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Abstract

Understanding the role played by the microstructure of materials on their macroscopic failure properties is an im-
portant challenge in solid mechanics. Indeed, when a crack propagates at a heterogeneous brittle interface, the front
is trapped by tougher regions and deforms. This pinning induces non-linearities in the crack propagation problem,
even within Linear Elastic Fracture Mechanics theory, and modifies the overall failure properties of the material. For
example crack front pinning by tougher places could increase the fracture resistance of multilayer structures, with in-
teresting technological applications. Analytical perturbation approaches, based on Bueckner-Rice elastic line models,
focus on the crack front perturbations, hence allow for a description of these phenomena. Here, they are applied to
experiments investigating the propagation of a purely interfacial crack in a simple toughness pattern: a single defect
strip surrounded by homogeneous interface. We show that by taking into account the finite size of the body, quanti-
tative agreement with experimental and finite elements results is achieved. In particular this method allows to predict
the toughness contrast, i.e. the toughness difference between the single defect strip and its homogeneous surrounding
medium. This opens the way to a more accurate use of the perturbation method to study more disordered hetero-
geneous materials, where the finite elements method is less adequate. From our results, we also propose a simple
method to determine the adhesion energy of tough interfacesby measuring the crack front deformation induced by
known interface patterns.

Keywords: Interfacial brittle fracture, Toughening, Crack pinning,Finite element method, Perturbation approach

1. Introduction

Predicting the threshold for crack propagation is a key issue in material science: it determines the design quality
of structures and their durability for a wide range of systems ranging from bulk materials to thin films. In particular
it was shown that one of the most efficient mechanisms to increase effective toughness is crack pinning by material
heterogeneities (Bower and Ortiz, 1991). For example the macroscopic effective toughness of a material can be in-
creased very significantly by the dispersion of hard particles in the matrix (Mower and Argon, 1995). Another system
that takes advantage of crack pinning consists of patternedinterfaces presenting heterogeneous toughness landscapes.
Their technological interest lies in the development of multi-layer materials with high mechanical stability. A promis-
ing method to develop new materials consists in designing optimal heterogeneous interfaces with high toughness
while maintaining their functional features.

Heterogeneities affect the effective toughness by interfering with crack propagation, deflecting crack fronts and
crack surfaces. However, it is difficult to predict the effect of heterogeneities quantitatively and experimental inves-
tigation of this toughening mechanism raises several difficulties. For example it is not easy to create well controlled
heterogeneity distributions and to observe crack propagation in situ. Also, due to crack deflection, the problem is
often three-dimensional and theoretical or numerical developments become quite complex.

In the literature, most of the experimental investigationson crack pinning in heterogeneous materials were statisti-
cal approaches and studied post-mortem fracture surfaces (Bouchaud, 1997; Santucci et al., 2007; Ponson et al., 2007;
Dalmas et al., 2008; Bonamy, 2009). Experiments with directvisualization of the crack frontin situ during propaga-
tion are very unfrequent. For example, with an original experimental setup, Schmittbuhl and Måløy (1997) were able
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to observe the crack front morphology during propagation along a disordered heterogeneous interface. This setup has
been widely used to obtain statistical information on crackfront roughness (Delaplace et al., 1999; Santucci et al.,
2010) and stochastic dynamics of propagation (Måløy and Schmittbuhl, 2001; Tallakstad et al., 2011). However quan-
titative predictions seem out of reach, mainly because of the presence of shear on the crack front during loading and
the ill-controlled nature of the heterogeneities. Recently, Chopin et al. (2011) proposed a new experimental approach
with better controlled heterogeneities, but the setup alsosuffers from mode mixity. In the experiments of Mower and
Argon (1995), the front is trapped by second-phase particles introduced in a brittle epoxy. The front shape becomes
complicated since it can not penetrate in the particles, andthese experiments are difficult to model analytically.

Here, we report on a study of crack propagation measured along a well controlled patterned interface in a classical
Double Cantilever Beam (DCB) geometry. The crack propagates at the weakest interface in a stack of thin films
deposited on glass, allowing direct visualization of the crack front. This weakest interface is not homogeneous how-
ever: a defect strip with a different interfacial toughness lies at the center of the sample. Several values of toughness
contrast have been investigated and we have monitored the interaction of the interface crack with these defects. The
interface cracks are either trapped or attracted by the defect depending on the sign of the toughness contrast between
the defect strip and its homogeneous surrounding medium. This setup (Barthel et al., 2005; Dalmas et al., 2009) has
several advantages: 1) the crack is loaded in pure tensile mode (mode I); 2) the crack propagation is purely interfacial
(without deflexion out of the plane of the interface); 3) the toughness contrast can be tuned to keep the deformations
of the crack front small.

In the framework of Linear Elastic Fracture Mechanics, propagation criteria are based on the comparison of the
Energy Release Rate (ERR) and adhesion energy (Griffith, 1921) – or equivalently of mode I stress intensity factor
(SIF) and toughness (Irwin, 1957). The ERR is derived from anelastic analysis, and depends on loading, elastic
response of the solid and geometry of both bodyandcrack. Perturbation methods were initiated by Rice (1985),based
on Bueckner (1987) weight-function theory, and specifically used by Gao and Rice (1989) to study the morphology
of cracks trapped in heterogeneous interfaces. They provide analytical predictions for the variation of the ERR when
the crack front is slightly perturbed and effectively describe the crack front as an elastic line. However, the first order
formula proposed by Rice (1985) for a half-plane crack in an infinite media does not take into account any finite size
effect. In the case of the present measurements, they may provide erroneous predictions for large enough crack front
perturbations (deformation or wavelength) in comparison with sample sizes. However several improvements of this
formula have been proposed to take into account the finite size of the crack (Gao and Rice, 1987; Gao, 1988; Leblond
et al., 1996; Lazarus and Leblond, 2002; Lazarus, 2011), thefinite thickness of the body (Legrand et al., 2011) and
even the interaction between two cracks (Pindra et al., 2010).

Our aim here is to assess the use of analytical perturbation theories to model crack propagation in heterogeneous
interfaces. To evaluate the merits of these models, we need areference solution which would provide anexact
modeling of the data. In the case of the mildly distorted crack fronts proposed here, Finite Element (FE) simulations
can be used to determine thelocal values of the ERR. In addition, with FE simulations, we can accurately take into
account the exact geometry of the sample, includingthe shape of the crack frontwhich is determined experimentally.

The experimental method is presented first with some detailsconcerning the synthesis of the samples and the
cleavage tests (section 2). From the measured crack front deformations and loadings, the ERR pattern is then de-
termined by numerical and theoretical methods. The ERR along the crack front is quantitatively calculated through
detailed three-dimensional FE analysis (section 3). Analytical perturbation methods are presented in section 4 and
we show how the local ERR contrast can be inferred. Then FE andanalytical methods are applied to the different
samples and their results compared in section 5. In particular, it is shown that the ERR contrasts calculated by the two
approaches are in good agreement if the finite size of the plate is duly taken into account in the analytical perturbation
models (Legrand et al., 2011), in contrast to Rice (1985)’s model, which is conventionally used for this type of ge-
ometry although it can apply only to infinite half-spaces. Wefinally discuss the crack propagation criterion and show
how these results can be used to give quantitative estimatesof local adhesion energy values for textured interfaces in
section 6.
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2. Experiments

2.1. Synthesis of samples

To control and visualize the propagation of a purely interfacial crack along a patterned interface we start from thin
film multi-layers deposited by magnetron sputtering (Barthel et al., 2005) on rectangular glass substrates (thickness
h = 700µm, widthb, lengthL). Schematically, a typical sample is glass/silver/top layer (see Fig. 1).

(a)

(b) (c) (d)

Figure 1: (a) Schematics of a patterned multilayer deposited on glass exemplified for the HC-b30 sample. (b), (c) and
(d): the multi-layers are reinforced by a glass backing prior to cleavage test for the HC-b30, MC-b40 (MC-b50) and
LC-b40 samples respectively (see text for details). The plane of fracture is shown in red.

Patterning of the interface is achieved by inserting a mask close to the sample during deposition of the silver layer.
The mask is rectangular (widthd) and extends over about half the sample length. The other layers comprising the
sample are deposited without mask and are homogeneous. The area covered by the mask induces a zone with different
adhesion, i.e. different toughness , which we call the defect strip.

Three types of interfaces are studied, with respectively low toughness contrast (LC), medium contrast (MC) and
high contrast (HC). In LC-b40, the defect strip is an organiclayer which is directly deposited on glass, inducing
lower adhesion. For MC-b40 and MC-b50, the silver layer is deposited on an Si3N4 sublayer. The toughness contrast
originates from the difference between Ag/Si3N4 and Si3N4/Si3N4 adhesion. In HC-b40 the silver layer was deposited
directly on the glass substrate, increasing the toughness contrast due to lower adhesion on glass. The sample nature
and dimensions are summarized in Tab. 1, ranked from the lowest to the highest adhesion.

Sample Stack b (mm) L (mm) d (mm) H (mm) Homog. Interf. Defect strip
LC-b40 Gl./Org/Ag/Si3N4 38 64 2.82 3 Glass/Ag Glass/Organic
MC-b40 Gl./Si3N4/Ag/Si3N4 40 65 3.2 3 Si3N4/Ag Si3N4/Si3N4

MC-b50 Gl./Si3N4/Ag/Si3N4 49 82.5 3.87 2.5 Si3N4/Ag Si3N4/Si3N4

HC-b30 Gl./Ag/Si3N4 29.5 36.5 3.2 1.5 Glass/Ag Glass/Si3N4

Table 1: Nature and dimensions of the patterned samples. Foreach stack the patterned layer is shown in bold.
Underlayer thicknesses vary between 10 and 50 nm.

2.2. Cleavage test

To propagate a crack in the multilayer, we use cleavage underambient conditions: a glass backing of thickness
700µm is glued on top of the multilayer with an epoxy glue (Barthelet al., 2005; Dalmas et al., 2009), resulting in
a glass/multilayer/glass sandwich. This sandwich is amenable to opening in a DCBsetup. The test is carried out by
progressive opening of the two glass arms by the gradual introduction of a wedge between the two plates (Fig. 2a).
The positioning of the wedge is controlled by an electric jack for precise control of the opening of the two glass
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plates. With this method, cleavage is displacement controlled and the propagation of the crack is stable: the crack
length increases in a controlled way. The propagation of thecrack front is performed in a quasi-static manner, i.e.
further increment of the opening is applied only after complete arrest of the crack front.

a

2h

(a) (b)

Figure 2: (a) Schematic of cleavage test on a double cantilever beam. The opening of the crackδ is imposed by the
wedge in order to control the average length of the cracka. (b) Top view sample photography during the cleavage test
HC-b30. Thanks to transparency of the glass, interfacial crack is observed. The deformation of the crack comes from
the difference of adhesion energies between the silver interface and the defect strip.

The specimen is semi-transparent and we directly observe the crack front propagation during opening. In order to
record the data, two high magnifications cameras are used. The first camera monitors the displacement of the glass
armsδ, which is measured at the corners of the crack surfaces (see Fig. 2a). The second camera records the crack
front shapea(z) (see Fig. 2b). Its positiona(z) is measured from the line parallel to z passing through the external
corners of the crack surfaces.

Once the wedge penetrates between the two plates, crack propagation takes place at the weakest interface of the
multilayer. In order to identify this interface X-Ray photoelectron spectroscopy is used on both fracture surfaces. In
these samples, purely interfacial fractures have always been found. As indicated in Fig. 1, the crack takes place at one
of the silver layer interfaces for all the configurations. This observation is consistent with the weak adhesion of silver
layers and the perfectly interfacial crack path demonstrated earlier (Barthel et al., 2005). As the crack propagates in
a patterned interface, two fracture interfaces can be defined, one involving the silver layer and the other one in the
defect strip (see Tab. 1).

The evolution of the crack front morphologies (only for equilibrium positions) during cleavage tests is shown
in Fig. 3 in the case of sample HC-b30. In the first regime, the propagation takes place at the homogeneous silver
interface. The crack front propagates with the overall curved shape which is characteristic of homogeneous interfaces
for finite width samples (Sec. 3.3). This simple curved shapeis preserved until the crack comes into contact with
the defect strip, where deformation of the crack front begins: it is held back by the defect strip and curves into the
outer region. After this transient regime, stationary propagation is recovered: in this third regime, where the crack
propagates in the patterned area of the interface, the overall curvature of the crack front is now decorated by an
additional modulation: the front lags behind in the high adhesion defect strip.

The crack front positionsa(z) and the loadingsδ, with the sample geometric dimensions and the elastic constants
of the glass (E,ν), serve as input parameters to model the cleavage tests in the next sections by two different ways. We
compute the ERR landscape along the crack front first by FE numerical calculations (Sec. 3), second, by theoretical
perturbation approaches (Sec. 4) and compare the results (Sec. 5).
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Figure 3: Evolution of the equilibrium shape of the measuredcrack front for the HC-b30 sample. The three suc-
cessive regimes of propagation are distinguished. I: Stationary propagation along the silver homogeneous interface
(wide dashed black lines); II: transient deformation of thefront when entering the defect strip (red dotted lines); III:
stationary propagation of the deformed front in the defect strip (continuous blue lines).

3. ERR obtained numerically by Finite Elements

FE calculations are performed with the aim to analyze the validity of the analytical perturbation approaches pro-
posed in this paper (Sec. 4.2). To directly model the whole experimental pinning cleavage tests and obtain a reference
solution of the global and local ERRs, we needed to take into account the whole geometry of the problem, includ-
ing specimen geometry and the crack morphology (Sec. 3.1). This is the major part of the present FE calculations
(Sec. 3.2). Besides, we also consider the case of an homogeneous interface (Sec. 3.3). Even in this case, due to the
finite width of the specimen, the front shapes are not straight and are derived here by FE calculations. They are used
as reference unperturbed crack geometry for the perturbation methods.

3.1. Simulation method

To calculate the local ERR distribution, the static elasticity problem is resolved by FE for each equilibrium po-
sition of the crack front. The input parameters for the FE calculations are the geometrical dimensions of the sample
(L, b, h,H) (Fig. 2), along with the position of the fronta(z) and the associated openingδ, which are measured during
the gradual opening of the sample.

The simulations are performed with the FE code CAST3M developed by the French Commissariat à l’Énergie
Atomique (CEA). The values of Young’s modulusE = 71 GPa and Poisson’s ratioν = 0.22 are those of glass for all
the cleavage tests. The multilayer is neglected from a mechanical point of view due to its extremely low thickness
compared to the glass plates. The results presented in this work correspond to meshes composed of 144,896 bilinear
8-node parallelepipedic elements and 180,471 nodes. The mesh of the glass plate is inhomogeneous. Its density
increases as the displacement gradients, and thus especially in the vicinity of the crack tip. The mesh is refined
until the displacement field converges at mechanical equilibrium. The mesh of the experimental crack front shape
a(z) = a + δa(z) is obtained by deforming an invariant mesh in thez-direction of a straight crack front around its
mean positiona (Fig. 4). The mesh around the crack front is constructed to form a kind of regular cylinder around
the front which is adapted to the “G-theta” method used to calculated the local ERR at each point of the front. This
method developed by Destuynder and Djaoua (1981), allows usto calculateG accurately and quickly (Destuynder
et al., 1983).

As output of the simulation, the 3D displacement fields obtained are used to obtain the local ERRG(z) along the
front with the “G-theta” method. This method uses the displacement fields obtained by FE resolution of the elasticity
problem. Due to the symmetry of the problem with respect to the x − z plane, i.e. the plane in which the crack
propagates, only the upper glass plate located above the planey = 0 is simulated. Symmetry boundary conditions are
applied on this boundary. The boundaryx = L is clamped. Stress free boundary conditions are applied on the rest of
the boundary surfaces. Concerning the loading, a point displacement∆ in they-direction is applied on the triangular
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Figure 4: Typical mesh of the cleavage test used in the finite element calculations. The unbroken interface is colored
in blue. The highest mesh density corresponds to the crack front position. A zoom of the mesh in the vicinity of the
crack tip is also reported in red.

tip as in the experiments. The value of∆ is fixed so that the displacement at the cornerδ of the sample shown in Fig. 2a
converges toward the displacement measured experimentally. The final error between the experimental and numerical
value ofδ is less than 1%, i.e. less than the uncertainty of experimental measurement, for all crack configurations
studied.

3.2. Evolution of the ERR during the propagation along the heterogeneous interface

The local ERRs are calculated along the crack fronts for all equilibrium positions of the crack obtained experi-
mentally. In the following we illustrate our results in the case of the multilayer HC-b30 that exhibits the strongest
adhesion contrast among the four types of interfaces presented in Sec. 2.

We plot the following results:

• The ERR landscapeG(z) of a crack front trapped by the central defect strip (Fig. 5);

• The average ERRG0 =< G(z) > as a function of the average positiona of the crack front (Fig. 6a);

• The average fluctuations∆G1 and∆G2 of G(z) with respect toG0 for interface areas situated outside and inside
the central defect strip respectively (Fig. 6b).

The evolution of the ERR landscapeG(z) when the crack propagates is reported in Fig. 5a. The ERR contrast
expected between the defect strip and its surrounding homogeneous medium is well reproduced by the ERR landscape.
As reported in Fig. 3, three successive stages can be associated with this ERR landscape: homogeneous propagation
(the front has a curved shape characteristic of finite width effect); interaction between the crack front and the central
defect strip (the front is progressively deformed); stationary pinning (the deformation stays invariant in the direction
of propagation).

A profile of the ERRG(z) obtained for a crack front trapped by the defect strip in thelast stationary regime is shown
in Fig. 5b. Despite the presence of some fluctuations, the presence of the central defect strip can be clearly identified
and characterized by a significant variation of the ERR compared to average ERRG0. In the homogeneous and the
defect zones, the ERR is nearly constant longitudinally to the crack front in the directionz. It is therefore possible to
attribute a characteristic ERR value for the two types of interfaces, homogeneous and defect strip, encountered by the
crack. We noteG1 andG2 their respective average value from which we extract the corresponding mean variations
from ∆G1 = G1 −G0 and∆G2 = G2 −G0. The signs of∆G1 and∆G2 are by definition opposed. The notationsG0,
G1, G2, ∆G1 and∆G2 are reported on Fig. 5b.

Thanks to the FE calculations we compute the global ERRG0 by calculating the average ERR along the front
knowing the local ERRs so thatG0 =< G(z) >. In Fig. 6a, the variation ofG0 shows the three regimes as a function of
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Figure 5: Local Energy Release Rate (ERR) computed by FiniteElement (FE) for the cleavage test HC-b30. (a)
Evolution of the ERR landscape. The three successive stagesof propagation are distinguished as in Fig. 3. The ERR
contrast expected between the defect strip and its surrounding homogeneous medium is well reproduced by the ERR
landscape. (b) Local ERR along a crack front during regime III of Fig. 3. G0 denotes the average along the front while
∆G1 and∆G2 denote the average variations of the energy release rate compared toG0 outside and inside the defect
strip respectively.
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Figure 6: Energy Release Rate (ERR) calculated by finite element method (symbols) for the cleavage test HC-b30. In
order to distinguish the three successive regimes of propagation the color code is same as in Fig. 3: black circles for
the propagation along the homogeneous part of the interface, red squares for the transient regime and blue diamonds
for the propagation in the patterned part of the interface. The error bars are deduced from statistical dispersions.
(a) Mean ERRG0 evolution with the mean crack front positiona. The continuous straight line corresponds to the
theoretical value deduced from the linear regression of Fig. 7 computed through Eq. 1. (b) ERR contrasts∆Gi as a
function of the distance between the average crack front position and the beginning of the defect strip positiona− a0.
The contrasts are calculated outside (∆G1) and inside (∆G2) the defect strip.

the average position of the crack in its direction of propagation a. These regimes correspond again to the morphology
variations reported in Fig. 3. The average ERRG0 is almost constant at the beginning and at the end of cleavage
test. Between these two ERR values a transient regime is observed. These three regimes correspond chronologically
to the propagation of the crack front in a homogeneous medium, its interaction with the strip edges and finally to its
stationary pinning by the defect strip. Changes inG0 reflect the change in the effective toughness of the interface
due to the presence of the defect strip during the crack propagation. The increase inG0 can be associated with a
toughening of the interface. This aspect will be discussed in more detail in Sec. 6.
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The determination of local ERR values allows us to refine our understanding of the interaction between the crack
front and the central defect strip. In Fig. 6b, we represent the variations∆G1 and∆G2 as a function of the distance
between the average position of the cracka and the beginning of the masked zonea0 in the crack propagation direction
x. The three regimes described above, from the change inG0, are considerably emphasized. We observe that the
variations∆Gi are equal to zero fora − a0 < 0, i.e. before the interaction of the crack with the defect. During the
penetration of the strip by the crack front, in the vicinity of a− a0 = 0,∆Gi vary dramatically. The∆Gi finally reach
constant values fora− a0 > 0 when the crack front is stationary trapped by the defect. Note that, in absolute value,
the variation∆G1 is about one order of magnitude lower than∆G2. The width of the homogeneous zone is indeed an
order of magnitude greater than that the defect strip one. The signs of variations∆Gi are consistent with the observed
variations inG0. A defect strip whose adhesion is larger (smaller) than the homogeneous medium produces a variation
∆G2 > 0 (∆G2 < 0) and∆G1 < 0 (∆G1 > 0).

3.3. Simulation of the overall crack front curvature for an homogeneous interface

Even for a homogeneous pattern-free interface, for a sampleof finite width b, the crack fronts are not exactly
straight but adopt a curved shape (see wide dashed black lines in Fig. 3). This shape is due to the anticlastic defor-
mation of the bent plates. To our knowledge, there is no simple analytical formula for modeling this contribution
to the crack front shape. Therefore we have calculated the crack shape in an equivalent homogeneous medium cor-
responding to the experimental geometry and loading. Usingthe FE method we have calculated crack shapes such
thatG(z) = G0 along the front whereG0 is the average ERR computed previously by FE. The crack frontshape is
determined from a mere steepest descent iterative algorithm. The equilibrium shape is reached when the difference
between the local ERRG(z) andG0 is less than 1% at any point of the front. These background curved shapes will
then be subtracted from the experimental fronts before analysis of the deformed crack fronts in the heterogeneous
samples with the perturbation formulas (Sec. 5).

4. Analytical approaches

The idea here is to decompose the calculation of the local ERRalong the deformed crack front as the sum of
its global average value and its local increase along the perturbed configuration. Analytical methods allowing us to
estimate the mean value (beam model) and the local relative values (perturbation methods) are presented in sections
4.1 and 4.2 respectively. Our goal is here to be able to determine the ERR landscape analytically in order to compare
theoretical predictions with previous FE numerical calculations in sections 5 and 6.

4.1. Determination of the average ERR

The first step of our theoretical study is to determine the global ERR, i.e. the mean ERRG0. A standard data
analysis is to calculateG0 by a simple beam bending model at fixed displacement (Fig. 2b). According to Kanninen
(1973), the ERR in a state of plane stress reads:

G0 =
3Eh3δ2

16(a+ 0.64h)4
. (1)

Note that the geometry of the problem meets the assumptions leading to Eq. 1, i.e.a ≫ h andL − a > 2h, for all
the cleavage tests studied in this work. We need to adapt the beam model to pass from a three-dimensional elastic
problem to a beam model in one dimension. Kanninen’s model istherefore employed using the average crack front
positiona calculated along the width of the plate in thez direction. This average position is obtained directly from
experimental crack front positionsa(z).

In practice, we plot the evolution ofδ2 as a function of (a + 0.64h)4. In Fig. 7, the case of sample HC-b30 is
reported as an example. In this kind of graph,G0 is simply proportional to the slope of the curve. We can clearly
identified the three different regimes described in Sec. 3.2.

We extract the nearly constant value ofG0 in regime III, i.e. where the the pinning is stationary, by a linear
regression procedure. In the case of sample HC-b30, we obtain G0 = 0.95± 0.14 J/m2 as reported in Fig. 7. This
quantity will be used to determine adhesion properties in Sec. 6. The comparison with FE numerical calculations in
Fig. 6a shows a good agreement.
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Figure 7: Typical data plot according to Kanninen’s model for the cleavage test HC-b30. The slope corresponds to
the mean Energy Release Rate (ERR)G0. The three successive regimes of propagation are distinguished as in Fig. 3.
I: stationary propagation along the silver homogeneous interface (black circles); II: transient deformation of the front
when entering the defect strip (red squares); III: stationary propagation of the deformed front in the defect strip (blue
diamonds). The straight line is a linear regression of the data in the regime III.

For all the experiments, the variations ofG0 due to the interaction between the crack and the defect are well
reproduced by Eq. 1 as a function of the average position of the crack front.G0 is only slightly underestimated with
respect to FE calculations. The maximum relative error between the beam model predictions and the FE numerical
calculations remains below 10% for all samples. This resultvalidates the use of Kanninen’s model to evaluateG0 in
our system.

4.2. Perturbation method

We now present the perturbation approaches to model the cleavage test. Our goal is to evaluate the local ERRs from
the knowledge of the crack front morphologya(z), this time using a lightweight analytical method. We first discuss
the formulas giving the first order variation of the local ERRdue to a perturbation of the crack front position. We then
customize them to our experiments: we assume that the ERR landscape is stepwise to reduce the determination of the
local ERR to a single parameter, namely the ERR contrast. Theusefulness of those formulas appears when applied to
the experiments, since they allow to reduce the errors linked to the local noise of measures in the crack front position
a(z).

4.2.1. Variation of the local ERR due to small crack front perturbations
Two different cases are considered: 1) when the wavelengthλ of the crack front perturbation is small compared to

the plate thickness, that is when the medium can be supposed to be infinite and 2) whenλ is large, that is when a thin
plate model can be used.
• Rice (1985)’s formula for a half-plane crack in an infinite medium: In his pioneer work Rice (1985) has

calculated the theoretical expression of the ERR first-order variationδG(z) along a planar crack front due to a small
perturbation of the front positionδa(z). This expression is valid in principle for a semi-infinite crack in an infinite body.
From the perspective of a DCB geometry (see Fig. 2a), such a geometric mapping is acceptable if the characteristic
perturbation lengthλ of the crack front meets the conditions:λ ≪ h andλ ≪ a. The first condition implies that the
plate must be very thick with respect to the perturbation wavelength. Provided that these assumptions are met and that
the load is invariant along the crack front in thezdirection,δ̂G(k) is given in Fourier space by:

δ̂G(k)
G0

= F∞(k, a)δ̂a(k) with F∞(k, a) = (−|k| +
1

G0

dG
da

), (2)
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whereλ = 2π/|k| is the wavelength of the front perturbation andG0 the ERR of the straight crack front of average
positiona. Note that to first orderG0 corresponds to the average ERR as introduced in the previoussections. The
derivativedG/da is calculated in our work from the simple Euler-Bernoulli beam model (Tada et al., 1985) consistent
with the plate model presented subsequently. In this case, the variation 1/G0.(dG/da) with the crack lengtha is merely
given by−4/a.

• Legrand et al. (2011)’s formula for a half-plane crack in a thin plate
Rice’s method has been extended by Legrand et al. (2011) adapting it to the case of a semi-infinite planar crack located
in the mid-plane of a thin plate. This system satisfies the conditions: λ ≫ h andh ≪ a. Under these assumptions,
the perturbation of the crack can be treated with the Love-Kirchhoff theory for thin plates, which greatly reduces the
complexity of the problem. Note that in this case, the first condition implies that the plate must be very thin with
respect to the perturbation wavelength. The first order variation of the ERR in Fourier space writes as follows:

δ̂G(k)
G0

= FPlate(ka)δ̂a(k) with Fplate(ka) =
2
a

(
2kacosh(2ka) − sinh(2ka)

2ka− sinh(2ka)

)
. (3)

4.2.2. Application to a stepwise ERR landscape
The cleavage experiments can be modeled by assigning characteristic ERRs to the homogeneous area (G1) and

defect strip (G2). This assumption seems very reasonable from FE numerical results of Sec. 3.2. In the presence of a
defectof known width d, the ERR landscape is modeled by:

G(z) = G0 + Π1(z)∆G1 + Π2(z)∆G2 with

{
Π1 = 0,Π2 = 1 if |z| < d/2
Π1 = 1,Π2 = 0 if |z| > d/2

, (4)

whereΠi are rectangular functions. The variation of the normalizedERR is:

δG(z)
G0

=
∆G1

G0
Π1(z) +

∆G2

G0
Π2(z). (5)

The averageG0 provides a relation linking the ERR of the defect strip and the surrounding homogeneous medium.
DenotingG1 the ERR in the homogeneous zone andG2 the ERR in the defect strip, we assume thatG0 is an average
along the front line, which we simply write as:

G0 =
G1(b− d) +G2d

b
. (6)

We can write Eq. 5 in Fourier space to deduce the front shapeδa(z) from Eqs. 2 or 3. Using Eq. 6 to express∆G2

as a function of∆G1, we obtain:

δ̂a(k) =
1

F(k, a)
∆G2

G0

[
−d/(b− d)Π̂1(k) + Π̂2(k)

]
, (7)

whereF(k, a) is one of the elastic kernels from Eqs. 2 or 3. Eq. 7 establishes a relationship which relates the shape of
the crack front with the ERR contrasts between the defect strip and the homogeneous medium in the present geometry.

5. Determination of ERR contrasts

In the previous sections, we have presented experimental front morphologies in homogeneous and patterned inter-
faces, along with thorough FE modeling to access both globalERR and ERR distribution over the sample. We now
analyze the same data with the analytical formulas derived from the perturbation method.
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5.1. Corrections of experimental crack front positions

In order to apply the perturbation approaches to calculate the local ERR, it is first necessary to correct the experi-
mental front shapesa(z)Exp = a+ δa(z)Exp from extrinsic effects that were not taken into account in the perturbation
method. This task is equivalent to determining theunperturbedcrack front geometry and its variation with crack
lengthδa(z) in the absence of defect strip. Indeed, the perturbation approaches described in Sec. 4.2 apply only to
a solid which is infinite in the lateral (z) direction,i.e. an infinite straight crack front. In the experiments, the finite
width of the sample induces a curvature of the front due to theanticlastic effect as presented in Sec. 3.3. In order to
take into account this additional finite size effect, we take as unperturbed reference crack front, for a given globalG0

level, the curved fronta(z)Anti = a+ δa(z)Anti calculated by the FE simulations method presented in Sec. 3.3.
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Figure 8: Variation of the crack front position calculated by the finite element method for an equivalent homogeneous
medium whose curvature comes from anticlastic coupling. The obtained shapes are exemplified for the HC-b30
cleavage test for different mean crack front positions. Note that the scale of the axes are different. The front is almost
straight.

Examples of curved fronts obtained by this method for the HC-b30 cleavage test are shown in Fig. 8. These shapes
are characteristic of curved crack fronts in homogeneous specimens of finite width (Jumel and Shanahan, 2008). Note
that, due to the changes of the ratioa/b, and thus the stress state with the advance of the crack, the curvature of the
crack depends on the average crack length as expected. The loading on the triangular tip of the plates also reinforces
the crack front curvature variation. This curvature variation shown in Fig. 8 emphasizes that the influence of the width
of samples is not constant as assumed in Dalmas et al. (2009).It clearly depends on the the mean crack lengtha.
The solutions obtained will serve us as the reference unperturbed solutions in the perturbation approaches presented
below.

A second correction comes from a slight rotation around the x-axis of the wedge between the plates during loading
which induces an imperfect symmetry with respect to the plane z = 0 at the center of the sample. This lack of
symmetry is reflected by a slight linear bias inz of the crack position. For instance, the crack front shape, corrected
from the anticlastic effect, in a homogeneous medium is a linear function of z insteadof being completely flat with
δa(z) = 0 for all points along the front. We choose to correct this load-related effect by subtracting a linear fitδa(z)Lin

to the experimental position. This procedure partially restores the symmetry of the problem with respect to the plane
z=0 at the center of the specimen as assumed in the model described in the previous theoretical section. Note that it
does not affect the ERR contrast calculation, but merely allows a betterfit of the elastic line model on experimental
data.

The variation of the position of the crack front around its average positiona corrected from both anticlastic and
rotation effects writes:

δa(z) = δa(z)Exp− δa(z)Anti − δa(z)Lin. (8)

An example of a corrected crack front morphology in regime III for the HC-b30 sample is shown in Fig. 9. The
impact of the defect strip on the front morphology is clearlyvisible. Consistent with the FE analysis of Fig. 5 and 6,
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Figure 9: Variation of the experimental crack front positions (symbols) corrected through Eq. 8 for the cleavage test
HC-b30. The dashed and solid curves correspond to the fitted semi-infinite (Eq. 2) and thin plate (Eq. 3) models,
respectively. Note that the vertical axis is expanded approximatively ten times compared to the horizontal axis.

an increase in ERR corresponds to the anchoring of the crack.Note that the ordinate axis of Fig. 9 is approximatively
expanded ten times in comparison with the axis of abscissa. This observation reflects the fact that the perturbations
of the crack front position are small compared to the width ofthe specimen. The morphologies of experimental crack
fronts therefore justify a priori a theoretical treatment based on a first-order perturbative approach presented in Sec.
4.2.

5.2. Quantitative analysis of crack front deformations with perturbation methods

In order to reproduce the shape of the experimental crack front with Eq. 7, we have chosen to work in the direct
space by adjusting the single free parameter∆G2/G0. Indeed, the presence of experimental noise on the crack front
position makes the determination of the ERR contrast difficult from a direct use of Eq. 7 in Fourier space. The
normalized ERR contrast is determined by minimizing the mean square error between the experimental front shape and
the front morphology predicted after a numerical transformation into real space of Eq. 7. This adjustment procedure
has fewer degrees of freedom than in the work of Dalmas et al. (2009) where the width of the defect strip was taken
as a free parameter.

The morphologies of the fronts obtained from the best fit of the different elastic kernels are plotted in Fig. 9. Both
perturbative approaches satisfactorily reproduce the crack front shapes except near the edges of the specimen due to
free surface effects. Fig. 9 shows only a slight better agreement with the experimental results for the thin plate model.
In order to get quantitative interpretation, the average mean square error over all the crack configurations for the four
samples has been computed for both models. We found that the error on the experimental crack front positions is lower
in average for the thin plate model than for the semi-infinitemodel. It seems difficult however to find a significant
difference between the semi-infinite and thin plate formulas on the basis of the front morphology. In the next section
we will see that quasi-equivalent front shapes in fact involve very different ERR contrasts allowing us to judge of the
applicability of the models.

5.3. Comparison between perturbation methods and FE results

The fitting procedure presented above gives us the opportunity to access local ERR contrasts, i.e. to the difference
of ERR between the defect strip and its homogeneous environment. From this adjustment we can calculate the
normalized contrasts∆G2/G0 directly through Eq. 7.∆G1/G0 is then deduced from∆G2/G0 through Eq. 6. This
last step completes the determination of the ERR landscape by the perturbation method, knowing the geometry of the
system, especially the crack front morphology and the defect strip width.

As expected from the theoretical work of Legrand et al. (2011), the absolute values of ERR contrasts predicted
by the semi-infinite model are found to be lower than those predicted by the thin plate model. The ratio between the
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latter and the former is about 2.5. To discriminate between the two elastic line models, we compare their respective
predictions with the numerical FE calculations.
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Figure 10: Comparison of normalized Energy Release Rate (ERR) contrasts∆Gi/G0 calculated by the finite element
method with those obtained from the semi-infinite (red open symbols) and the thin plate (black solid symbols) the-
oretical approaches. The blue dotted lines correspond to the perfect equivalence between these two quantities. The
error bars are deduced from statistical dispersions.

Comparisons between the ERR contrasts deduced from theoretical approaches with the FE results are shown in
Fig. 10 where the results obtained for all crack fronts of thefour samples LC-b40, MC-b40, MC-b50, and HC-b30.
Despite some discrepancies, Fig. 10 shows a much better description of the ERR contrasts when the plate model is
used. The average relative error on∆Gi/G0 for all the data of Fig. 10 in comparison with the FE results decreases
from 61% when Rice’s model is applied directly as for a semi-infinite medium to 16% when the finite thickness of the
plate is taken into account.

Despite a correct description of the front shapes of the pinned cracks, Rice’s model as applied directly to the
present DCB tests systematically underestimates the ERR normalized contrasts. This result comes from the fact
that the perturbation wavelengths of the crack front are much larger than the specimen thicknesses. This is often
encountered in the literature when thin plate geometries isused to study interfacial crack propagation. Therefore, in
such geometries, it is necessary to model the cracks by taking into account the finite thickness of the plate, as shown
by Legrand et al. (2011). Using this model, we find quantitative agreement,i.e. within the error bars, with the three
dimensional FE calculations.

In the more general case, Legrand et al. (2011) have also developed a model that connects both regimes (semi-
infinite and thin plate) as a function of the wavelength of theperturbations relative to the thickness of the specimen.
This more general kernel is not relevant here since the widthof the defect is much larger than the plate thicknessh, so
that we always stand in the vicinity of the thin plate limit.

6. Crack front propagation and material properties

6.1. Propagation criterion

Thanks to our experimental procedure, the interpretation of the previous results in terms of material properties,
i.e. adhesion, is fairly straightforward. Indeed, due to the quasi-static propagation of the crack, a propagation criterion
has to be fulfilled at any point of the observed front. For a given load, the crack front stops at locations where the
propagation driving force is no longer sufficient. It is common for brittle fracture to assume that the crack front advance
is ruled by the Griffith criterion. In this framework, the equilibrium morphology of the crack fronta(z) = a+ δa(z) for
a given openingδ obeys:

G(z) ≤ Gc(z), (9)
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Sample Stack Finite element (J.m−2) Rice model (J.m−2) Plate model (J.m−2)
LC-b40 Gl./Org/Ag/Si3N4 0.35± 0.04 0.46± 0.19 0.32± 0.13
MC-b40 Gl./Si3N4/Ag/Si3N4 1.57± 0.11 1.13± 0.09 1.52± 0.14
MC-b50 Gl./Si3N4/Ag/Si3N4 1.86± 0.12 1.16± 0.12 1.75± 0.18
HC-b30 Gl./Ag/Si3N4 4.63± 0.31 2.23± 0.36 4.09± 0.64

Table 2: Average adhesion energy of the different defect strip interfacesG2c = G0 + ∆G2 computed by FE analysis,
perturbation theory using Rice (semi-infinite geometry) and Legrand (plate geometry) formulas respectively.

whereGc(z) is the local adhesion energy. Therefore, we can deduce the fracture energies of both the surrounding
homogeneous medium and the defect strip interfaces denotedG1c andG2c respectively. In a very similar way, the
adhesion energy has been measured for homogeneous interfaces by Barthel et al. (2005).

While the data of the crack front geometry and the loading geometry can give a direct access to the ERRG(z),
the same is not systematically true for the adhesion energyGc(z). It would be the case if the arrest condition for a
crack front Eq. 9 was an equality and not only a simple inequality. Thus, the fracture energy can only be deduced
from the ERR for stationary crack propagation regimes, i.e.where the materials properties are invariant in the crack
propagation direction (Roux et al., 2003). In our system, itis the case for the regimes I and III described previously.
Between these two stationary regimes a transient regime (II) is observed where the inequality of Eq. 9 remains and
the determination ofGc(z) is not possible.

In the first regime (stage I of Fig. 3), the crack propagates ina completely homogeneous zone andG1 = G1c

along the front. When the crack begins to interact with the obstacle (stage II of Fig. 3),G2 ≤ G2c in the defect strip
andG2 increases with the applied load involving a significant change in∆Gi . Once the defect is penetrated by the
crackG2 = G2c in strip and, for each increment of the opening, the crack advances with∆Gi nearly constant. In this
last stationary regime of crack propagation (stage III in Fig. 3) the toughness contrast is invariant in the direction
of propagation, and we have equality between the local values of adhesion energy and ERR all along the front. The
present methods can then be used to measure interfacial toughness in the defect strip.

Note that it is also possible to simulate the quasi-static propagation of a crack for a given toughness landscape.
The adhesion energy of the defect strip and its surrounding homogeneous medium could be obtained by adjusting
their values in order to reproduce the shape of the crack front observed experimentally. This procedure is however
computationally demanding as it implies to describe the propagation of the crack which involves the calculation of
a large number of configurations. In this study, the aim was not to perform propagation simulations of the crack,
but to validate the analytical perturbation approach, hence it was enough to take advantage of our experimental setup
which offers a direct observation of the crack front equilibrium shape and to perform direct simulations of the elastic
problem for each equilibrium configuration.

6.2. Determination of the defect strip adhesion

In this last section we leverage the originality of this workby focusing on the determination of the defect strip
adhesionG2c in the framework of crack pinning in heterogeneous interfaces. The measurement ofG2c is carried out
in the regime III where the crack front pinning is invariant in the direction of propagation.

In this regime, we compute the fracture energyG2c as the sum of global ERR plus the average ERR fluctuation in
the defect stripG0 + ∆G2. SinceG2c fluctuates due to experimental noise we choose to compute itsaverageG2c over
all the crack front configurations belonging to the last stationary pinning regime (blue diamond symbols in Fig. 6).
In the case of FE numerical calculations,G2c is simply computed from the mean local ERRsG(z) in the defect strip
as presented in Sec. 3.2. In the case of analytical approaches,G0 is computed with Eq. 1 (Sec. 4.1) while∆G2 are
determined through the fit of the experimental crack front positions by the two perturbation approaches (Sec. 5.2).
We finally computedG2c by averagingG0 + ∆G2.

The results are summarized in Tab. 2. As expected following the conclusions about ERR contrasts of the previous
section, the semi-infinite model predictions deviate significantly from the FE results summarized in Tab. 2. In turn,
we observe a very satisfactory agreement between the valuesobtained from perturbative approaches using the plate
model and the values calculated by FE. The agreement is even quantitative, i.e. inside the error bars, for the samples
LC-b40, MC-b40 and MC-b50. Moreover, nearly identical adhesion energies are found for the MC-b40 and MC-b50
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samples due to the identical nature of their cracked interfaces as reported in Tab. 1. The adhesion energy for the defect
strip of sample HC-b30 is slightly out of the margins of errorcalculated. This interface presents however the largest
adhesion contrast of the four samples studied. One interpretation could therefore reside in the fact that in the latter
case we touched the limits of first-order perturbative approaches.

As a result, our approaches based on the patterning of a weak interface can be considered as a new method to
determine the adhesion energy of heterogeneous interfacesfor transparent materials by measuring the crack front
deformation that it induces.

7. Summary and perspectives

We have shown how the results of cleavage test experiments can be thoroughly analyzed by FEM. The ERR has
been computed for all the measured crack front and a consistent picture of the crack propagation in the heterogeneous
interface has been reconstructed. This analysis of the datais particularly illuminating when considering the increasing
deformation of the crack front as it hits the edge of the high toughness area as it progresses forward. Due to the
increasing curvature of the crack front, the local energy release rate rises until it reaches the toughness of the pinning
area which then starts to rupture.

This relation between front curvature and local energy release rate is at the core of the perturbation method pro-
posed by Rice. Fitting the front with a perturbation kernel is a much lighter way of analyzing the data. Here we
have demonstrated that plate thickness is a first order parameter in modelling crack front morphology by perturbation
methods when the wavelengths of the perturbation are comparable to the plate thickness. In our experimental configu-
ration, the semi-infinite kernel (Rice) gives results whichare only qualitatively correct, while the agreement is clearly
improved when the finite plate thickness kernel is used.

Our study, combining experiments, numerical simulations and theoretical analysis shows that it is possible to
describe quantitatively the local adhesion contrasts onlyfrom the observed crack front morphologies taking into
account the whole problem geometry. As a result, it can serveas a method to characterize the local toughness of
transparent materials.

To improve the description of the depinning threshold for crack propagation in heterogeneous brittle materials two
directions of investigation can be naturally considered from this work. The first one is to develop an approach capable
of handling the anticlastic effect analytically (Jumel and Shanahan, 2008). Under this condition, our approach could
be more effective and avoid any numerical simulations. A second perspective is related to the size of the perturbation
induced by the heterogeneity of the material. Elastic line models presented in this paper are indeed limited by a first
order perturbative approach. If it seems that it can accountfor adhesion contrasts up to 4 J/m2, we expect a loss of
validity as the toughness contrast increases. Approaches including higher orders in perturbation (Rice, 1989; Bower
and Ortiz, 1991; Lazarus, 2003; Favier et al., 2006; Leblondet al., 2012) could be a solution and should allow to treat
much higher adhesion contrasts.
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