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Abstract— Service Oriented Architecture (SOA) has emerged 
as a dominant architecture for interoperability between 
applications, by using a weak-coupled model based on the 
flexibility provided by Web Services, which has led to a wide range 
of applications, what is known as cloud computing. On the other 
hand, Multi-Agent System (MAS) is widely used in the industry, 
because it provides an appropriate solution to complex problems, 
in a proactive and intelligent way. Specifically, Intelligent 
Environments (Smart City, Smart Classroom, Cyber Physical 
System, and Smart Factory, among others) obtain great benefits 
by using both architectures, because MAS endows intelligence to 
the environment, while SOA enables users to interact with cloud 
services, which improve the capabilities of the devices deployed in 
the environment. Additionally, the fog computing paradigm 
extends the cloud computing paradigm to be closer to the things 
that produce and act on the intelligent environment, allowing to 
deal with issues like mobility, real time, low latency, geo-
localization, among other aspects. In this sense, in this article we 
present a middleware, which not only is capable of allowing MAS 
and SOA to communicate in a bidirectional and transparent way, 
but also, it uses the fog computing paradigm autonomously, 
according to the context and to the system load factor. 
Additionally, we analyze the performance of the incorporation of 
the fog-computing paradigm in our middleware and compare it 
with other works. 
 

Index Terms— Fog computing; Cloud computing; SOA; MAS; 
Intelligent Environment; Integration.  

I. INTRODUCTION 

The new advances in information technology, in domains 
like cloud and ubiquitous computing, allow us to exploit all 
computation tools (devices, software, etc.) as a whole, in order 
to define systems at a high abstraction level. In this way, it is 
possible the development of new domains like Ambient 
Intelligence (AmI). Consequently, some of the biggest 
challenges in developing an AmI is how to dispose of the 
enormous and multiple sources of information and services in a 
given time and in the right way. Cloud Computing is an 
alternative in this context, to form a network for the storage of 
large amounts of data and for the utilization of services in the 
Internet. Particularly, in previous works, we have developed a 
middleware based on MAS, called AmICL, to support smart 
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classrooms [1]–[3]. This Reflective Middleware allows 
managing an Intelligent Learning Environment (IE). The 
middleware proposes five levels, for the management of the 
multi-agent’s community, the access to services, and the 
different components (software and hardware) of the smart 
classroom. Later, In [4] we have proposed an Autonomic 
Reflective Middleware for Smart Cities, called MiSCi. MiSCi 
is based on AmICL, and its architecture is based on web 
services, allowing its services to be consumed by the 
applications (in our case, agents), aware of context or not. 
Agents can create temporary or permanent emerging ontologies 
according to the context, which allow them solving particular 
situations.  

From this perspective, AmICL and MiSCi (and other 
intelligent environments like [5]–[8]) mix the cloud computing 
paradigm with multi-agent systems (SOA-MAS), which makes 
necessary to deal with the integration of agents and web 
services, so they both can discover and invoke each other 
(communicate and interoperate) in a transparent way. However, 
because SOA and MAS use different standards and 
specifications [9]–[11], their communications are not possible 
in a natural and direct way. While a MAS uses FIPA protocols 
for communication, and more specifically, the FIPA-ACL 
language [12]–[14], in SOA the SOAP [15] communication 
protocol is generally used, which is a standard that defines how 
objects in different processes can communicate using messages 
written in XML [16], with a transport protocol such as HTTP. 
Thus, some solutions have been proposed that allow the 
integration of both architectures [17], [18], in such a way that 
they can be discovered and invoke instances of the other 
transparently, to take advantage of both technologies. 
Particularly, we have proposed a new architecture [19], which 
deals with the MAS-SOA integration, and allows agents and 
services to communicate in a bidirectional and transparent way.  

On the other hand, in an intelligent environment, where there 
are multiple nodes and applications that interact to offer 
services to people, the high quality of services, real time and 
low latency, are of great importance. In a smart city, more and 
more data are generated each day, so it is very important to 
process it quickly in order to allow real time applications to 
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respond to user needs in lower time. In general, the deployment 
of a classical middleware for smart cities based on a cloud 
computing paradigm can become a problem for applications 
that require real-time response, mobility support and/or geo-
distribution. Essentially, a new platform is necessary to meet 
these requirements, and the Fog Computing paradigm can be 
the solution.  

Fog Computing is a distributed infrastructure, in which 
certain applications, processes, or services are managed at the 
edge of the network by a smart device, but others are still 
managed in the cloud. Fog Computing enables a new breed of 
applications and services, and there is a fruitful interplay 
between the Cloud and the Fog, particularly when it comes to 
data management and analytics [20]. Fog Computing can offer 
data, compute, storage and service to the end-user in the edge 
of the network. This paradigm has characteristics that makes it 
an appropriate platform for critical services and applications, 
such as those presented in a Smart City. The distinguishing fog 
characteristics are its proximity to end-users, its dense 
geographical distribution, and its support for mobility. 
Consequently, in [21] we have shown how the incorporation of 
a Fog layer in MiSCi can deal with the real time and low latency 
issues in a Smart City.  

Particularly, this paper discusses how we combine the MAS-
SOA integration architecture with the fog computing paradigm 
in the context of an AmI, to deal the issues discussed 
previously. In addition, it presents a study of the performance 
of our proposal, showing that it allows dealing with real time 
and low latency issues. Finally, this paper makes a comparative 
analysis with previous works, which combine the three 
paradigms (SOA, MAS and Fog). 

This paper is structured as follows, Section II presents the 
related works, Section III exposes the MiSCi architecture and 
the sub-components used for the communication between 
agents and web services in the cloud, transparently. In Section 
IV, the experiments that show the performance of the MAS-
SOA integration are shown, as well as the comparison with 
previous works. Section V extends the results of this work in 
the context of the industry 4.0, finishing with some conclusions. 

II. RELATED WORKS 

This section shows a brief description of the works that 
propose the integration of MAS, fog-computing and cloud 
computing. The first subsection describes those works that 
address the issue of integration or combination of MAS with the 
fog computing paradigm, while in the second subsection are 
presented those works that combine MAS with SOA platforms 
or with the cloud-computing paradigm. 

A. Integration MAS-Fog Computing 
Amadeo et al. [22] present the Cloud of Things (CoT) 

platform that deals with some challenges in the smart home 
domain by leveraging two groundbreaking concepts: 
Information Centric Networking (ICN) and Fog Computing. 
The proposal ICN-iSapiens model is a three-layered 
architecture where an intermediate (Fog) layer, consisting of 
smart home servers (HSs), is introduced between the physical 

world and the remote cloud, to support real-time services and 
hide the heterogeneity of Internet of Things (IoT) devices [23], 
[24]. The ICN Physical Layer includes all the edge devices 
(EDs), which deploy sensing and automation tasks in the smart 
home. They are usually single function resource constrained 
devices, like temperature or motion sensors, or light actuators. 
The Intermediate Fog Layer includes the HSs, which implement 
the application logics to monitor and control the house 
according to (i) user preferences, (ii) inputs from stakeholders 
(e.g., service providers and regulation entities), and (iii) 
dynamic context-related factors (e.g., the energy market price). 
The HS interacts with the EDs, via ICN, and with the remote 
cloud, through standard Internet connectivity. In addition to the 
software for NDN communications, each HS hosts the multi-
agent application and the virtual object abstraction to perform 
Fog services. Each ICN-ED is represented in the Intermediate 
Layer as a virtual object (VO) that is a high level standardized 
description of the device’s functionalities. VOs expose EDs by 
hiding their heterogeneity in terms of technological and 
networking details, and make their resources easily accessible 
to the Agents which, in turn, perform the application logics. 
Agents use VOs methods to pull monitoring and action tasks, 
and to be asynchronously notified about some events, i.e., when 
a resource value changes. Moreover, they may subscribe to 
complex events over groups of functionalities. To access 
information through the VO abstraction, VOs and Agents must 
be co-located in the same HS. Therefore, instead of transferring 
data to a central processing unit, ICN-iSapiens transfers 
processes (Agents) towards the EDs. The Remote Layer 
includes a remote Cloud platform, which addresses all those 
activities that cannot be executed by the HSs, e.g., tasks 
requiring high computational resources or long-term historical 
data. The data analysis executed by the Cloud can be used for 
different purposes, including (i) to optimize the Agents’ 
operations and their behavior, or (ii) to support the demands of 
external consumer applications (e.g., collected data can be used 
by energy companies for reliable forecasting). 

Peng et al. [25] present a study of the collaborative, self-
adaptive configuration management of virtual machine 
resources in a multi-agent organization structure, with virtual 
machines as the unit of granularity. The multi-agent 
organization structure with virtual machine clusters consists of 
four types of agents. The vms-agents and apps-agents are 
collaborative agents. One vms-agent and one apps-agent are 
established in each virtual machine cluster. The vms-agent in a 
virtual machine cluster is responsible for implementing the 
virtual machine resource configuration requests issued by the 
vm-agent in the cluster, proposing dynamic parameter 
configurations for the relevant application systems/components 
that are operating on the virtual machines to the apps-agent, and 
sending the real-time utility information on various types of 
resources to the apps-agent. The apps-agent is responsible for 
implementing the application system/component parameter 
configuration requests issued by the com-agent in the cluster, 
proposing dynamic resource configurations for the relevant 
virtual machines on which the application systems/components 
are operating, and sending various types of real-time 
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information regarding the performance of the application 
systems/components (e.g. response time and throughput) to the 
vms-agent. The vm-agents and com-agents are learning agents 
that automatically adapt to the cloud computing environment. 
One vm-agent and one com-agent are established in each virtual 
machine and each application system/component in a cluster. 
The vm-agent learns the optimal decision regarding the virtual 
machine resource configuration, and monitors and provides 
feedback on various types of virtual machine resources in real 
time. Then, the com-agent learns the optimal decision regarding 
the application system/component parameter configuration, and 
monitors and provides various types of feedback on application 
system/component performance in real time. Experimental 
results show that their method improves the efficiency in the 
resource utilization, and accounts the interests of both cloud 
users and providers, while ensuring the maintenance of the 
application service level agreement. 

Similarly, Giordano et al. [26] combine agent technology 
with the concept of Fog computing to design control systems 
based on the decentralization of control functions over 
distributed autonomous and cooperative entities that are 
running at the edge of the network. Also, they present Rainbow, 
an architecture that allows the development of smart city 
applications. Rainbow is a three-layer architecture designed to 
bring the computation as close as possible to the physical part. 
The bottom layer is the one that is devoted to the physical part. 
It encloses sensors and actuators, together with their relative 
computational capabilities, which are directly immersed in the 
physical environment. In the Intermediate layer, sensors and 
actuators of the physical layer are represented as (Virtual 
Objects) VOs. VOs offer to agents a transparent and ubiquitous 
access to the physical part due to a well-established interface 
exposed as API. VO allows agents to connect directly to devices 
without caring about proprietary drivers or addressing some 
kind of fine-grained technological issues. In summary, all the 
devices are properly wrapped in VOs that, in turn, are enclosed 
in distributed gateway containers. The computational nodes that 
host the gateways represent the middle layer of the Rainbow 
architecture. The upper layer of Rainbow architecture concerns 
the cloud part. This layer addresses all the activities that cannot 
be properly executed in the middle layer, for instance, 
algorithms needing knowledge, tasks that require high 
computational resources, or when an historical data storage is 
mandatory. On the contrary, all tasks where real time access to 
the physical part is required, are executed in the middle layer. 
Communication between the nodes connected with the physical 
part and the nodes in the cloud occurs by means of message 
exchange. Agents located in the cloud nodes act as intermediary 
between the Rainbow MAS and cloud analytics services. The 
features and capabilities provided by the Rainbow framework 
are shown by running intelligence algorithms, in order to realize 
Cyber Physical System (CPS) applications [27], [28], owning 
properties such as additivity, fault tolerance and self-
reconfiguration, among others. 

Finally, Mohamed et al. [29] discuss how the service-
oriented middleware (SOM) approach can help to solve some 
of the challenges of developing and operating smart city 

services, using CoT and Fog Computing. They propose a SOM 
called SmartCityWare, for the integration and utilization of 
CoT and Fog Computing. SmartCityWare services and 
components involved in the smart city applications are 
accessible through the service-oriented model. The main 
purpose of SmartCityWare is to provide a virtual environment 
to be used to develop and deploy smart city applications. 
SmartCityWare consists of a set of services and a multi-agent 
runtime environment. All functions of the SmartCityWare are 
viewed as a set of services that can be used to build and support 
the execution of different smart city applications. These 
services are classified into core services and environmental 
services. Core services are those developed specifically for the 
core operations of SmartCityWare, such as the broker, security, 
service invocation, and location aware services, to provide 
overall control for the whole system. Environmental services 
provide access to services provided by one or more cloud 
service provider, services provided by multiple distributed fogs, 
and services provided by multiple IoT devices including 
sensors, WSN [30], actuators, cameras, cars, robots, etc. Fog 
services can be control, processing, storage, communication, 
streaming, configuration, monitoring, measurement, and 
management services. SmartCityWare services can be used by 
smart city applications available on the cloud, fog, or IoT 
devices, such as a car asking for a certain service from a smart 
city application available on the cloud. On the other hand, 
SmartCityWare middleware infrastructure utilizes software 
agents to provide flexible and expandable middleware services, 
or high-performance distributed service-oriented environments. 
The main functions of the agents are to deploy, schedule, and 
support the execution of the service codes in different fogs, in 
addition to manage, control, monitor, and schedule the available 
resources on a single fog, or on a set of related distributed 
heterogeneous fogs. For the experiments, they used three 
computers; one represents the cloud and two represent two fogs. 
In addition, they used WAN emulators among the machines, to 
introduce the effects of using long distances and/or the Internet 
to connect them. 

B. Integration MAS-SOA or MAS-Cloud Computing. 
In this subsection are shown the studies that combine MAS 

with the cloud computing paradigm, or some type of software 
oriented architecture. In this sense, Archimède et al. [5] propose 
Semantic-SCEPSOA, which is an architecture that combines 
three kinds of technologies. First, SOA to facilitate the 
identification and to form relationships of actors on the internet, 
allowing technical and operational interoperability by gathering 
functionalities of enterprise applications. Second, ontology 
technology to facilitate the understandings for the exchange of 
information. Third, a multi-agent model is used to elaborate the 
planning of the project. The semantic interoperability strategy, 
necessary to ensure a better understanding and interpretation of 
the exchanged information between heterogeneous systems, is 
based on ontologies. Reasoning mechanisms are needed by 
customers and producers to transform data described according 
to the global ontology in data expressed according to the local 
ontology, and vice-versa. S-SCEPSOA is organized around 
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three kinds of actors: the SOAregister containing information 
about the provided services, the SOAproducer proposing the 
service, and the SOAcustomer consuming the discovered 
services by invoking them at the corresponding SOAproducers. 
Interaction between the different actors is achieved via 
messages. The management process is achieved by three steps. 
The first one is the identification of partners, which concerns 
services publication, and discovery phases in the SOA context. 
The second step deals with instantiation of SCEP (supervisor, 
customer, environment, and producer) components on the 
SOAcustomer side, and connection to SOAproducers selected 
in the previous step. The SCEP agent gets from the customer 
database (CDB) the projects’ description and creates the shared 
environment, as well as the customer and ambassador agents. 
One customer agent is created for each project, similarly, one 
ambassador agent is created for each SOAproducer. The 
third/last step concerns interactions and cooperation between 
SOAcustomer and its SOAproducers, through the SCEP 
instantiation, to manage multi-site production projects. 

Al-Ayyoub et al. [8] present a dynamic resources 
provisioning and monitoring (DRPM) system, which is a MAS, 
to manage the cloud provider’s resources while taking into 
account the customers’ quality of service requirements, as 
determined by the service-level agreement (SLA). The 
provider’s resources include a set of datacenters, each with a 
large number of physical machines. Each physical machine has 
specific characteristics (in terms of CPU, RAM, storage and 
BW) to host multiple virtual machine (VMs). Moreover, it has 
sensors to measure the utilization of its resources and the 
execution of the customers’ applications on it. The application 
layer consists of a set of customers having several jobs possibly 
spanning multiple VMs. Each job is associated with specific 
performance goals specified in the SLA (e.g., time to complete 
their tasks, number of requests for specific periods). The multi-
agent components include a global utility agent and a set of 
local utility agents. While the global utility agent has the 
classical role of the “central broker” allowing it to manage all 
the system resources, the local agents are assigned to each 
customer with the objective of improving the resource 
utilization without causing SLA violations. Based on a 
regression analysis of its history, the local agent can estimate 
the amount of resources that will actually be used without 
causing SLA violations. After reformulating the requests, the 
local agent sends the new requests to the global agent, which is 
responsible for the actual provisioning of the resources, by 
communicating with the supervisors of the physical machines 
in the different data centers under the cloud provider’s control. 

On the other hand, García et al. [31] propose a model for 
automatic construction of business processes, called IPCASCI 
(Intelligent business Processes Composition based on multi-
Agent systems, Semantics and Cloud Integration), in order to 
facilitates the business process construction on cloud 
computing environments. It deals with the development of a 
proposal that facilitates the creation of such processes, in the 
form of web services, from other semi-automatic functional 
services. The process of business process construction is guided 
by a multi-agent architecture based on virtual organizations, 

which is able to implement the intelligent behavior needed for 
process management by using ontology. The components that 
integrate the architecture are 1) Cloud system, is the Platform 
of cloud computing on which is supported their proposal. The 
platform provides an environment for running and storage 2) 
Web services, are the web services existing in the architecture 
that will be used in the process of web service composition 3) 
UDDI register, is the Universal register system where the web 
services are registered. This allows an open access to the web 
services of the architecture. This way, the web services 
implemented in the architecture may be reused 4) MAS, this 
system supports functionalities to make the discovery and the 
composition of web services, by analyzing the semantic content 
introduced by the user in order to structure it in computable 
items 5) Ontologies, distinct ontologies modeling the semantic 
knowledge that can be included in the web services 6) BPEL 
(Business Process Execution Language) [32], [33] file to Store 
the composition of the web services that meet the requirements 
indicated by the user to obtain the desired solution. The 
discovery and composition of services are carried out when the 
user introduces the requirements of the web service to build, by 
means of an assisted system. Later, an automatic search (made 
in syntactic and semantic form) for the web services that include 
the requirements of the module, is carried out. Next, the 
Business Process Diagram (BPD) is then displayed by the 
assistant software to the user, because could exist several web 
services implementing a single activity. Finally, from the BPD, 
a composition BPEL is carried out in such a way that the service 
specified by the user is built, and can later be invoked. 

Particularly, the researches presented above do not deal with 
SOA-MAS integration in a natural way, but instead each agent 
must directly apply the necessary transformations to be able to 
access cloud services. In this sense, Fuksa [17] developed a 
library, called JADE Gateway Library, which acts as a bridge 
between a MAS and the services that are deployed in an 
Enterprise Services Bus (ESB). The library is composed of two 
fundamental elements, the first one is the Jade-Gateway, which 
is responsible for managing the messages received from and to 
the ESB; the second one is the Gateway Agent, which main 
objective is to retransmit the messages between the MAS and 
the ESB. When an agent wants to consume a WS, it must send 
a message to the GatewayAgent, which in turn relays it to the 
ESB; On the other hand, when a WS needs to send a message 
to an agent, it must do through the EntryPoint ESB Service, 
which it will pass it to the Jade-Gateway, and then to the 
GatewayAgent, which will relay it to the requested agent. 
During the communication process, the Jade-gateway must 
perform SOAP-ACL and ACL-SOAP conversions, so that each 
party receives the message in the appropriate language. In the 
same way, Jade-gateway solves the problem of synchronous 
communications integration of web services with asynchronous 
communications of a MAS, blocking the GatewayAgent thread 
until obtaining the MAS response.  

Finally, Pinto [18] proposes SoMAS (Service oriented 
MultiAgent System) as a completely service-oriented 
architecture, where both agents and web services use SOAP as 
a communication language. In SoMAS architecture, agents 
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publish their services in the UDDI, by sending the WSDL file 
corresponding to the service offered. When an agent or web 
service requires the use of a particular service, it must be looked 
up in the UDDI, and once found, it is established the 
communication with it through SOAP messages. This 
architecture leaves aside the FIPA standard, since the system 
does not use DF or ACL communication language, although the 
author indicates that both communication interfaces can be 
used, which means doing additional work. 

Mainly, the works shown in this section combine MAS-Fog 
or MAS-SOA paradigms, however, they do not allow the 
combination of the three paradigms in a transparent way, such 
that agents can communicate with services in a transparent way, 
activating the fog paradigm conveniently (see in section VI the 
comparison of these works). In this sense, works that deal with 
the MAS-SOA integration issues in a natural way [17], [18], do 
not make use of the fog paradigm, so they are not able to solve 
several issues of cloud computing, such as mobility, real time, 
low latency, etc. In addition, these works have weaknesses, 
such as the fact of not being FIPA-compliant, or not allow 
bidirectional communication of agents and services. That is 
why in [19], [21] has been proposed a new architecture to solve 
those issues. In particular, this article studies the performance 
of the incorporation of the fog-computing paradigm to our 
middleware, which allows agents not only to communicate with 
services transparently, but also to use the fog paradigm in an 
autonomous way. 

III. EXTENDED ARCHITECTURE OF MISCI 
This section describes the architecture of the Middleware for 

Smart Cities called MiSCi, proposed in [19], [21]. 
  

 
Fig. 1. Multilayer Architecture of MiSCi. 

A. Multilayer Architecture of MiSCi 
The core of MiSCi is based on a MAS composed by a multi-

layer architecture. The agents of MiSCi use autonomic 
computing to deal with situations that arises in a smart city. 
They are capable of perceiving the interactions of the users by: 
a) Monitoring the environment (using the sensors and/or smart 
devices available on it). b) Analyzing the data to detect issues 
and find solutions (services to be offered to the user) according 

to the context. c) Planning and deploying the solution in the 
environment (using the effectors and/or smart devices), thus 
improving the activities carried out by the citizens of the city, 
with the main objective of improving the quality of life and 
comfort of the citizens, as well as performing a good 
management of the city. 

The architecture of MiSCi contains nine layers (see Fig. 1). 
Each element of this architecture provides essential features to 
the middleware, enabling the ubiquity, the context awareness, 
the ontological emergence, smart decisions, fog and cloud 
computing, among others things (refer to [3], [4], [21] for more 
details). In general, the layers of MiSCi are: 

 
1) MAS Management Layer (MMAL) 

This layer is an adaptation of the FIPA standard [34] what 
defines the rules that allow a society of agents to coexist and 
be administered, encouraging the interoperability with other 
technologies. The Agents in this layer are: AMA (Agent 
Manager Agent), CCA (Communication Control Agent) 
and DMA (Data Management Agent), they are defined in 
detail in [34]. 

2) Service Management Layer (SML) 
This is an essential layer in the architecture of MiSCi, 
because it makes possible the integration between the MAS 
and SOA paradigms in a bidirectional way. That means that 
agents can register, discover and consume web services in 
the cloud, and vice versa (agent’s tasks are offered as web 
services). This feature makes possible to use the SaaS model 
of the cloud computing in MiSCi, which is fundamental in 
a Smart City. In this layer, the Services Management Agent 
(SMA), the Web Service Agent (WSA), the Web Service 
Oriented Agent (WSOA), the RMA (Resource Manager 
Agent) and the ApMA (Applications Manager Agent), are 
defined (see [35] for more details about these agents). In 
fact, SMA manages the UDDI, allowing agents and cloud 
services to discover each other. WSA allows agents and web 
services to communicate by translating messages in an 
appropriate way (is a proxy), and WSOA serves as a façade 
for agents, exposes their functionality’s as services, and 
allows the communication from web services to agents of 
the platform (see Fig. 2).   

 

 
Fig. 2. Functionality of the SML.  
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3) Context-Awareness Layer (CAL) 
The purpose of this layer is to offer context services, 
allowing agents of MiSCi to manage important information 
about location, time, and devices, among others. This 
information is managed in a cycle that is composed by the 
discovering and modeling of the context, the reasoning 
based on the context, and the distribution of the context. For 
this layer, we take as reference the services defined in [36], 
where is proposed a Context-Aware Reflective Middleware 
based on the Cloud Computing, with a range of services to 
manage the context information (see [4] for details about 
this layer). 

4) Ontological Emergence Layer (OEL) 
The objective of this layer is to provide a set of services with 
very specific tasks for handling ontologies. These services 
have been proposed in [37]. In this work has been defined 
group of services for Ontology Registration, for Ontology 
Searching, for the Integration of Ontologies, for Ontology 
Updating, among others. In addition, the structure of the 
meta-ontologies defined in this layer are the same proposed 
in the same work.  They propose three meta-ontologies and 
the procedure to integrate them: a component meta-
ontology, a context meta-ontology, and a domain meta-
ontology. The meta-ontologies provide an adequate 
conceptual model of the context of a Smart City (see [37] 
for details about this layer). 

5) SC Logical Management Layer (SCLML) 
It is responsible for providing intelligence to the Smart City. 
This layer is where all the applications (software, virtual 
objects, etc.) and persons present in the Smart City are 
characterized. Each element/person corresponds to one 
agent (is an abstraction of it), which contains metadata that 
defines its properties. This layer contains agents like CzA 
(it characterizes each citizen in a Smart City) and AppA (it 
characterizes useful applications in the smart city, such as 
the Vehicular Smart System, the Healthcare Smart System, 
etc.). Those agents are coordinated and cooperate with each 
other, to take decisions that help to solve a particular 
situation, and to assist real people to perform their tasks in 
the smart city (this layer is detailed in [4]). 

6) SC Physical Management Layer (SCPML) 
It allows managing the physical devices in the Smart City. 
In this layer, all the physical elements of the environment 
are characterized thought the DA (Device Agent), allowing 
the interaction between agents and devices of MiSCi. Thus, 
each physical device is characterized by one DA (is an 
abstraction of it), which contains metadata that define its 
properties. Some of these physical devices are intelligent 
(smart objects), so that the properties of learning, autonomy, 
reasoning, among others, are critical to characterize them. 
This layer communicates with the real physical device that 
is in the SCPL layer, because is through SCPL that agents 
have access to the physical hardware of the devices (see [4] 
for details about this layer). 

7) Smart City Physical Layer (SCPL) 
This layer is the smart city itself. It is in this layer where all 
the physical components of the smart city are deployed, 
such as: a) Sensors, to capture the useful information for 
services and smart objects in the environment. b) Effectors, 
to modify the physical conditions of the environment. c) 

Smart Objects, which are components of the smart city that 
may adapt and respond to situations in the current context 
(see [4] for details about this layer). 

8) Smart City Logical Layer (SCL) 
This layer includes the main sub-systems of a smart city, 
which are responsible for managing the elements of the city 
in a global way, such as: Vehicular Smart System, 
responsible for control the traffic; Mobility Smart System, 
responsible of facilitating the mobility of citizens (public 
transport); Smart Healthcare System, in charge for 
facilitating the access to health services, among others. The 
agents of MiSCi can communicate with these systems 
through the AppA agents, because they characterize the 
applications of the smart city in the architecture. In this way, 
the global systems can be coordinated with the local 
systems, to meet the needs of the citizens in a given time. 

9) Fog Layer (FL) 
This layer enables the Fog computing paradigm in MiSCi. 
The agents in this layer help to decide whether the data 
might be processed locally or in the cloud, being the Fog 
Agent (FogA) responsible for this task. FogA uses a meta-
ontology provided by the OEL Layer, some context 
information provided by the CAL layer, and some system 
information collected by the System Monitor Agent 
(SMonA), about the level of occupation in terms of 
processing and communication (bandwidth) of the agents 
and local web services. Using all that information, FogA can 
make a decision about whether or not the data should be 
processed locally or in the cloud (see [21] for details).  

B. Motivation of the MiSCi extension. 
In previous researches, we have shown how we can integrate 

both paradigms SOA and MAS [19], enabling MAS to 
communicate with cloud services in a natural way, and vice-
versa. SOA-MAS integration is a crucial point in MiSCi, as 
well as in others agent based middleware, in order to take 
advantages of the cloud paradigm. Such is the case of the Cyber 
Physical Systems integrated with IoT, which cyber part can be 
associate with a MAS, and their service needs can be supplied 
in the cloud. In specific, the agents of the platform might use 
services in the cloud to process data (big data and data analytics 
services, linked data services, etc.), get recommendations, get 
context information, among other cloud services, facilitating 
intelligent decision making, context awareness, system 
recommendations, alerts, among other things. 

The SML layer allows SOA-MAS integration on MiSCi, and 
it can be extended to other middlewares too. However, agents 
of the SML layer are not capable to deal with some issues 
related to cloud platform, smart environments, and IoT, like 
latency, real time, location aware, among others aspects (see  
[38], [39]). In this way, we have enabled the Fog Computing 
paradigm on MiSCi to deal with that issues, and this paper is 
focused in show the benefits of such integration. Fig. 3 shows 
the interactions of the Agents of the Fog Layer with other agents 
of the SMA. 
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Fig 3. Fog interaction between agents. 
 

Each time any agent of the platform is going to consume a 
service, it searches that service using the SMA, which responds 
with the id of the WSA that characterizes that service in the 
platform. Later, the requesting agent sends the information to 
the WSA, which contact the FogA, in order to know where will 
be the service (fog or cloud). The FogA uses information 
collected by the SMonA, and the Fog Ontology [21], to 
determine where the service will be executed, and returns the 
information to the WSA. The WSA translates the message into 
a SOAP message, and executes the service using the 
information returned by the FogA. After, the WSA receives the 
result from the web service, it translates that result to ACL, and 
sends the result to the requesting agent. In that sense, the FogA 
helps to deal with problems of quality of services, latency, real 
time, among others, of the cloud architecture, by combining real 
time information of the system, with information of the context 
on the Fog Ontology. 

Fundamentally, in  [19] we introduces MiSCi as an agent 
based Middleware for Smart Cities, which includes layers like 
SML to allow autonomous SOA-MAS integration; OEL to 
update and adapt the ontologies according to the dynamic of the 
environment; and CAL to manage the information about the 
context. Later, in [21] we have presented a modification to 
MiSCi, in which we have included the Fog Layer. In this paper, 
we describe the way in which the fog layer works, we present a 
comparison with other works, as well as some experiments to 
evaluate the performance of the Fog Layer in MiSCi at the level 
of the real-time response and latency issues.  

IV. EXPERIMENTS 
In this section are presented a series of case studies, to verify 

if the incorporation of the fog computing paradigm in MiSCi 
improves the performance and makes it possible to deal with 
real-time problems, latency, quality of services, among others 
aspects. In this sense, three general case studies were designed, 
and other specific that is used to compare our approach with 
previous works.  

A. General Considerations for simulation. 
The variables to be taken into account in the simulations are: 

• Number of MiSCi agents that offer their 
functionalities as services. 

• Number of web services registered in the UDDI 
(Number of services usable by agents). 

• Maximum number of WSA agents supported by the 
platform, which depends on the resources of the 

SMA. 
• Average time of generation of new web service 

requirements by agents (Agent-> WS). 
• Average time of generation of new requirements for 

agent services (WS-> Agent). 
• Average response time of the web services. This 

variable always remains constant since it affects both 
proposals equally, and it does not influence the 
comparison of them. 

• Standard deviation of the response time of the web 
services (this variable always remains constant since 
it does not influence the performance of the proposal). 

• Average response time of the agents (this variable 
always remains constant since it does not influence 
the performance of the proposal). 

• Standard deviation of the response time of the agents 
(this variable always remains constant since it does 
not influence the performance of the proposal). 

• Average response time of requests for the SMA agent 
(this variable always remains constant since it does 
not influence the performance of the proposal). 

• Average time for message translation time (SOAP-
ACL, ACL-SOAP). This variable always remains 
constant because it affects both proposals equally, and 
it does not influence the comparison of them. 

• Necessity of processing in the fog (it takes values 
between 0% and 100%, and it is only valid when the 
fog component is activated). 

Each case study presents a variation of these variables, in 
order to study specific characteristics of the system. For all 
scenarios, a simulation time of 1800 seconds and a maximum 
of WSA agents of 2000 was established. That is, the SMA 
platform cannot create more than 2000 WSA agents; that means 
that if there are many concurrent service invocations and it is 
exceeded the maximum value of WSA supported, then the next 
requests will be rejected, until the WSA number drops again. In 
this way, we avoid oversaturating the system resources. 

B. Simulation cases and results. 
Case 1: In this case, we test the middleware with low (10), 

middle (200) and high (1000) quantity of services. 
Additionally, we are going to evaluate the performance of the 
middleware with fog and without fog. In addition, we set four 
levels of service requests: low level (10 requests each second), 
middle level (20 requests each second), high level (50 request 
each second), very high level (100 requests each second). 
Moreover, in this case, we are going to assume that we have 
low requirements of fog computing (need of real time is low, 
and the Internet latency is very low). In this sense, 20% of all 
generated requests are going to need real-time processing. 
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Fig. 4. Average total response time vs number of services. 

 
Fig. 4 shown the average total response time (it includes 

lookup time of service, invocation of the service, message 
translation, delivery time for local message, and delivery time 
for cloud messages) respect to the number of services. Left bar 
indicates the average total response time for the request from 
the SMA to services in the cloud (fog is totally disabled, 
requests are processed in the cloud), the second bar corresponds 
to the total response time to consume services in the cloud (fog 
is enabled), and the last bar indicates the average total response 
time for requests with real time needs (processed in the fog).  

From Fig. 4, when the Request Mean is 10 or 20 requests by 
second, then the average of the total response time is lower than 
1 second in all cases; however, the average total response time 
for those requests that need real time process is always lower. 
On the other hand, when the request mean is 50 or 100 requests 
by second, then the avg. total response time for those request 
processes in the cloud when fog is enabled are always smaller 
than those request where fog is not enabled. In the same sense, 
and more important, it is the fact that when fog is enabled, then 
those requests that requires real-time or low latency have 
always a total response time very close to 1s. Based on that, we 
can say that enabling fog computing in the original proposal, 
give us good results for those requests that need real-time or 
low-latency, when the needs of real time is low. In this case, 
only 20% of all the generated requests on the system require to 
be processed in real-time, and our proposal allows doing that. 
This is very important for real time applications in the context 
of smart cities, cyber physical systems, industry 4.0, among 
others. For example, in a smart city, this allows providing 
healthcare services like first aids, or vehicular information like 
traffic and geolocation, to users in real time. In the context of 
the industry 4.0, this allows accessing production process or 
process mining as services, among others, in the cloud. 

 

 
Fig. 5. Number of required WSA vs the number of registered services. 

 
Fig. 5 shows the number of WSA required to attend all the 

requests of services generated on the system (left bar when fog 
is not enabled, right bar when fog is enabled). According to Fig. 
5, the behavior is similar whether or not fog is enabled. That 
means that the inclusion of the Fog Layer on the system does 
not change the deployment of our middleware for the SOA-
MAS integration.  

 

 
Fig.6. Average total response time vs number of registered agents as services. 
 

In Fig. 6 is shown how communication from services in the 
cloud with the agents’ in the platform (web services consuming 
agents as services) is being affected when fog is enabled or not. 
We can see that there is not a high difference between both 
results, which means that the inclusion of the Fog Layer on the 
system does not affect the communication in our SOA-MAS 
integration approach. 

Case 2: This case is an extension of the case 1, but now, we 
have high needs of real time because we have to solve a health 
emergency that have arisen in the system. That means that 70% 
of services are going to require real time processing. 
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Fig. 7. Average total response time vs number of services. 
 

Fig. 7 shows the same information as Fig. 4. From Fig. 7, we 
can see that in general, all those requests that require real-time 
when the fog paradigm is enabled in the systems, was resolved 
in much lower time, that those which require or not real time, 
when fog computing is not enabled Also, the difference is very 
considerable when we have 50 or 100 requests by second. In the 
same way, we can also notice that when fog is enabled, those 
requests processed in cloud take less time to be resolved that 
when the fog is not enabled. That is because the internet is less 
congested since more requests are being processed in the fog. 
In general, this figure shows that when we have a good internet 
speed, and high requests of real time, the system with fog 
enabled brings better results that when the fog is disable, respect 
to the total response time in average. 

 

 
Fig. 8. Number of required WSA vs the number of registered services. 

 
On the other hand, analyzing the requirements of the system 

respect to the number of WSA needed to process all the requests 
generated in the system, according to Fig. 8, there is not a high 
difference when fog computing is enabled in the system, that 
when fog computing is disabled. Moreover, in Fig. 9, we notice 
that the total response time in average for communication SOA-
MAS (services in cloud consuming agent tasks as services) is 
lower when fog is enabled in the system for all cases. In that 
sense, we can say that enabling fog in the system, when internet 
connection is good and many services need real time, allows 
reducing the response time in all cases. 
 

 
Fig. 9. Average total response time vs number of registered agents as services. 
 

Case 3: This case is also an extension of the case 1, but now, 
the latency of the internet is high (200ms), and we have real 
time needs. That means most services (80%) are going to 
require low latency or real time processing. 

 

 
Fig. 10. Average total response time vs number of services. 

 

 
Fig. 11. Number of required WSA vs the number of registered services. 

 
In this third case, we get similar results that in cases 1 and 2, 

From Fig. 10-12, we can deduce that when fog is enabled in the 
platform we get best results respect to the total response time in 
average (bidirectional), and the number of WSA agents 
required to process all the requests. The fact that more request 
is processed locally, allows the system to deal with low latency 
for those requests processed in the cloud, which helps to reduce 
the total response time when fog is enabled. In changed, when 
the fog is disable all traffics go thought internet, increasing the 
latency time, and increasing the total response time in both 
ways of the communication. 
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Fig.12. Average total response time vs number of registered agents as services. 
 
Based on the previous results, we can say that adding the fog 
layer to our proposal for the SOA-MAS integration, brings 
better results and allows the system to deal properly with low 
internet latency and real time situations. 
 

Case 4: This case was designed to allow the comparison of 
our proposal with previous works. Only Mohamed et al. [29] 
have presented quantitative metrics that can be used for 
comparison with this work. Same as Mohamed et al. [29], we 
are going to use 2 services, a very low latency of internet, and 
1 request each second. In the same way, we are going to assume 
that each service is invoked each second, and we are going to 
simulated by 60 seconds ([29] only carried out 10 invocations to 
each service). On the other hand, also, we must assume that 50% 
of the request require real time processing. In this way, we 
reproduce the case study of Mohamed et al. [29] in MiSCi. 

 

 
Fig. 13. System (fog-enabled) response times (own: blue, [29]: red) 

 
In Fig. 13, we can see the results. In this figure, LSC refers 

to services with real time needs (processed locally) and RSCCF 
refers to services in cloud (don’t requires real time), see [29] for 
more details. In our case, the response time for those services 
computed in the fog is 162 ms, while that the middleware 
proposed in [29] produced response times between 250ms and 
500ms. On other the hand, services processed in the cloud give 
us response times of 194 ms, while that in [29] the response 
time for services in cloud was between 1250ms and 1500ms. 
Thus, our integration proposal gives better results that the 
middleware proposed in [29].  

The difference between the response time of our middleware 
and the proposal in [29] is due to that our system combines 

semantic and context information from the OEL and CAL 
Layers, in order to identify if the data received by the FogA 
require real-time processing. MiSCi uses an ontology [21] to 
verify some properties, such as real-time needs, or to know 
whether previously the requested service was deployed locally 
or in the cloud and its performance. That allows, among other 
things, that FogA decides the correct place of the service (local 
or cloud) in a lower time.   

V. SOA-MAS INTEGRATION IN THE CONTEXT OF THE 
INDUSTRY 4.0 

In the context of Industry 4.0, several authors have proposed 
the use of MAS [40]–[43] to deal the decision-making 
challenges, as well as the autonomous coordination, 
cooperation and collaboration. In that sense, this research can 
bring huge benefits to the integration process in a production 
environment with cloud technologies, which at the same time 
need to solve latency and the real time problems, among others. 
To illustrate this idea, we will present the following case study. 

Suppose a company that has several devices on an assembly 
line (see Fig. 14), where intelligent products control their own 
production process. Likewise, there are consumers who place 
orders for request customized products, and that need to have 
them at a specific time, for which the company must accept the 
elaboration of the product prudently. Smart products are the 
ones that coordinate their own production. The company 
requires several integration mechanisms in the 3C levels 
(coordination, cooperation and collaboration) [44]: 
1. Smart products are the ones that coordinate their own 

production. It is necessary some appropriate coordination 
mechanisms, directed by the smart product, in such a way 
that in each phase of the production process the necessary 
elements are added to the product according to the 
requirements specific to each product, which may vary 
from one smart product to another.  

2. In the same way, the physical elements (things) of the smart 
factory must use cooperative mechanisms, in order to allow 
them to carry out the production process in an efficient 
manner. Each Thing has its own objectives, for example, 
the objective of the assembly belt is to transport the product 
from an initial place to a destination one, knowing that 
there can be multiple origins and destinations. The 
objective of a robotic arm may be to add a layer to the final 
product, and so on. In this way, cooperation between all the 
actors will allow the final products to be created properly.  

3. The objective of the whole production process is to 
produce smart products, in an efficient way, minimizing 
the production time, costs, as well as the resources or raw 
materials. This means that the elements of the production 
process must take into account this common goal, and 
collaborate among them to achieve it, without neglecting 
their particular objectives, that is, they must deal with 
multiple objectives.  

4. On the other hand, the intelligent factory can cooperate 
with other organizations, in order to make automatic 
requests of the raw materials, in such a way that the 
production process is not stopped because of them. Finally, 
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the smart products can cooperate with the shipping 
organization, so that the products reach the final consumer 
appropriately and in time. 

In this Industry 4.0 scenario, the 3C processes are 
fundamental to achieve the goals of the production process. 

 

 
 
Fig 14.  Industry 4.0 scenario with the 3C processes. 
 

In order to carry out the coordination, cooperation or 
collaboration processes through a MAS, each device (thing) and 
smart product must be instantiated as agent. Nevertheless, 
because their capabilities are limited, many of their 
functionalities will be executed in the cloud, and eventually in 
the fog, for which it is required that the agents can establish 
communication with these services. It is here where the SML 
layer of MiSCi can be configured to help deal with that issue. 
Fig. 15 shows how would be the process of communication 
between the elements of the smart factory instantiated as agents, 
and the cloud or fog services.  

 
Fig. 15.  Instantiation of the Industry 4.0 case study using MiSCi. 

 
Fig. 15 shows how the coordination process led by a smart 

product would be carried out.  
1. In this case, the smart product is the one that gives the 

orders to the other devices of the production system 
(arms, conveyor belt, etc.), according to the coordination 
plan that it handles.  

2. These devices must perform certain tasks that allow 
adding layers to the final product, and for that, they 
benefit from the paradigm of cloud computing. In order 
to invoke the corresponding service, the devices must 
speak with the WSA agent (there is a WSA for each web 
service registered in the SMA) that characterizes the 
corresponding service in the system.  

3. The WSA will communicate with the agent FogA, in 
order to know if the required service is located in the 
cloud or in the fog.  

4. Then, the FogA requests the system information to the 
SMonA, as well as contextual information, using the 
context web services, which helps to determine what are 
the needs of real-time processing, low latency, among 
other things, in order to determine the location of the 
respective service, and returns the result to WSA.  

5. WAS uses this information to adequately invoke the 
service (in the cloud or in the fog).  

6. Once the WSA receives the results of the invoked 
service, it will return that information to the requesting 
device agent, who will be able to carry out its task. 

7. Finally, the device agent informs about its task to the 
smart product agent, so that it can adequately adjust the 
coordination plan, if it is needed. 

In the same way, we would proceed with the other cases for 
cooperate and collaborate. In that sense, this research is useful 
to introduce the MAS capabilities in the industry 4.0, by 
integrating them with the cloud computing paradigm, in order 
to deal with real-time needs, low latency, among other things, 
that are essential in the context of the Industry 4.0. 

Particularly, as we explained before, all the devices on the 
production line are characterized as agents on the system, and 
they access services in the cloud or fog, to plan their tasks 
appropriately. For example, a smart product can access a 
process model as service, which has the knowledge base and 
specification on how to build the product, also, a scheduling 
service can be useful, in order to schedule the tasks of each 
device. On the other hand, device agents can request services 
that return the specifications on how to perform a specific task 
for a specific product (ex. trajectories, specific cuts, and 3d 
models), etc. In general, all the systems need to access services 
in the cloud, and it is very important to avoid real-time and low 
latency issues, in order to allow an appropriate production line, 
and to prevent to stop the production process. 

VI. COMPARISON WITH PREVIOUS WORKS 
In this section, we compare our approach with previous 

works. Table I resumes these differences using the next criteria: 
 

M1. SOA-MAS Enabled. It indicates if the work allows the 
communication between agents and web services. 

M2. Bidirectional SOA-MAS Integration. It indicates whether 
the agents are able to consume web services, and the web 
services are able to invoke the agent’s tasks. 

M3. SOA-MAS Enabled Autonomously. It indicates if the 
system administrator does not need to create any gateway or 
communication channel manually to allow SOA-MAS 
integration, and if agents/web services do not need to make 
neither message transformation. That means, all the 
communication is made transparently. 

M4. Fog Enabled. It indicates if the work supports the Fog 
computing paradigm. 

M5. Fog Enabled Autonomously. It indicates if the fog layer of 
the architecture is able to decide whether the data must be 
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processed autonomously (cloud or fog), according to the 
current context. 
 

TABLE I 
COMPARISON WITH PREVIOUS WORKS 

Work M1 M2 M3 M4 M5 
[22]      
[25]      
[26]      
[29]      
[5]      
[8]      

[31]      
[17]      
[18]      

MiSCi      
 

As it can be observed from Table I, MiSCi is the only 
middleware that is able to integrate the SOA-MAS-Fog 
paradigms in an autonomous way. That means, the agents and 
web services can communicate in a bidirectional way, in order 
to solve the situations that arises in the environment, avoiding 
real time and latency issues by autonomously using the fog 
computing paradigm. In addition, our SOA-MAS-Fog 
integration architecture can be used in different AmI contexts, 
such as Smart Cities, Industry 4.0, among others. 

VII. CONCLUSION 
In this work, we have shown a component that allows the 

integration of the MAS, SOA and Fog computing paradigms in 
intelligent environments, to allow agents and web services to 
communicate naturally, and in turn, to be able to use the fog 
computing paradigm automatically. This allows taking 
advantage of the capabilities of both paradigms (MAS and 
cloud computing), while at the same time resolving typical 
problems of cloud computing based systems, like low latency, 
real time, geo-distribution, among others. 

In particular, the integration architecture presented has 
shown good results in the cases studied, where we focus on 
solving real-time problems and low latency, demonstrating that 
this solution provides better results to deal with such problems, 
when the fog-computing component is enabled. For example, 
from Fig. 10, we can notice that when the fog layer is enabled, 
the total response time on average is reduced considerably, 
having in most cases response times lower to 1 second, and in 
all cases lower than 1 minute. That result is very desirable in 
real time systems. In the same way, the average response time 
for services on the cloud are also lower when the fog layer is 
enabled, because of having less traffic over internet.  

An important remark since the Figures 4, 7 and 10 is that the 
local response time is always low, and which has not a lineal 
dependency with respect to the number of requests. That means 
that MiSCi guarantees low response time when data require real 
time processing. 

As well, with respect to the proposal of Mohamed et al. [29], 
it has been shown that this proposal provides better results, both 
when invoking local services and when using services in the 
cloud. In general, the main difference of this research with 
respect to the works cited in section II is that our work does not 
only allow MAS and SOA to communicate in a bidirectional 

way, but also, in a transparent way. Thus, each agent does not 
need to worry about SOA specifications, and SOA services do 
not need to deal with the FIPA details. On the other hand, works 
on the section II do not deal with the real time and latency 
issues. They only consider the integration of the MAS and SOA 
paradigms, but, in most cases in a non-transparent way, and in 
others only in one direction (from MAS to SOA), which means 
that SOA services cannot start a conversation with the agents. 
Our approach autonomously uses the fog computing paradigm 
according to the context of the information, based on the real 
time and latency needs of the moment. 

On the other hand, the case study presented in the context of 
Industry 4.0 shows that our integration proposal can easily be 
adapted to these systems, such is the case of cyber physical 
systems, Smart factories, among others. Particularly, the result 
of this research can be useful on the industry 4.0, with the 
objective of the invocation of everything mining tasks (process 
mining, services mining, people mining, data mining, etc.) as 
services [44], in order to provide knowledge that allow 
performing coordination, cooperation and collaboration 
processes autonomously.  

In this way, a new middleware can be thought, based on the 
SML and Fog Layers, in order to facilitate the integration with 
different systems. Another future work is focused on the 
specific utilization of the Fog and SML Layers in the context of 
the industry 4.0, in order to allow autonomous coordination 
processes in a production environment. Finally, another future 
work is oriented towards the implementation of this component 
in the MiSCi architecture, which will allow including all the 
features of the fog computing paradigm, among others. 
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