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The Author presents a Fourier Laplace transformation of The Analytic Continuation Formula of The Riemann Zeta Function and showed that the zeros of the Analytic Continuation Formula will always be real. A general formula for these zeros is also obtained which when substituted into the ACF it is shown to be the root of the ACF of the Riemann Zeta Function.

Introduction

Over the years, mathematicians have studied the Analytic Continuation Formula (ACF) of the Riemann Zeta Function by representing the exponential and the trigonometric functions in the ACF as Taylors Series. The author in this work chose to represent the exponential and the trigonometric functions as Fourier Cosine transform and Laplace transform respectively since Fourier and Laplace transformations have a meeting.

The Relationship between Fourier and Laplace transform can be explained as follows:

Consider the function Then the Fourier transform of is given by Thus, the Fourier transform of the Laplace transform of as defined above.

(2.0) A closer look at the Riemann defined the analytical continuation formula as [1];

Such that

The Fourier Cosine transform of (2) gives

Examining the trigonometric term in (1), it is obvious that one can write in its Laplace transform as;

By injecting (3) and ( 4) into (1), one obtains:

This becomes:

By using the Classical estimate [15] Substituting ( 8) into [START_REF] Enoch | A general representation of the zeros of the Riemann zeta Function via Fourier series Expansion[END_REF], one arrives at If we take the limit of ( 9) as , we will have;

On integrating [START_REF] Erdos | Factorization of n! American Mathematics Monthly[END_REF] 

  , we obtain; Looking closely at the bound of the Integrand in (11),b must be equal to x in the RHS. Thus, we

			124.256818554
		17 19347.80796 69.546401711 42 65043.01859	127.516683880
		18 20775.70086 72.067157674 43 67163.56233	129.578704200
		19 22925.80077 75.704690699 44 68736.92831	131.087688531
		20 23806.30539 77.144840069 45 71287.58335	133.497737203
		21 25178.67630 79.337375020 46 72638.26763	134.756509753
		22 27497.52501 82.910380854 47 76305.16423	138.116042055
		23 28721.41508 84.735492981 48 78105.83231	139.736208952
		24 30573.71456 87.425274613 49 79664.60316	141.123707404
		25 31549.23293 88.809111208 50 81925.00163	143.111845808
	have;	
	Since	, equation (12) gives;

, it implies that; This results to: On further simplification This gives: We can see that (20) is the same as: Making the subject of (21), we obtain: and Thus This means that Such that: One can now determine the general expression for t, the root of from (26) such that: We can write equation (27) as Such that The author in his work [15] obtained a general formula for the zeros of the analytic continuation formula of the Riemann Zeta Function as: Where and If we equate equations (29) and (30), we will get; We can show that: On further Simplification, we obtain: Equation (35) can be elegantly rewritten as; Since Then RHS of equation (36) equals to: Thus by this equation (35) gives: The followings are the Numerical values of A for the first fifty zeros of the Riemann Analytic Continuation Formula. S/N S/N 1 800.1618191 14.134725142 26 34220.00572 92.491899271