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 roughness of the crack front. Extension of those perturbation approaches to more realistic geometries and to coalescence of cracks is also envisaged.

to deal with both the crack initiation and propagation paths: the energetic variational minimisation approach to fracture and the phase-field method.

The first (i) has been shown to include the traditional approach [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF], (ii) has been approximated for numerical purposes by non-local damage first-gradient model [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF] and (iii) has been applied to several brittle fracture problems as stability problems [START_REF] Benallal | Bifurcation and stability issues in gradient theories with softening[END_REF], the deterioration of the French Panthéon (Lancioni and Royer-Carfagni, 2009), the propagation direction in presence of mode 2 [START_REF] Chambolle | When and how do cracks propagate[END_REF], crack patterns in shrinkage, drying or cooling, problems [START_REF] Lazarus | Basalt columns and crack formation during directional drying of colloidal suspensions in capillary tubes[END_REF]. The second, first developed for solidification front [START_REF] Caginalp | Phase field methods for interfacial boundaries[END_REF][START_REF] Collins | Diffuse interface model of diffusion-limited crystal-growth[END_REF] was further extended to brittle fracture [START_REF] Karma | Phase-field model of mode III dynamic fracture[END_REF] and has shown their efficiency to resolve problems of path determination in 2D [START_REF] Henry | Dynamic instabilities of fracture under biaxial strain using a phase field model[END_REF][START_REF] Hakim | Laws of crack motion and phase-field models of fracture[END_REF][START_REF] Corson | Thermal fracture as a framework for quasi-static crack propagation[END_REF] and 3D [START_REF] Pons | Helical crack-front instability in mixed-mode fracture[END_REF].

But the traditional approach has still its place thanks to the maturity acquired by its longer history: in particular, to deal with the crack front shape deformations an efficient perturbation method of the crack front, pioneered by [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF], has been used. The method allows to update the stress intensity factors (that are prerequisite to any crack propagation prediction) for any small perturbation of the crack front without resolving the whole elasticity problem. On the one hand, the initial method of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] has been applied to the propagation of cracks in disordered heterogeneous by the statistical physics community. On the other, it has be extended and applied to more and more complex problems by the fracture mechanics community.

It has recently gained a renewal of interest [START_REF] Dalmas | Crack front pinning by design in planar heterogeneous interfaces[END_REF] with the creation of new intelligent materials by deposition of a stack of nanometric thin layers having specific functions (as for instance, optical, thermal, selfcleaning) that may perturb locally the crack front.

A review concerning the roughening of the front in disordered heterogeneous materials has recently be done by [START_REF] Bonamy | Intermittency and roughening in the failure of brittle heterogeneous materials[END_REF] from a statistical physics point of view. Here, the aim is to do a review of the crack front perturbation approaches from a mechanical point of view. It is focused, as in [START_REF] Bonamy | Intermittency and roughening in the failure of brittle heterogeneous materials[END_REF], mainly on the slow crack growth regime in which the crack speed is negligeable in comparison to Rayleigh speed. The high speed regime is beyond the scope of this paper although at some places some key references are given.

The outline of the paper is as follows. After a brief overview of the traditional LEFM approach (section 1), the perturbation method is presented in the general case (section 2) and then for some model selected problems (section 3). Application to crack propagation in homogeneous media (section 4), crack trapping by tougher obstacles (section 5), propagation in disordered media (section 6) are then developed.

1. Overview of the traditional LEFM approach 1.1. Definition of the SIFs Consider a crack embedded in a linear elastic body. Suppose that the evolution is quasistatic1 . Let F denote the crack front and s some curvilinear abscissa along it. The front is supposed to be smooth so that at each point s of F, one can define a local basis of vectors ( e 1 (s), e 2 (s), e 3 (s)) in the following way :

1. e 3 (s) is tangent to F and oriented in the same direction as the curvilinear abscissa s;

2. e 2 (s) is in the crack plane, orthogonal to F and oriented in the direction of propagation;

3. e 1 (s) ≡ e 1 is orthogonal to the crack plane and oriented in such a way that the basis ( e 2 (s), e 1 , e 3 (s)) is direct2 .

The SIFs K j (s), j = 1, 2, 3 at point s are then defined by the following formula, where Einstein's summation convention is employed : lim r→0 2π r u(s, r) ≡ 8Λ ij K j (s) e i (s).

(1)

In this expression u(s, r) denotes the displacement discontinuity across the crack plane, oriented by the vector e 1 , at the distance r behind the point s of F, in the direction of the vector -e 2 (s). Also, (Λ ij ) 1≤i≤3,1≤j≤3 ≡ Λ is the diagonal matrix defined by

Λ ≡ 1 E   1 -ν 2 0 0 0 1 -ν 2 0 0 0 1 + ν   (2) 
where E denotes Young's modulus and ν Poisson's ratio3 .

Crack advance versus loading criterions

One shall distinguish several cases depending on the material and the type of loading. The crack advance may occur dramatically above a certain threshold (brittle fracture) but also below this threshold at a slower rate in the cases of subcritical propagation due for instance to stress-corrosion or fatigue propagation due to cyclic loading.

Brittle fracture

Concerning brittle fracture, [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF]'s criterion is extensively used: it states that the crack propagation occurs if the elastic energy released by the crack propagation G is sufficient to counterbalance the fracture energy Γ necessary to create new surfaces:

G < Γ ⇒ no propagation,
(3) G = Γ ⇒ possible propagation.

(4)

SIFs and energy release rate G are linked by [START_REF] Irwin | Analysis of stresses and strains near the end of a crack traversing a plate[END_REF]'s formula (Einstein summation convention is used):

G = K i Λ ij K j , (5) 
so that, in mode 1 (K 2 = 0, K 3 = 0), [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF]'s criterion is equivalent to [START_REF] Irwin | Fracture. Hand. der Physik[END_REF]'s criterion which states that the crack propagates if the Stress Intensity Factor K 1 at the crack tip exceeds the local toughness K c :

K 1 < K c ⇒ no propagation, (6) K 1 = K c ⇒ possible propagation. ( 7 
)
Above the threshold, Griffith's criterion remains valid [START_REF] Sharon | Confirming the continuum theory of dynamic brittle fracture for fast cracks[END_REF] provided that the velocity dependance of Λ is taken into account [START_REF] Freund | Substrate curvature due to thin film mismatch strain in the nonlinear deformation range[END_REF] in equation ( 2). In particular, in mode 1 and in the slow growth regim (v C R ), it gives for the crack velocity v:

v = 2C R K c (K 1 -K c ) for K 1 ≥ K c (8)
C R being the Rayleigh speed.

Subcritical or fatigue propagation

Concerning the subcritical propagation below the brittle fracture threshold (K c or Γ), Paris' law [START_REF] Paris | A rational analytic theory of fatigue[END_REF][START_REF] Erdogan | A critical analysis of crack propagation laws[END_REF] with a threshold G 0 or without (G 0 = 0) is often used. It states that the crack velocity v goes as a power-law with the excess energy release rate G:

v = C(G -G 0 ) β , (9) 
In the case of mode 1 with G 0 = 0, it is equivalent to (use ( 5) and ( 2)):

v = C K N 1 with N = 2β and C = C 1 -ν 2 E β (10)
For fatigue, the same expressions ( 9) and ( 10) are valid if v is re-interpreted as advance during one cycle and G as variation of the energy release rate during one cycle. An overview of the values of β or N and C for engineering materials can be found in [START_REF] Fleck | Overview no. 112: The cyclic properties of engineering materials[END_REF]. It's physical background [START_REF] Vieira | Subcritical crack growth: The microscopic origin of Paris' law[END_REF] and its validity field [START_REF] Ciavarella | One, no one, and one hundred thousand crack propagation laws: A generalized barenblatt and botvina dimensional analysis approach to fatigue crack growth[END_REF] are still the subject of many research papers.

Crack propagation direction criterions

In homogeneous isotropic elastic media, except in some special conditions, it is well known that whatever the external loading, the crack front bifurcates in order to reach a situation of pure tension loading as the crack propagates [START_REF] Hull | Tilting cracks: the evolution of fracture surface topology in brittle solids[END_REF]. Hence, planar crack propagation is generally stable under mode 1 loading and unstable under mode 2 or 3. A literature survey of mixed mode crack growth can be found in [START_REF] Qian | Mixed mode fatigue crack growth: a literature survey[END_REF]. Under mode (1+2) conditions, the crack kinks to make mode 2 vanish. The value of the corresponding kink angle can be obtained, for instance, by the Principle of Local Symmetry (PLS) of [START_REF] Goldstein | Brittle fracture of solids with arbitrary cracks[END_REF] or by the maximum tangential stress criterion (MTS; [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF]). The difference between these two criterions has been discussed by [START_REF] Amestoy | Crack Paths in Plane Situations -II. Detailed Form of the Expansion of the Stress Intensity Factors[END_REF]. In presence of mode 3, the problem becomes threedimensional and seldom papers deal with the prediction of the propagation path in this condition. Among them, Lazarus and Leblond (1998a), Lazarus et al. (2001b), [START_REF] Lazarus | Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments[END_REF] consider the particular case of 3 or 4 point bending experiments and [START_REF] Cooke | Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate[END_REF], [START_REF] Lin | Criterion for initiation of cracks under mixed-mode I + III loading[END_REF], [START_REF] Pons | Helical crack-front instability in mixed-mode fracture[END_REF] the segmentation of the front. Theoretical [START_REF] Karma | Instability of crack propagation with superposition of antiplane shear and tension[END_REF] and experimental (Lazarus et al., 2011a) papers on segmentation and coarsening are also currently under progress.

In some particular situations, even in presence of mode 2 or 3, planar crack propagation may be stable. It is the case for instance when the crack is channelled along a planar surface of low fracture resistance, which can be the case for instance along a geological fault or in composite materials. It may also be the case in fatigue due to the presence of friction [START_REF] Doquet | Local approach to fatigue cracks bifurcation[END_REF].

Crack perturbation approaches

To predict the propagation path applying crack advance and propagation criterions described above, perturbation methods have been used. They are based on the pioneer works of [START_REF] Bueckner | A novel principle for the computation of stress intensity factors[END_REF], [START_REF] Rice | Some remarks on elastic crack-tip stress fields[END_REF][START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF]. Their method has been extended in both the static and dynamic case.

Nevertheless, in this review we focus further on the static case4 . A first set of papers considers the out-of-plane perturbation of the faces of a planar crack: the first order variation of the SIF are given in [START_REF] Movchan | On perturbations of plane cracks[END_REF].

It is applied by Obrezanova et al. (2002b) to generalise the [START_REF] Cotterell | Slightly curved or kinked cracks[END_REF]'s 2D stability analysis of a crack to small out-of-plane deviation of its path. We are currently extending this approach to 3D out of plane instabilities in mixed mode 1+3 [START_REF] Leblond | Theoretical analysis of crack front instability in mode I+III[END_REF]. A second set of papers gives the expressions of the SIFs along the front of an arbitrary kinked and curved infinitesimal extension of some arbitrary crack: [START_REF] Leblond | Crack Paths in Plane Situations -I. General Form of the Expansion of the Stress Intensity Factors[END_REF] and [START_REF] Amestoy | Crack Paths in Plane Situations -II. Detailed Form of the Expansion of the Stress Intensity Factors[END_REF] in 2D, and [START_REF] Leblond | Crack paths in three-dimensional elastic solids. i: twoterm expansion of the stress intensity factors-application to crack path stability in hydraulic fracturing[END_REF] and Leblond et al. (1999) in 3D. These expressions have been applied for instance, to show that the PLS and the MTS yield very close but distinct kink angles [START_REF] Amestoy | Crack Paths in Plane Situations -II. Detailed Form of the Expansion of the Stress Intensity Factors[END_REF] or to the crack front rotation and segmentation in mixed mode 1+3 or 1+2+3 (Lazarus and Leblond, 1998a;Lazarus et al., 2001a,b).

A third set of papers consider the same problem then the second in the particular case of a planar crack with a coplanar extension. They are the main object of this review and are developed below.

In-plane crack front perturbation approaches for an arbitrary planar crack

Consider a plane crack of arbitrary shape embedded in some isotropic static elastic medium subjected to some arbitrary loading: given forces T p along ∂Ω T and given displacements u p along ∂Ω u (Figure 1). The aim of this section is to give the first order variation of the stress intensity factors due to small in-plane perturbation of the crack front. Such formulae have first been derived in several particular cases notably by Rice and coworkers, and then generalised to more arbitrary problems. Here the historical chronology is not respected: first, in the present section, the most general formulae are recalled by relying on the paper of Favier et al. (2006a). They are then particularised to some model problems in section 3.

Definitions and elementary properties of weight functions

Definitions. Let k ij (F; s ; s, r) denote the i-th SIF at the point s of the crack front F resulting from application of a pair of opposite unit point forces equal

to ± e j (s) on the upper (+) and lower (-) crack surfaces at a distance r behind the point s of the crack front the other loading being supposed to be zero ( T p = 0 along ∂Ω T and u p = 0 along ∂Ω u ). These nine scalar functions are called the crack face weight functions (CFWFs).

The functions k ij (F; s ; s, r)/ √ r are known to have a well-defined limit for r → 0 (see for instance Leblond et al. (1999)). We then define the matrix (W ij (s , s)) 1≤i≤3,1≤j≤3 ≡ W(s , s) by the formula

W ij (s , s) ≡ π π 2 D 2 (s, s ) lim r→0 k ij (F; s ; s, r) √ r (11) 
where D(s, s ) denotes the cartesian distance between points s and s . The functions W ij (s , s) in fact depend on the crack front shape, just like the CFWFs, but the argument F is omitted here for conciseness. They will be called the fundamental kernels (FKs) or more shortly the kernels.

Although the SIFs depends on the loading intensity and position, the CFWFs, hence the FKs depend on it only through the definitions of ∂Ω T and ∂Ω u .

Properties. The CFWFs are positively homogeneous of degree -3/2; that is, if all distances are multiplied by some positive factor λ, the CFWFs are multiplied by λ -3/2 . The definition (11) of the functions W ij (s , s) then implies that they are positively homogeneous of degree 0:

W(λs , λs) = W(s , s) ∀λ > 0 (12)
Since tensile and shear problems are uncoupled for a planar crack in an infinite body, whatever the shape of the crack front, the components k 12 , k 13 , k 21 and k 31 of the CFWFs are zero, so that by equation ( 11),

W 12 (s , s) ≡ W 13 (s , s) ≡ W 21 (s , s) ≡ W 31 (s , s) ≡ 0. ( 13 
)
Considering two problems, one with point forces equal to ± e i exerted on the crack faces at (s, r) and one with point forces equal to ± e j exerted on the crack faces at (s , r ), applying Betti's theorem, and using equations (1) and ( 11), one sees that the kernels obey the following "symmetry" property :

Λ im W mj (s, s ) = Λ jm W mi (s , s). (14) 
Finally, Leblond et al. (1999) have shown that the limit of W(s, s ) when s → s is universal, i.e. that it does not depend on the geometry. It is linked to the behaviour of the weight-functions when the point of application of the loading tends toward the point of observation of the SIF which is a local property independent of the far geometry. The values of this limit are:

             lim s →s W 11 (s, s ) = 1 lim s →s W 22 (s, s ) = 2 -3ν 2 -ν lim s →s W 33 (s, s ) = 2 + ν 2 -ν lim s →s W 23 (s, s ) = 0 (15)

First order variation of the stress intensity factors

Let us now assume that the crack advances, under constant loading, by a small distance δ(s) within its plane in the direction perpendicular to its front (fig. 1). It has been shown in Favier et al. (2006a) that, for any loading, if δ(s 0 ) = 0,

δK(s 0 ) = N • K(s 0 )δ (s 0 ) + 1 2π PV F W(s 0 , s) D 2 (s 0 , s) • K(s)δ(s)ds. ( 16 
)
The condition δ(s 0 ) = 0 ensures the existence of the Principal Value integral PV . The quantities K(s) ≡ (K i (s)) 1≤i≤3 and δK(s) ≡ (δK i (s)) 1≤i≤3

here are the column vectors of initial SIFs and variations of these SIFs, and N ≡ (N ij ) 1≤i≤3,1≤j≤3 is the matrix defined by

N ≡ 2 2 -ν   0 0 0 0 0 -1 0 1 -ν 0   . (17) 
Equation ( 16) is identical to Leblond et al. (1999)'s general equation ( 30)

(with the notation 1 2π

W(s 0 , s) D 2 (s 0 , s 1 ) instead of Z(s 0 , s)), in the special case of a planar crack with coplanar extension (and zero crack advance at the point s 0 ). It shall be noticed that the variation of the SIFs at a particular point s 0 depends in an non-local manner on the crack perturbation along all the front. It is due to long-range elastic interactions.

The restriction δ(s 0 ) = 0 will now be removed by two methods:

1. Using a trick of [START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF], that consists of decomposing an arbitrary motion of the crack front defined by the normal advance δ(s) into two steps :

(a) A translatory motion of displacement vector δ(s 0 ) e 2 (s 0 ). This motion brings the point s 0 to its correct final position while leaving the crack front shape unchanged. The corresponding normal advance δ * (s) is given, to first order in δ(s), by

δ * (s) = δ(s 0 ) e 2 (s 0 ) • e 2 (s). ( 18 
)
The associated variation of K(s) will be denoted δ * K(s).

(b) A motion with normal advance given by δ(s)-δ * (s). This advance is zero at point s 0 so that the corresponding variation of K(s 0 ) is given by equation ( 16), with δ (s 0 ) -δ * (s 0 ) = δ (s 0 ) since δ * (s 0 ) = 0 by equation ( 18).

Adding up the contributions from these two motions, one gets the final expression of the variation of the SIFs under constant loading in the general case:

δK(s 0 ) = δ * K(s 0 ) + N • K(s 0 )δ (s 0 ) + 1 2π PV F W(s 0 , s) D 2 (s 0 , s) • K(s) [δ(s) -δ * (s)] ds. ( 19 
)
This expression allows to update the SIFs knowing the initial SIFs, FK and the displacement provided that the quantity δ * K can be calculated.

The unknown quantity δ * K(s 0 ) is equal to zero if the translatory motion δ(s 0 ) e 2 (s 0 ) leaves the problem unchanged. It is for instance the case if the crack front is far from any boundary so that the media can be assumed to be infinite submitted to remote stress loading. Then, the first order formula simply becomes:

δK(s 0 ) = N • K(s 0 )δ (s 0 ) + 1 2π PV F W(s 0 , s) D 2 (s 0 , s) • K(s) [δ(s) -δ(s 0 ) e 2 (s 0 ) • e 2 (s)] ds.
(20) 2. Another possibility is to proceed as Leblond et al. (1999) and to decompose the normal advance δ(s) into a uniform advance δ(s 0 ) (denote [δK(s 0 )] δ(s)≡δ(s 0 ) the corresponding first order variation of the SIFs) and the advance δ(s) -δ(s 0 ) for which the equation ( 16) can be used. The final expression then reads:

δK(s 0 ) = [δK(s 0 )] δ(s)≡δ(s 0 ) + N • K(s 0 )δ (s 0 ) + 1 2π PV F W(s 0 , s) D 2 (s 0 , s) • K(s) [δ(s) -δ(s 0 )] ds. ( 21 
)
This expression is useful if one can calculate [δK(s 0 )] δ(s)≡δ(s 0 ) . It is the case for instance if the uniform advance δ(s) ≡ δ(s 0 ) doesn't change the geometry of the problem as for a circular, straight half-plane or tunnel crack.

Formula ( 16) and its corollaries ( 19), ( 20), ( 21) have been derived for homogeneous isotropic elastic solids. For cracks at the interface between two elastic solids, such a formula exists in the sole case of a half-plane crack:

the first order variation of the SIFs can be found in Lazarus and Leblond (1998b) and using an other formalism (Wiener-Hopf analysis) in [START_REF] Bercial-Velez | High-order asymptotics and perturbation problems for 3d interfacial cracks[END_REF], the connection between the two methods having been done by [START_REF] Piccolroaz | Evaluation of the Lazarus-Leblond constants in the asymptotic model of the interfacial wavy crack[END_REF].

First order variation of the fundamental kernel

To derive higher order variation of the SIFs, the first order variation of the fundamental kernel is necessary. It has been shown by [START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF] in mode 1 and Favier et al. (2006a) in modes 2+3 that:

δW(s 0 , s 1 ) = N • W(s 0 , s 1 )δ (s 0 ) -W(s 0 , s 1 ) • N δ (s 1 ) + D 2 (s 0 , s 1 ) 2π PV F W(s 0 , s) • W(s, s 1 ) D 2 (s 0 , s)D 2 (s 1 , s) δ(s)ds, ( 22 
) if δ(s 0 ) = δ(s 1 ) = 0.
In order to get rid of these conditions, one must imagine a motion δ * * (s) such as δ * * (s 0 ) = δ(s 0 ) and δ * * (s 1 ) = δ(s 1 ). Denote δ * * W(s 0 , s 1 ) the corresponding variation of the kernel. Equation ( 22) then becomes:

δW(s 0 , s 1 ) = δ * * W(s 0 , s 1 ) + N • W(s 0 , s 1 ) [δ (s 0 ) -δ * * (s 0 )] -W(s 0 , s 1 ) • N [δ (s 1 ) -δ * * (s 1 )] + D 2 (s 0 , s 1 ) 2π PV F W(s 0 , s) • W(s, s 1 ) D 2 (s 0 , s)D 2 (s 1 , s) [δ(s) -δ * * (s)]ds.
(23) A difficulty is to be able to define δ * * (s) such as δ * * W (s 0 , s 1 ) can be calculated. This problem has not been solved at present in the general case. In the particular case of an infinite body subjected to uniform remote loading, one can always find a combination of a translatory motion, a rotation and a homothetical transformation bringing two distinct points s 0 , s 1 from any initial positions to any final positions (This is obvious using a complex variable formalism and noting that such transformations are of the form f (z) = az +b where a and b are arbitrary complex parameters). Such a combination leaves the kernels unaffected so that δ * * W (s 0 , s 1 ) = 0. Equation ( 23) then yields:

δW(s 0 , s 1 ) = N • W(s 0 , s 1 ) [δ (s 0 ) -δ * * (s 0 )] -W(s 0 , s 1 ) • N [δ (s 1 ) -δ * * (s 1 )] + D 2 (s 0 , s 1 ) 2π PV F W(s 0 , s) • W(s, s 1 ) D 2 (s 0 , s)D 2 (s 1 , s) [δ(s) -δ * * (s)]ds.
(24) Note that quantities δ * * (s 0 ) and δ * * (s 1 ) here are nonzero, unlike quantity δ * (s 0 ) in equation ( 19).

Some expressions of the fundamental kernel W

To initiate the perturbation approach, the FKs must be known for the unperturbed configurations. It is the case for some seldom geometries that are depicted in figures 2, 3, 4. In those figures, the crack front are coloured in blue and the faces in grey. Two cases are considered, an internal and an external crack:

Circular cracks

• For the internal circular crack such as ∂Ω u = ∅, for instance loaded by remote stresses (fig. 2(a)), the value of the non-zero components of the kernel W are [START_REF] Kassir | Three Dimensional Crack Problems[END_REF][START_REF] Tada | The Stress Analysis of Cracks Handbook[END_REF][START_REF] Bueckner | Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space[END_REF]Gao and Rice, 1987b;[START_REF] Gao | Nearly circular shear mode cracks[END_REF]:

                 W 11 (θ 0 , θ 1 ) = 1 W 22 (θ 0 , θ 1 ) = 2 cos(θ 0 -θ 1 ) -3ν 2 -ν W 33 (θ 0 , θ 1 ) = 2(1 -ν) cos(θ 0 -θ 1 ) + 3ν 2 -ν W 23 (θ 0 , θ 1 ) = 1 1 -ν W 32 (θ 1 , θ 0 ) = 2 sin(θ 0 -θ 1 ) 2 -ν . (25) 
• For the external circular crack (fig. 2(b)), only the value in mode 1 is known [START_REF] Stallybrass | On the concentrated loading of certain elastic halfspace problems and related external crack problems. A new approach[END_REF]Gao and Rice, 1987a;[START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF] for several cases of remote boundary conditions:

when remote points are clamped (given

U ∞ 0 = 0, Ω ∞ = 0): W 11 (θ 0 , θ 1 ) = 1 (26) 
when remote points can not rotate but can move in the e 1 direction (given

F ∞ = 0, Ω ∞ = 0): W 11 (θ 0 , θ 1 ) = 1 + 4 sin 2 θ 0 -θ 1 2 (27) 
when remote points can not move in the e 1 direction, but can rotate (given

U ∞ 0 = 0, M ∞ 0 = 0): W 11 (θ 0 , θ 1 ) = 1 + 24 sin 2 θ 0 -θ 1 2 cos(θ 0 -θ 1 ) (28) 
when remote points are constrained against any motion (given 

F ∞ = 0, M ∞ 0 = 0): W 11 (θ 0 , θ 1 ) = 1 + 4 sin 2 θ 0 -θ 1 2 [1 + 6 cos(θ 0 -θ 1 )] (29) 

Half-plane crack

In the case of a half-plane crack with ∂Ω u = ∅, loaded for instance by remote stresses (fig. 3(a)) or line (fig. 3(b)) or surface traction (fig. 3(c)), the kernel is [START_REF] Meade | On the problem of a pair of point forces applied to the faces of a semi-infinite plane crack[END_REF][START_REF] Bueckner | Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space[END_REF][START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF][START_REF] Gao | Shear stress intensity factors for planar crack with slightly curved front[END_REF]:

             W 11 (z 1 , z 0 ) = 1 W 22 (z 1 , z 0 ) = 2 -3ν 2 -ν W 33 (z 1 , z 0 ) = 2 + ν 2 -ν W 23 (z 1 , z 0 ) = 0 (30)

Tunnel-cracks

The model of half-plane crack is widely used due to its simplicity, but it lacks a lengthscale. To introduce a lengthscale, Leblond and coauthors have 

Particular model case of tensile straight crack fronts

The aim here is to introduce formulas that are useful further on for the study of some crack propagation problems involving an initially straight crack front (for sections 4.1 and 6 in particular).

Unperturbed geometries and loading

For simplicity, only mode 1 is considered and K 1 is re-noted K. To study the propagation of a straight crack front, the most natural and simple model is the half-plane crack loaded by remote stresses (fig. 3(a)). Even if a certain number of results can be obtained with this model, it lacks crucially a lengthscale. To fill this gap, this simple model has progressively be enriched.

Here, the following models are considered more specifically:

1. a half-plane crack loaded by remote stresses (fig. 3 All these problems can be included in the more general framework for which the initial SIF can be written under the form:

K(a) = ka α (31)
where k depends on the loading level but is independent of a. The value of α are 0 in the case 1, -1/2 in case 2, 1/2 in cases 3 and 4. The sign of α is of uppermost importance in the sequel. If α < 0 the propagation is stable under constant loading and if α > 0 unstable6 .

Fourier transform of the first order variation of the SIF

Define the Fourier Transform φ(k) of some arbitrary function φ(z) by

φ(k) ≡ +∞ -∞ φ(z)e ikz dz ⇔ φ(z) ≡ 1 2π +∞ -∞ φ(k)e -ikz dk. ( 32 
)
Using this definition and equation ( 21) applied to the geometries listed in section 3.1, Fourier components δ K(k) of the first order variation of the mode 1 SIF δK(z) can be written under the following form:

δ K(k, a) K(a) = dK(a) da K(a) -a -1 F (p) δ(k) = (α -F (p)) δ(k) a (33)
Here, k is the wavenumber and p = ka the dimensionless one. In the case of the tunnel-crack geometry, we have supposed that the perturbations are the same for all the fronts for simplicity, so that if we denote δ n (z) the

perturbation of F n , it exists a function δ(z) such as δ n (z) = δ(z) whatever n = 1, N .
F (p) can be derived from the expressions of the fundamental kernels listed in section 2.4. For instance, for the half-plane crack it reads:

F (p) = p 2 (34)
and for all the geometries of §3.1, it can be verified that (i) F (0) = 0 and (ii)

F (p) increases monotonically to finally behaves as p/2 for p → ∞. This last behaviour is closely linked to the universal behaviour of W 11 (s, s ) for s → s (eq. 15).

The general formulas for the tunnel-crack, without the symmetry hypothesis δ n = δ of the crack advance, can be found in Favier et al. (2006b). A formula similar to (33) can be find in [START_REF] Gao | Nearly circular shear mode cracks[END_REF]Rice (1987b) (resp. Gao andRice (1987a)) for an internal (resp. external) circular crack, in Pindra et al. (2010b) for two tunnel-cracks and in Legrand and Leblond (2010a) for an external tunnel-crack. For shear loading, see [START_REF] Gao | Shear stress intensity factors for planar crack with slightly curved front[END_REF] for the half-plane crack, [START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF] for the interfacial half-plane crack, Pindra et al. (2010a) for the tunnel-crack.

Crack propagation in an homogeneous media

The aim of this section is to study the crack front shape changes arising from the quasistatic propagation in an homogeneous media. First the problem of crack shape bifurcation and stability (section 4.1) is studied analytically by linear approaches, then large scale deformations (section 4.2) are presented using incremental non linear numerical simulations.

Crack front shape linear bifurcation and stability analysis

First order perturbation approaches are extensively used in linear bifurcation and stability analysis in various problems [START_REF] Drazin | Nonlinear systems[END_REF][START_REF] Barabási | Fractal concepts in surface growth[END_REF][START_REF] Nguyen | Dynamic stability of a propagating crack[END_REF]. Here the problem of configurational bifurcation and stability of a straight crack front is considered.

Bifurcation

Consider one of the model problems of section 3 and suppose that K(z) = K c for all z. The configurational bifurcation problem aims at answering the following unicity question: can one find any configuration satisfying the condition that the SIF be equal to a constant along the crack front, other than the initial straight one?

The linear bifurcation problem amounts to search for a crack front perturbation δ(s) = 0 such as the first order variation δK(s) of the SIF is zero. By equation (33), this reads:

[α -F (p)] δ(k) = 0, (35) 
so that non-zero solution exists if [α -F (p)] = 0 ∀p. Since F (p) ≥ 0, it exists only if α ≥ 0 that is if the propagation is unstable under constant loading. The bifurcation corresponds to a sinusoidal perturbation of critical wavelength λ c solution of (α has been introduced in 31):

λ c = λ * c a, where λ * c = 2π F -1 (α) ( 36 
)
For the half-plane crack, it corresponds to [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF]'s result:

λ c = πK(a) dK(a) da , (37) 
which gives λ c = 2πa ∼ 6.283 a in the case of surface tractions (fig. 3(c)). For the single tunnel-crack under remote loading, λ c = 6.793 a [START_REF] Leblond | The tensile tunnel-crack with a slightly wavy front[END_REF] and two interacting tunnel cracks λ c = 18.426 a when a (b + a) (fig. The existence of a bifurcation if dK(a) da > 0 and the nonexistence if dK(a) da < 0 has still been noticed by [START_REF] Nguyen | Dynamic stability of a propagating crack[END_REF] in the case of thin films. It may be rationalised as follows:

4(b)).

1. Consider first a perturbation of the crack fronts of small wavelength, 

K(A) < K(B) if dK(a) da < 0.
This implies:

• In the case dK(a) da > 0, the difference K(A) -K(B) is negative for small λ and positive for large λ, and obviously varies continuously with this parameter. Hence some special value λ c such that K(A) -K(B) = 0 must necessarily exist.

• In the case dK(a) da < 0, the difference K(A) -K(B) is negative for all λ, so that no bifurcation is possible.

In the case of shear loading, the results are more complex and can be found in Gao and Rice (1987b) for the internal circular crack, in [START_REF] Gao | Shear stress intensity factors for planar crack with slightly curved front[END_REF] for the half-plane crack and in Lazarus and Leblond (2002b) for the tunnel-crack. For thin films, crack front bifurcation has also be studied by [START_REF] Nguyen | Dynamic stability of a propagating crack[END_REF]; Adda-Bedia and Mahadevan ( 2006) and observed in experiments [START_REF] Ghatak | Adhesion-induced instability patterns in thin confined elastic film[END_REF].

Stability

The question here is as follows: if the crack front is slightly perturbed within the crack plane, will the perturbation increase (instability) or decay (stability) in time? Equivalently, will the crack front depart more and more from its initial configuration or tend to keep it? We restrict our attention here to the cases listed in section 3 for which the SIF K(z) in the initial configuration are uniform independent of z.

When the extrema of δ(z) and δG(z) coincide, stability or instability prevails according to whether the maxima of δG(z) correspond to the minima or maxima of δ(z) [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF][START_REF] Gao | Nearly circular shear mode cracks[END_REF]Rice, 1986, 1987b;[START_REF] Gao | Nearly circular shear mode cracks[END_REF][START_REF] Leblond | The tensile tunnel-crack with a slightly wavy front[END_REF]Lazarus and Leblond, 1998b;Legrand and Leblond, 2010a).

Hence the answer to the question can simply be derived from the above bifurcation discussion: sinusoidal perturbations are stable if α -F (p) < 0 that is for wavelength smaller than the bifurcation wavelength λ c (eq. 36) and unstable for λ > λ c . In the case of non-existence of a bifurcation (stable propagation α < 0), stability is thus achieved whatever the wavelength. In the case α > 0, the critical wavelength is proportional to a, thus continuously increases during propagation, stability ultimately prevails for all wavelengths.

But when the extrema of δ(z) and δG(z) do not coincide, as is for instance the case of the tunnel-crack under shear loading (Lazarus and Leblond, 2002b), it appears quite desirable to then discuss the stability issue in full generality, without enforcing such a coincidence (Lazarus and Leblond, 2002a).

It is then necessary to introduce a time dependent advance law.

Let us use here the Paris law (10). Its leading term reads:

da(t) dt = CK N (38)
where a(t) is the mean position of the crack front at instant t. Considering henceforward all perturbations as functions of the mean position a of the crack instead of time t, one gets the first order advance equation:

∂δ(k, a) ∂a = N δK(k, a) K , (39) 
which yields (Favier et al., 2006b) after use of FT (33) and integration (a 0 denotes the initial value of a):

δ(k, a) δ(k, a 0 ) = exp N ka ka 0 (α -F (p)) dp p (40) 
or using the property F (0) = 0:

δ(k, a) δ(k, a 0 ) = a a 0 N α ψ(ka) ψ(ka 0 ) N α , (41) 
where ψ(p) is defined by:

ψ(p) = exp - p 0 F (q) q dq ( 42 
)
For the half-plane crack, its value is ψ(p) = exp -p 2 , for the tunnel-crack it can be found in Favier et al. (2006b). For the sequel, it is useful to note that whatever the geometry (half-plane or tunnel), this function ψ(p) decreases from 1 to 0 when p varies from 0 to +∞.

From equation ( 40), it is clear that:

• If dK(a) da < 0, then α -F (p) < 0 so that all Fourier components of any wavelength decrease with crack growth a.

• For t → ∞, one can show that:

           For k = 0, δ(0, a) δ(k, a 0 ) 2 = a a 0 2N α For k = 0, δ(k, a) δ(k, a 0 ) 2 ∼ a a 0 2N α exp(-N |k| a) → 0 (43)
so that:

• If dK(a) da < 0, any initial perturbation disappears.

• If dK(a) da > 0, the moduli of all Fourier components ultimately decay, except for k = 0 which continuously increases. This phenomenon is due to the fact that for all values of λ except +∞, λ always ultimately becomes smaller than λ c (a) since the former wavelength is fixed whereas the latter increases in proportion with a.

Thus, one can conclude that whatever the small perturbation of crack front, the initial configuration is finally retrieved7 . In the case of stable crack propagation dK(a) da < 0, the stability prevails at all lengthscales from the beginning. In the case of unstable crack propagation dK(a) da > 0, instability first prevails for all lengthscales such as λ > λ c , but since λ c is a growing function of the crack advance a, all wavelengths finally becomes stable so that the perturbation finally disappears. This is true for all the problems listed in section 3 provided that the first order study stays valid. To extend them to large perturbations, higher order terms must be taken into account. This is the subject of next section.

Largescale propagation simulations

In the previous sections, the perturbation approach was applied to small perturbations of the crack front. Following an original idea of [START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF], [START_REF] Bower | Solution of three-dimensional crack problems by a finite perturbation method[END_REF] first extended the method to the study of arbitrary large propagation of a tensile crack leading the way to the numerical resolution of some complex three dimensional crack problems. It consists in applying numerically the perturbation approach described in section 2, to a succession of small perturbations arising in arbitrary large ones. The media is assumed to be infinite loaded by remote stresses so that the SIF can be updated using formula (20) and the FKs using formula (24). The crack front shape at each instant is obtained by the inversion of heavily implicit systems of equations resulting from the direct application of Irwin's criterion (7).

The method was then extended and simplified by [START_REF] Lazarus | Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading[END_REF]; notably a unified Paris' type law (10) formulation for fatigue and brittle fracture (N → +∞) is proposed that gives the advance of the crack front in explicit form once the SIF is known. Extension to shear loading is performed in Favier et al. (2006a).

Concerning propagation in an homogeneous media, [START_REF] Lazarus | Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading[END_REF] studied the asymptotic behaviour of the SIF near an angular point of the front and retrieved the theoretical results of [START_REF] Leblond | Asymptotic behavior of stress intensity factors near an angular point of a crack front[END_REF] about the SIF singularity around a corner point of the front, the fatigue and brittle propagation paths of some special crack shapes (elliptical, rectangular, heart shaped ones) (fig. 6) loaded by remote tensile stresses. It appears that in all the cases studied, the crack becomes and stays circular after a certain time emphasizing that among all the configurations studied only the circular crack shape is stationnary. In the case of shear loading (Favier et al., 2006a), it appears (fig. 7) that the stationnary shape is nearly elliptic, the ratio of the axes being well approximated by:

a b = (1 -ν) β β+1 , (44) 
β is the Paris law exponent in mixed mode loading (9), b corresponds to the axis in the direction of the shear loading. Whether all embedded plane cracks tend toward a configuration with uniform value of G(s) is a general result, has however, to my best knowledge, not been demonstrated, even if one guess that energy minimisation is the physical ground.
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Figure 6: Successive crack fronts of pure tensile mode cracks in brittle fracture (eq. 10 with N = 50). Similar figures for fatigue can be found in [START_REF] Lazarus | Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading[END_REF] and show the same circular stationnary crack shape.

Crack trapping by tougher obstacles

In previous section, all the material constants (elasticity coefficients, fracture toughness) were supposed to be homogeneous throughout the media. In the sequel, we are still considering the problem of a crack propagating in the slow velocity regime as in section 4 but with the toughness becoming heterogeneous. The elasticity coefficients are supposed to remain constant so that the perturbation approach of section 2 remains valid. If the toughness is heterogeneous, the crack advance changes from point to point and the crack front shape changes during propagation even if the SIFs were initially uniform. In this section, the propagation of the front through well defined
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Figure 7: Successive crack fronts of pure shear mode cracks in brittle fracture (eq. 9 with β = 25, G 0 = 0). Shear is along the x-axis. Similar figures for fatigue can be found in Favier et al. (2006a) and show also a quasielliptic stationnary crack shape.

tougher obstacles is studied. In section 6, the toughness is supposed to be disordered so that a statistical approach is necessary.

Tougher inclusions may prevent or hinder the final breaking of a solid by two mechanisms: crack bridging and crack front trapping. The mechanism of toughening referred to as bridging occurs when unbroken inclusions lag behind a main crack front hindering its opening by pinning or friction; and as trapping when the crack front is deformed when it penetrates into the tougher zone or bows out it [START_REF] Lange | The interaction of a crack front with a second-phase dispersion[END_REF].

Whereas some aspects of crack bridging can be studied by 2D elasticity problems [START_REF] Budiansky | Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics[END_REF], crack trapping induces crack front shape deformations that makes the elasticity problem fully 3D. To understand the mechanism, let us consider a tunnel-crack loaded by remote tensile loading σ (fig. 4(a)) . The SIF for the straight-crack front then reads:

K = σ √ πa (45)
In the absence of obstacles, the propagation is unstable under constant loading so that the breakdown of the solid occurs as soon as the threshold is reached, unless the loading is decreased to ensure that K(s) ≤ K c at each

instant: σ = K c / √ πa. In the presence of tougher (K p c > K m c , K p c , K m c
being resp. the matrix and particles toughness), the crack propagation of a tunnel-crack of width 2a 0 starts when σ = σ 0 , where σ 0 = K m c / √ πa 0 . Then,

• either the spacing between the obstacles is large enough, so the SIF in the matrix still increases at constant loading. The final breakdown then occurs for σ = σ 0 .

• either the spacing is small enough, so the SIF in the matrix decreases at constant loading. Then a transient period of stable propagation at constant loading exists, so that the unstable propagation loading, that is the breakdown one, is increased.

In this last case, the breakdown may appear in two different situations:

1. The crack front has penetrated under a stable manner into the obstacles until reaching a configuration such as K(s) = K c (s) for all s at unstable breakdown instant. The corresponding loading level σ c can then be determined by the following relation derived by [START_REF] Rice | Crack fronts trapped by arrays of obstacles: Solutions based on linear perturbation theory[END_REF]; [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF]:

σ 2 c σ 2 0 = < K 2 c > (K m c ) 2 (46)
This situation is called "regular" by [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF] and "weak pinning" by [START_REF] Roux | Effective toughness of heterogeneous brittle materials[END_REF]. It appears for not too large toughness differences (to ensure not too large crack front deformations) and particles that are large enough in the direction of propagation (to have the time to reach the equilibrium position). First order simulations of this regime have been performed by [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF] using the perturbation approach described in section 2.2. The results have been compared to simulations of the same problem performed using a Boundary Element Method showing the accuracy and the limits of the first order approach. They have also been compared to experiments by [START_REF] Dalmas | Crack front pinning by design in planar heterogeneous interfaces[END_REF]: good agreement between the theoretical and experimental crack shapes have been shown. The work of [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF] realized in mode 1 is extended to modes 2 and 3 in [START_REF] Gao | Penetration of a quasi-statically slipping crack into a seismogenic zone of heterogeneous fracture resistance[END_REF]. Numerical large scale propagation simulations of this case have also been performed by [START_REF] Bower | Solution of three-dimensional crack problems by a finite perturbation method[END_REF][START_REF] Anderson | Fracture Mechanics: Fundamentals and Applications[END_REF][START_REF] Hull | Tilting cracks: the evolution of fracture surface topology in brittle solids[END_REF] for the half-plane crack and [START_REF] Lazarus | Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loading[END_REF] for the circular one.

2. The unstable breakdown occurs before K(s) = K c (s) is reached for all s, so that only a part of the front propagates at the breakdown instant, K(s) being lower than K c (s) on the other part. In this situation, called "irregular" by [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF], "unstable" by [START_REF] Bower | A three-dimensional analysis of crack trapping and bridging by tough particles[END_REF], and "strong pinning" by [START_REF] Roux | Effective toughness of heterogeneous brittle materials[END_REF] the value of σ c can only be determined numerically in each particular case. It has been done by [START_REF] Bower | A three-dimensional analysis of crack trapping and bridging by tough particles[END_REF], using the incremental method described in section 4.2, for a half plane crack propagating through an array of particles. Their results concerning the bow out of the crack front segments beyond an unbroken particle when the toughness of the particles is high enough to prevent the penetration of the front in the particle are compared to experiments by [START_REF] Mower | Experimental investigations of crack trapping in brittle heterogeneous solids[END_REF] and show good agreement in general.

Crack propagation in a disordered media

In the last two decades, a number of works have been devoted to the study of the evolution in time of the shape of the front of planar cracks propagating in mode 1 in an elastic solid with randomly variable fracture toughness. These works can be roughly divided into three groups. The first group includes the works of [START_REF] Perrin | Disordering of a dynamic planar crack front in a model elastic medium of randomly variable toughness[END_REF], [START_REF] Ramanathan | Dynamics and instabilities of planar tensile cracks in heterogeneous media[END_REF] and Morrissey andRice (1998, 2000). They were devoted to the theoretical study of some statistical features of the geometry of the front of a tensile half-plane crack propagating dynamically. The second group of papers consists of some experimental studies of the evolution in time of the deformation of the front propagating quasistatically; see e.g. [START_REF] Schmittbuhl | Direct observation of a self-affine crack propagation[END_REF], [START_REF] Delaplace | High resolution description of a crack front in a heterogeneous plexiglas block[END_REF], [START_REF] Schmittbuhl | Interfacial crack front wandering: influence of quenched noise correlations[END_REF], Schmittbuhl et al. (2003a). The third group studied statistical properties of the shape of crack fronts for a straight crack (half-plane or tunnel-crack)

propagating quasistatically: on the one hand, [START_REF] Schmittbuhl | Interfacial crack pinning: effect of nonlocal interactions[END_REF] and [START_REF] Katzav | Roughness of tensile crack fronts in heterogenous materials[END_REF] focusing notably on self-affine properties of the crack front shape and on the other hand Favier et al. (2006b[START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF], Pindra et al. (2010a), Legrand and Leblond (2010a) focusing essentially on the time evolution of the statistical properties (correlation functions and power spectra).

The main results of this last set of somewhat complex papers, concerning quasistatic propagation in an heterogeneous media, in particular of Favier et al. (2006b) and [START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF], are recalled in this section under a new simplified form in the spirit to be comprehensible by a broader audience.

The model problems listed in section 3 are considered, in the case of brittle fracture ( §6.1, §6.4), and in the case of subcritical or fatigue growth ( §6.2).

In §6.3 a synthetic table is presented showing the main analytical results.

Finally the major factors having an influence on the crack front fluctuations are recalled ( §6.5).

6.1. Brittle fracture: case

K(x, z) = K c (x, z) ∀(x, z) (weak pinning)
Let us consider a half-plane or tunnel crack. We suppose that the SIF for the straight configuration is given by equation ( 31). The aim of this paragraph is to describe the crack front shape corresponding to K(x, z) = K c (x, z) for all points of the front when K c (x, z) is varying randomly.

Fourier transforms of the crack front fluctuations versus toughness fluctuations

If the toughness K c (x, z) is uniformly equal to a constant K c , the crack front remains straight during propagation (unless bifurcations occur, see §4.1). Then the loading k(t) corresponding to position a(t) of the front at time t verifies:

k(t) = K c a(t) -α (47) 
The parameter t, called "time" for convenience, appearing in this equation is not a physical time but a purely kinematical time, enabling us to locate the equilibrium position corresponding to a given loading k(t). Remember that the propagation is stable (resp. unstable) if α < 0 (resp. α > 0), in the sense that the loading has to be increased (resp. decreased) for the crack to advance (a increases).

Now introduce some small quenched (independent of time at a give material point) fluctuations of the toughness :

K c (z, x) = K c (1 + κ(z, x)), |κ| 1 (48) 
It produces small fluctuations δ(z, a(t)) and δK(z, a(t)) of the crack front position a(z, t) and of the SIF K(z, t) around its mean values a(t) and K(a(t)) so that :

a(z, t) ≡ a(t) + δ(z, a(t)), |δ(z, a(t))| a(t) K(z, a(t)) ≡ K(a(t)) + δK(z, a(t)), |δK(z, a(t))| K(a(t)) (49 
) Expanding Irwin's criterion (7) to first order, identifying terms of order 0 and 1 and replacing the kinematical time t by the mean crack position a, one gets :

       K(a) = K c δK(z, a) K(a) = κ(z, a) (50) 
It shall be noticed that in this first order expansion, the quenched fluctuations are transfered on the mean crack position so that this approach does not permit to distinguish between annealed (time dependent fluctuations at a given position) and quenched noise. Now, taking the Fourier transform of the equation ( 50.2) and using equation (33) giving the first order variation of the SIF as a function of the crack perturbation, one gets:

δ(k, a) = aκ(k, a) α -F (ka) (51) 
Unfortunately, if α > 0, the expression ( 51) is meaningless because the FT is divergent for p such as α -F (p) = 0. This is linked to the existence of bifurcations (see section 4.1). We shall therefore consider the sole case of stable 2D crack propagation (α < 0) henceforward. Eq. ( 51) then takes the form:

δ(k, a) = - aκ(k, a) |α| + F (p) (52) 
This equation allows to obtain the first order crack front fluctuations δ for any given small toughness fluctuation κ. Notice that it is entirely determined by the instantaneous distribution of the toughness. It may be used to study the shape deformations during trapping by tougher obstacles. In the sequel, however we suppose the material to be disordered so that only statistical properties of κ are known and statistical study becomes necessary.

Power spectrum of the crack front fluctuations versus toughness fluctuations

From equation ( 52), one gets for the power spectrum A(k, a) of the fluctuation δ(z) of the crack front:

A(k, a) = a 2 K(k) (|α| + F (p)) 2 (53) 
where K(k) is the power spectrum associated with the toughness fluctuations κ supposed statistical homogeneous so that K(k) is independent of a. This expression is quiet general. Some properties of it, in the particular case of uncorrelated fluctuations are given in the sequel.

In the case of white noise

K(k, a) = K 0 , equation (53) gives b A(k,a) b K 0 a 2 under an analytical form: A(k, a) K 0 a 2 = 1 (|α| + F (p)) 2 (54) 
It is plotted as a function of p = ka in figure 8(a) for several values of α and a tunnel or a half-plane crack. In all these cases, one can notice the presence of two regimes, with a transition between them depending on the crack geometry and on the loading: one universal regime (independent of the geometry) for p = ka 1 that is small wavelengths λ a where

b A(k,a) b K 0 a 2
decreases with ka and a second (geometry dependent one) for p = ka 1 that is large wavelengths λ a corresponding to a saturation. The existence of this second regime is closely linked to the finite size of the system and can not be obtained by the model of a half-plane crack loaded by remote tensile stresses that, we recall, lacks any lengthscale.

One can notice that such a behaviour (see [START_REF] Barabási | Fractal concepts in surface growth[END_REF]) corresponds to a [START_REF] Family | Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model[END_REF] scaling defined by A(k, a) = a 1+2ζ τ G(ka 1/τ ) where G(x) is constant for x 1 and G(x) ∼ x -1-2ζ for x 1. Comparison with (54) gives indeed:

G(x) = K 0 (|α| + F (x)) -2
(55) ζ = 0.5 (roughness exponent) and τ = 1 (dynamic exponent).

To better understand the [START_REF] Family | Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model[END_REF] half-plane crack with α = -1/2. One can notice on figure 8(b), that for a given value of the mean position a:

• The large wavelength components are more developed than the small ones and are constant above a certain threshold.

• When a increases, the large wavelength components increases, but the small ones are steadystate and more and more components are in this last steadystate regime.

One can notice on figure 8(c), that for a given value of k, that is λ:

• The components increases with a until reaching a saturation.

• The increasing regime rate is similar whatever the wavelength, but when k decreases, that is λ increases, the increasing regime lasts longer so that the final amplitude increases with wavelength.

One can also derive the asymptotic expressions of the power spectrum A(k, a):

A(k) = 4 K(k) k 2 for k = 0 and A(0) = K(0)a 2 α 2 for k = 0 (56) 
One shall notice that the convergence is not uniform so that the asymptotic behaviour of the autocorrelation function can not be obtained by simply inversion of the asymptotic behaviour of its Fourier transform. For the results concerning the autocorrelation or related function as the square fluctuations, the reader is invited to reefer at [START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF] or to the table 1. One shall however notice that relation ( 53) is the cornerstone for such a derivation.

It shall also allow to perform numerical simulations of the evolution of the power spectrum or the functions related to the autocorrelation by inverse Fourier Transform if the toughness fluctuation power spectrum is given. Such developments is left for further work.

Similar results for an interfacial half-plane crack have been derived by [START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF]: the mismatch of elastic properties between the materials introduces oscillations in the longtime behaviour but no significant difference in the mean behaviour. The case of a shear tunnel-crack has been considered

by Pindra et al. (2010a): the results are rather similar to those previously obtained for mode 1; one novelty, however, is that, the fronts no longer tend to become symmetrical in time as in mode 1 (Favier et al., 2006b), so that correlations between crack front fluctuations at two points are higher for points located on the same front than for points located on distinct ones.

Subcritical or fatigue propagation

Let us suppose now that the crack advance is given by Paris' law (10). The inhomogeneity of the material is modelled by assuming the Paris constant to slightly fluctuated around its mean value; the Paris exponent N being considered as uniform for simplicity:

C(z, x) = C(1 + δc(z, x)), |δc(z, x) 1| ( 57 
)
It produces small fluctuations δ(z, a(t)) and δK(z, a(t)) of the crack position and the SIF around its mean position a (eq. 49).

Evolution of the perturbation of the crack front

Expanding first the propagation law to first order in δ(z, t), δK(z, t) and identifying terms of order 0 and 1, one gets

     da dt (t) = C [K(t)] N ∂δ ∂t (z, t) = C[K(t)] N N δK(z, a(t)) K(t) + δc(z, a(t)) .
Eliminating dt between these expressions and considering henceforward all perturbations as functions of the mean position a(t) ≡ a of the crack Upon use of the Fourier decompositions of δ(z, a), δK(z, a), δc(z, a) and equation ( 33), this finally yields the evolution equation of the Fourier transform δ(k, a) of the perturbation of the crack front:

∂ δ ∂a (k, a) = N a [α -F (ka)] δ(k, a) + δc(k, a). (58) 
Assuming the crack to be initially straight and integrating the linear, inhomogeneous, first-order differential equation ( 58 Notice that contrary to the brittle case (eq. 52), this equation is valid whatever the sign of α and that an effect of memory of previous configurations of the crack front is present here. This equation allows to obtain the crack front fluctuations δ for any given Paris' constant fluctuation δc. This shall be done numerically and is leaved for a further work. In the sequel, however only statistical properties of δc are known, so that statistical study becomes necessary.

6.2.2. General formula for the power spectrum of the perturbation of the crack front By the expression (59) of δ(k, a), one gets for the power spectrum of the crack front fluctuations:

A(k, a) = a a 0 a a 0 a 2 a 1 a 2 N α [ψ(ka)] 2 ψ(ka 1 )ψ(ka 2 ) N C(k, a 2 -a 1 ) da 1 da 2 , (60)
where C(k, a 2 -a 1 ) is the power spectrum of the Paris' constant fluctuations δc.

Due to the memory effect, this equation is more complex than the equivalent (53) one in brittle fracture. Its properties for any value of a has not at present been studied. Its asymptotic behaviour for a → ∞ has however be obtained by Favier et al. (2006b) and [START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF]. For k = 0, one gets:

A(0, a) ∼        C(0, 0) 2N α -1 a 0 a a 0 2N α if α > 1 2N , C(0, 0) 1 -2N α a if α < 1 2N , (61) 
and for k = 0:

A(k, a) ∼ C(k, 0) N |k| (62) 
where C(k, k ) is the double z, x-Fourier transform of the function C.

One can notice, like in brittle fracture that the large wavelengths are preferentially selected by the system and that ultimately only the zero wavenumber k = 0 component still evolves with a, the other components being in a steadystate (independent of a) rough regime. The first order study is not sufficient to determine the roughness exponent in this case (it gives indeed ζ = 0). This is probably linked to the memory effect that delay the development of this regime. A second order study is then necessary. It has been performed by [START_REF] Katzav | Roughness of tensile crack fronts in heterogenous materials[END_REF] who obtains a roughness exponent of ζ = 0.5.

Synthesis of the theoretical analytical results

The previous results derived for the half-plane or tunnel crack, with additional ones derived from Favier et al. (2006b) and [START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF] are summarized in table 1. 

ψ(ka) ψ(ka ) N a a N α δc(k, a )da idem - a κ(k, a) |α| + F (ka) A a a 0 a a 0 a 2 a 1 a 2 N α [ψ(ka)] 2 ψ(ka 1 )ψ(ka 2 ) N C(k, a 2 -a 1 ) da 1 da 2 idem a 2 K(k) (|α| + F (ka)) 2 For a → ∞: A(k, a) C(k, 0) N |k| C(k, 0) N |k| 4 K(k) k 2 A(0, a) C(0, 0) 2N α -1 a 0 a a 0 2N α C(0, 0) 1 -2N α a K(0) a 2 α 2 A(z) C(0, 0) π(2N α -1) a a 0 2N α-1 +∞ -∞ ψ(p) 2N dp C(0, 0) πN ln a 2a K(0) π|α| 
We recall that in this table F (p) is the function introduces in §3.2. This function is such as F (0) = 0 and increases monotonically to finally behaves as p/2 for p → ∞. The function ψ is defined by eq. ( 42) and decreases from 1 to 0 when p varies from 0 to +∞.

One notices that in all the cases the system preferentially "selects" perturbations of the crack front with small wavenumbers k, that is, large wavelengths λ = 2π/|k|. Physically it is link to the process explained in §4.1.

One can also easily discuss, using the table 1, the differences between brittle fracture and fatigue, the role of the loading type (sign of α) and of the crack geometry (function F (p) and ψ):

• Concerning the crack advance law, one can notice by comparison of columns 3 and 4, that the relations are less complex in brittle fracture than in fatigue since their is no time dependence of the response in the first case contrary to the second. One can also notice that the disorder grows faster in brittle fracture than in fatigue, the development being slowed down by a memory effect. And finally, for α > 0, the treatment is possible only in fatigue, since in brittle fracture the appearance of bifurcation renders the problem ill-posed.

• Thus, the dependence upon the sign of α can be considered only in fatigue. Comparison of columns 2 and 3 shows that the disorder grows faster for α > 1 2N than for α < 1 2N . It is obvious since instable wavelengths exists for α > 0 and not for α < 0. The selection of the large wavelengths remains however since the large ones grow faster than the small ones.

• Concerning the crack geometry, one can notice that the asymptotic behaviour for a → ∞ is independent of F , that is the same for the half-plane and tunnel cracks. Moreover, we have seen in section 6.1.2, that in brittle fracture, the power spectrum satisfies a Family-Vicsek scaling in both cases and the geometry introduces a difference only for the transition toward the large wavelength saturation regime (fig.

8(a)).

6.4. Brittle fracture: case ∃x, z such as K(x, z) < K c (x, z) (strong pinning)

In the case of strong pinning, when points of the crack front such as K(x, z) < K c (x, z) exist, an analytical approach is no more possible. Using a numerical approach based on the perturbation approach for the half-plane crack of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF], [START_REF] Schmittbuhl | Interfacial crack pinning: effect of nonlocal interactions[END_REF]; [START_REF] Schmittbuhl | Interfacial crack front wandering: influence of quenched noise correlations[END_REF]; [START_REF] Rosso | Roughness at the depinning threshold for a long-range elastic string[END_REF] have obtained a different value of the roughness exponent: ζ ∼ 0.35 -0.4. In these simulations, the toughness fluctuations were supposed to be quenched.

The reason for the difference between the analytical value ζ ∼ 0.5 obtained for weak pinning and this last result shall be clarified. It shall be due to the difference weak/strong pinning, to the difference quenched/annealed still noticed in other problems [START_REF] Kardar | Nonequilibrium dynamics of interfaces and lines[END_REF] but also to numerical biases.

The analytical results may for this last point serve as validation for the numerical procedures.

Synthesis of the major results

Now, let us list the factors that have an influence on the crack fluctuations resulting from toughness ones. Among them, we have seen that some of them have a quantitative influence on the statistical properties of the crack fluctuations, but a minor influence on the qualitative type of behaviour:

• Whether the crack propagates in an homogeneous media or along an interface [START_REF] Pindra | The deformation of the front of a 3d interface crack propagating quasistatically in a medium with random fracture properties[END_REF];

• Whether the loading is in tensile or shear mode (Pindra et al., 2010a);

• Whether the FK is the one of a half-plane or a tunnel-crack. Some others have a major influence, namely:

• The advance law: Paris' law gives nonlocal time-dependent laws for the evolution of the crack fluctuation in contrary to Irwin's criterion.

Moreover, strong pinning (see §5 for the definition) seems to lead to different value of the roughness exponent: ζ ∼ 0.35 -0.4 [START_REF] Schmittbuhl | Interfacial crack pinning: effect of nonlocal interactions[END_REF][START_REF] Rosso | Roughness at the depinning threshold for a long-range elastic string[END_REF] then weak pinning ζ ∼ 0.5.

• The loading: we have seen previously the dependance of the result with the sign of dK(a) da .

• Uncorrelated/correlated fluctuations: equation ( 53) shows the dependance of the result with the toughness fluctuations (see also [START_REF] Schmittbuhl | Interfacial crack front wandering: influence of quenched noise correlations[END_REF]).

• Annealed/quenched noise: has been shown to give different results in other problems [START_REF] Kardar | Nonequilibrium dynamics of interfaces and lines[END_REF].

The model is however valid only:

• In the quasistatic case. When dynamic effects become important, one may refer for instance to [START_REF] Ramanathan | Dynamics and instabilities of planar tensile cracks in heterogeneous media[END_REF] or [START_REF] Morrissey | Crack front waves[END_REF].

• Outside the Process Zone. Inside percolation damage models have been used [START_REF] Hansen | Origin of the universal roughness exponent of brittle fracture surfaces: stress-weighted percolation in the damage zone[END_REF].

• For small fluctuation variations. No full description of large variations has until now been developed.

• Far from any boundary. Interactions with boundaries have been show

to be important, but have seldom be studied [START_REF] Gao | Penetration of a quasi-statically slipping crack into a seismogenic zone of heterogeneous fracture resistance[END_REF]), Pindra et al. (2010b), Legrand and Leblond (2010b)).

Due to the difficulty of observation of the crack front during the propagation, few different experiments exist at present, that allow to study the crack front deformations. Among them [START_REF] Daguier | Roughness of a crack front pinned by microstructural obstacles[END_REF] used ink injections to follow the crack front in brittle fracture and fatigue. [START_REF] Schmittbuhl | Direct observation of a self-affine crack propagation[END_REF] studied the in-plane propagation through a transparent plexiglas block, the toughness fluctuations being obtained by sand blasting the surface of two plexiglas plates before to weld them together. Despite the numerous papers written on the subject [START_REF] Schmittbuhl | Direct observation of a self-affine crack propagation[END_REF][START_REF] Delaplace | High resolution description of a crack front in a heterogeneous plexiglas block[END_REF][START_REF] Maloy | Dynamical event during slow crack propagation[END_REF]Schmittbuhl et al., 2003b;[START_REF] Hansen | Origin of the universal roughness exponent of brittle fracture surfaces: stress-weighted percolation in the damage zone[END_REF]Schmittbuhl et al., 2003a;[START_REF] Santucci | Crackling dynamics during the failure of heterogeneous material: Optical and acoustic tracking of slow interfacial crack growth[END_REF], the debate seems not closed. All the previous points shall be verified to clarify the situation.

Conclusion

Crack front small perturbation approach initiated by [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] and later extended to more complex cases has been recalled. This approach allows to update the stress intensity factors when the crack front is slightly perturbed in its plane. Applications concerning the deformation of the crack front when it propagates quasistatically in an homogeneous or heterogeneous media have been considered in brittle fracture or fatigue/subcritical propagation. Only the case of one crack propagating in an infinite plane without interaction with a boundary has been considered. The stable shapes corresponding to uniform SIF have been derived: straight or circular, but also when bifurcations exists, wavy crack fronts. For a straight crack, it has been shown that perturbation of all lengthscales progressively disappears unless disordered fracture properties yields [START_REF] Family | Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model[END_REF] roughness of the crack front.

This approach has recently be extended to interaction between several cracks: the FK for two tunnel-cracks has been derived (Pindra et al. (2010b), Legrand and Leblond (2010b)) and the disorder during their coalescence studied (Legrand and Leblond, 2010a). Interestingly, it has been shown that, stability first prevails for all lengthscales such as λ < λ c , but since λ c is this time a decreasing function of the crack advance, all wavelengths finally become unstable so that the perturbation does not vanish. This underlines that stability results depend on the interaction of the crack with other cracks and more generally also, with obstacles or solid boundaries. Such a conclusion has still been obtained by [START_REF] Gao | Penetration of a quasi-statically slipping crack into a seismogenic zone of heterogeneous fracture resistance[END_REF] 
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 2 Figure 2: Several problems involving a circular crack.

Figure 3 :

 3 Figure 3: Several problems involving a half-plane crack

  Figure 4: Several problems involving a tunnel-crack.

  (a)), then K(s) = K is a constant due to the lack of any lengthscale in this problem; 2. a half-plane crack with uniform line tractions P at a distance a of the front (fig. 3(b)), then K(z) = 2 π P a -1/2 ; 3. a half-plane crack with uniform surface tractions σ in a band of width a (fig. 3(c)), then K(z) = 2 2 π σ a 1/2 ; 4. a tunnel-crack loaded by remote stresses (fig. 4(a)) then K(z) = σ √ πa 1/2 ;

Figure 5 :

 5 Figure 5: Sinusoidal perturbation of the crack front

  Figure 5(b)). It follows that K(A) > K(B) if dK(a) da > 0 and that

  scaling, let us study the dependence over k and a of b A(k,a) b K 0 and consider the particular case of a Master curves for different geometries (TC=tunnel-crack, HP=halfplane crack) and values of α. Dependence toward k for several given values of a (half-plane crack with α = -1/2). Dependence toward a for several given values of k (half-plane crack with α = -1/2).

Figure 8 :

 8 Figure 8: Power spectrum of the crack front fluctuations for white noise toughness fluctuations.

  denotes the initial value of a and ψ the function defined by equation (42).

  who studied the stability issue when the front approaches a stress free plate boundary: when the crack is far enough from the boundary, the critical wavelength λ c increases with crack growth (the model of infinite solid is then valid) and when it approaches the boundary, λ c decreases with crack growth. Now, comparison of the theoretical results recalled in this paper with experiments are seldom and have shown more or less success, in particular if one looks for quantitative agreement. Thus, to make them useful in particular for the engineering sciences, comparison with experiments have to be done in a deeper and more extensive way. It is planed in the next years during the ANR Programme SYSCOMM (ANR-09-SYSC-006 Mechanics and Statistical Physics of Rupture in Brittle Heterogeneous Materials) that supported this work.

Table 1 :

 1 Main analytical results concerning the propagation in a disordered media

	brittle α < 0	
	fatigue α < 1 2N	
	fatigue α > 1 2N	
	a	0
		a
	For any a:	δ

In the dynamic case, one may refer e.g. toFreund (1972b[START_REF] Freund | Crack propagation in an elastic solid subjected to general loading-iii. stress wave loading[END_REF][START_REF] Freund | Crack propagation in an elastic solid subjected to general loading-iv. obliquely incident stress pulse[END_REF],[START_REF] Kostrov | On the crack propagation with variable velocity[END_REF] for pioneer works and Ravi-Chandar (1998),Fineberg and Marder (1999), Freund (2000),[START_REF] Bouchbinder | Weakly nonlinear fracture mechanics: experiments and theory[END_REF] for more recent publications.

the order of the vectors may seem a little surprising but this definition of the local basis presents the advantage that the mode 1, (resp. 2 and

3) corresponds to the displacement jump along the vector with the same numbering, that is e 1 (resp. e 2 and e 3 )

A similar formula holds for an arbitrary anisotropic medium but the matrix Λ is then no longer diagonal(Broberg, 1999, §4.14), and also for the dynamic case, but then Λ depends on the crack velocity(Freund, 2000, §5.3).

In the dynamic fracture case some key references are[START_REF] Rice | 3-Dimensional perturbation solution for a dynamic planar crack moving unsteadily in a model elastic solid[END_REF],[START_REF] Willis | Dynamic weight-functions for a moving crack. 1. mode-I loading[END_REF],[START_REF] Willis | Three-dimensional dynamic perturbation of a propagating crack[END_REF],[START_REF] Woolfries | Perturbation of a dynamic planar crack moving in a model elastic solid[END_REF],Obrezanova et al. (2002a).

External cracks give rise to traditional ambiguities on the external load, since they cannot withstand uniform tractions exerted at infinity. Here the situation considered unambiguously consists of two tunnel-cracks (fig. 4(b)) in the limiting case where b a.

This terminology makes an implicit reference to Irwin's propagation law (7) for which crack propagation occurs when the SIF reaches some critical value. For such a law and under constant loading, after the onset of crack propagation, the velocity of the crack goes immediately down to zero if the SIF decreases with distance, but continuously increases in the opposite case; hence the expressions "stable propagation", "unstable propagation".

the wavelength k = 0 corresponds indeed to a infinite wavelength that is an almost straight crack front.