ ∈ n, ∀n ∈ N}.

The cost function of player θ in population n ∈ N is:

fn(xθ,X) = 〈xθ, c(X)〉 − un(xθ),

where the common individual utility function un for all the
players in n is concave on a neighborhood of Xn.

We are only interested in symmetric action profiles, i.e.
where all the nonatomic players in the same population n play
the same action. Denote the set of symmetric action profiles
by X̃N =

∏
n∈N Xn. Let us point out that a symmetric action

profile happens as a specific case in the non-cooperative game,
without any coordination between the players within a popula-
tion. Besides, considering the coupling constraint that X ∈ A,
we define X̃N (A) = {x ∈ X̃N : X =

∑
n∈N Inxn ∈ A}.

Let us introduce two indicators to “measure” the quality of
the clustering of G̃N :
• δ = maxn∈N δn, where

δn , maxi∈INn dH (Xi,Xn) , (11)

• λ = maxn∈N λn, where

λn , max
i∈In

sup
x∈Xn

dH (∂(−un)(x), ∂(−ui)(x)) . (12)

The quantity δn measures the heterogeneity in strategy sets
of populations within the group In, while λn measures the
heterogeneity in the subgradients in the group In.

Since the auxiliary game G̃N is to be used to compute an
approximation of an equilibrium of the large game G, the
indicators δn and λn should be minimized when defining G̃N .
Thus, we assume that (Xn)n and (un)n are chosen such that
the following holds:

Assumption 2. For each n ∈ N , we have:
1) Xn is in the convex hull of

⋃
i∈In Xi, so that ‖Xn‖ ≤

m. Moreover, for each i ∈ In, affXi ⊂ affXn, where affS
denotes the affine hull of set S;
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2) similarly, un is such that ∂un(x) is contained in the
convex hull of

⋃
i∈In ∂(−ui)(x) for all x ∈ Xn, so that

‖∂(−un)‖∞ ≤ maxi∈In Bui
.

An interesting case in the perspective of minimizing the
quantities δ and λ is when I can be divided into homogeneous
populations, as in Ex. 2 below.

Example 2. The player set I can be divided into a small
number N of subsets (In)n, with homogeneous players inside
each subset In (i.e., for each n and i, j ∈ In, Xi = Xj and
ui = uj). In that case, consider an auxiliary game G̃N with
N populations and, for each n ∈ N and i ∈ In, XNn , Xi
and un , ui. Then, δ = λ = 0.

In order to approximate the SVWE of G(A)′ by the SVWE
of an auxiliary game G̃N , let us first state the following result
on the geometry of the action sets for technical use.

Lemma 4. Under Asm. 1, there exists a strictly positive
constant ρ and an action profile z ∈ X̃ (A) such that,
d(zi, rbdXi) ≥ ρ for all i ∈ I, where rbd stands for the
relative boundary.

Proof. See Appendix G.

Lemma 4 ensures the existence of a profile z such that zi
has uniform distance to the relative boundary of Xi for all i
and that z satisfies the coupling constraint.

Recall that we are only interested in symmetric action pro-
files in population games G(A)′ and G̃N . Given a symmetric
action profile xN in the auxiliary game X̃N in G̃N , we can
define a corresponding symmetric action profile of G(A)′ such
that all the nonatomic players in the populations regrouped
in In play the same action xNn . (It is allowed that xNn be
not in Xi. Recall that we can extend ui to a neighborhood of
M/I such that ui is bounded onM/I). Formally, define map
ψ : RNT → RIT :

∀xN∈RNT , ψ(xN )=(xi)i∈I where xi=xNn , ∀i ∈ In .

Conversely, for a symmetric action profile x in G(A)′, we de-
fine a corresponding symmetric action profile in the auxiliary
game G̃N by the following map ψ : RIT → RNT :

∀x∈RIT , ψ(x)=(xNn )n∈N where xNn = 1
In

∑
i∈INn

xi.

Thm. 5 below is the main result of this subsection. It gives
an upper bound on the distance between the SVWE of the
population game G(A)′, which has the same dimension as the
original atomic game G(A), and that of an auxiliary game
G̃N (A), which has a reduced dimension.

Theorem 5 (SVWE of G̃N (A) is close to SVWE of G(A)′).
Under Asms. 1 and 2, in an auxiliary game G̃N (A), δ and λ
are defined by Eqs. (11) and (12), with δ < ρ

2 . Let x̂ be a
SVWE of G̃N (A), and x∗ a SVWE of G(A). Then:
(1) if H ′ is strongly monotone with modulus α, then both x̂
and x∗ are unique and

‖ψ(x̂)− x∗‖2 ≤ 1
αK

(
δ, λ
)

; (13)

(2) if H ′ is aggregatively strongly monotone with modulus β,
then both X̂ =

∑
n∈N x̂n and X∗ =

∑
i∈I x

∗
i are unique,

and
‖X̂ −X∗‖2 ≤ 1

βK
(
δ, λ
)
, (14)

where K(δ, λ), appearing in both inequalities, is:

K(δ, λ) , 2M
(
3Bf

ρ δ + λ
)
, (15)

with Bf , Bc + maxi∈I Bui
. In particular,

K(δ, λ) = O(δ + λ) −→
δ,λ→0

0 .

Proof. See Appendix H.

We have pointed out that the approximation error depends
on how the populations are clustered according to N , and is
related to the heterogeneity of players in I rather than their
number. In particular, in the case of Ex. 2, Thm. 5 states that
the (aggregate) SVWE of the auxiliary game G̃N (A) is exactly
equal to the (aggregate) SVWE of the large game G(A)′.

A direct corollary of Thm. 5-(1) is that two populations in
G(A)′ with similar characteristics have similar behavior at a
SVWE there. This is the extension of Prop. 4 in the presence
of coupling constraints.

Corollary 1. Let x∗ ∈ X̃ be a SVWE of game G(A)′. Under
Asm. 1, for two populations i and j in I, if dH(Xi,Xj) ≤ δ,
supx∈M/I dH(∂(−uj)(x), ∂(−ui)(x)) ≤ λ, and ui (resp. uj)
is αi- (resp. αj-)strongly concave, then

‖x∗i − x∗j‖ ≤
(

1√
αi

+ 1√
αj

)
K (δ, λ)

1/2
.

C. Combining the two steps to approximate a VNE of G(A)

The following theorem is the main result of the paper, which
combines the two steps of approximation given in Thm. 3 and
in Thm. 5, in the computation of a VNE of the original game
G(A).

Theorem 6 (SVWE of G̃N (A) is close to VNEs of G(A)).
Under Asms. 1 and 2, in an auxiliary game G̃N (A), δ and λ are
defined by Eqs. (11) and (12), with δ < ρ

2 . Let x̂ be a SVWE
of G̃N (A), x ∈ X̃ (A) be a VNE of G(A), X̂ =

∑
n∈N xn,

X =
∑
i∈I xi, and K(δ, λ) the constant given by (15).

(1) if ui is αi-strongly concave for each i ∈ I, with α ,
mini αi, then x̂ is unique and

‖ψ(x̂)− x‖ ≤
√

1
αK

(
δ, λ
)1/2

+M
√

2TC
αI ;

(2) if ct is βt-strictly increasing for each t ∈ T , with β ,
mint βt, then X̂ is unique and

‖X̂ −X‖ ≤
√

1
βK

(
δ, λ
)1/2

+M
√

2TC
βI .

Proof. : This is an implication of the inequalities given in
Thms. 3 and 5.

Given the large game G(A) and a certain N ∈ N∗,
Thm. 6 suggests that we should find the auxiliary game G̃N
that minimizes K(δ, λ) in order to have the best possible
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approximation of the equilibria. This would correspond to a
“clustering problem” given as follows:

min
(In)n∈P(I)

min
(Xn)n

min
(un)n

K(δ, λ), (16)

where P(I) denotes the set of partitions of I of cardinal N ,
while (Xn)n∈N and (un)n are chosen according to Asm. 2.

The value of the optimal solutions of problem (16), and thus
of the quality of the approximation in Thm. 6, depends on the
homogeneity of the I players in I in terms of action sets and
utility functions. The “ideal” case is given in Ex. 2 where I is
composed of a small number N of homogeneous populations
and thus K(δ, λ) = 0.

In general, solving (16) is a hard problem in itself. It is
indeed a generalization of the k-means clustering problem
[38] (with k = N and considering a function of Hausdorff
distances), which is itself NP-hard [39]. In Sec. IV, we illus-
trate how we use directly the k-means algorithm to compute
efficiently an approximate solution (In,Xn, un)n∈N in the
parametric case.

Finally, the number N in the definition of the auxiliary
game should be chosen a priori as a trade-off between the
minimization of K(δ, λ) and a sufficient minimization of the
dimension. Indeed, with N = I, Xi = Xn and un = ui,
we get λ = δ = 0. However, the aim of Thm. 6 is to find
an auxiliary game G̃N with N � I so that the dimension
of the GVIs characterizing the equilibria (and thus the time
needed to compute their solutions) is significantly reduced,
while ensuring a relatively small error, measured by λ and δ.

IV. APPLICATION TO DEMAND RESPONSE FOR ELECTRIC
VEHICLE SMART CHARGING

Demand response (DR) [40] refers to a set of techniques
to influence, control or optimize the electric consumption of
agents in order to provide some services to the grid, e.g. reduce
production costs and CO2 emissions or avoid congestion [6].
The increasing number of electric vehicles (EV) offers a new
source of flexibility in the optimization of the production and
demand, as electric vehicles require a huge amount of energy
and enjoy a sufficiently flexible charging scheme (whenever
the EV is parked). Because of the privacy of each consumer
or EV owner’s information and the decentralized aspects of the
DR problem, many relevant works adopt a game theoretical
approach by considering consumers as players minimizing a
cost function and a utility [41].

In this section, we consider the consumption associated to
electric vehicle charging on a set of 24-hour time-periods T =
{1, . . . , T}, with T = 24, indexing the hours from 10 PM to
9PM the day after (including the night time periods where EVs
are usually parked at home).

A. Price functions: block rates energy prices

As in the framework described in [6], we consider a
centralized entity, called the aggregator, who manages the
aggregate flexible consumption. The aggregator interacts with
the electricity market and energy producers, with his own
objectives such as minimizing his cost or achieving a target
aggregate demand profile.

The aggregator imposes electricity prices on each time-
period. We consider prices taking the specific form of in-
clining block-rates tariffs (IBR tariffs, [42]), i.e. a piece-wise
affine function c(.) which depends on the aggregate-demand
Xt =

∑
i∈I xi,t for each time-period t, and is defined as

follows:

c(X) = 1 + 0.1X if X ≤ 500

c(X) = −49 + 0.2X if 500 ≤ X ≤ 1000

c(X) = −349 + 0.5X if 1000 ≤ X .

(17)

This function c is continuous and convex. Those price func-
tions are transmitted by the aggregator to each consumer or EV
owner. Thus, each consumer i minimizes an objective function
of the form (1), with an energy cost determined by (17) and
a utility function ui defined below. An equilibrium gives a
stable situation where each consumer minimizes her objective
and has no interest to deviate from her current consumption
profile.

B. Consumers’ constraints and parameters

We simulate the consumption of I = 2000 consumers who
have demand constraints of the form:

Xi={ xi ∈ RT+ :
∑
t xi,t=mi and xi,t ≤ xi,t ≤ xi,t} (18)

where mi is the total energy needed by i, and xi,t, xi,t the
(physical) bounds on the power allowed to her at time t. The
utility functions have form ui(xi) = −ωi ‖xi − yi‖2.

The parameters are chosen as follows:
• mi is drawn uniformly between 1 and 30 kWh, which

corresponds to a typical charge of a residential electric vehicle.
• xi,xi: First, we generate, in two steps, a continual set of

charging time-periods Ti = {hi − τi
2 , . . . , hi + τi

2 }:
– the duration τi is uniformly drawn from {4, . . . , T};
– hi is then uniformly drawn from {1 + τi

2 , . . . , T −
τi
2 }.

Next, for t /∈ Ti, let xi,t = xi,t = 0.
Finally, for t ∈ Ti, xi,t (resp. xi,t) is drawn uniformly from
[0, mi

τi
] (resp. [mi

τi
,mi]).

• ωi is drawn uniformly from [1, 10].
• yi,t is taken equal to xi,t on the first time periods of
Ti (first available time periods) until reaching mi (which
corresponds to a profile “the sooner the better” or “plug and
charge”).

C. Coupling constraints on capacities and limited variations

We consider the following coupling constraints on the
aggregate demand X which are often encountered in energy
applications:

−50 ≤ XT −X1 ≤ 50 (19)
Xt ≤ 1400, ∀t ∈ T (20)

Here, Constraint (19) imposes that the demand XT at the
very end of the time horizon is relatively close to the first
aggregate X1, so that the demand response profiles computed
for the finite time set T can be applied on a day-to-day,
periodical basis.
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Constraint (20) is a capacity constraint, induced by the
maximal capacity of the electrical lines or by the generation
capacities of electricity producers.

These linear coupling constraints can be written in the
closed form:

AX ≤ b , (21)

where A ∈MT+2,T (R), b ∈ RT+2.

D. Computing populations with k-means

Since I is very large, determining an exact VNE is compu-
tationally demanding. Thus, we apply the clustering procedure
described in Sec. III-B to regroup the players.

We use the k-means algorithm [38], where “k”= N is the
number of populations (groups) to replace the large set of
I players. For each player i ∈ I, we define her parametric
description vector:

pi = [ωi,yi,mi,xi,xi] ∈ R3T+2 . (22)

Then, the k-means algorithm finds an approximate solution
of finding a partition (Sn)1≤n≤N of I into N clusters. The
algorithm solves the combinatorial minimization problem:

min
S1,...,SN

∑
1≤n≤N

∑
p∈Sn

‖ESn(p)− p‖2= min
S1,...,SN

∑
1≤n≤N

|Sn|Var(Sn),

where ESn(p) = 1
|Sn|

∑
i∈Sn

pi denotes the average value of
p over the set Sn. These average values are taken to be wn,
yn, mn, xn and xn.

The simulations are run with different population numbers,
with N � I chosen among {5, 10, 20, 50, 100}.

Since the k-means algorithm minimizes the squared distance
of the average vector of parameters in Sn to the vectors of pa-
rameters of the points in Sn, the clustered populations obtained
can be sub-optimal in terms of K(δ, λ). As explained above,
choosing the optimal populations N , as formulated in problem
(16), is a complex problem in itself which deserves further
research. Our example shows that the k-means algorithm gives
a practical and efficient way to compute a heuristic solution
in the case where ui and Xi are parameterized.

E. Computation methods

We compute a VNE (Def. 2) with the original set of I
players and the approximating SVWE (Def. 3) as solutions of
the associated GVI (2).

We employ a standard projected descent algorithm, as
described in [20, Algo. 2] and recalled below in Algorithm 1.
It is adapted to the subdifferentiable case that we consider in
this work. In particular, the fixed step τ used in [20] is replaced
by a variable step τ (k) = 1/k. The coupling constraint (21) is
relaxed and the Lagrangian multipliers λ ∈ RT+2

+ associated
to these constraints are considered as extra variables. Thus,
we can perform the projections on the sets Xi and on RT+2

+ .

Fig. 2: Convergence of the aggregate SVWE profile of auxil-
iary games to a VNE profile of the original game.

Algo. 1 Projected Descent Algorithm

Require: x(0),λ(0), stopping criterion
1: k ← 0
2: while stopping criterion not true do
3: for n = 1 to N do
4: take g(k)n ∈ ∂1fn(x

(k)
n ,X(k))

5: x
(k+1)
n ← ΠXn

(
x
(k)
n − τ (k)(g(k)n + λ(k)TA)

)
6: end for
7: λ(k+1) ←

(
λ(k) − τ (k)(b− 2AX(k+1) +AX(k)

)+
8: k ← k + 1
9: end while

The convergence of Algorithm 1 is shown in [23,
Thm.3.1]. The stopping criterion that we adopt here is the
distance between two iterates: the algorithm stops when∥∥(λ(k+1),x(k+1))− (λ(k),x(k))

∥∥
2
≤ 10−3.

Due to the form of the strategy sets considered (18), the
projection steps (Line 5) can be computed efficiently and
exactly in O(T ) with the Brucker algorithm [43]. However, if
we consider more general strategy sets (arbitrary convex sets),
this projection step can be costly: in that case, other algorithms
such as [24] would be more efficient.

F. A trade-off between precision and computation time
Simulations were run using Python on a single core Intel

Xeon @3.4Ghz and 16GB of RAM.
Fig. 2 shows the different aggregate SVWE profiles X̂N

obtained for sets N of different sizes, as well as a VNE of
the original game for comparison. Thanks to the specific form
of the strategy sets (18)—which enables a fast projection—
we are able to compute a VNE X of the original game with
I = 2000 players.

Fig. 3a and Fig. 3b show the two main metrics to consider
to choose a relevant number of populations N : the precision
of the SVWE approximating the equilibrium (measured by
the distance of the aggregate SVWE profile to the aggregate
profile of the VNE computed along), and the CPU time needed
to compute the SVWE.
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(a) (b)

Fig. 3: (a) Relative error to actual VNE ; (b) Time to compute
SVWE. The time needed to compute SVWE (b) increases
roughly linearly with N , at a faster rate than the error on the
approximation of the VNE decreases (a).

First notice on Fig. 3a that the distance between the aggre-
gate equilibrium profile and its estimation decreases with N at
a sublinear rate. This is partially explained in light of Thm. 5
and in addition with the following remarks:
• the Hausdorff distance of two parameterized polyhedral

sets is Lipschitz continuous w.r.t their parameter vectors (gen-
eralization of [44]), which ensures that there is K > 0 s.t. for
all n:

δNn = max
i∈INn

dH
(
Xi,XNn

)
≤ K

∥∥∥∥∥∥
mn

xn
xn

−
mi

xi
xi

∥∥∥∥∥∥ ;

• similarly, as subgradients of utility functions are reduced
to a point, one has, for all n:

λn = max
i∈

max
x∈M

2 ‖ωn(x− yn)− ωi(x− yi)‖

= O (|ωn − ωi|+ ‖yn − yi‖) .

Fig. 3b shows the CPU time needed to compute the WE
with a stopping criterion of a maximum improvement between
iterates of

∥∥(λ(k+1),x(k+1))− (λ(k),x(k))
∥∥
2
≤ 10−3. Com-

puting a solution of the clustering problem with the k-means
algorithm takes, for each value of N , less than ten seconds.
This time is negligible in comparison to the time needed for
convergence of Algorithm 1.

As a reference time, to compute a VNE of the original game
(observed on Fig. 2) with the same stopping criterion and the
same CPU configuration, we needed 3 hours 26 minutes. This
is more than six times longer than the CPU time to compute
the SVWE with one hundred populations.

On this figure, we see that the CPU time evolves linearly
with the number of populations N . This is explained by the
structure of Algorithm 1, as each iteration k is executed in a
time proportional to N due to the for loop.

Last, one observes from Fig. 3a that, in our example, the
error between the aggregate demand profile at equilibrium
and its approximation is between 2% and 5%, which remains
significant. However, as pointed out in Sec. III, the quality of
the approximation depends on the heterogeneity of the set of
players I. In the example of this section, as the parameters are
drawn uniformly (see Sec. IV-B), the set of players I presents

a large variance so that it is a “worst” case as opposed to the
case of Ex. 2 which is “optimal”.

V. CONCLUSION

This paper shows that equilibria in splittable congestion
games with a very large number of atomic players can be
approximately computed with a Wardrop equilibrium of an
auxiliary population game of smaller dimension. Our results
give explicit bounds on the distance of this approximating
equilibrium to the equilibria of the original large game. These
theoretical results can be used in practice to solve, by an
iterative method, complex nonconvex bi-level programs where
the lower level is the equilibrium of a large congestion game,
for instance, to optimize tariffs or tolls for the operator of a
network. A detailed analysis of such a procedure would be an
extension of the present work.
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APPENDIX A
PROOF OF LEMMA 1: EXPRESSIONS OF SUBGRADIENTS

Recall that f̂i(xi,X−i) , fi(xi,X−i + xi). According to
[45, Proposition 16.6], ∂1f̂i(xi,X−i) ⊂ {(IT , IT )g : g ∈
∂ψi(xi)}, where ∂fi(xi,X−i + xi) is the subdifferential of
ψi(·) , fi(·,X−i + ·), at xi. On the other hand, according to
[45, Proposition 16.7], ∂ψi(xi) is a subset of:{

(gi,1,gi,2) :gi,1 ∈ ∂1fi(wi,Y )|wi=xi,Y =X−i+xi
,

gi,2 ∈ ∂2fi(wi,Y )|wi=xi,Y =X−i+xi

}
.

Therefore, ∂1f̂i(xi,X−i) is a subset of:

{c(X)+g′i,1+ gi,2 : g′i,1 ∈ ∂(−ui)(xi), gi,2 ∈ ∂2fi(xi,X)}
= {c(X) + g′i,1 + (ai,txi,t)t :

g′i,1 ∈ ∂(−ui)(xi), ai,t ∈ ∂ct(Xt)∀t ∈ T} .

By the definition of subdifferential, it is easy to show that
{c(X) + g′i,1 + (ai,txi,t)t : g′i,1 ∈ ∂(−ui)(xi), ai,t ∈
∂ct(Xt)∀t ∈ T} is a subset of ∂1f̂i(xi,X−i).

The proof for ∂1fi(xi,X) is similar.

APPENDIX B
PROOF OF PROP. 1: EXISTENCE OF EQUILIBRIA

It is easy to see that f̂i(·,X−i) is convex on Xi for all
X−i in

∑
j∈I\{i} Xj , fi(·,X) is convex on Xi for all X ∈

X , and H and H ′ are nonempty, convex, compact valued,
upper hemicontinuous correspondences. Then [46, Corollary
3.1] shows that the GVI problems (2) and (3) both admit a
solution on the finite dimensional convex compact X̃ (A).
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APPENDIX C
PROOF OF PROP. 2: UNIQUENESS OF EQUILIBRIA

We prove for SVWE only and the proof for VNE is the
same. Suppose that x,y ∈ X̃ (A) are both SVWE, with X =∑
i xi and Y =

∑
i yi. According to the definition of SVWE,

there is g ∈ H ′(x) an h ∈ H ′(y) such that
∑
i〈gi,yi−xi〉 ≥

0 and
∑
i〈hi,xi − yi〉 ≥ 0. Adding up these two inequalities

yields
∑
i〈gi − hi,yi − xi〉 ≥ 0 .

(1) If H ′ is a strictly monotone, then
∑
i〈gi−hi,xi−yi〉 = 0

and thus x = y.
(2-3) If H ′ is an aggregatively strictly monotone, then

∑
i〈gi−

hi,xi − yi〉 = 0 and thus X = Y . If there is no aggregative
constraint and ui is strictly concave, then xi (resp. yi) is the
unique minimizer of fi(·,X) (resp. fi(·,Y )). Since X = Y ,
one has xi = yi.

APPENDIX D
PROOF OF PROP. 3: MONOTONICITY OF H ′

(1) Let x,y ∈ X̃ and X =
∑
i xi, Y =

∑
i yi. Recall that

∂1fi(xi,X) = {c(X) + g : g ∈ ∂(−ui(xi)} ,
∂1fi(yi,Y ) = {c(Y ) + h : h ∈ ∂(−ui)(yi)} .

Let gi ∈ ∂(−ui)(xi) and hi ∈ ∂(−ui)(yi). One has 〈gi(xi)−
hi(yi),xi − yi〉 ≥ 0 because ui is concave so that ∂(−ui) is
monotone on Xi. Then we get:∑

i〈(c(X) + gi(xi))− (c(Y )− hi(yi)),xi − yi〉
=〈c(X)− c(Y ),X − Y 〉+

∑
i〈gi(xi)− hi(yi),xi − yi〉

≥ 0 because c is monotone. Hence H ′ is monotone.
(2) By the definition of αi-strong concavity:∑

i〈gi(xi)−hi(yi),xi−yi〉≥
∑
i αi‖xi−yi‖2≥α‖x−y‖2.

(3) By the definition of βt-strong monotonicity:

〈c(X)− c(Y ),X − Y 〉 =
∑
t〈ct(Xt)− ct(Yt), Xt − Yt〉

≥
∑
t βt‖Xt − Yt‖2 ≥ β‖X − Y ‖2 .

APPENDIX E
PROOF OF THM. 2 : VNES ARE CLOSE TO EACH OTHER

(1) Let x,y ∈ X̃ be two VNEs. Then, by (2), there are
gi ∈ ∂1f̂i(xi,X−i) and hi ∈ ∂1f̂i(yi,Y−i) for each i with
gi = c(X) + g′i + (ai,txi,t)t, hi = c(Y ) + h′i + (bi,tyi,t)t,
where g′i ∈ ∂(−ui)(xi), h′i ∈ ∂(−ui)(yi), ai,t ∈ ∂ct(Xt) and
bi,t ∈ ∂ct(Yt) for all t, such that

∑
i

〈
gi,yi − xi

〉
≥ 0 and∑

i

〈
hi,xi − yi

〉
≥ 0. Summing up these two inequalities:

0 ≤
∑
i〈gi − hi,yi − xi〉

=
∑
i〈c(X)+g′i+(ai,txi,t)t−c(Y)−h′i−(bi,tyi,t)t,yi−xi〉

=
∑
i〈c(X)− c(Y ),yi − xi〉+

∑
i〈g′i − h′i,yi − xi〉

+
∑
i〈(ai,txi,t)t − (bi,tyi,t)t,yi − xi〉

=〈c(X)− c(Y ),Y −X〉+
∑
i〈g′i − h′i,yi − xi〉

+
∑
i〈(ai,txi,t)t − (bi,tyi,t)t,yi − xi〉 .

=⇒ 〈c(X)− c(Y ),X − Y 〉+
∑
i〈g′i − h′i,xi − yi〉

≤ −
∑
i

∑
t(ai,txi,t − bi,tyi,t)(xi,t − yi,t)

≤
∑
i,t(2C

M
I )(2MI ) = 4TCM2

I .

Since c is monotone and so are ∂ui’s because ui’s are concave,
〈c(X)− c(Y ),X − Y 〉 ≥ 0,

∑
i〈g′i − h′i,xi − yi〉 ≥ 0.

If for each i, ui’s are αi-strongly concave, then α
∑
i ‖xi−

yi‖2 ≤
∑
i αi‖xi − yi‖2 ≤

∑
i〈g′i − h′i,xi − yi〉 ≤ 4TCM2

I

so that ‖x− y‖ ≤ 2M
√

TC
αI .

If for each t, ct is βt-strictly increasing, then β‖X−Y ‖2 ≤
〈c(X)−c(Y ),X−Y 〉 ≤ 4TCM2

I thus ‖X−Y ‖ ≤ 2M
√

TC
βI .

APPENDIX F
PROOF OF PROP. 4: SWE BEHAVIOR FOR SIMILAR PLAYERS

Let g′i(x
∗
i ) ∈ ∂(−ui)(x∗i ) be s.t., for all xi ∈ Xi, 〈c(X∗)+

g′i(x
∗
i ),x

∗
i −xi〉 ≤ 0. Let h′i(x

∗
j ) ∈ ∂(−ui)(x∗j ) be such that

‖h′i(x∗j )−g′j(x
∗
j )‖ ≤ λ. Then, by the strong concavity of ui:

αi
∥∥x∗i − x∗j∥∥2 ≤ 〈g′i(x∗i )− h′i(x

∗
j ),x

∗
i − x∗j 〉

=〈g′i(x∗i )− g′j(x
∗
j ) + g′j(x

∗
j )− h′i(x

∗
j ),x

∗
i − x∗j 〉

≤〈g′i(x∗i )− g′j(x
∗
j ),x

∗
i − x∗j 〉+ λ2m

=〈g′i(x∗i )+c(X∗),x∗i−x∗j 〉
+ 〈g′j(x∗j )+c(X∗),x∗j−x∗i 〉+2λm

=〈g′i(x∗i ) + c(X∗),x∗i −Πi(x
∗
j ) + Πi(x

∗
j )− x∗j 〉

+〈g′j(x∗j )+c(X∗),x∗j−Πj(x
∗
i )+Πj(x

∗
i )−x∗i 〉+2λm

≤〈g′i(x∗i ) + c(X∗),Πi(x
∗
j )− x∗j 〉

+ 〈g′j(x∗j ) + c(X∗),Πj(x
∗
i )− x∗i 〉+ 2λm

≤(Bui
+Buj

+ 2Bc)δ + 2λm .

where Πi (resp. Πj) is the projector on Xi (resp. Xj).

APPENDIX G
PROOF OF LEMMA 4: EXISTENCE OF INTERIOR PROFILE

Let x̄ ∈ X̃ be s.t. d(x̄i, rbdXi) = maxx∈Xi
d(x, rbdXi) ,

ηi, for all i. Denote X̄ =
∑
i x̄i and η = mini ηi > 0.

Let y ∈ X̃ (A) and Y =
∑
i yi be s.t. d(Y , rbdA) =

maxX∈X∩A d(X, rbdA). Denote t = d(Y ,rbdA)
3M .

Define z = y − t(y − x̄) ∈ X̃ . Let Z =
∑
i zi.

Firstly, ‖Y − Z‖ = t‖Y − X̄‖ ≤ t2M ≤ 2
3d(Y , rbdA),

hence Z ∈ X ∩ riA, where ri means the relative interior.
Besides, for any i, zi = yi−t(yi−x̄i). Since d(x̄i, rbdXi) ≥
η, yi ∈ Xi, and Xi is convex, one has d(zi, rbdXi) ≥ ηt =
η

3M d(Y , rbdA). Finally, define ρ , η
3M d(Y , rbdA).

APPENDIX H
PROOF OF THM. 5: APPROXIMATION OF SVWE

Lemma 7.
(1) For each n ∈ N and x ∈ Xn, if d(x, rbdXn) > δn, then
x ∈ Xi for each i ∈ In.
(2) For each n ∈ N , i ∈ In and x ∈ Xi, if d(x, rbdXi) > δn,
then x ∈ Xn.
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Proof of Lemma 7. (1) Suppose x /∈ Xi. Let y , ΠXi
(x) 6=

x. As y ∈ affXi ⊂ affXn, then x − y ∈ affXn. Let
z , x + δn

x−y
‖x−y‖ . Then, z ∈ Xn because ‖z − x‖ ≤ δn.

By the convexity of Xi and the definition of y, we have
d(z,Xi) = d(x,Xi) + δn > δn, contradicting the fact that
δn ≥ dH(Xi,Xn). (2) Symmetric proof.

Lemma 8. Under Asm. 1, if δ < ρ
2 , then

(1) for each x ∈ X̃N (A), there is w ∈ X̃ (A) such that ‖wi−
ψi(x)‖ ≤ 4m δ

ρ for each i ∈ I;
(2) for each x ∈ X̃ (A), there is w ∈ X̃N (A) such that ‖wn−
ψn(x)‖ ≤ 2mIn

δ
ρ for each n ∈ N .

Proof of Lemma 8.
(1) For x ∈ X̃N (A), define w ∈ X̃ as follows: ∀n ∈ N ,
∀i ∈ In, let wi , xn + t(zi − xn) where z is defined in
Lemma 4, with t , 2δ/ρ < 1.

On the one hand, ∀n ∈ N , ∀i ∈ In, d(zi, rbdXn) ≥ ρ− δ
implies that d(wi, rbdXn) ≥ t(ρ − δ) > tρ/2 = δ. (This is
because each point in the ball with radius t(ρ− δ) centered at
wi is on the segment linking xn and some point in the ball
with radius ρ − δ centered at zi which is contained in Xi.)
Thus, wi ∈ Xi ∀i ∈ In according to Lemma 7.(1). On the
other hand, the linear mapping S : RIT 3 v 7→

∑
i∈I vi maps

the segment linking ψ(x) and z in X̃ (A) to a segment linking
X =

∑
n Inxn and Z in the convex A. Hence

∑
i∈I wi =

tZ + (1− t)X is in A as well. Therefore, w ∈ X̃ (A).
Finally, ‖wi − ψi(x)‖ = t‖zi − ψi(x)‖ ≤ t2m = 4m δ

ρ .

(2) For x ∈ X̃ (A), let y , x+t(z−x) with t , δ
ρ . Then, by

similar arguments as above, d(yi, rbdXi) ≥ δ hence yi ∈ Xn
and ψ(y) ∈ X̃N . Besides,

∑
i yi = tZ + (1 − t)(

∑
i xi) so

that
∑
i yi is in the convex A. Hence w , ψ(y) ∈ X̃N (A).

Finally, ‖wn−ψn(x)‖ = t‖
∑
i∈In(zi−xi)‖ ≤ 2mIn

δ
ρ .

Let w ∈ X̃ (A) be s.t. ∀i ∈ I, ‖wi − ψi(x̂)‖ ≤ 4mδ/ρ
(cf. Lemma 8). Since x∗ is a SVWE in G(A)′, there is
g′i ∈ ∂(−ui)(x∗i ),∀i ∈ I s.t.

∑
i〈c(X∗) +g′i, x

∗
i −wi〉 ≤ 0.

Secondly, since x̂ is a SVWE in G̃(A), there is h′n ∈
∂(−un)(x̂n),∀n ∈ N s.t.

∑
n In〈c(X̂) + h′n, x̂n − yn〉 ≤ 0

for all y ∈ XN (A). Thirdly, ∀n, ∀i ∈ In, by the definition of
λi, there is r′i ∈ ∂(−ui)(x̂n) such that ‖ri − h′n‖ ≤ λi.

The above results and x̂n ≤ m,∀n imply:

〈c(X∗)−c(X̂),X∗−X̂〉+
∑
i

〈
g′i−r′i,x∗i−x̂n

〉
=〈c(X∗)−c(X̂),X∗−X̂〉+

∑
n,i∈In〈g

′
i−r′i,x∗i−x̂n〉

=
∑
n,i∈In

[
〈c(X∗)+g′i,x

∗
i−wi〉+〈c(X∗)+g′i,wi−x̂n〉

]
+
∑
n,i∈In

[
〈r′i−h′n, x̂n−x∗i 〉+〈c(X̂)+h′n, x̂n−x∗i 〉

]
≤ 0+

∑
n,i∈In ‖c(X

∗) + g′i‖ ‖wi−x̂n‖
+
∑
n,i∈In ‖r

′
i−h′n‖ ‖x̂n−x∗i ‖+J

≤ Bf 4M δ
ρ + 2Mλ+ J (23)

where J ,
∑
n,i∈In

〈
c(X̂) + h′n, x̂n − x∗i

〉
.

Next, for SVWE x∗ ∈ X̃ (A), let y ∈ X̃N (A) be s.t. ∀n,
‖yn − ψn(x)‖N ≤ 2mInδ/ρ (cf. Lemma 8). Then we get:

J =
∑
n∈N

〈
c(X̂) + h′n, x̂n − ψn(x∗)

〉
=
∑
n∈N

〈
c(X̂) + h′n, x̂n − yn

〉
+
∑
n∈N

〈
c(X̂) + h′n, yn − ψn(x∗)

〉
≤ 0 +

∑
n∈N Bf‖ψn(x∗)− yn‖ ≤ Bf2M

δ
ρ , (24)

We conclude by combining (23) and (24) and using the α-
strong monotonicity or β-aggregative strong monotonicity of
H ′.
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[13] M. Labbé, P. Marcotte, and G. Savard, “A bilevel model
of taxation and its application to optimal highway pricing,”
Management Science, vol. 44, no. 12-part-1, pp. 1608–1622,
1998.
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technique. His research is related to decentralized
electric systems and the application of optimization
and game theory.

Olivier Beaude received the M.Sc. degree with
specialization in applied mathematics and economics
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