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REVISITING THE MODULI SPACE OF SEMISTABLE
G-BUNDLES OVER ELLIPTIC CURVES

DRAGOŞ FRĂŢILĂ

Abstract. We show that the moduli space of semistable G-bundles on an
elliptic curve for a reductive group G is isomorphic to a power of the elliptic
curve modulo a certain Weyl group which depend on the topological type
of the bundle. This generalizes a result of Laszlo to arbitrary connected
components and recovers the global description of the moduli space due to
Friedman–Morgan–Witten and Schweigert. The proof is entirely in the realm
of algebraic geometry and works in arbitrary characteristic.

1. Introduction

1.1. The study of principal G-bundles on elliptic curves began with the seminal
paper of Atiyah [Ati57] where he gave a complete and beautiful description of all
the semistable vector bundles. He didn’t discuss the moduli space but one could
have easily guessed from his results the precise statement. Let us denote byMd

r the
moduli space of semistable vector bundles of rank r and degree d on en elliptic curve
E/C. In case r and d are coprime Atiyah essentially proved that the determinant
map

det :Md
r →Md

1 (1)
is an isomorphism of algebraic varieties.

In general, if we put m = gcd(r, d), we have

Md
r ' Em/Sm (2)

where E is the elliptic curve and Sm is the symmetric group on m letters (the
isomorphism is not canonical however). The isomorphisms (1) and (2) hold in any
characteristic and the proof, in characteristic 0, appeared in a paper by Tu [Tu93,
Theorem 1].

For a reductive group G and an elliptic curve E over an algebraically closed field k of
arbitrary characteristic we denote byMd

G the moduli space of semistable G-bundles
on E of topological type d ∈ π1(G). The main result of this note can be summarized
a bit imprecisely as

Theorem. For any d ∈ π1(G) there is an isomorphism of moduli spaces

Md
G 'Md′

Cd
/Wd

where Cd is a certain algebraic torus, d′ ∈ π1(Cd) and Wd a certain Weyl group, all
depending strongly on d.

1
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Remark 1.1. The result is surely well known to experts in characteristic 0 by passing
through flat connections or twisted representations of fundamental groups. However,
to the author’s knowledge, this is the first entirely algebraic proof that works also
in positive characteristic.

Laszlo [Las98] proved the above theorem over C in the case d = 0, generalizing thus
the isomorphism (2). More precisely, he proved that

M0
G 'M0

T /W

where we have denoted by T a maximal torus of G and W is the Weyl group.
His proof is through a Birkhoff-Grothendieck type result which says that every
semistable G-bundle of degree zero over an elliptic curve is an extension of line
bundles of degree zero. Looijenga has proved [Loo76] that the RHS above is a
weighted projective space where the weights can be read off the combinatorics of
the root system of G.

Concerning the other components of the moduli space, motivated by 2d-conformal
field theory, Schweigert has shown in [Sch96] that for any given topological type,
say d ∈ π1(G), there is another reductive group, call it Gd, such thatMd

G 'M0
Gd

as differentiable varieties. His statements are in the realm of differential geometry
but one could possibly find a more algebro-geometric approach.

Another take on this problem has been given by Friedman–Morgan–Witten in a
series of papers [FM98,FMW98,FM00]. They have two approaches: one is analytic
through flat bundles which is very hands-on and adapted to concrete computations,
however not very suitable to questions regarding families and moduli spaces. In
their second approach, which uses deformation theory and is algebraic in nature,
they provided a description ofMd

G as a weighted projective space, thus recovering
also Looijenga’s theorem. However, their method is very different from Laszlo’s and
the relation to line bundles is not transparent.

1.2. Our goal in this note is to give a description ofMd
G in arbitrary characteristic

in terms of line bundles by generalising Laszlo’s approach. Let us explain how to
arrive at the statement of our theorem and then the difficulties and the ideas that
arise in proving it.

The first difficulty is to find what should replace the torus. This has been dealt
with in [Fră16, Theorem 3.2]. It was shown that for a reductive group G and a
topological type d ∈ π1(G), there is a Levi subgroup Ld and a d′ ∈ π1(Ld) such that
every polystable G-bundle comes from a stable Ld-bundle of degree d′. The role of
the Weyl group W will be taken by the relative Weyl group Wd := NG(Ld)/Ld.

This provides us with a well defined map of moduli spaces ind :Md′

Ld
→Md

G that
is moreover finite and Wd-invariant. The second difficulty is to prove that the
quotient map is an isomorphism. This would follow immediately by Zariski’s main
theorem provided we knew the map to be separable. It turns out that the question
of separability (generic smoothness) is rather non-trivial in positive characteristic.

The next step is relatingMd′

Ld
to line bundles. Inspired by Atiyah’s theorem, the

natural choice is to take the determinant map det : Ld → Ld/[Ld, Ld] =: Cd and to
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show that it induces an isomorphism of varieties

det :Md′

Ld
→Mdet(d′)

Cd
.

Notice that Cd is an algebraic torus soMdet(d′)
Cd

is isomorphic to a certain power of
the Jacobian of E.

We have arrived at the following diagram

Md′

Ld

Md
G Mdet(d′)

Cd

ind det (3)

and our main theorem follows by proving two things: (i) det is an isomorphism; (ii)
ind is generically étale with Galois group Wd.

The solution to both issues comes from the same tool: an extra symmetry on the
diagram (3), namely the abelian variety1 M0

Z(Ld) acts on bothMd′

Ld
andMdet(d′)

Cd

making the map det equivariant. Moreover, the action is transitive and by computing
the (reduced) stabilizers we conclude that det is an isomorphism. Moreover, the
action onMd′

Ld
is used to prove that ind is generically étale by constructing a generic

enough2 Ld-bundle.

1.3. Some of the advantages of this approach over those in [FM98,FMW98] are that
it also works in positive characteristic and the proofs in this paper are uniform with
respect to the Dynkin type of the group G and its isogeny class. To obtain precise
information on the groups Ld above, we do use however some results from [Fră16],
namely Corollary 4.3 and Section 4.2, that are done by inspecting the combinatorics
of each root system. Whereas in [FMW98,Sch96] the approach is set-theoretical and
the structure of differential or complex variety needs to be constructed, here we’re
always dealing with the moduli stack/space as an algebro-geometric object and the
maps between them are defined by functoriality, thus we never need to define or
compare algebraic structures on a manifold.

Under some numerical conditions on G and d it was proved in [FM00], independent
of Looijenga’s result [Loo76], that the moduli spaceMd

G is isomorphic to a certain
weighted projective space. A shortcoming of our approach is that it doesn’t permit
us to get this isomorphism without using Looijenga’s result.

We do not address in this paper the existence or the construction of universal
bundles since they rarely exist on moduli spaces. Indeed, the universal bundle on
Md′

Ld
, if it exists, which is a rather subtle question, doesn’t descend toMd

G. See
also Remarks 3.9, 4.12 where a few more details are provided. For a more thorough
discussion of universal bundles onMd

G or opens of it we invite the reader to look
at [FMW98].

1just a product of several copies of Jac(E) and maybe a finite abelian group.
2for the differential of ind
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1.4. Below we introduce the necessary notation and we formulate precisely our
main theorem.

We’ll be working over an algebraically closed field k of arbitrary characteristic, E is
a smooth projective curve of genus one over k and G is a reductive group over k.
We fix a Borus T ⊂ B ⊂ G. We denote by X∗(T ) the group of cocharacters of T .
Let us recall that for a parabolic subgroup B ⊂ P ⊂ G, the algebraic fundamental
group π1(P ) is given by X∗(T )/〈α̌ coroot of P 〉Z. We’ll denote by λ̌P an element of
π1(P ).

We denote by Bunsst
G and byMG the moduli stack, respectively moduli space, of

semistable G-bundles over E. Their connected components are labeled by elements of
π1(G), see [Hof10] . We’ll write Bunλ̌G,sstG andMλ̌G

G for such a connected component.
Each such connected component is of finite type.

In [BP03] it was proved, under some restrictions on the characteristic of the field,
thatMλ̌G

G exists as a normal projective variety. More precisely, the existence and
normality of the moduli space was proved in arbitrary characteristic in [GLSS08]
(see Section 1.1 Main Theorem). For projectivity, in [GLSS08, Section 1.2] some
assumptions on the characteristic of the field was needed. However, Heinloth showed
in [Hei08,Hei10] that the projectivity holds over arbitrary fields.

We have a canonical map Bunλ̌G,sstG → Mλ̌G
G which identifies two semistable G-

bundles if their associated polystable G-bundles3 are isomorphic and kills all the
automorphisms.

Here are the main results of this paper formulated precisely:
Theorem 1.2. Let λ̌G ∈ π1(G) be a fixed topological type. Then there exists a
Levi subgroup L = Lλ̌G ⊂ G (unique up to conjugation) and λ̌L ∈ π1(L) with the
following properties:

(1) ( [Fră16]) the inclusion L ⊂ G induces a well defined map Mλ̌L
L →M

λ̌G
G

and all the semistable L-bundles in Mλ̌L
L are stable, in particular the S-

equivalence relation reduces to isomorphism classes.

(2) Mλ̌L
L → Mλ̌G

G is a finite map, generically Galois, with Galois group the
relative Weyl group WL,G = NG(L)/L.

(3) the following natural map is an isomorphism

Mλ̌L
L /WL,G 'Mλ̌G

G .

Remark 1.3. In characteristic 0 the above theorem can be deduced rather easily
from our previous result [Fră16, Theorem 3.2]. However, in the course of the proof
we prove a technical result (see Lemma 3.7) that allows one to extend the results
of [Fră16] to arbitrary characteristic.

Theorem 1.4. Let L and λ̌L be as in the previous theorem. The map

det :Mλ̌L
L →M

det(λ̌L)
L/[L,L] (4)

3For a semistable G-bundle FG, the associated polystable G-bundle is the G-bundle gr(FG)
that is the unique closed point of {FG} ⊂ Bunλ̌G,sstG .
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is an isomorphism.

Corollary 1.5. Let λ̌G ∈ π1(G) and L, λ̌L as in Theorem 1.2. Then we have

Mλ̌G
G 'Mdet(λ̌L)

L/[L,L]/WL,G.

Remark 1.6. For a torus Z we haveM0
Z ' Pic0(E)⊗Z X∗(Z) and we see therefore

thatMλ̌G
G can be described in terms of line bundles and a Weyl group.

In particular, this theorem recovers Laszlo’s result since for λ̌G = 0 the Levi L0
is just the maximal torus. It also recovers the result of Tu because for G = GLn
and λ̌G ≡ d we have that L = (GLn/m)m and WL,G = Sm, where m := gcd(d, n).
It is not possible to compare directly our description of Mλ̌G

G with the one of
Schweigert [Sch96] or Friedman–Morgan–Witten [FM98,FMW98] since there’s no
obvious algebraic relationship betweenMλ̌L

Lλ̌G
andM0

Gλ̌G
(in loc.cit. the relation

was made through representations of fundamental groups). However, one can check
easily that the Weyl group of Gλ̌G is the same as our relative Weyl group WL,G

and the maximal torus of Gλ̌G corresponds to the center Z(Lλ̌G). In the case of
GLn the isomorphism between Bunλ̌G,sstG (E) and Bun0,sst

Gλ̌G
(and their coarse moduli

spaces) is provided by Fourier-Mukai transforms. It would be very nice to see if one
can extend the Fourier-Mukai transforms to more general reductive groups. This is
the subject of an ongoing investigation of the author joint with Sam Gunningham
and Penghui Li.

Acknoledgements. I would like to thank the Max Planck Institut für Mathematik
in Bonn, where part of this work was done, for providing excellent working conditions.

2. Preliminaries

2.1. Notation. For some notation, see the last paragraph of the introduction. Here
are a few more that we’ll be using. By a G-bundle we mean a G-torsor in the
fppf topology over the scheme/stack in question. Over a curve this is the same
as étale G-torsors for G a smooth group. If FG is a G-bundle over B and F is a
quasi-projective variety with a G action (e.g. a representation) then we denote by
FFG = FG

G× F the associated fiber space over B with fiber F . In particular, if V
is a representation of G, we have the associated vector bundle VFG .

We’ll denote by X a smooth projective curve over k. When we say curve, we always
mean a smooth projective curve over k. Some results and definitions make sense for
any genus so we’ll state them like that.

For an algebraic group H we denote by BH = pt/H the classifying stack of H-
bundles. We denote by BunG(X) the moduli stack of G-bundles on X and by
MG(X) the corresponding moduli space (existence in arbitrary characteristic is
proved in [GLSS08]. Similarly for the other groups T,B, P , etc. When we omit X
and write BunG orMG we mean BunG(E) orMG(E) where E is an elliptic curve.
The connected components of BunG(X) are labeled by π1(G) (see [Hof10]).
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Let us begin by giving some definitions and citing some results that we’ll be using
throughout the paper.

2.2. The slope map.

Definition 2.1 (see [Sch14]). For a parabolic subgroup B ⊂ P ⊂ G with Levi
subgroup L we define the slope map φP : π1(P )→ X∗(T )Q as follows

π1(P )→ π1(P )Q ' X∗(Z(L))Q → X∗(T )Q

where we indicated by a subscript Q the tensoring ⊗ZQ.

For example, if G = GLn and λ̌i, i = 1, . . . , n are the coordinate cocharacters of the
diagonal matrices then π1(G) ' Zλ̌1 and φG(dλ̌1) = d

n (λ̌1 + · · ·+ λ̌n).

The slope map has some very nice properties and we refer the interested reader
to [Sch14] for a thorough treatment.

2.3. Semistability.

Definition 2.2. Let H ⊂ K be a pair of algebraic groups and let FK → Y be a
K-bundle over Y . A reduction of FK to H is a couple (FH , θ) of an H-bundle and
an isomorphism θ : FH

H× K ' FK . Two reductions (FH , θ), (F ′H , θ′) are equivalent
if there is an isomorphism of H-bundles FH → F ′H such that its extension to K
intertwines θ and θ′.

Remark 2.3. To give a reduction of a K-bundle FK to H is the same as to give a
section of FK/H → Y . Two such sections give equivalent reductions if and only if
there exists an automorphism σ ∈ Aut(FK) translating one into the other.

Remark 2.4. For example, if K = GLn and H is the subgroup of upper-triangular
matrices, then to give a reduction to H of a rank n vector bundle (i.e. a GLn-bundle)
is the same as to give a filtration of it with sub-quotients being line bundles.

The following definition of semistability for G-bundles is from [Sch14] where it is
also proved the equivalence with the Ramanathan’s semistability.

Definition 2.5. A G-bundle FG of degree λ̌G over a smooth projective curve X is
(semi)stable if for any proper parabolic subgroup P ⊂ G and for any reduction FP
of FG to P of degree λ̌P we have

φP (λ̌P ) <
(≤)

φG(λ̌G).

Proposition 2.6. [Sch14, Proposition 3.2 (b)] If V is a highest weight representa-
tion of G of highest weight λ and FG is a G-bundle of degree λ̌G over a curve X
then the slope (i.e degree divided by rank) of the associated vector bundle VFG is

µ(VFG) = 〈φG(λ̌G), λ〉.
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2.4. Frobenius semistability. In case k is of characteristic p, there is a stronger
notion of stability, called Frobenius semistability and it behaves better with respect
to associated vector bundles.

Denote by FX : X → X the absolute Frobenius: it is the identity at the level of
topological spaces and raising to the power p at the level of functions.

Definition 2.7. A G-bundle FG is Frobenius semistable if (Fn)∗(FG) is semistable
for all n ≥ 0.

In characteristic zero we have the following remarkable property: the tensor product
of two semistable vector bundles of the same slope is again semistable. The correct
analogue in characteristic p is the following:

Lemma 2.8. [Sun99, Corollary 1.1] Let FG be a Frobenius semistable G-bundle
over a smooth projective curve X and let f : G → G′ be a morphism of reductive
groups such that f(Z(G)) ⊂ Z(G′). Then the induced G′-bundle is also Frobenius
semistable. In particular, if V is a representation of G such that the center of G
acts by a character, the induced vector bundle VFG is semistable.

This result is relevant to us because of the following theorem:

Theorem 2.9. [Sun99, Theorem 2.1] For curves of genus one semistability and
Frobenius semistability are equivalent notions.

These two put together give

Corollary 2.10. Let FG be a semistable G-bundle over an elliptic curve and let V
be a representation of G such that the center of G acts by a character. Then the
vector bundle VFG is semistable.

The above Corollary is crucially used in the proof of Lemma 3.7.

2.5. Jordan-Hölder series. In the case of vector bundles it makes sense to talk
about the category of semistable vector bundles of fixed slope. This is a finite length
category so we can also talk about Jordan-Hölder series. To give a filtration of a
vector bundle is the same as to give a reduction of the corresponding GLn-bundle to
a certain parabolic subgroup. In general, the Jordan-Hölder series has no reason to
have the same slopes of the graded parts when the vector bundle varies. However,
this is a particularity of elliptic curves. Namely, it can be extracted from Atiyah’s
paper [Ati57] that for semistable vector bundles of rank n and degree d there is a
(unique up to conjugation) parabolic subgroup such that all the semistable vector
bundles of rank n and degree d admit a reduction to it and moreover the graded
parts are stable vector bundles of equal slope. For example, for slope 0, all semistable
vector bundles are extensions of degree zero line bundles.

The following is an analogue for any reductive group G and any degree λ̌G.

Theorem 2.11. [Fră16, Lemma 2.12, Theorem 3.2, Corollary 4.2] Let λ̌G ∈ π1(G)
and consider Bunλ̌G,sstG the stack of semistable G-bundles of degree λ̌G on an elliptic
curve E. Then there exists a unique (up to conjugation) parabolic subgroup P and a
unique λ̌P ∈ π1(P ) such that
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(1) φG(λ̌G) = φP (λ̌P ),

(2) every semistable G-bundle of degree λ̌G has a reduction to P of degree λ̌P ,

(3) the map
Bunλ̌P ,sstP → Bunλ̌G,sstG

is proper, generically Galois with Galois group WL,G = NG(L)/L where L
is the Levi subgroup of G.

(4) for any FP ∈ Bunλ̌P ,sstP the induced L-bundle is stable.

(5) ( [Fră16, Corollary 4.3]) For a reductive group L and λ̌L ∈ π1(L) there exist
stable L-bundles of degree λ̌L if and only if Lad =

∏
i PGLni and λ̌ad

L ≡ (di)i
with gcd(di, ni) = 1, ∀i.

Remark 2.12. In [Fră16] there is a table with all the possible subgroups L that
appear in the above theorem. For the convenience of the reader we provide a copy
of the table in the Appendix.

Remark 2.13. The proof from [Fră16] is in characteristic zero, however the only
moment that we used it was to apply "generic smoothness" (see [Fră16, Lemma
3.9]) and deduce the existence of certain regular bundles (see Definition 3.5) which
we prove here in arbitrary characteristic (see Lemma 3.7). Therefore the results
of [Fră16] hold in positive characteristic as well.

2.6. Vector bundles over elliptic curves.

Theorem 2.14. [Ati57, Corollary to Theorem 7] Let n ≥ 1 and d ∈ Z be coprime.

(1) Any stable rank n degree d vector bundle over E is uniquely determined by
it’s determinant bundle.

(2) If V is a vector bundle as above and L ∈ Pic0(E) then V ⊗ L ' V if and
only if L ∈ Pic0(E)[n], the n-torsion subgroup.

Theorem 2.15. [BH10, Lemma 2.2.1 and Example 5.1.4] Let X be a smooth
projective curve and let

1→ Z → G→ H → 1
be a central extension. Fix λ̌G ∈ π1(G) and denote by λ̌H the image of λ̌G in π1(H).
Then the map

Bunλ̌GG (X)→ Bunλ̌HH (X)
is a Bun0

Z(X)-torsor.

Remark 2.16. The same holds for semistable bundles also since being semistable for
G or H is the same thing (the flag varieties are the same).

Corollary 2.17. Let n ≥ 1 and d ∈ Z be coprime. Then over an elliptic curve E
we have

Bund,stPGLn ' BPic0(E)[n]red,

where we have denoted by Pic0(E)[n] the kernel (subgroup scheme) of the multipli-
cation by n : Pic0(E)→ Pic0(E). In particular, we deduce thatMd

PGLn = pt.
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Proof. Using Theorem 2.15 we have that Bund,stGLn → Bund,stPGLn is a Bun0
Gm-torsor.

By Theorem 2.14 we deduce that Bund,stPGLn has only one isomorphism class of objects
and the automorphism group is the kernel of the action of Pic0(E) on Bund,stGLn .
However, this kernel must be a smooth group scheme because BunPGLn is a smooth
stack, so by Theorem 2.14 it must be Pic0(E)[n]red . �

Remark 2.18. I don’t know a direct way of showing that the scheme theoretic
stabilizer of the action of Pic0(E) on Bund,sstPGLn is precisely Pic0(E)[n]red.

3. Proof of Theorem 1.2

3.1. The action of the center.

Corollary 3.1. Let E be an elliptic curve, let L be a reductive group and let λ̌L ∈
π1(L) such that there exist stable L-bundles of degree λ̌L on E (see Theorem 2.11
(5) ). Then the action ofM0

Z(L) onMλ̌L
L is transitive.

Proof. From Theorem 2.11 (5) we have Lad '
∏
i PGLni and λ̌ad

L = (di)i such that
gcd(di, ni) = 1. So we can apply Corollary 2.17 to conclude thatMλ̌ad

L

Lad = pt.

Since Bunλ̌L,stL → Bunλ̌
ad
L ,st
Lad is a Bun0

Z(L)-torsor (see Theorem 2.15) we deduce that
Bun0

Z(L) acts on Bunλ̌L,stL transitively on objects. This property is clearly preserved
when we pass to moduli spaces. �

Corollary 3.2. Under the hypotheses of the previous corollary, all L-bundles FL
in Bunλ̌L,stL have the same automorphism group.

Proof. We put Z := Z(L). For FZ ∈ Bun0
Z and FL ∈ BunL there is a canonical

isomorphism Aut(FL)→ Aut(FL⊗FZ) sending θ to θ⊗ id. From Corollary 3.1 the
action Bun0

Z y Bunλ̌L,stL is transitive on objects so we conclude. �

Remark 3.3. The above Corollary is never used in the sequel but it allows us to see
that Bunλ̌L,stL →Mλ̌L

L is a gerbe.

3.2. Regular bundles. This subsection is dedicated to proving the following
Lemma which was one of the key obstacles:

Lemma 3.4. Let λ̌G ∈ π1(G) and L,P, λ̌L ∈ π1(L) be as in Theorem 2.11. Then
the map ind :Mλ̌L

L →M
λ̌G
G is generically étale.

Let us introduce the notion of regular L-bundles.4

Definition 3.5. (1) Let H be an algebraic group and V a representation of H.
Consider λ̌H ∈ π1(H) such that its image in π1(GL(V )) is 0. An H-bundle
FH of degree λ̌H is called V -regular if H0(X,VFH ) = 0,

4There exists another notion of regular stable bundles: those whose automorphism group is
exactly the center of the group (see [FM98,FMW98]). However we’ll not use this notion in this
paper.
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(2) Let P ⊂ G be a parabolic subgroup with Levi subgroup L. A P -bundle
over a curve X is called regular if it is g/p-regular. An L-bundle is regular
if it is g/l-regular. .

Remark 3.6. This condition on FP is in order for the differential of p : Bunλ̌PP →
Bunλ̌GG to be injective at FP . However, Serre duality over elliptic curves implies
also the surjectivity, i.e. smoothness of p at FP .

The core of the proof of Lemma 3.4 is to show that there exist regular bundles:

Lemma 3.7. Let X be a curve and λ̌G, P, L, λ̌P as in Theorem 2.11. Then the
substack of regular L-bundles in Bunλ̌L,stL is open and dense.

Proof. The strategy is the following: we start with an arbitrary Frobenius semistable
L-bundle (see Theorem 2.9 for existence) and we tensor it with a sufficiently generic
Z := Z(L)-bundle of degree zero to produce a regular L-bundle.

The openness follows from the semi-continuity of dim(H0(X, (g/l)FL)) so all we
need to prove is the non-emptiness of the regular locus.

More precisely, let FL be a Frobenius stable L-bundle of degree λ̌L and V be a
highest weight representation of L such that VFL is of degree zero and such that the
center Z = Z(L) acts on V by a nontrivial character χ. Corollary 2.10 guarantees
that VFL is semistable of degree zero and hence the set of isomorphism classes of
line subbundles of degree zero of VFL is finite.

Now let us consider a Z-bundle FZ of degree zero. Using the group morphism
Z × L→ L we can produce a new L-bundle that we denote FL ⊗FZ which is still
Frobenius semistable of degree λ̌G. The center Z acts on V by χ so we have that
VFL⊗FZ = VFL ⊗ χFZ , hence the set of line subbundles of degree zero of VFL⊗FZ is
the one for VFL tensored by χFZ . Since χ is non-trivial, we obtain that for almost
all Z-bundles the trivial line bundle O is not a line subbundle of VFL⊗FZ , in other
words H0(X,VFL⊗FZ ) = 0. So we’ve produced an open dense substack of L-bundles
FL of degree λ̌P that are V -regular.

Let us apply the previous paragraph to the representation L y g/l. It is not
a highest weight representation but it admits a filtration with subquotients of
highest weight. As the weights of g/l are among the roots of g, we see that if W
is such a subquotient, then WFL is semistable of degree zero (see Lemma 2.8 and
Proposition 2.6). Also the central characters are not trivial because the centraliser
of Z(L) in G is precisely L. Therefore, by the previous paragraph applied to each
such subquotient W , the substack of W -regular L-bundles is open and dense and
so is their intersection (finite number) which is nothing else than the substack of
regular L-bundles. �

Proof. (of Lemma 3.4) Proving generic étaleness is equivalent to proving the map is
étale at some point, say FL. By looking at the differential of the map we have to
show the bijectivity of

H1(E, lFL)→ H1(E, gFL).
This is implied by the vanishing of Hi(E, (g/l)FL), i = 0, 1.
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Let FL be a regular L-bundle (see Lemma 3.7 ). Then by definition we have
H0(E, (g/l)FL) = 0. By Riemann-Roch we get thatH1(E, (g/l)FL) = deg((g/l)FL) =
0 where for the last equality we used genus one and Proposition 2.6. �

Lemma 3.8. Let λ̌G ∈ π1(G) and L,P, λ̌L ∈ π1(L) as in Theorem 2.11 and put
W := WL,G the relative Weyl group of L ⊂ G. Then the map π :Mλ̌L

L →M
λ̌G
G is

W -invariant and the fibers are W -orbits. In particular it is a finite map.

Proof. Both moduli spaces are projective varieties so finiteness follows from quasi-
finiteness which in turn follows from the fact that the fibers are W -orbits.

Remark that the map π is clearly W -invariant. Indeed, this is a general fact:
an H-bundle doesn’t change its isomorphism class when acted upon by an inner
automorphism of H. In our case, the action of an element w ∈W = NG(L)/L on
L becomes an inner automorphism of G, so the isomorphism class of the induced
G-bundle is not affected.

Let us prove now that the fibers are W -orbits. Let FL,F ′L ∈M
λ̌L
L be two L-bundles

in the fiber of π, namely FL
L× G ' F ′L

L× G. Let us call FP and F ′P the induced
P -bundles.

Let us recall the notion of relative position: the bundles FP and F ′P are (generically)
in relative position w̃ if the section s : X → FP

P× G/P that gives F ′P lands
(generically) in FP

P× Pw̃P/P . We denoted by w̃ a representative of a coset in the
double coset space P\G/P .

Let us denote by w̃ the generic relative position of FP ,F ′P which we recall are
of degree λ̌P (see Lemma 2.11). Lemma 3.5 from [Fră16] tells us that the two
P -bundles are in relative position w̃ and then Lemma 3.7 from loc.cit gives us
moreover that w̃ ∈ NG(L)/L = WL,G.

Since we have not only P -bundles but actually L-bundles we can conjugate one of
them by w̃ and therefore we can assume that FP and F ′P are in general position 1.

So in order to finish the proof we need to show that FL ' F ′L provided the two
induced P -bundles are in relative position 1. But being in relative position 1 means
that the section giving F ′P satisfies s : X → FP

P× P/P = X and therefore F ′P ' FP .
By quotienting out by U = Ru(P ) we get FL ' FP /U ' F ′P /U ' F ′L which is what
we wanted. �

3.3. Proof of Theorem 1.2.

Proof. We finish the proof of Theorem 1.2. The point (1) is contained in Theo-
rem 2.11 (4).

To prove (2) we combine Theorem 2.11 (3), Lemma 3.4 and Lemma 3.8.

To prove (3), from Lemma 3.8 we have that the natural mapMλ̌L
L →M

λ̌G
G factorises

throughMλ̌L
L /WL,G and moreover the morphismMλ̌L

L /WL,G →Mλ̌G
G is bijective

and separable, see Lemma 3.4. Since the target is a normal variety (see [GLSS08]),
we can apply Zariski’s main theorem to conclude that it is an isomorphism. �
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Remark 3.9. One might think that ifMλ̌L
L has a universal bundle then it descends

toMλ̌G
G . However, unless L = G, this is not the case and one reason is that the

dimension of the automorphism group of a G-bundle induced from L varies (the
jumps arise at non regular L-bundles).

4. Proof of Theorem 1.4

Unless otherwise stated, in this section L is a reductive group and λ̌L is an element of
π1(L) such that there exist stable L-bundles of degree λ̌L where E is an elliptic curve.
In this section we’ll prove Theorem 1.4 which asserts that det is an isomorphism of
varieties

det :Mλ̌L
L →M

det λ̌L
L/[L,L].

The idea of the proof is rather simple: we show that the map is bijective on k-points
by exploiting the action ofM0

Z(L) on both varieties; using the differential criterion
we show that it’s also étale. We have thus a finite, étale map of degree 1, hence an
isomorphism.

4.1. Preliminaries. Recall from Theorem 2.11 (5) that the assumption on L forces
Lad '

∏
i PGLni for some ni. We denote by Zc = L/[L,L] the co-center of L and

by Z = Z(L) the center of L.

Let us recall that the natural map det : L → Zc is called the determinant. The
homomorphisms Z × L→ L and Z × Zc → Zc naturally give actions of Bun0

Z on
Bunλ̌L,stL and on Bundet(λ̌L)

Zc .

A diagonalizable group is a linear algebraic group that is isomorphic to a product
of several Gm and µn for various n ≥ 2. The category of diagonalizable groups
is anti-equivalent to the category of finitely generated abelian groups, where the
functors are given by D 7→ Homgr(D,Gm) and Λ 7→ Spec(k[Λ]).

For a diagonalizable group D, we write Bun0
D(X) for the moduli stack of D-bundles

FD on X of degree zero, that is such that for any character χ : D → Gm the
associated line bundle χFD is of degree zero. If D is not a torus, then this stack
might not be connected, for example for D = µn, p - n we have Bun0

µn(X) =
Pic0(X)[n]× Bµn the n-torsion in Pic0(X).

We denote byM0
D the moduli space of D-bundles of degree zero in the same sense

as above. It is a group scheme whose (reduced) connected component of the identity
is an abelian variety. For example, if D is a torus, thenM0

D ' Pic0(X)dim(D). If
D has some finite component then M0

D is a product of an abelian variety and a
finite group scheme which is a finite subgroup of an abelian variety. For example,
for D = µn we haveM0

D = ker(n : Pic0(X)→ Pic0(X)). Remark that in positive
characteristicM0

D might not be smooth.

Here is a basic general lemma:

Lemma 4.1. Let H ⊂ L be reductive groups such that [H,H] = [L,L]. Let
FH ,F ′H be two H-bundles on a proper scheme Y . Then if the induced L-bundles
are isomorphic, the H-bundles are also.
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Proof. We will see F ′H as a reduction toH of the L-bundle FH
H× L (see Definition 2.2

and the remark following). So we have a section s : Y → FH
H× L/H. We need to

show that by an automorphism of the L-bundle FH
H× L we can translate it into

the trivial section s0 : Y = FH
H× H/H ↪→ FH

H× L.

From the assumptions we haveHZ(L) = L henceH acts trivially on L/H. Therefore
the section s can be seen as a section s : Y → Y × L/H, i.e. as a map Y → L/H.
As H,L are reductive the quotient L/H is an affine variety so s must be constant,
say equal to z, because Y is proper.

The assumptions imply the surjectivity Z(L) � L/H so we can take z ∈ Z(L) a
lift of z. The element z being in the center of L gives an automorphism, call it θz,
of FH

H× L such that θ−1
z (s) = s0. In other words, the section s gives an H-bundle

isomorphic to FH . �

Remark 4.2. The above Lemma is false if Y is not proper (think of modules over a
Dedeking ring) and it is also false if L/H is not affine (two filtrations of the same
vector bundle need not be isomorphic).

4.2. Diagonalizable groups. We collect here some technical lemmas on diagonal-
izable groups and bundles over a smooth projective curve X. We advise the reader
to skip this section and come back to it when it is referred to.

Lemma 4.3. Let L be a reductive group such that Lad '
∏
i PGLni . Assume that

[L,L] is simply connected. Then there exists a torus T ′ such that L ↪→
∏
i GLni ×T ′.

Proof. The proof is essentially linear algebra.

We have L =
∏
i SLni

C× Z(L), where C =
∏
i µni . We put can : C ↪→

∏
iGm the

canonical inclusion.

There is a torus T ′ and a map φ : Z(L) ↪→
∏
iGm × T ′ such that the following

diagram commutes:
C Z(L)

∏
iGm × T ′
can

Indeed, using the equivalence of diagonalizable groups with finitely generated abelian
groups, we need to show that it exists φ :

∏
i Z× Zr �M such that the following

diagram commutes ∏
i Z/ni M

u
oooo

∏
i Z× Zr

can
OOOO

φ

:: ::

where M is the abelian group of characters of Z(L).

This can be done easily as follows: first take r = 0 and use that
∏
i Z is free and

u is surjective. Then, for a convenient r ≥ 0 add Zr mapping surjectively onto
ker(u). �
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Lemma 4.4. Let L be an arbitrary reductive group. Then there exists a central
extension

1→ T ′ → L̂→ L→ 1
with [L̂, L̂] simply connected and T ′ a torus. In particular, since T ′ is connected, we
have π1(L̂) � π1(L).

Proof. We write L = [L,L] C× Z = [L,L]sc C̃× Z where C̃ = Z([L,L]sc) and [L,L]sc
is the simply connected cover of [L,L]. Let us choose a torus T ′ and an inclusion
C̃ ↪→ T ′. We define the following group

L̂ := [L,L]sc C̃× (Z × T ′)

where C̃ → Z × T ′ is the diagonal homomorphism (injective!). Clearly [L̂, L̂] =
[L,L]sc. The natural homomorphism L̂→ L, forgetting the factor T ′, is surjective
and its kernel is exactly T ′. �

Lemma 4.5. Let Z ↪→ Z ′ be an injective morphism of diagonalizable groups. Then
Bun0

Z(X)→ Bun0
Z′(X) is injective on objects.

Proof. Let F ,F ′ be two Z-bundles such that there exists

θ : F Z× Z ′ ' F ′ Z× Z ′ isomorphism of Z ′-bundles.
This is equivalent to having

θ : F → F ′ Z× Z ′ a Z-equivariant bundle map.
Taking the quotient by Z we obtain

θ : X → F ′ Z× Z ′/Z = X × Z ′/Z a morphism over X.

Since Z ′/Z is affine (diagonalizable groups) and X is proper, the map θ must be
constant, say equal to z0Z. Due to the commutativity of the groups we have that
z−1

0 θ : F → F ′ Z× Z ′ is a Z-equivariant morphism whose image is in F ′ Z× Z = F ′.
In other words z−1

0 θ restricts to an isomorphism F ' F ′ of Z-bundles.

In a similar way one can show the injectivity at the level of automorphisms although
we will not need it. �

Lemma 4.6. Let Γ′ � Γ be a surjective map of diagonalizable groups. Then
Bun0

Γ′(X)→ Bun0
Γ(X)

is surjective on objects.

Proof. (a) First we suppose Γ′,Γ to be tori. Since BunGm(X)0 ' Pic0(X)× BGm
and that abelian varieties are divisible groups we get the desired surjectivity.

(b) For the general case, let Γ′ ↪→ T ′ be an embedding into a torus. Define
T := (T ′ × Γ)/Γ′, i.e. the pushout of T ′ and Γ along Γ′:

Γ′ Γ

T ′ T
q

(5)
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Since the category of diagonalizable groups is abelian (being anti-equivalent to
the category of finitely generated abelian groups) this square is also cartesian5, i.e.
Γ′ = q−1(Γ).

From (5) we get a commutative diagram

Bun0
Γ′(X) Bun0

Γ(X)

Bun0
T ′(X) Bun0

T (X)q

(6)

where the vertical maps are injective due to Lemma 4.5. The surjectivity of q follows
from (a) above.

Let F ′ ∈ Bun0
T ′(X) be such that q(F ′) has a reduction to Γ, i.e. the bundle q(F ′)/Γ

has a section. However, since the diagram (5) is cartesian we have q(F ′)/Γ = F ′/Γ′.
But having a section of F ′/Γ′ is equivalent to giving a reduction of F ′ to Γ′. The
surjectivity of q implies the desired surjectivity. �

4.3. The action of the center. In this subsection we’ll analyse in detail the
stabiliser ofM0

Z(L) acting onMλ̌L
L for L, λ̌L such that there exist stable bundles.

Lemma 4.7. Let L, λ̌L be as in Theorem 2.11 (5). Then the stabiliser ofM0
Z(L)(k)

acting onMλ̌L
L (k) is preciselyMZ([L,L])(k).

Proof. Let us put Z := Z(L) and Zc := L/[L,L] the center and the cocenter of L.

First we show that if L ∈ M0
Z(L)(k) stabilises some F ∈ Mλ̌L

L (k) then L ∈
MZ([L,L])(k). This is actually quite simple and follows from the commutativity of
the diagram

L× Z(L) Zc × Zc Zc

L× Z(L) L Zc.

=

det× det m

=

m det

Indeed, from the diagram we infer that det(L ⊗ F) ' det(L)⊗ det(F) and hence if
L⊗F ' F we obtain det(L) ' O, in other words L admits a reduction to Z([L,L]).

Remark that here we haven’t use the semistability or genus one.

The converse is a bit more technical and uses stability and genus one. Let L be
a Z([L,L])-bundle on E and F a stable L-bundle on E of degree λ̌L. We need to
show that L ⊗ FL ' FL.

Let us split the argument depending on whether [L,L] is simply connected or not.

(a) [L,L] simply connected. Lemma 4.3 provides an embedding L ⊂
∏
i GLni ×T ′ =:

H where T ′ is a torus and such that [L,L] = [H,H]. Using Lemma 4.1 we can
suppose L = H in which case the statement is equivalent to Theorem 2.14 (2).

5One could also just check it by hand easily.
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(b) [L,L] arbitrary. From Lemma 4.4 there is a central extension

1→ T ′ → L′ → L→ 1

with T ′ a torus and [L′, L′] simply connected.

Pick λ̌L′ ∈ π1(L′) a lift of λ̌L. From Theorem 2.15 we have that the map

Bunλ̌L′ ,st
L′ → Bunλ̌L,stL

is a Bun0
T ′-torsor, in particular there exists a stable L′-bundle F ′ which lifts F .

Since Z([L′, L′]) surjects onto Z([L,L]), Lemma 4.6 shows that there exists a
Z([L′, L′])-bundle L′ which lifts L.

Applying (a) to L′ we get F ′⊗L′ ' F ′ and pushing forward to L-bundles and using
the commutativity of the following diagram

L′ × Z(L′) L′

L× Z(L) L

m′

m

we eventually get F ⊗ L ' F which concludes the proof. �

4.4. The determinant map.

Lemma 4.8. Let V be a stable vector bundle over a smooth projective curve X.
Then End(V) = k · Id.

Proof. This is well-known and is a version of Schur’s Lemma. Let φ ∈ End(V) and
let λ ∈ k be an eigenvalue of φ at some point. Then the endomorphism φ− λ Id of
V has a non-trivial kernel which must be of degree zero. The stability of V implies
at once that the kernel must be V, in other words φ = λ Id. �

Corollary 4.9. Let L be a reductive group of type products of type A and let F be
a stable L-bundle on X. Then H0(X, lF ) = z(l).

Proof. We have an exact sequence

0→ z(l) = H0(X, z(l)F )→ H0(X, lF )→ H0(X, lad
F )

and the statement follows if we show that H0(X, lad
F ) = 0.

If L =
∏
i GLni then Lemma 4.8 suffices to conclude. Moreover, it implies also the

vanishing
H0(X, lad

F ) = 0. (7)

In general, the group Lad '
∏
i PGLni is also the adjoint group of L′ :=

∏
i GLni

and the Lad-bundle F/Z(L) lifts to an L′-bundle. Since the bundles lad
F and l′ad

F ′ are
isomorphic, from (7) we deduce H0(X, lad

F ) = 0. �

Remark 4.10. The statement of the corollary is true for any reductive group G and
any stable G-bundle on a smooth projective curve but the proof is more involved
(see for example [Ram75, Proposition 3.2]).



G-BUNDLES ON ELLIPTIC CURVES 17

Lemma 4.11. Let L, λ̌L be as in Theorem 2.11 (5). Then det :Mλ̌L
L →M

det(λ̌L)
L/[L,L]

is étale.

Proof. We need to show that for every stable L-bundle F the tangent map

dF det : H1(E, lF )→ H1(E, (l/[l, l])det(F))

is an isomorphism. First we’ll show that it is surjective and then conclude by a
dimension argument.

For a surjective map of algebraic groups π : G� H by looking at the exact triangle
of tangent complexes for the induced map π : BunG → BunH

Tπ → TBunG → π∗TBunH
+→

we obtain a long exact sequence in cohomology whose end terms are

H1(E, gF )→ H1(E, hF )→ H2(E, kF ) = 0,

where we put k = Lie(ker(π)). It means that π is smooth, in particular, det is
smooth.

Let us now compute the dimensions. Since L/[L,L] is a torus we know thatMλ̌
L/[L,L]

is a product of components of Pic(E), in particular it is smooth of dimension equal
to dim(L/[L,L]).

On the other hand, let F ∈ Mλ̌L
L . Recall that over an elliptic curve we have

dim H0(E, lF ) = dim H1(E, lF ) by Riemann–Roch and Serre duality. From Corol-
lary 4.9 we obtain dim(H1(E, lF ) = dim(z(l)). Since dim(z(l)) = dim(l/[l, l]) for
any reductive Lie algebra l, we’re done. �

4.5. Proof of Theorem 1.4. Now we can finish the proof of Theorem 1.4.

We show that
det :Mλ̌L

L →M
det(λ̌L)
L/[L,L]

is finite and bijective on k-points. We conclude that it is an isomorphism since a
finite, étale map of degree one is an isomorphism.

The moduli spaceMλ̌L
L is a proper variety, in particular det is a proper map. Since

it is also étale (from Lemma 4.11) we deduce it is finite.

Now the surjectivity of det :Mλ̌L
L (k)→Mdet(λ̌L)

L/[L,L](k) follows at once.

For the injectivity, let F ,F ′ ∈Mλ̌
L(k) be such that det(F) ' det(F ′). The action of

M0
Z(L)(k) onMλ̌

L(k) is transitive by Corollary 3.1, hence there exists L ∈M0
Z(L)(k)

such that F ′ ' F ⊗ L. By taking determinants we have (see proof of Lemma 4.7)

det(F ′) ' det(F)⊗ det(L).

From the assumption on F and F ′ we obtain det(L) = O, or in other words L
admits a reduction to Z([L,L]). Lemma 4.7 implies F ⊗ L ' F and hence F ' F ′,
or in other words det is injective on k-points.



18 DRAGOŞ FRĂŢILĂ

Remark 4.12. Given this simple description ofMλ̌L
L one might be led to think that

the existence of a universal bundle on it is automatic from the classical Poincaré
bundle on the Picard variety. This is not the case. For example, if Z(L) is not
connected then Theorem 6.8 from [BH12] says thatMλ̌L

L does not admit a universal
bundle (called Poincaré bundle in loc.cit.). On the other hand, the same theorem
tells us that if [L,L] is simply connected and Z(L) is connected then there is a
universal bundle. I haven’t determined precisely what happens if [L,L] is not simply
connected, one of the issues being that the automorphism group of a stable L-bundle
is bigger than Z(L) in this situation.

Appendix A.

In this Appendix we provide a table (taken from [Fră16]) with the Levi subgroups
Lλ̌G appearing in Theorem 1.2, as well as their relative Weyl groups WL,G. We omit
λ̌G = 0 since in this case the Levi subgroup is always equal to the maximal torus.

G λ̌G Type of L Diagram
of (G,L)

Type of
WL,G

An−1 d
An/e−1 × · · · ×An/e−1

e = gcd(n, d) An/e−1 −◦ · · · ◦−An/e−1 Ae−1

Bn 1 A1 Cn−1

C2n 1 A1 ×A1 · · · ×A1︸ ︷︷ ︸
n

Cn

C2n+1 1 A1 ×A1 · · · ×A1︸ ︷︷ ︸
n+1

Cn

D2n+1

1 A1 × · · · ×A1 ×A3 Cn−1

2 A1 ×A1 Cn−1

D2n

(1,0) A1 × · · · ×A1 Bn

(0,1) A1 ×A1 C2n−2

(1,1) A1 × · · · ×A1 Cn

E6 1 A2 ×A2 G2

E7 1 A1 ×A1 ×A1 F4



G-BUNDLES ON ELLIPTIC CURVES 19

References
[Ati57] M. F. Atiyah. Vector bundles over an elliptic curve. Proceedings of the London Mathe-

matical Society, s3-7(1):414–452, 1957.
[BH10] I. Biswas and N. Hoffmann. The line bundles on moduli stacks of principal bundles on a

curve. Doc. Math., 15:35–72, 2010.
[BH12] I. Biswas and N. Hoffmann. Poincaré families of G-bundles on a curve. Math. Ann.,

352(1):133–154, 2012.
[BP03] V. Balaji and A. J. Parameswaran. Semistable principal bundles. II. Positive character-

istics. Transform. Groups, 8(1):3–36, 2003.
[FM98] R. Friedman and J. W. Morgan. Holomorphic principal bundles over elliptic curves.

1998.
[FM00] R. Friedman and J. W. Morgan. Holomorphic principal bundles over elliptic curves II:

the parabolic construction. Journal of Differential Geometry, 56(2):301–379, October
2000.

[FMW98] R. Friedman, J. W. Morgan, and E. Witten. Principal G-bundles over elliptic curves.
Math. Res. Lett., 5:97–118, 1998.

[Fră16] D. Frăţilă. On the stack of semistable G-bundles over an elliptic curve. Math. Ann.,
365(1-2):401–421, 2016.

[GLSS08] T. L. Gómez, A. Langer, A. H. W. Schmitt, and I. Sols. Moduli spaces for principal
bundles in arbitrary characteristic. Adv. Math., 219(4):1177–1245, 2008.

[Hei08] J. Heinloth. Semistable reduction for G-bundles on curves. J. Algebraic Geom., 17(1):167–
183, 2008.

[Hei10] J. Heinloth. Addendum to “Semistable reduction of G-bundles on curves” [mr2357683].
J. Algebraic Geom., 19(1):193–197, 2010.

[Hof10] N. Hoffmann. On moduli stacks of G-bundles over a curve. In Alexander Schmitt, editor,
Affine Flag Manifolds and Principal Bundles, Trends in Mathematics, pages 155–163.
Springer Basel, January 2010.

[Las98] Y. Laszlo. About G-bundles over elliptic curves. Ann. Inst. Fourier, 48:413–424, 1998.
[Loo76] E. Looijenga. Root systems and elliptic curves. Inventiones mathematicae, 38(1):17–32,

February 1976.
[Ram75] A. Ramanathan. Stable principal bundles on a compact Riemann surface. Math. Ann.,

213(2):129–152, June 1975.
[Sch96] C. Schweigert. On moduli spaces of flat connections with nonsimply connected structure

group. Nucl.Phys., B492:743–755, 1996.
[Sch14] S. Schieder. The Harder–Narasimhan stratification of the moduli stack of G-bundles via

Drinfeld’s compactifications. Selecta Mathematica, pages 1–69, 2014.
[Sun99] X. Sun. Remarks on semistability of g-bundles in positive characteristic. Compositio

Mathematica, 119:41–52, 10 1999.
[Tu93] L. W. Tu. Semistable bundles over an elliptic curve. Adv. Math., 98(1):1–26, 1993.

IRMA, 7 rue René Descartes, 67084 Strasbourg Cedex

Email address: fratila@math.unistra.fr


	1. Introduction
	1.1. 
	1.2. 
	1.3. 
	1.4. 
	Acknoledgements.

	2. Preliminaries
	2.1. Notation
	2.2. The slope map
	2.3. Semistability
	2.4. Frobenius semistability
	2.5. Jordan-Hölder series
	2.6. Vector bundles over elliptic curves

	3. Proof of T:thmGalois covering
	3.1. The action of the center
	3.2. Regular bundles
	3.3. Proof of Theorem 1.2

	4. Proof of Theorem 1.4
	4.1. Preliminaries
	4.2. Diagonalizable groups
	4.3. The action of the center
	4.4. The determinant map
	4.5. Proof of T:det is iso

	Appendix A. 
	References

