
HAL Id: hal-01904436
https://hal.science/hal-01904436

Submitted on 24 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of occupancy rate in dial-a-ride problems
via linear fractional column generation

Thierry Garaix, Christian Artigues, Dominique Feillet, Didier Josselin

To cite this version:
Thierry Garaix, Christian Artigues, Dominique Feillet, Didier Josselin. Optimization of occupancy
rate in dial-a-ride problems via linear fractional column generation. Computers and Operations Re-
search, 2011, 38 (10), pp.1435 - 1442. �10.1016/j.cor.2010.12.014�. �hal-01904436�

https://hal.science/hal-01904436
https://hal.archives-ouvertes.fr

Optimization of occupancy rate in dial-a-ride problems

via linear fractional column generation

Thierry Garaixa, Christian Artiguesb,c, Dominique Feilletd, Didier Josseline

aPolitecnico di Torino, DAUIN,

Torino, Italy.
bCNRS; LAAS; 7 avenue du colonel Roche,

F-31077 Toulouse, France.
cUniversité de Toulouse; UPS, INSA, INP, ISAE; LAAS;

F-31077 Toulouse, France.
dEcole des Mines de Saint-Etienne, CMP Georges Charpak,

F-13541 Gardanne, France.
eUniversité d’Avignon et des Pays de Vaucluse,

UMR ESPACE 6012 CNRS, F-84911 Avignon, France.

Abstract

In this paper, we consider a dial-a-ride problem where the objective is to
maximize the passenger occupancy rate. The problem arises from an on-demand
transportation system developed in a rural zone in France, where the objective of
encouraging people meeting is pursued. We address the solution of the problem
with a column generation approach, applied to a set partitioning formulation
where the objective function is fractional. Based on the literature on linear
fractional programming, two methods are developed to deal with this fractional
objective. Experiments permit to compare these two approaches and to evaluate
the impact of the new objective compared to a standard min-cost or min-time
optimization.

Keywords: vehicle routing, on-demand transportation, linear fractional
program, dial-a-ride problem, column generation.

1. Introduction

The motivation for this study stems from a multidisciplinary research project
dealing with on-demand transportation (ODT) systems and their adequacy with
new mobility practices (Josselin and Genre-Grandpierre, 2005). In this context,
an ODT reservation software was developed for the Doubs Central area, a rural
zone in France. ODT systems are flexible passenger transportation systems,
where, contrarily to traditional transportation systems, routes are determined
on a daily basis (or, at least, for short time periods), according to passenger
requests. Many objectives (conflicting or not) can be pursued when developing

Email address: garaix@emse.fr (Thierry Garaix)

Preprint submitted to Elsevier December 25, 2010

such systems: rationalize and make the service attractive (transportation or-
ganizing authorities), maximize profits and conquer new markets (carriers, e.g.
taxis), improve quality of life and access to facilities (passengers).

In this paper, we address a new objective, compared to the literature on
ODT systems: the maximization of the passenger occupancy rate. This rate is
defined as the sum of the passenger travel times divided by the total travel time
of vehicles. The aim is to encourage passenger meeting during the transportation
and thus develop or maintain social cohesion. As a side effect, it could also
induce passenger gathering for future requests. The relevance of this objective
emerged from discussion with transportation organizing authorities from the
Doubs Central.

ODT systems have raised the interest of many researchers for a long time.
The underlying vehicle routing problem is generally identified as the Dial-a-
Ride Problem (DARP). The DARP is a special case of the Pickup & Delivery
Problem with Time Windows (PDPTW) where people are transported instead
of goods. As a consequence, new constraints or objectives related to quality of
service have to be addressed. Most of the work on the DARP being issued from
real-life applications, a large variety of slightly different problems have been
investigated. The interested reader may find detailed state-of-the-art reviews
in Cordeau and Laporte (2003b) and Cordeau and Laporte (2007). Berbeglia
et al. (2007), Parragh et al. (2008a) and Parragh et al. (2008b) present extensive
reviews on Pickup & Delivery Problems. More general information on these
categories of problems can also be found in Golden et al. (2008), Desaulniers
et al. (2002) or Crainic and Laporte (1998).

Column generation (actually, branch-and-price) has emerged as one of the
most powerful exact solution approaches when dealing with these categories of
problems (Boschetti et al., 2008; Ropke and Cordeau, 2009; Parragh et al., 2009).
It involves a set partitioning formulation (master problem) where columns are
added dynamically with the help of a subproblem. The method is specially
efficient when the set of routes remains relatively limited, that is, when the
possibilities of combining customers into routes is strongly limited by time and
capacity restrictions. Seeing that our application case shows such properties, we
propose to address the solution of the DARP defined from the Doubs Central
ODT case with this type of approach. The main difficulty lies in the occupancy
rate objective that implies a linear fractional objective function in the set parti-
tioning formulation. Based on the literature on linear fractional programming,
we developed two methods to deal with this fractional objective.

The contributions of this work are twofold. First, we investigate a new
quality-of-service criterion in ODT systems. We propose an exact solution ap-
proach and numerical experiments in order to evaluate how tractable is this
new criterion and what is its impact on solutions. Secondly, we show how frac-
tional objectives can be handled in column generation procedures. Again, the
tractability of the approach is evaluated computationally.

After having presented the ODT system in Section 2 and the general column
generation methodology in Section 3, the two solution methods are described in
Section 4. Experiments permit, in Section 5, to compare these two approaches

2

and to evaluate the impact of the new objective against a standard min-cost or
min-time optimization.

2. On-Demand Transportation system description

The problem is to serve a set R of requests with a heterogeneous fleet. A
request r ∈ R is defined by a pick-up point r+, a drop-off point r−, a positive
number of passengers Fr , either a latest drop-off time T sup

r−
(outbound requests)

or an earliest pick-up time T inf

r+
(inbound requests), and a maximal ride time gr.

Outbound requests typically correspond to travels with a target time on arrival,
e.g., morning travels to work, travels for surgeries, travels to a train station,
etc. Contrariwise, inbound requests represent travels with an availability time
(evening travels back home, etc.). The sets of pick-up and drop-off points are
respectively denoted R+ and R−. Pick-ups and drop-offs are called services. A
service i ∈ R+ ∪R− has a nonnegative duration Si.

The ride time limit aims at ensuring a certain quality of service to customers.
As shown by Figure 1, it does not only include the time spent by a passenger in
the vehicle but also the waiting time either between the completion of the drop-
off service and the latest drop-off time T sup

r−
(outbound request) or between

time T inf

r+
and the beginning of the pick-up service (inbound request). It is

important to notice that this definition differs from the definition that can be
found in several papers (e.g.,Cordeau and Laporte (2003a); Cordeau (2006)).
We indeed consider here that customers have no interest in arriving in advance
(outbound requests) or depart later (inbound requests).

In practice, gr is proportional to the min-time path connecting r+ to r−. As
will be shown below, time window constraints for services can be derived from
these data.

departure
time

arrival
time

latest drop−off
time

ride time

Figure 1: Ride time for an outbound request

The fleet of vehicles is composed of different types of vehicles. VT represents
the set of vehicle types. The set of identical vehicles of type k ∈ VT is Kk. A
vehicle type k ∈ VT is characterized by a capacity Fk and by starting and
arrival depots k+ and k−. The number of vehicles of type k is

∣

∣Kk
∣

∣. The sets
of starting and arrival depots are denoted K+ and K−, respectively.

Let G = (V ,A) be a directed graph. V = R+ ∪ R− ∪ K+ ∪ K−. An arc
(i, j) ∈ A is a road-path linking node i ∈ V to node j ∈ V . A distance Dij

3

and a duration Tij are associated with arc (i, j). For sake of simplifying the
notation, we consider that these values are independent of the vehicles. The
problem is to find routes for the vehicles such that every request is satisfied,
the passenger occupancy rate is maximized and every constraint defined for
the vehicles (depots, capacities) and the passengers (drop-off or pick-up time,
maximal ride time) are satisfied.

We define the occupancy rate as the ratio between the time spent by pas-
sengers in vehicles while these vehicles are driving and the total driving time.
Waiting times are not included in our expression. With decision variables δij = 1
if arc (i, j) is in the solution, 0 otherwise, and fij equal to the number of pas-
sengers traversing arc (i, j), the occupancy rate can be expressed as:

∑

(i,j)∈A

fijTij/
∑

(i,j)∈A

Tijδij (1)

As explained above, earliest pick-up or latest drop-off time constraints com-
bined with the maximal ride time constraints can be equivalently expressed as
time windows [T inf

i , T sup
i] for i ∈ R+ ∪R−. In case of inbound requests, these

time windows are computed recursively as follows:

T inf

r−
= T inf

r+
+ Sr+ + Tr+r− (2)

T sup

r−
= T inf

r+
+ gr + Sr+ (3)

T sup

r+
= T sup

r−
− Tr+r− − Sr+ (4)

Equivalent equations allow to compute time windows for outbound requests.
Similarly, bounds [F inf

ik , F sup
ik] on the flow of passengers in a vehicle of type

k through i ∈ R+ ∪ R− ∪ K−, can replace capacity constraints. Let us note
Fr− = −Fr+ = −Fr for every request r ∈ R and Fk+ = Fk− = 0 for every depot
k+ and k−, with k ∈ VT . For a vehicle type k and a node i ∈ V :

F inf
ik = Fi if i ∈ R+ F sup

ik = Fk if i ∈ R+

F inf
ik = 0 if i ∈ R− F sup

ik = Fk + Fi if i ∈ R−

F inf
ik = 0 if i ∈ K+ ∪ K− F sup

ik = 0 if i ∈ K+ ∪ K−

3. Column generation approach

In this section, we present a standard column generation scheme as we would
have applied it with a classical linear objective function, say minimizing the total
travel cost. Similar frameworks can be found in the literature (Dumas et al.,
1989; Savelsbergh and Sol, 1998; Ropke and Cordeau, 2009). Our objective in
this section is threefold: to remind of the column generation method, to describe
the backbone of the two new algorithms presented subsequently in Section 4 and
to set a comparison basis for the experiments of Section 5. The reader is referred
to Desaulniers et al. (2005) for more details on column generation techniques.

4

3.1. Framework

Let Ωk be the set of possible time-stamped routes for a vehicle of type
k ∈ VT , carrying out at most once every transportation request, satisfying
time window and capacity constraints. Let Ω =

⋃

k∈VT Ωk = {ω1, . . . , ω|Ω|} be
the complete set of possible routes (identical routes assigned to different vehicle
types are considered different). Let bkn = 1 if route ωn ∈ Ωk, bkn = 0 otherwise.
Let arn = 1 if route ωn ∈ Ω carries out request r, arn = 0 otherwise. Let us
assume that a cost Cij is defined on arcs (i, j) ∈ A and let cn be the cost of
route ωn ∈ Ω. The DARP can be stated as follows:

min
∑

ωn∈Ω

cnλn (5)

subject to

∑

ωn∈Ω

arnλn = 1 ∀r ∈ R, (6)

∑

ωn∈Ω

bknλn ≤
∣

∣Kk
∣

∣ ∀k ∈ VT , (7)

λn integer ∀ωn ∈ Ω. (8)

Decision variables λn indicate whether route ωn ∈ Ω is selected or not in the
solution. Objective function (5) minimizes the total travel cost. Constraints (6)
ensure that every request is carried out exactly once. Constraints (7) limit the
number of vehicles of each type.

Solving the linear relaxation of model (5)-(8) necessitates the use of a col-
umn generation technique, due to the size of Ω. In the following, we call Master
Problem (MP) the linear relaxation of model (5)-(8). Column generation is
based on two components: a restricted master problem and one or several slave
problems. The restricted master problem MP(Ω̃) is obtained from MP by con-
sidering only a subset Ω̃ ⊂ Ω of variables. A slave problem aims at adding
progressively new potentially good columns to Ω̃ until an optimality criterion is
attained. Here, we introduce a slave problem for every vehicle type.

At every iteration of the algorithm, MP(Ω̃) is solved with the simplex method.
A slave problem determines for a specific vehicle type k whether some variables
λn with ωn ∈ Ωk have a negative reduced cost. This condition can easily be
stated as:

cn −
∑

r∈R

arnπr − µk < 0, (9)

where πr is the dual variable associated with constraint (6) for request r and
µk is the dual variable associated with constraint (7) for vehicle type k.

One or several variables with negative reduced cost are then added to Ω̃ and
the algorithm iterates until all slave problems fail to find new routes. At each
iteration, only a subset of slave problems are solved and slave problems are not
necessarily solved to optimality. The purpose is to find out routes with negative
reduced cost and therefore solving is stopped when enough routes are found. A

5

score measure is computed to determine the order in which slave problems are
solved. A score is obtained for a slave problem by combining a random value
and the dual value µk relative to the considered vehicle type.

Classically, the branching scheme consists in enforcing or forbidding arcs
between two vertices. These constraints are easy to handle at the master prob-
lem level by removing incorrect columns and are classically transferred to the
subproblem by removing appropriate arcs.

Further details on this algorithm can be found in Garaix et al. (2010).

3.2. Solution of the slave problems

A slave problem, for a vehicle type k ∈ VT , can be seen as an Elementary
Shortest Path Problem with Resource Constraints (ESPPRC). The aim is to find,
in graph G, from starting depot k+ to arrival depot k−, an elementary path of
minimal cost subject to resource constraints. The path has to be elementary in
the sense that requests should not be carried out more than once. We propose
to solve slave problems with a dynamic programming approach, adapted from
Feillet et al. (2004). The principle is to associate with each possible partial
path a label and to extend these labels checking resource constraints until fea-
sible paths of negative reduced cost are obtained. Dominance rules are used to
compare partial paths arriving at a same node and to discard some of them.

Labels are defined with the following 8 attributes: a pointer to the parent
label fath, the current ending node en, resources F and T for the load and
time consumption, cost C, and the sets of respectively open, closed and time-
reachable requests O, C, T . A request is said to be open once the pick-up service
is carried out and as long as the drop-off service has not been performed. Then,
the request is said to be closed. Time-reachable requests are requests that can
be reached according to time windows: r ∈ T when the successive extensions

to r+ and r− are valid considering
[

T inf

r+
, T sup

r+

]

and
[

T inf

r−
, T sup

r−

]

. C and O

resources ensure the elementariness, the pick-up and drop-off matching and the
precedence properties.

Extension functions and feasibility conditions when extending labels are de-
scribed in Table 1 and Table 2. In these tables, the extension of a label L to a la-
belM , through an arc (i, j) is considered (with i = enL and j ∈ R+∪R−∪{k−}).
In Table 1, remind that Fr− = −Fr+ = −Fr for every request r ∈ R and
Fk− = 0. Also, we define πj = πr if j = r+, πj = 0 if j = r− and πj = µk

if j = k−. In Table 2 extension functions and feasibility conditions are given
according to the nature of j.

In Table 2 notation TSPTW (enM ,OM , k−) represents the problem of find-
ing a path reaching k− from enM such that every drop-off point of the requests
included in OM is visited. The feasibility of TSPTW (enM ,OM , k−) is rela-
tively easy to compute for small sets of open requests, which can be expected
in practice because of the tightness of time window and capacity constraints.

The dominance rule works as follows. L dominates L′ if the following con-
ditions hold:

6

resource value constraint
fathM L −
enM j −

TM max
{

TL + Si + Tij , T
inf
j

}

≤ T sup
j

FM FL + Fj ∈
[

F inf
jk , F sup

jk

]

CM CL + Cij − πj to minimize

Table 1: Extension functions for resources fath, en, T , F and C

resource j = r+ j = r− j = k−

OM OL ∪ {r} OL \ {r} OL

value CM CL CL ∪ {r} CL

T M see definition above
constraints r /∈ CL r ∈ OL OL = ∅

TSPTW (enM ,OM , k−) is feasible

Table 2: Extension functions for resources O, C and T

enL = enL′

(10)

TL ≤ TL′

(11)

FL ≤ FL′

(12)

CL ≤ CL′

(13)

OL = OL′ (14)

CL ∩ TL′ ⊂ CL′ (15)

Condition (14) enforces that labels L and L′ have the same open requests.
According to condition (15), all the requests completed in L are either also
completed in L′ or not time-reachable for L′. Combined with conditions (10) and
(11), it ensures that every request that could be carried out by L′ in the future
can also be carried out by L. Note that the open request equality constraint (14)
implies flow constraint (12), which is only expressed here for sake of clarity. Note
also that for sake of computational efficiency condition (15) can be rewritten:

(CL ∩ TL) ∩ TL′ ⊂ (CL′ ∩ TL′) (16)

thus avoiding spanning the entire set CL while comparing labels.
Stronger dominance rules, managing inclusion between open requests sets

OL and OL′ have been investigated in the literature (Sol, 1994; Ropke and
Cordeau, 2009), but were not adapted to our study as they require standard
linear cost definitions.

The resource level for the initial label defined at the depot k+ is set to 0
(or ∅) for every resource. At each step of the algorithm, a label is selected
and extended in every possible direction. The labels waiting for extension are
stocked in a priority queue. In order to strengthen the dominance rule impact,

7

labels are ordered according to time, except at the beginning of the algorithm
where min-cost labels are preferred (labels of negative cost being quite easy to
find).

4. Occupancy rate criterion integration

In order to introduce the occupancy rate objective in the master problem,
we introduce new notation. With every column ωn ∈ Ω are associated Nn and
Dn such that Nn =

∑

(i,j)∈ωn

fn
ijTij and Dn =

∑

(i,j)∈ωn

Tij , where (i, j) ∈ ωn

indicates that route ωn traverses arc (i, j) and fn
ij is the number of passengers

in the vehicle at that time.
The problem to solve then becomes:

max
∑

ωn∈Ω

Nnλn/
∑

ωn∈Ω

Dnλn (17)

subject to (6)-(8).
Objective (17) is the transcription with variables λn of the occupancy rate

objective (1) defined in Section 2. In the remainder, N(λ) and D(λ) are
abbreviated notation for the numerator

∑

ωn∈ΩNnλn and the denominator
∑

ωn∈ΩDnλn, respectively.
The purpose of this section is to adapt the previous column generation

scheme to this linear fractional objective. We propose two approaches for solv-
ing the master problem. The first one, called direct approach, uses a change of
variables and was first introduced by Charnes and Cooper (1962). The second
one, called iterative approach, is based on Dinkelbach’s algorithm (Dinkelbach,
1967). In both cases, the original method was not designed to be combined with
column generation. As far as we know, though many other and more recent al-
gorithms exist to address fractional objectives, the two approaches cited above
are still state-of-the-art for linear fractional objectives (Bazaraa et al., 2006).
Furthermore, we did not find any attempt to combine these approaches with
column generation, except a quick mention in Jaumard et al. (1991). Also, the
only other tentative we found to apply column generation when the objective
is fractional was in Gilmore and Gomory (1963), where an adaptation of the
simplex method is investigated (see also (Lasdon, 1970)).

4.1. Direct approach

We apply the change of variables x = 1/D(λ) and switch the objective to
minimization; note that D(λ) > 0. The master problem can then be written:

minx
∑

ωn∈Ω

(−Nnλn) (18)

8

subject to

x
∑

ωn∈Ω

arnλn = x ∀r ∈ R, (19)

x
∑

ωn∈Ω

bknλn ≤ x
∣

∣Kk
∣

∣ ∀k ∈ VT , (20)

x
∑

ωn∈Ω

Dnλn = 1, (21)

xλn ≥ 0 ∀ωn ∈ Ω, (22)

x ≥ 0. (23)

or equivalently after a new change of variable λn ← xλn:

min
∑

ωn∈Ω

(−Nnλn) (24)

subject to
∑

ωn∈Ω

arnλn − x = 0 ∀r ∈ R, (25)

∑

ωn∈Ω

bknλn − x
∣

∣Kk
∣

∣ ≤ 0 ∀k ∈ VT , (26)

∑

ωn∈Ω

Dnλn = 1, (27)

λn ≥ 0 ∀ωn ∈ Ω, (28)

x ≥ 0. (29)

Equation (30) gives the reduced cost of a route ωn ∈ Ωk:

−Nn −
∑

r∈R

arnπr − µk −Dnβ (30)

or equivalently,

−
∑

(i,j)∈ωn

fn
ijTij −

∑

r∈R

arnπr − µk −
∑

(i,j)∈ωn

Tijβ (31)

where πr, µk and β are the dual variables associated with constraints (25), (26)
and (27), respectively.

For each type of vehicle k, the reduced cost, i.e. the function to minimize
in the slave problem, expressed with arc variables is then:

∑

(i,j)∈A

−[(fij + β)Tij + πj]δij (32)

where we remind that fij is a decision variable indicating the number of pas-
sengers in the vehicle on arc (i, j), δij decides of the selection of arc (i, j) and

9

πj is set to πr for pick-up points, 0 for drop-off points and µk for the arrival
depot k−.

Formula (33) defines the resource extension function for the cost in the slave
problem when extending label L to label M through arc (i, j) (with i = enL

and j ∈ R+ ∪R− ∪ {k−}):

CM = CL − (FL + β)Tij − πj . (33)

Other extension functions and the dominance rule are defined exactly as in
Section 3. The remaining of the algorithm is also identical to the one presented
before (with the slight exception that one has to divide λn by x to evaluate the
flow on arcs when branching).

4.2. Iterative approach

We now propose to adapt Dinkelbach’s algorithm (Dinkelbach, 1967) to the
column generation context. Dinkelbach first designed its algorithm to solve
nonlinear problems with a fractional objective function, a concave numerator
and a (non-zero) convex denominator. The linear relaxation of program (17),(6)-
(8) fits these conditions. We call DP this relaxation in the following.

Let introduce the parametric linear program DP(x):

max
∑

ωn∈Ω

Nnλn − x
∑

ωn∈Ω

Dnλn (34)

subject to

∑

ωn∈Ω

arnλn = 1 ∀r ∈ R, (35)

∑

ωn∈Ω

bknλn ≤
∣

∣Kk
∣

∣ ∀k ∈ VT , (36)

λn ≥ 0 ∀ωn ∈ Ω. (37)

Let us note H(x) the value of the optimal solution of DP(x). Dinkelbach (1967)
shows that function H is continuous, strictly decreasing, and that the following
equivalence holds:

λ∗ is an optimal solution of DP⇔ H(N(λ∗)/D(λ∗)) = 0

Finding the unique zero x∗ of function H thus provides the optimal occupancy
rate N(λ∗)/D(λ∗). Following Newton’s method, Dinkelbach proposes to ap-
proximate x∗ with an iterative algorithm constructing sequence (xq) defined
as:

xq+1 = N(λq)/D(λq),

where λq is the optimal solution of DP(xq). The algorithm stops when H(xq) <
ε (ε ≥ 0).

10

Two ways appear relevant to apply Dinkenlbach’s algorithm in our context.
A first alternative is to consider Dinkenlbach’s algorithm at the higher level and
to solve every master problem of the sequence DP(xq) through column genera-
tion. A second alternative is rather to solve the linear relaxation of (17),(6)-(8)
with column generation, using Dinkelbach’s algorithm for the solution of ev-
ery restricted master problem. Then, the optimal dual vector of the linear
program defined at the last iteration of Dinkelbach’s algorithm is used to find
new columns. We adopt the second option since we prefer to generate columns
with the most meaningful dual variables and we prefer to limit the number of
ESPPRC calls.

The (reduced) cost of a route in the slave problem relative to vehicle k and
iteration (q + 1) of Dinkenlbach’s algorithm, expressed in a minimization form
to be consistent with the previous sections, is:

∑

(i,j)∈A

[(xq − fij)Tij − πj]δij (38)

where πj is defined as detailed in 4.1.
Formula (39) defines the resource extension function for the cost when ex-

tending label L to label M through arc (i, j) (with i = enL and j ∈ R+ ∪R− ∪
{k−}):

CM = CL + (xq − FL)Tij − πj (39)

Other extension functions and the dominance rules are defined as in Section
3. After iteration q+1 of Dinkelbach’s algorithm, route costs need to be updated
in the objective function, according to the new value xq+1. The remaining of
the algorithm is identical to the one presented in Section 3.

5. Numerical experiments

Tests are run on a Intel Core 2 with a 2.66 GHz processor, 4G of RAM and
a Xubuntu Linux operating system. The restricted master problems are solved
by Ilog-CPLEX 12.0. All CPU times are expressed in seconds.

5.1. Instances

In order to evaluate our algorithm and the impact of the occupancy rate
criterion on the solutions, we selected three sets of Euclidean benchmarks from
the literature (Li and Lim, 2001; Cordeau and Laporte, 2003a; Ropke et al.,
2007). Because of the original definition of our problem, that differs from the
problem for which these instances were initially designed, these instances were
adapted. For each request, we first defined whether the request is an inbound or
an outbound request. Then, we set latest drop-off time (outbound request) or
pick-up time (inbound request), plus a maximal ride time. Note that maximal
ride times (with a different meaning) were defined in these instances; however,

11

as the objective of maximizing occupancy rate does not make sense without a
strong guarantee on the travel times of passengers and as the strength of time
constraints is directly related to the maximal ride time value in our case, we do
not reproduce as large values for maximal ride times as the one proposed in the
benchmarks. The following paragraphs detail how the three sets of instances
were adapted.

Tests were also performed on a set of instances based on the road-network
of the Doubs Central area for which our on-demand transportation system was
developed. These instances are described next.

Li and Lim (2001) built instances to the Pickup & Delivery Problem with
Time Windows from Solomon’s classical VRPTW instances. We conserved the
network but adapted other data. The number of passengers of a request was
defined as one tenth of the load associated with the request in the original
instance. Service times were set to one unit of time per passenger, i.e., the
service time of a request is equal to its number of passengers. The maximal
ride time was set to gr = 1.5 × Tr+r− for every request. Every request was
considered as outbound. If a latest drop-off time T sup

r−
was originally defined,

we kept it. Otherwise, either we deduced it from the given latest pick-up time
(when defined) plus the maximal ride time, or we generated it randomly.

As in Solomon’s benchmark, instances are divided in three classes: the ‘R’
class with a random spatial distribution, the ‘C’ class with clusters (note that
pick-up and drop-off points of a request are not necessarily in the same cluster)
and the ‘RC’ as a mix of the previous classes. Every class contains 10 instances.
We considered instances from the 200 and 400 series, including approximatively
100 and 200 requests respectively. In the following, these 60 instances are coined
R1 200, C1 200, RC1 200, R1 400, C1 400 and RC1 400.

In Cordeau and Laporte (2003a) and Ropke et al. (2007), the authors define
inbound and outbound requests with a common maximal ride time. Contrary
to ours, their definition of maximal ride time only includes the time spent in the
vehicle by the customers. Furthermore, since the original maximal ride times
are large (3 times the longest request), we modified them and set a maximal ride
time gr = 1.5×Tr+r− for every request. Depending on their nature (inbound or
outbound), we kept the latest drop-off or pick-up time. Service durations and
number of passengers are kept as in the original instances. Also, a single depot
with 6-seats vehicles is kept for all the instances. We increased the number of
vehicles available until we got feasible problems. We thus obtained two sets of
instances.

Ropke et al. (2007) generated two series (‘a’ and ‘b’) of instances with a
ranging of requests between 16 and 96. In the set ‘a’, there is only 1 passenger
per request while requests of the set ‘b’ concern up to 6 passengers. Our first
set of 24 instances, named rop bac, is derived from the ‘b’ instances of Ropke
et al. (2007).

In the second set of 20 instances, named cord tabu and derived from Cordeau
and Laporte (2003a), the number of requests ranges between 24 and 144. The
main difference between the two series comes from the number of passengers,
that is equal to 1 for every request in cord tabu and ranges between 1 and 6 for

12

rop bac.
Finally, 24 instances were constructed using the Doubs Central road-network,

completing the size of the benchmark to a total of 128 instances. These instances
are divided in series of 25, 50 and 100 requests, with maximal ride times equal
to 1.5× Tr+r− or 1.3× Tr+r− . For each pair of these parameters, we generated
4 instances corresponding to different polarities of passenger flows: convergent,
multi-convergent, extreme-convergent and random. These instances are split
in two sets of 12 instances for the experiments, depending on parameter gr:
DC 1.5 and DC 1.3. The homogeneous fleet is divided in 8 depots with 10
vehicles whose capacities are set to 6.

More details on the characteristics of these instances can be found in Garaix
et al. (2007, 2010). Instance files are available upon request.

5.2. Direct versus iterative algorithms

In the following tests, we fixed the error margin for optimal occupancy rates
to 10−4 and 10−1 for total driving durations. The ε parameter of the Iterative
algorithm is set to 10−4. All approaches start with an empty initial set of
columns. A dummy route satisfying all the requests is introduced, with a large
coefficient in the objective function, so that the feasibility of the restricted
master problems is ensured. No more than 90 columns are added to the master
problem after each call to the slave problem solver.

The 128 instances we built are solved to optimality by the both algorithms
within 1 hour.

Table 3 first indicates optimal values and root node deviations from the
optimum, for the different series of instances. The two algorithms are then
compared through CPU time, number of columns generated and number of
nodes explored in the search tree. The averages of these values over the 128
instances are given. In this table, letters ‘D’ and ‘I’ represent the Direct and
the Iterative algorithms, respectively.

sets of x root node opt. CPU columns nodes
instances x deviation D I D I D I
C1 400 10 0.00 0.6600 33 32 10662 10868 1.0 1.0
R1 400 10 0.10 1.0334 13 22 5550 5970 9.0 9.0
RC1 400 10 0.05 0.9193 24 187 3860 4304 291.4 291.4
C1 200 10 0.04 0.7537 2 2 2900 2973 1.4 1.4
R1 200 10 0.12 1.0560 1 3 1454 1711 18.2 18.2
RC1 200 10 0.17 1.0612 1 1 1457 1600 6.8 6.8
rop bac 24 0.00 2.2681 4 4 2699 2762 1.0 1.0
cord tabu 20 0.00 0.6321 16 18 5210 5236 1.7 1.7
DC 1.5 12 0.11 1.9132 3 3 1094 1167 2.7 2.3
DC 1.3 12 0.00 1.7153 2 2 814 871 8.4 3.8

average 0.05 1.2926 9.5 23.3 3521.1 3669.7 27.1 26.6

Table 3: Direct vs Iterative algorithms on the 128 instances

13

A first noticeable result is that root node deviations are very small. As a
consequence, a few nodes of the search tree suffice to close the gap. Actually,
97 instances out of 128 are solved at the root node. As expected, the numbers
of nodes in the branch-and-price trees are almost identical for both approaches.

Finally, one can observe that the number of columns generated by both
algorithms are also very similar, while the variations of solution times are rather
difficult to interpret. This issue is developed more deeply with Table 4.

sets of CPU Max(CPU) CPU MP CPU SP #MP #SP
instances D I D I D I D I D I D I
C1 400 33 32 61 61 17 15 14 13 307 514 307 303
R1 400 13 22 25 94 4 11 8 8 180 339 179 198
RC1 400 24 187 182 1814 5 161 14 15 449 1205 417 477
C1 200 2 2 3 3 1 1 1 1 117 210 117 123
R1 200 1 3 4 14 0 1 1 1 91 208 90 122
RC1 200 1 1 1 2 0 0 1 1 65 133 64 75
rop bac 4 4 39 37 2 2 1 1 144 211 144 149
cord tabu 16 18 111 152 9 12 6 5 190 282 190 191
DC 1.5 3 3 10 12 0 0 2 2 130 224 212 242
DC 1.3 2 2 6 8 0 0 1 1 110 180 179 202
average 9.5 23.3 47.7 187.9 3.9 17.0 4.5 4.3 173.6 325.3 185.1 200.8

Table 4: Direct vs Iterative algorithms on the 128 instances continued

Table 4 decomposes CPU times for the solution of the different series of
instances for the two approaches.

The two first columns (‘CPU’ and ‘Max(CPU)’) give the average and max-
imal computing times over all series of instances. Next columns provide the
time spent for the solution of the restricted master problem (‘CPU MP’) and
for the solution of the slave problem (‘CPU SP’). Also, the numbers of calls
to the simplex (‘#MP’) and to the column generator (‘#SP’) algorithms are
given. Note that one call to the column generator is counted every time the
slave problem is called for a given type of vehicle.

One can see that the number of calls to the slave problems and the time
spent for the solution of these problems are almost equivalent for the two ap-
proaches. On the contrary, the iterative approach necessitates the solution of
almost the double of restricted master problems, compared to the direct ap-
proach. However, this increase is not visible when concentrating on computing
times, except for instances of series R1 400 and RC1 400.

Finally, we can remark from this table that the number of Dinkelbach’s
algorithm iterations is rather limited at each step of column generation. Indeed,
the total number of calls to the (modified) restricted master problem is less than
twice the number of calls to the slave problem.

14

5.3. Occupancy rate maximization versus driving duration minimization

The aim of this section is to evaluate the impact on the solutions of switching
from the standard min-driving-duration objective to the objective of maximizing
the occupancy rate. Tables 5 and 6 respectively consider the solutions found
when applying one of the two criterion for the optimization and provide the
values of these solutions against the two criteria. In these tables, occupancy
rate maximization is called max(N/D), while minimization of the total driv-
ing duration is called min(D). Note that this second objective is exactly the
denominator of the occupancy rate. Since the total driving duration can be ex-
pressed as a linear objective function, the standard column generation scheme
presented in Section 3 was applied.

Table 5 presents the values of the two criteria for solutions whose occupancy
rate is maximized. Table 6 presents the values of the two criteria for solutions
whose driving duration is minimized. In these tables, the average deviation and
the maximal deviation of the criterion that is not optimized against its optimal
value is given.

name N/D D %dev(D) max(%dev(D)) CPU
C1 400 0.6600 8385.9 0.13 0.49 33
R1 400 1.0334 11802.3 0.55 1.16 13
RC1 400 0.9193 12305.0 0.43 0.81 24
C1 200 0.7537 3394.2 0.01 0.09 2
R1 200 1.0560 5519.3 0.34 1.15 1
RC1 200 1.0612 5064.2 0.45 0.98 1
rop bac 2.2681 699.7 0.02 0.16 4
cord tabu 0.6321 910.9 0.00 0.00 16
DC 1.5 1.9132 985.9 0.35 1.46 3
DC 1.3 1.7153 1081.6 0.02 0.11 2

Table 5: Occupancy rates and driving durations when the occupancy rate is maximized
(max(N/D))

The main conclusion that can be drawn from these tables is that the two
objectives are seldom conflicting: whatever the criterion optimized, the values
remain very close most of the times. The deterioration of any of the two objec-
tives when the optimization is driven by the other objective never reaches 5%,
and is less than 1% on average.

Observing instances DC 1.3 and DC 1.5, one can also notice that the oc-
cupancy rate significantly increases inversely to total driving duration when
parameter gr raises. It means that, on those runs, reducing no-load travel times
exceeds the increase in individual travel times.

5.4. Impact of instance characteristics

As explained in Subsection 5.1, instances are defined with tight time win-
dows. This definition allows maintaining an acceptable quality of service for

15

name N/D D %dev(N/D) max%(dev(N/D)) CPU
C1 400 0.6552 8374.9 0.61 1.87 25
R1 400 1.0239 11737.6 0.88 2.14 16
RC1 400 0.9090 12250.9 1.18 3.68 47
C1 200 0.7537 3393.9 0.00 0.01 3
R1 200 1.0496 5500.7 0.58 2.14 3
RC1 200 1.0462 5041.3 1.40 3.05 2
rop bac 2.2662 699.5 0.07 0.77 3
cord tabu 0.6321 910.9 0.00 0.00 15
DC 1.5 1.8978 981.2 0.76 2.32 6
DC 1.3 1.7143 1081.2 0.05 0.46 2

Table 6: Occupancy rates and driving durations when the driving duration is minimized
(min(D))

passengers. It is particularly necessary given that the occupancy rate is max-
imized, which could tend to increase artificially the presence of customers in
vehicles. In order to evaluate the performance of our algorithm in the con-
text of larger time windows, we ran additional tests on the ‘rop bac’ instances
(including less than 100 requests). Results are presented in Tables 7 and 8
when occupancy rate and total driving duration are optimized, respectively.
In these tables, time windows are enlarged by increasing maximal ride times:
gr = α× Tr+r− with α increasing from 1.5 (original value) up to 6.0.

α solved N/D D nodes CPU max(CPU)
1.5 24 2.2681 699.7 1.0 3.7 38.9
2.0 24 2.4622 673.3 1.1 4.4 44.4
3.0 24 2.9119 676.0 7.6 17.0 225.4
4.0 24 3.2749 693.4 26.2 60.7 1042.2
5.0 24 3.5281 705.1 46.8 69.5 509.0
6.0 24 3.7182 719.4 150.8 466.8 9046.0

Table 7: Impact of time window width when maximizing occupancy rate (N/D) for rop bac
instances

When maximizing the occupancy rate, most of the instances are solved in less
than 1 hour except one instance: when α = 6.0. Except for this instance, one
observes a clear but reasonable increase of computing times with gr. Regarding
the minimization of total driving duration (Table 8), larger time windows also
impact computing times, but more slightly. One can conclude that though it
penalizes more heavily occupancy rate maximization, enlarging time windows
does not invalidate the solution process in both cases.

Note that differences in optimal values for the two criteria and between
the two tables are not meaningful for high values of α as these values do not
correspond to realistic practical situations.

16

α solved N/D D nodes CPU max(CPU)
1.5 24 2.2662 699.5 1.0 3.1 33.5
2.0 24 2.4376 669.9 1.4 3.0 27.8
3.0 24 2.6452 634.6 4.2 5.3 49.8
4.0 24 2.8181 609.3 6.1 8.8 61.6
5.0 24 2.9375 589.9 25.3 33.8 482.2
6.0 24 3.0354 576.4 37.7 53.6 486.1

Table 8: Impact of time window width when minimizing total driving duration (D) for rop bac
instances

Finally, in order to evaluate the impact of vehicle capacities on solutions,
we carried out additional tests with infinite capacities of vehicles for the Doubs
Central instances. These tests were only run with the objective of maximizing
occupancy rate. Results show average occupancy rates of 1.7153 and 1.7211
instead of 1.9132 and 1.9360, when maximal ride times are equal to 1.3 and 1.5,
respectively. These small increases highlight that the time constraints limit the
benefit of having larger vehicles.

6. Conclusion

In this paper, we have investigated the maximization of passenger occupancy
rate in dial-a-ride problems. The motivation for this problem and this criterion
arose from an on-demand transportation system developed in a rural zone in
France, where the objective of encouraging people meeting was pursued. As far
as we known, dealing with this objective is new.

We proposed two exact solution algorithms that permitted to solve in lim-
ited time (often a few seconds) a large panel of benchmark instances of different
types with up to 200 requests. The main difficulty stemmed from the fractional
form of the occupancy rate criterion. The two solution algorithms proposed
were both based on column generation, namely the Direct Algorithm and the
Iterative Algorithm. Experiments showed similar behaviors for the two algo-
rithms. Furthermore, computing times were of the same order of magnitudes
as the ones obtained when simply optimizing a standard linear objective func-
tion. At this stage, one can conclude that introducing fractional objectives is
not necessarily detrimental to the solution of large scale integer programs with
column generation, both from theoretical and computational points of views.
Investigating this issue for different forms of integer programs, e.g. cases where
the slave problem is much faster, would certainly deserve future researches. Fur-
ther works evaluating other ways of combining fractional objectives and column
generation, following for example Gilmore and Gomory (1963), would also be
interesting.

Another relevant phenomenon shown by the experiments was that optimizing
the occupancy rate or the driving time provided very similar solutions in terms
of quality for these two criteria. One can conclude that the two objectives are

17

very similar (as can intuitively be guessed) and that guiding the optimization
with the simple standard linear objective should be satisfactory even if solutions
optimizing occupancy are expected. One could thus avoid relatively complex
developments or use standard softwares that would not be able to manage a
fractional objective.

M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear programming: Theory
and Algorithms, third edition. Wiley-interscience, Hoboken, New Jersey, 2006.

G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup and
delivery problems: a classification scheme and survey. TOP, 15:1–31, 2007.

M.A. Boschetti, A. Mingozzi, and S. Ricciardelli. A dual ascent procedure for
the set partitioning problem. Discrete Optimization, 5:735–747, 2008.

A. Charnes and W.W. Cooper. Programming with linear fractional functions.
Naval research logistics quart, 9:181–186, 1962.

J.-F. Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Opera-
tions Research, 54(3):573–586, 2006.

J.-F. Cordeau and G. Laporte. A tabu search heuristic algorithm for the static
multi-vehicle dial-a-ride problem. Transportation Research B, 37:579–594,
2003a.

J.-F. Cordeau and G. Laporte. The dial-a-ride problem (DARP): Variants,
modeling issues and algorithms. 4OR, 1:89–101, 2003b.

J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algorithms.
Annals of Operations Research, 153(1):29–46, 2007.

T.G. Crainic and G. Laporte. Fleet Management and Logistics. Kluwer, Boston,
USA, 1998.

G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, and F. Soumis.
VRP with pickup and delivery. In P. Toth and D. Vigo, editors, The Vehicle
Routing Problem, pages 225–242. SIAMMonographs on Discrete Mathematics
and Applications, Philadelphia, 2002.

G. Desaulniers, J. Desrosiers, and M.M. Solomon, editors. Column Generation.
Springer, 2005.

W. Dinkelbach. On nonlinear fractional programming. Management Science,
13(7):492–498, 1967.

Y. Dumas, J. Desrosiers, and F. Soumis. Large scale multi-vehicle dial-a-ride
systems. Technical report, GERAD, École des Hautes Études Commerciales,
Montréal, 1989.

18

D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the
elementary shortest path problem with resource constraints: application to
some vehicle routing problems. Networks, 44(3):216–229, 2004.

T. Garaix, D. Josselin, D. Feillet, C. Artigues, and E. Castex. Point-to-point
on-demand transportation in a rural areas. A route optimisation method.
Cybergeo, 2007. A Selection of the best Articles (SAGEO 2005). Article 396
online : http://www.cybergeo.eu/index11373.html.

T. Garaix, C. Artigues, D. Feillet, and D. Josselin. Vehicle routing problems with
alternative paths: an application to on-demand transportation. European
Journal of Operational Research, 204(1):62–75, 2010.

P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting
stock problem – part II. Operations Research, 11(6):863–888, 1963.

B. Golden, S. Raghavan, and E. Wasil, editors. The Vehicle Routing Prob-
lem: Latest Advances and New Challenges, volume 43 of OR/CS interfaces.
Springer, 2008.

B. Jaumard, P. Hansen, and M. Poggi de Aragao. Column generation methods
for probabilistic logic. ORSA Journal on Computing, 3:135–148, 1991.

D. Josselin and C. Genre-Grandpierre. Les transports à la demande pour
répondre aux nouvelles formes de mobilité. le concept de modulobus. In
B. Montulet, M. Hubert, C. Jemelin, and S. Schmitz, editors, Mobilités et
temporalités, pages 151–164. Facultés Universitaires Saint-Louis, Bruxelles,
2005.

L.S. Lasdon. Optimization Theory for Large Systems. Macmillan series in op-
erations research, 1970.

H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with
time windows. In 13th IEEE international conference on tools with artificial
intelligence (ICTAI) 2001, Dallas, USA, pages 160–170, 2001.

S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery
problems. part I: Transportation between customers and depot. Journal für
Betriebswirtschaft, 58(1):21–51, 2008a.

S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and deliv-
ery problems. part II: Transportation between pickup and delivery locations.
Journal für Betriebswirtschaft, 58(2):81–117, 2008b.

S.N. Parragh, J.-F. Cordeau, K.F. Doerner, and R.F. Hartl. Models and algo-
rithms for the heterogeneous previous termdial-a-ridenext term problem with
driver related constraints. Technical report, University of Vienna, Faculty of
Business, Economics and Statistics, 2009.

19

S. Ropke and J.-F. Cordeau. Branch-and-cut-and-price for the pickup and de-
livery problem with time windows. Transportation Science, 43(3):267–286,
2009.

S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut algorithm
for pick-up and delivery problems with time windows. Networks, 49(4):258–
272, 2007.

M.W.P. Savelsbergh and M. Sol. DRIVE : Dynamic routing of independant
vehicles. Operations Research, 46:474–490, 1998.

M. Sol. Column generation techniques for pickup and delivery problems. PhD
thesis, Technische Universitet Eindhoven, 1994.

20

