
HAL Id: hal-01903822
https://hal.science/hal-01903822

Submitted on 24 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Fog computing for the integration of agents and web
services in an autonomic reflexive middleware

Manuel Sanchez, José Aguilar, Ernesto Expósito

To cite this version:
Manuel Sanchez, José Aguilar, Ernesto Expósito. Fog computing for the integration of agents and
web services in an autonomic reflexive middleware. Service Oriented Computing and Applications,
2018, pp.333-347. �10.1007/s11761-018-0238-0�. �hal-01903822�

https://hal.science/hal-01903822
https://hal.archives-ouvertes.fr

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

1

Abstract— Service Oriented Architecture (SOA) has emerged
as a dominant architecture for interoperability between
applications, by using a weak-coupled model based on the
flexibility provided by Web Services, which has led to a wide range
of applications, what is known as cloud computing. On the other
hand, Multi-Agent System (MAS) is widely used in the industry,
because it provides an appropriate solution to complex problems,
in a proactive and intelligent way. Specifically, Intelligent
Environments (Smart City, Smart Classroom, Cyber Physical
System, and Smart Factory, among others) obtain great benefits
by using both architectures, because MAS endows intelligence to
the environment, while SOA enables users to interact with cloud
services, which improve the capabilities of the devices deployed in
the environment. Additionally, the fog computing paradigm
extends the cloud computing paradigm to be closer to the things
that produce and act on the intelligent environment, allowing to
deal with issues like mobility, real time, low latency, geo-
localization, among other aspects. In this sense, in this article we
present a middleware, which not only is capable of allowing MAS
and SOA to communicate in a bidirectional and transparent way,
but also, it uses the fog computing paradigm autonomously,
according to the context and to the system load factor.
Additionally, we analyze the performance of the incorporation of
the fog-computing paradigm in our middleware and compare it
with other works.

Index Terms— Fog computing; Cloud computing; SOA; MAS;
Intelligent Environment; Integration.

I. INTRODUCTION

The new advances in information technology, in domains
like cloud and ubiquitous computing, allow us to exploit all
computation tools (devices, software, etc.) as a whole, in order
to define systems at a high abstraction level. In this way, it is
possible the development of new domains like Ambient
Intelligence (AmI). Consequently, some of the biggest
challenges in developing an AmI is how to dispose of the
enormous and multiple sources of information and services in a
given time and in the right way. Cloud Computing is an
alternative in this context, to form a network for the storage of
large amounts of data and for the utilization of services in the
Internet. Particularly, in previous works, we have developed a
middleware based on MAS, called AmICL, to support smart

M. Sánchez is with Universidad Nacional Experimental del Táchira, San

Cristóbal, Venezuela and with Univ Pau & Pays Adour/E2S UPPA, Laboratoire
d'informatique de L'universite de Pau et des Pays de L'adour, EA3000, 64000,
Pau, France (email: mbsanchez@unet.edu.ve).

J. Aguilar is with Universidad de los Andes, Mérida, Venezuela, Escuela
Politécnica Nacional and Universidad Técnica Particular de Loja, Ecuador
(email: aguilar@ula.ve).

classrooms [1]–[3]. This Reflective Middleware allows
managing an Intelligent Learning Environment (IE). The
middleware proposes five levels, for the management of the
multi-agent’s community, the access to services, and the
different components (software and hardware) of the smart
classroom. Later, In [4] we have proposed an Autonomic
Reflective Middleware for Smart Cities, called MiSCi. MiSCi
is based on AmICL, and its architecture is based on web
services, allowing its services to be consumed by the
applications (in our case, agents), aware of context or not.
Agents can create temporary or permanent emerging ontologies
according to the context, which allow them solving particular
situations.

From this perspective, AmICL and MiSCi (and other
intelligent environments like [5]–[8]) mix the cloud computing
paradigm with multi-agent systems (SOA-MAS), which makes
necessary to deal with the integration of agents and web
services, so they both can discover and invoke each other
(communicate and interoperate) in a transparent way. However,
because SOA and MAS use different standards and
specifications [9]–[11], their communications are not possible
in a natural and direct way. While a MAS uses FIPA protocols
for communication, and more specifically, the FIPA-ACL
language [12]–[14], in SOA the SOAP [15] communication
protocol is generally used, which is a standard that defines how
objects in different processes can communicate using messages
written in XML [16], with a transport protocol such as HTTP.
Thus, some solutions have been proposed that allow the
integration of both architectures [17], [18], in such a way that
they can be discovered and invoke instances of the other
transparently, to take advantage of both technologies.
Particularly, we have proposed a new architecture [19], which
deals with the MAS-SOA integration, and allows agents and
services to communicate in a bidirectional and transparent way.

On the other hand, in an intelligent environment, where there
are multiple nodes and applications that interact to offer
services to people, the high quality of services, real time and
low latency, are of great importance. In a smart city, more and
more data are generated each day, so it is very important to
process it quickly in order to allow real time applications to

E. Exposito is with Univ Pau & Pays Adour/E2S UPPA, Laboratoire
d'informatique de L'universite de Pau et des Pays de L'adour, EA3000, 64000,
Pau, France (email: ernesto.exposito@univ-pau.fr).

Tepuy R+D Group. Artificial Intelligence Software Development. Mérida,
Venezuela.

Fog Computing for the integration of agents and web
services in an autonomic reflexive middleware

Manuel Sánchez, Jose Aguilar, and Ernesto Exposito

mailto:mbsanchez@unet.edu.ve
mailto:aguilar@ula.ve
mailto:ernesto.exposito@univ-pau.fr

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

2

respond to user needs in lower time. In general, the deployment
of a classical middleware for smart cities based on a cloud
computing paradigm can become a problem for applications
that require real-time response, mobility support and/or geo-
distribution. Essentially, a new platform is necessary to meet
these requirements, and the Fog Computing paradigm can be
the solution.

Fog Computing is a distributed infrastructure, in which
certain applications, processes, or services are managed at the
edge of the network by a smart device, but others are still
managed in the cloud. Fog Computing enables a new breed of
applications and services, and there is a fruitful interplay
between the Cloud and the Fog, particularly when it comes to
data management and analytics [20]. Fog Computing can offer
data, compute, storage and service to the end-user in the edge
of the network. This paradigm has characteristics that makes it
an appropriate platform for critical services and applications,
such as those presented in a Smart City. The distinguishing fog
characteristics are its proximity to end-users, its dense
geographical distribution, and its support for mobility.
Consequently, in [21] we have shown how the incorporation of
a Fog layer in MiSCi can deal with the real time and low latency
issues in a Smart City.

Particularly, this paper discusses how we combine the MAS-
SOA integration architecture with the fog computing paradigm
in the context of an AmI, to deal the issues discussed
previously. In addition, it presents a study of the performance
of our proposal, showing that it allows dealing with real time
and low latency issues. Finally, this paper makes a comparative
analysis with previous works, which combine the three
paradigms (SOA, MAS and Fog).

This paper is structured as follows, Section II presents the
related works, Section III exposes the MiSCi architecture and
the sub-components used for the communication between
agents and web services in the cloud, transparently. In Section
IV, the experiments that show the performance of the MAS-
SOA integration are shown, as well as the comparison with
previous works. Section V extends the results of this work in
the context of the industry 4.0, finishing with some conclusions.

II. RELATED WORKS

This section shows a brief description of the works that
propose the integration of MAS, fog-computing and cloud
computing. The first subsection describes those works that
address the issue of integration or combination of MAS with the
fog computing paradigm, while in the second subsection are
presented those works that combine MAS with SOA platforms
or with the cloud-computing paradigm.

A. Integration MAS-Fog Computing
Amadeo et al. [22] present the Cloud of Things (CoT)

platform that deals with some challenges in the smart home
domain by leveraging two groundbreaking concepts:
Information Centric Networking (ICN) and Fog Computing.
The proposal ICN-iSapiens model is a three-layered
architecture where an intermediate (Fog) layer, consisting of
smart home servers (HSs), is introduced between the physical

world and the remote cloud, to support real-time services and
hide the heterogeneity of Internet of Things (IoT) devices [23],
[24]. The ICN Physical Layer includes all the edge devices
(EDs), which deploy sensing and automation tasks in the smart
home. They are usually single function resource constrained
devices, like temperature or motion sensors, or light actuators.
The Intermediate Fog Layer includes the HSs, which implement
the application logics to monitor and control the house
according to (i) user preferences, (ii) inputs from stakeholders
(e.g., service providers and regulation entities), and (iii)
dynamic context-related factors (e.g., the energy market price).
The HS interacts with the EDs, via ICN, and with the remote
cloud, through standard Internet connectivity. In addition to the
software for NDN communications, each HS hosts the multi-
agent application and the virtual object abstraction to perform
Fog services. Each ICN-ED is represented in the Intermediate
Layer as a virtual object (VO) that is a high level standardized
description of the device’s functionalities. VOs expose EDs by
hiding their heterogeneity in terms of technological and
networking details, and make their resources easily accessible
to the Agents which, in turn, perform the application logics.
Agents use VOs methods to pull monitoring and action tasks,
and to be asynchronously notified about some events, i.e., when
a resource value changes. Moreover, they may subscribe to
complex events over groups of functionalities. To access
information through the VO abstraction, VOs and Agents must
be co-located in the same HS. Therefore, instead of transferring
data to a central processing unit, ICN-iSapiens transfers
processes (Agents) towards the EDs. The Remote Layer
includes a remote Cloud platform, which addresses all those
activities that cannot be executed by the HSs, e.g., tasks
requiring high computational resources or long-term historical
data. The data analysis executed by the Cloud can be used for
different purposes, including (i) to optimize the Agents’
operations and their behavior, or (ii) to support the demands of
external consumer applications (e.g., collected data can be used
by energy companies for reliable forecasting).

Peng et al. [25] present a study of the collaborative, self-
adaptive configuration management of virtual machine
resources in a multi-agent organization structure, with virtual
machines as the unit of granularity. The multi-agent
organization structure with virtual machine clusters consists of
four types of agents. The vms-agents and apps-agents are
collaborative agents. One vms-agent and one apps-agent are
established in each virtual machine cluster. The vms-agent in a
virtual machine cluster is responsible for implementing the
virtual machine resource configuration requests issued by the
vm-agent in the cluster, proposing dynamic parameter
configurations for the relevant application systems/components
that are operating on the virtual machines to the apps-agent, and
sending the real-time utility information on various types of
resources to the apps-agent. The apps-agent is responsible for
implementing the application system/component parameter
configuration requests issued by the com-agent in the cluster,
proposing dynamic resource configurations for the relevant
virtual machines on which the application systems/components
are operating, and sending various types of real-time

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

3

information regarding the performance of the application
systems/components (e.g. response time and throughput) to the
vms-agent. The vm-agents and com-agents are learning agents
that automatically adapt to the cloud computing environment.
One vm-agent and one com-agent are established in each virtual
machine and each application system/component in a cluster.
The vm-agent learns the optimal decision regarding the virtual
machine resource configuration, and monitors and provides
feedback on various types of virtual machine resources in real
time. Then, the com-agent learns the optimal decision regarding
the application system/component parameter configuration, and
monitors and provides various types of feedback on application
system/component performance in real time. Experimental
results show that their method improves the efficiency in the
resource utilization, and accounts the interests of both cloud
users and providers, while ensuring the maintenance of the
application service level agreement.

Similarly, Giordano et al. [26] combine agent technology
with the concept of Fog computing to design control systems
based on the decentralization of control functions over
distributed autonomous and cooperative entities that are
running at the edge of the network. Also, they present Rainbow,
an architecture that allows the development of smart city
applications. Rainbow is a three-layer architecture designed to
bring the computation as close as possible to the physical part.
The bottom layer is the one that is devoted to the physical part.
It encloses sensors and actuators, together with their relative
computational capabilities, which are directly immersed in the
physical environment. In the Intermediate layer, sensors and
actuators of the physical layer are represented as (Virtual
Objects) VOs. VOs offer to agents a transparent and ubiquitous
access to the physical part due to a well-established interface
exposed as API. VO allows agents to connect directly to devices
without caring about proprietary drivers or addressing some
kind of fine-grained technological issues. In summary, all the
devices are properly wrapped in VOs that, in turn, are enclosed
in distributed gateway containers. The computational nodes that
host the gateways represent the middle layer of the Rainbow
architecture. The upper layer of Rainbow architecture concerns
the cloud part. This layer addresses all the activities that cannot
be properly executed in the middle layer, for instance,
algorithms needing knowledge, tasks that require high
computational resources, or when an historical data storage is
mandatory. On the contrary, all tasks where real time access to
the physical part is required, are executed in the middle layer.
Communication between the nodes connected with the physical
part and the nodes in the cloud occurs by means of message
exchange. Agents located in the cloud nodes act as intermediary
between the Rainbow MAS and cloud analytics services. The
features and capabilities provided by the Rainbow framework
are shown by running intelligence algorithms, in order to realize
Cyber Physical System (CPS) applications [27], [28], owning
properties such as additivity, fault tolerance and self-
reconfiguration, among others.

Finally, Mohamed et al. [29] discuss how the service-
oriented middleware (SOM) approach can help to solve some
of the challenges of developing and operating smart city

services, using CoT and Fog Computing. They propose a SOM
called SmartCityWare, for the integration and utilization of
CoT and Fog Computing. SmartCityWare services and
components involved in the smart city applications are
accessible through the service-oriented model. The main
purpose of SmartCityWare is to provide a virtual environment
to be used to develop and deploy smart city applications.
SmartCityWare consists of a set of services and a multi-agent
runtime environment. All functions of the SmartCityWare are
viewed as a set of services that can be used to build and support
the execution of different smart city applications. These
services are classified into core services and environmental
services. Core services are those developed specifically for the
core operations of SmartCityWare, such as the broker, security,
service invocation, and location aware services, to provide
overall control for the whole system. Environmental services
provide access to services provided by one or more cloud
service provider, services provided by multiple distributed fogs,
and services provided by multiple IoT devices including
sensors, WSN [30], actuators, cameras, cars, robots, etc. Fog
services can be control, processing, storage, communication,
streaming, configuration, monitoring, measurement, and
management services. SmartCityWare services can be used by
smart city applications available on the cloud, fog, or IoT
devices, such as a car asking for a certain service from a smart
city application available on the cloud. On the other hand,
SmartCityWare middleware infrastructure utilizes software
agents to provide flexible and expandable middleware services,
or high-performance distributed service-oriented environments.
The main functions of the agents are to deploy, schedule, and
support the execution of the service codes in different fogs, in
addition to manage, control, monitor, and schedule the available
resources on a single fog, or on a set of related distributed
heterogeneous fogs. For the experiments, they used three
computers; one represents the cloud and two represent two fogs.
In addition, they used WAN emulators among the machines, to
introduce the effects of using long distances and/or the Internet
to connect them.

B. Integration MAS-SOA or MAS-Cloud Computing.
In this subsection are shown the studies that combine MAS

with the cloud computing paradigm, or some type of software
oriented architecture. In this sense, Archimède et al. [5] propose
Semantic-SCEPSOA, which is an architecture that combines
three kinds of technologies. First, SOA to facilitate the
identification and to form relationships of actors on the internet,
allowing technical and operational interoperability by gathering
functionalities of enterprise applications. Second, ontology
technology to facilitate the understandings for the exchange of
information. Third, a multi-agent model is used to elaborate the
planning of the project. The semantic interoperability strategy,
necessary to ensure a better understanding and interpretation of
the exchanged information between heterogeneous systems, is
based on ontologies. Reasoning mechanisms are needed by
customers and producers to transform data described according
to the global ontology in data expressed according to the local
ontology, and vice-versa. S-SCEPSOA is organized around

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

4

three kinds of actors: the SOAregister containing information
about the provided services, the SOAproducer proposing the
service, and the SOAcustomer consuming the discovered
services by invoking them at the corresponding SOAproducers.
Interaction between the different actors is achieved via
messages. The management process is achieved by three steps.
The first one is the identification of partners, which concerns
services publication, and discovery phases in the SOA context.
The second step deals with instantiation of SCEP (supervisor,
customer, environment, and producer) components on the
SOAcustomer side, and connection to SOAproducers selected
in the previous step. The SCEP agent gets from the customer
database (CDB) the projects’ description and creates the shared
environment, as well as the customer and ambassador agents.
One customer agent is created for each project, similarly, one
ambassador agent is created for each SOAproducer. The
third/last step concerns interactions and cooperation between
SOAcustomer and its SOAproducers, through the SCEP
instantiation, to manage multi-site production projects.

Al-Ayyoub et al. [8] present a dynamic resources
provisioning and monitoring (DRPM) system, which is a MAS,
to manage the cloud provider’s resources while taking into
account the customers’ quality of service requirements, as
determined by the service-level agreement (SLA). The
provider’s resources include a set of datacenters, each with a
large number of physical machines. Each physical machine has
specific characteristics (in terms of CPU, RAM, storage and
BW) to host multiple virtual machine (VMs). Moreover, it has
sensors to measure the utilization of its resources and the
execution of the customers’ applications on it. The application
layer consists of a set of customers having several jobs possibly
spanning multiple VMs. Each job is associated with specific
performance goals specified in the SLA (e.g., time to complete
their tasks, number of requests for specific periods). The multi-
agent components include a global utility agent and a set of
local utility agents. While the global utility agent has the
classical role of the “central broker” allowing it to manage all
the system resources, the local agents are assigned to each
customer with the objective of improving the resource
utilization without causing SLA violations. Based on a
regression analysis of its history, the local agent can estimate
the amount of resources that will actually be used without
causing SLA violations. After reformulating the requests, the
local agent sends the new requests to the global agent, which is
responsible for the actual provisioning of the resources, by
communicating with the supervisors of the physical machines
in the different data centers under the cloud provider’s control.

On the other hand, García et al. [31] propose a model for
automatic construction of business processes, called IPCASCI
(Intelligent business Processes Composition based on multi-
Agent systems, Semantics and Cloud Integration), in order to
facilitates the business process construction on cloud
computing environments. It deals with the development of a
proposal that facilitates the creation of such processes, in the
form of web services, from other semi-automatic functional
services. The process of business process construction is guided
by a multi-agent architecture based on virtual organizations,

which is able to implement the intelligent behavior needed for
process management by using ontology. The components that
integrate the architecture are 1) Cloud system, is the Platform
of cloud computing on which is supported their proposal. The
platform provides an environment for running and storage 2)
Web services, are the web services existing in the architecture
that will be used in the process of web service composition 3)
UDDI register, is the Universal register system where the web
services are registered. This allows an open access to the web
services of the architecture. This way, the web services
implemented in the architecture may be reused 4) MAS, this
system supports functionalities to make the discovery and the
composition of web services, by analyzing the semantic content
introduced by the user in order to structure it in computable
items 5) Ontologies, distinct ontologies modeling the semantic
knowledge that can be included in the web services 6) BPEL
(Business Process Execution Language) [32], [33] file to Store
the composition of the web services that meet the requirements
indicated by the user to obtain the desired solution. The
discovery and composition of services are carried out when the
user introduces the requirements of the web service to build, by
means of an assisted system. Later, an automatic search (made
in syntactic and semantic form) for the web services that include
the requirements of the module, is carried out. Next, the
Business Process Diagram (BPD) is then displayed by the
assistant software to the user, because could exist several web
services implementing a single activity. Finally, from the BPD,
a composition BPEL is carried out in such a way that the service
specified by the user is built, and can later be invoked.

Particularly, the researches presented above do not deal with
SOA-MAS integration in a natural way, but instead each agent
must directly apply the necessary transformations to be able to
access cloud services. In this sense, Fuksa [17] developed a
library, called JADE Gateway Library, which acts as a bridge
between a MAS and the services that are deployed in an
Enterprise Services Bus (ESB). The library is composed of two
fundamental elements, the first one is the Jade-Gateway, which
is responsible for managing the messages received from and to
the ESB; the second one is the Gateway Agent, which main
objective is to retransmit the messages between the MAS and
the ESB. When an agent wants to consume a WS, it must send
a message to the GatewayAgent, which in turn relays it to the
ESB; On the other hand, when a WS needs to send a message
to an agent, it must do through the EntryPoint ESB Service,
which it will pass it to the Jade-Gateway, and then to the
GatewayAgent, which will relay it to the requested agent.
During the communication process, the Jade-gateway must
perform SOAP-ACL and ACL-SOAP conversions, so that each
party receives the message in the appropriate language. In the
same way, Jade-gateway solves the problem of synchronous
communications integration of web services with asynchronous
communications of a MAS, blocking the GatewayAgent thread
until obtaining the MAS response.

Finally, Pinto [18] proposes SoMAS (Service oriented
MultiAgent System) as a completely service-oriented
architecture, where both agents and web services use SOAP as
a communication language. In SoMAS architecture, agents

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

5

publish their services in the UDDI, by sending the WSDL file
corresponding to the service offered. When an agent or web
service requires the use of a particular service, it must be looked
up in the UDDI, and once found, it is established the
communication with it through SOAP messages. This
architecture leaves aside the FIPA standard, since the system
does not use DF or ACL communication language, although the
author indicates that both communication interfaces can be
used, which means doing additional work.

Mainly, the works shown in this section combine MAS-Fog
or MAS-SOA paradigms, however, they do not allow the
combination of the three paradigms in a transparent way, such
that agents can communicate with services in a transparent way,
activating the fog paradigm conveniently (see in section VI the
comparison of these works). In this sense, works that deal with
the MAS-SOA integration issues in a natural way [17], [18], do
not make use of the fog paradigm, so they are not able to solve
several issues of cloud computing, such as mobility, real time,
low latency, etc. In addition, these works have weaknesses,
such as the fact of not being FIPA-compliant, or not allow
bidirectional communication of agents and services. That is
why in [19], [21] has been proposed a new architecture to solve
those issues. In particular, this article studies the performance
of the incorporation of the fog-computing paradigm to our
middleware, which allows agents not only to communicate with
services transparently, but also to use the fog paradigm in an
autonomous way.

III. EXTENDED ARCHITECTURE OF MISCI
This section describes the architecture of the Middleware for

Smart Cities called MiSCi, proposed in [19], [21].

Fig. 1. Multilayer Architecture of MiSCi.

A. Multilayer Architecture of MiSCi
The core of MiSCi is based on a MAS composed by a multi-

layer architecture. The agents of MiSCi use autonomic
computing to deal with situations that arises in a smart city.
They are capable of perceiving the interactions of the users by:
a) Monitoring the environment (using the sensors and/or smart
devices available on it). b) Analyzing the data to detect issues
and find solutions (services to be offered to the user) according

to the context. c) Planning and deploying the solution in the
environment (using the effectors and/or smart devices), thus
improving the activities carried out by the citizens of the city,
with the main objective of improving the quality of life and
comfort of the citizens, as well as performing a good
management of the city.

The architecture of MiSCi contains nine layers (see Fig. 1).
Each element of this architecture provides essential features to
the middleware, enabling the ubiquity, the context awareness,
the ontological emergence, smart decisions, fog and cloud
computing, among others things (refer to [3], [4], [21] for more
details). In general, the layers of MiSCi are:

1) MAS Management Layer (MMAL)

This layer is an adaptation of the FIPA standard [34] what
defines the rules that allow a society of agents to coexist and
be administered, encouraging the interoperability with other
technologies. The Agents in this layer are: AMA (Agent
Manager Agent), CCA (Communication Control Agent)
and DMA (Data Management Agent), they are defined in
detail in [34].

2) Service Management Layer (SML)
This is an essential layer in the architecture of MiSCi,
because it makes possible the integration between the MAS
and SOA paradigms in a bidirectional way. That means that
agents can register, discover and consume web services in
the cloud, and vice versa (agent’s tasks are offered as web
services). This feature makes possible to use the SaaS model
of the cloud computing in MiSCi, which is fundamental in
a Smart City. In this layer, the Services Management Agent
(SMA), the Web Service Agent (WSA), the Web Service
Oriented Agent (WSOA), the RMA (Resource Manager
Agent) and the ApMA (Applications Manager Agent), are
defined (see [35] for more details about these agents). In
fact, SMA manages the UDDI, allowing agents and cloud
services to discover each other. WSA allows agents and web
services to communicate by translating messages in an
appropriate way (is a proxy), and WSOA serves as a façade
for agents, exposes their functionality’s as services, and
allows the communication from web services to agents of
the platform (see Fig. 2).

Fig. 2. Functionality of the SML.

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

6

3) Context-Awareness Layer (CAL)
The purpose of this layer is to offer context services,
allowing agents of MiSCi to manage important information
about location, time, and devices, among others. This
information is managed in a cycle that is composed by the
discovering and modeling of the context, the reasoning
based on the context, and the distribution of the context. For
this layer, we take as reference the services defined in [36],
where is proposed a Context-Aware Reflective Middleware
based on the Cloud Computing, with a range of services to
manage the context information (see [4] for details about
this layer).

4) Ontological Emergence Layer (OEL)
The objective of this layer is to provide a set of services with
very specific tasks for handling ontologies. These services
have been proposed in [37]. In this work has been defined
group of services for Ontology Registration, for Ontology
Searching, for the Integration of Ontologies, for Ontology
Updating, among others. In addition, the structure of the
meta-ontologies defined in this layer are the same proposed
in the same work. They propose three meta-ontologies and
the procedure to integrate them: a component meta-
ontology, a context meta-ontology, and a domain meta-
ontology. The meta-ontologies provide an adequate
conceptual model of the context of a Smart City (see [37]
for details about this layer).

5) SC Logical Management Layer (SCLML)
It is responsible for providing intelligence to the Smart City.
This layer is where all the applications (software, virtual
objects, etc.) and persons present in the Smart City are
characterized. Each element/person corresponds to one
agent (is an abstraction of it), which contains metadata that
defines its properties. This layer contains agents like CzA
(it characterizes each citizen in a Smart City) and AppA (it
characterizes useful applications in the smart city, such as
the Vehicular Smart System, the Healthcare Smart System,
etc.). Those agents are coordinated and cooperate with each
other, to take decisions that help to solve a particular
situation, and to assist real people to perform their tasks in
the smart city (this layer is detailed in [4]).

6) SC Physical Management Layer (SCPML)
It allows managing the physical devices in the Smart City.
In this layer, all the physical elements of the environment
are characterized thought the DA (Device Agent), allowing
the interaction between agents and devices of MiSCi. Thus,
each physical device is characterized by one DA (is an
abstraction of it), which contains metadata that define its
properties. Some of these physical devices are intelligent
(smart objects), so that the properties of learning, autonomy,
reasoning, among others, are critical to characterize them.
This layer communicates with the real physical device that
is in the SCPL layer, because is through SCPL that agents
have access to the physical hardware of the devices (see [4]
for details about this layer).

7) Smart City Physical Layer (SCPL)
This layer is the smart city itself. It is in this layer where all
the physical components of the smart city are deployed,
such as: a) Sensors, to capture the useful information for
services and smart objects in the environment. b) Effectors,
to modify the physical conditions of the environment. c)

Smart Objects, which are components of the smart city that
may adapt and respond to situations in the current context
(see [4] for details about this layer).

8) Smart City Logical Layer (SCL)
This layer includes the main sub-systems of a smart city,
which are responsible for managing the elements of the city
in a global way, such as: Vehicular Smart System,
responsible for control the traffic; Mobility Smart System,
responsible of facilitating the mobility of citizens (public
transport); Smart Healthcare System, in charge for
facilitating the access to health services, among others. The
agents of MiSCi can communicate with these systems
through the AppA agents, because they characterize the
applications of the smart city in the architecture. In this way,
the global systems can be coordinated with the local
systems, to meet the needs of the citizens in a given time.

9) Fog Layer (FL)
This layer enables the Fog computing paradigm in MiSCi.
The agents in this layer help to decide whether the data
might be processed locally or in the cloud, being the Fog
Agent (FogA) responsible for this task. FogA uses a meta-
ontology provided by the OEL Layer, some context
information provided by the CAL layer, and some system
information collected by the System Monitor Agent
(SMonA), about the level of occupation in terms of
processing and communication (bandwidth) of the agents
and local web services. Using all that information, FogA can
make a decision about whether or not the data should be
processed locally or in the cloud (see [21] for details).

B. Motivation of the MiSCi extension.
In previous researches, we have shown how we can integrate

both paradigms SOA and MAS [19], enabling MAS to
communicate with cloud services in a natural way, and vice-
versa. SOA-MAS integration is a crucial point in MiSCi, as
well as in others agent based middleware, in order to take
advantages of the cloud paradigm. Such is the case of the Cyber
Physical Systems integrated with IoT, which cyber part can be
associate with a MAS, and their service needs can be supplied
in the cloud. In specific, the agents of the platform might use
services in the cloud to process data (big data and data analytics
services, linked data services, etc.), get recommendations, get
context information, among other cloud services, facilitating
intelligent decision making, context awareness, system
recommendations, alerts, among other things.

The SML layer allows SOA-MAS integration on MiSCi, and
it can be extended to other middlewares too. However, agents
of the SML layer are not capable to deal with some issues
related to cloud platform, smart environments, and IoT, like
latency, real time, location aware, among others aspects (see
[38], [39]). In this way, we have enabled the Fog Computing
paradigm on MiSCi to deal with that issues, and this paper is
focused in show the benefits of such integration. Fig. 3 shows
the interactions of the Agents of the Fog Layer with other agents
of the SMA.

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

7

Fig 3. Fog interaction between agents.

Each time any agent of the platform is going to consume a
service, it searches that service using the SMA, which responds
with the id of the WSA that characterizes that service in the
platform. Later, the requesting agent sends the information to
the WSA, which contact the FogA, in order to know where will
be the service (fog or cloud). The FogA uses information
collected by the SMonA, and the Fog Ontology [21], to
determine where the service will be executed, and returns the
information to the WSA. The WSA translates the message into
a SOAP message, and executes the service using the
information returned by the FogA. After, the WSA receives the
result from the web service, it translates that result to ACL, and
sends the result to the requesting agent. In that sense, the FogA
helps to deal with problems of quality of services, latency, real
time, among others, of the cloud architecture, by combining real
time information of the system, with information of the context
on the Fog Ontology.

Fundamentally, in [19] we introduces MiSCi as an agent
based Middleware for Smart Cities, which includes layers like
SML to allow autonomous SOA-MAS integration; OEL to
update and adapt the ontologies according to the dynamic of the
environment; and CAL to manage the information about the
context. Later, in [21] we have presented a modification to
MiSCi, in which we have included the Fog Layer. In this paper,
we describe the way in which the fog layer works, we present a
comparison with other works, as well as some experiments to
evaluate the performance of the Fog Layer in MiSCi at the level
of the real-time response and latency issues.

IV. EXPERIMENTS
In this section are presented a series of case studies, to verify

if the incorporation of the fog computing paradigm in MiSCi
improves the performance and makes it possible to deal with
real-time problems, latency, quality of services, among others
aspects. In this sense, three general case studies were designed,
and other specific that is used to compare our approach with
previous works.

A. General Considerations for simulation.
The variables to be taken into account in the simulations are:

• Number of MiSCi agents that offer their
functionalities as services.

• Number of web services registered in the UDDI
(Number of services usable by agents).

• Maximum number of WSA agents supported by the
platform, which depends on the resources of the

SMA.
• Average time of generation of new web service

requirements by agents (Agent-> WS).
• Average time of generation of new requirements for

agent services (WS-> Agent).
• Average response time of the web services. This

variable always remains constant since it affects both
proposals equally, and it does not influence the
comparison of them.

• Standard deviation of the response time of the web
services (this variable always remains constant since
it does not influence the performance of the proposal).

• Average response time of the agents (this variable
always remains constant since it does not influence
the performance of the proposal).

• Standard deviation of the response time of the agents
(this variable always remains constant since it does
not influence the performance of the proposal).

• Average response time of requests for the SMA agent
(this variable always remains constant since it does
not influence the performance of the proposal).

• Average time for message translation time (SOAP-
ACL, ACL-SOAP). This variable always remains
constant because it affects both proposals equally, and
it does not influence the comparison of them.

• Necessity of processing in the fog (it takes values
between 0% and 100%, and it is only valid when the
fog component is activated).

Each case study presents a variation of these variables, in
order to study specific characteristics of the system. For all
scenarios, a simulation time of 1800 seconds and a maximum
of WSA agents of 2000 was established. That is, the SMA
platform cannot create more than 2000 WSA agents; that means
that if there are many concurrent service invocations and it is
exceeded the maximum value of WSA supported, then the next
requests will be rejected, until the WSA number drops again. In
this way, we avoid oversaturating the system resources.

B. Simulation cases and results.
Case 1: In this case, we test the middleware with low (10),

middle (200) and high (1000) quantity of services.
Additionally, we are going to evaluate the performance of the
middleware with fog and without fog. In addition, we set four
levels of service requests: low level (10 requests each second),
middle level (20 requests each second), high level (50 request
each second), very high level (100 requests each second).
Moreover, in this case, we are going to assume that we have
low requirements of fog computing (need of real time is low,
and the Internet latency is very low). In this sense, 20% of all
generated requests are going to need real-time processing.

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

8

Fig. 4. Average total response time vs number of services.

Fig. 4 shown the average total response time (it includes

lookup time of service, invocation of the service, message
translation, delivery time for local message, and delivery time
for cloud messages) respect to the number of services. Left bar
indicates the average total response time for the request from
the SMA to services in the cloud (fog is totally disabled,
requests are processed in the cloud), the second bar corresponds
to the total response time to consume services in the cloud (fog
is enabled), and the last bar indicates the average total response
time for requests with real time needs (processed in the fog).

From Fig. 4, when the Request Mean is 10 or 20 requests by
second, then the average of the total response time is lower than
1 second in all cases; however, the average total response time
for those requests that need real time process is always lower.
On the other hand, when the request mean is 50 or 100 requests
by second, then the avg. total response time for those request
processes in the cloud when fog is enabled are always smaller
than those request where fog is not enabled. In the same sense,
and more important, it is the fact that when fog is enabled, then
those requests that requires real-time or low latency have
always a total response time very close to 1s. Based on that, we
can say that enabling fog computing in the original proposal,
give us good results for those requests that need real-time or
low-latency, when the needs of real time is low. In this case,
only 20% of all the generated requests on the system require to
be processed in real-time, and our proposal allows doing that.
This is very important for real time applications in the context
of smart cities, cyber physical systems, industry 4.0, among
others. For example, in a smart city, this allows providing
healthcare services like first aids, or vehicular information like
traffic and geolocation, to users in real time. In the context of
the industry 4.0, this allows accessing production process or
process mining as services, among others, in the cloud.

Fig. 5. Number of required WSA vs the number of registered services.

Fig. 5 shows the number of WSA required to attend all the

requests of services generated on the system (left bar when fog
is not enabled, right bar when fog is enabled). According to Fig.
5, the behavior is similar whether or not fog is enabled. That
means that the inclusion of the Fog Layer on the system does
not change the deployment of our middleware for the SOA-
MAS integration.

Fig.6. Average total response time vs number of registered agents as services.

In Fig. 6 is shown how communication from services in the
cloud with the agents’ in the platform (web services consuming
agents as services) is being affected when fog is enabled or not.
We can see that there is not a high difference between both
results, which means that the inclusion of the Fog Layer on the
system does not affect the communication in our SOA-MAS
integration approach.

Case 2: This case is an extension of the case 1, but now, we
have high needs of real time because we have to solve a health
emergency that have arisen in the system. That means that 70%
of services are going to require real time processing.

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

9

Fig. 7. Average total response time vs number of services.

Fig. 7 shows the same information as Fig. 4. From Fig. 7, we
can see that in general, all those requests that require real-time
when the fog paradigm is enabled in the systems, was resolved
in much lower time, that those which require or not real time,
when fog computing is not enabled Also, the difference is very
considerable when we have 50 or 100 requests by second. In the
same way, we can also notice that when fog is enabled, those
requests processed in cloud take less time to be resolved that
when the fog is not enabled. That is because the internet is less
congested since more requests are being processed in the fog.
In general, this figure shows that when we have a good internet
speed, and high requests of real time, the system with fog
enabled brings better results that when the fog is disable, respect
to the total response time in average.

Fig. 8. Number of required WSA vs the number of registered services.

On the other hand, analyzing the requirements of the system

respect to the number of WSA needed to process all the requests
generated in the system, according to Fig. 8, there is not a high
difference when fog computing is enabled in the system, that
when fog computing is disabled. Moreover, in Fig. 9, we notice
that the total response time in average for communication SOA-
MAS (services in cloud consuming agent tasks as services) is
lower when fog is enabled in the system for all cases. In that
sense, we can say that enabling fog in the system, when internet
connection is good and many services need real time, allows
reducing the response time in all cases.

Fig. 9. Average total response time vs number of registered agents as services.

Case 3: This case is also an extension of the case 1, but now,
the latency of the internet is high (200ms), and we have real
time needs. That means most services (80%) are going to
require low latency or real time processing.

Fig. 10. Average total response time vs number of services.

Fig. 11. Number of required WSA vs the number of registered services.

In this third case, we get similar results that in cases 1 and 2,

From Fig. 10-12, we can deduce that when fog is enabled in the
platform we get best results respect to the total response time in
average (bidirectional), and the number of WSA agents
required to process all the requests. The fact that more request
is processed locally, allows the system to deal with low latency
for those requests processed in the cloud, which helps to reduce
the total response time when fog is enabled. In changed, when
the fog is disable all traffics go thought internet, increasing the
latency time, and increasing the total response time in both
ways of the communication.

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

10

Fig.12. Average total response time vs number of registered agents as services.

Based on the previous results, we can say that adding the fog
layer to our proposal for the SOA-MAS integration, brings
better results and allows the system to deal properly with low
internet latency and real time situations.

Case 4: This case was designed to allow the comparison of
our proposal with previous works. Only Mohamed et al. [29]
have presented quantitative metrics that can be used for
comparison with this work. Same as Mohamed et al. [29], we
are going to use 2 services, a very low latency of internet, and
1 request each second. In the same way, we are going to assume
that each service is invoked each second, and we are going to
simulated by 60 seconds ([29] only carried out 10 invocations to
each service). On the other hand, also, we must assume that 50%
of the request require real time processing. In this way, we
reproduce the case study of Mohamed et al. [29] in MiSCi.

Fig. 13. System (fog-enabled) response times (own: blue, [29]: red)

In Fig. 13, we can see the results. In this figure, LSC refers

to services with real time needs (processed locally) and RSCCF
refers to services in cloud (don’t requires real time), see [29] for
more details. In our case, the response time for those services
computed in the fog is 162 ms, while that the middleware
proposed in [29] produced response times between 250ms and
500ms. On other the hand, services processed in the cloud give
us response times of 194 ms, while that in [29] the response
time for services in cloud was between 1250ms and 1500ms.
Thus, our integration proposal gives better results that the
middleware proposed in [29].

The difference between the response time of our middleware
and the proposal in [29] is due to that our system combines

semantic and context information from the OEL and CAL
Layers, in order to identify if the data received by the FogA
require real-time processing. MiSCi uses an ontology [21] to
verify some properties, such as real-time needs, or to know
whether previously the requested service was deployed locally
or in the cloud and its performance. That allows, among other
things, that FogA decides the correct place of the service (local
or cloud) in a lower time.

V. SOA-MAS INTEGRATION IN THE CONTEXT OF THE
INDUSTRY 4.0

In the context of Industry 4.0, several authors have proposed
the use of MAS [40]–[43] to deal the decision-making
challenges, as well as the autonomous coordination,
cooperation and collaboration. In that sense, this research can
bring huge benefits to the integration process in a production
environment with cloud technologies, which at the same time
need to solve latency and the real time problems, among others.
To illustrate this idea, we will present the following case study.

Suppose a company that has several devices on an assembly
line (see Fig. 14), where intelligent products control their own
production process. Likewise, there are consumers who place
orders for request customized products, and that need to have
them at a specific time, for which the company must accept the
elaboration of the product prudently. Smart products are the
ones that coordinate their own production. The company
requires several integration mechanisms in the 3C levels
(coordination, cooperation and collaboration) [44]:
1. Smart products are the ones that coordinate their own

production. It is necessary some appropriate coordination
mechanisms, directed by the smart product, in such a way
that in each phase of the production process the necessary
elements are added to the product according to the
requirements specific to each product, which may vary
from one smart product to another.

2. In the same way, the physical elements (things) of the smart
factory must use cooperative mechanisms, in order to allow
them to carry out the production process in an efficient
manner. Each Thing has its own objectives, for example,
the objective of the assembly belt is to transport the product
from an initial place to a destination one, knowing that
there can be multiple origins and destinations. The
objective of a robotic arm may be to add a layer to the final
product, and so on. In this way, cooperation between all the
actors will allow the final products to be created properly.

3. The objective of the whole production process is to
produce smart products, in an efficient way, minimizing
the production time, costs, as well as the resources or raw
materials. This means that the elements of the production
process must take into account this common goal, and
collaborate among them to achieve it, without neglecting
their particular objectives, that is, they must deal with
multiple objectives.

4. On the other hand, the intelligent factory can cooperate
with other organizations, in order to make automatic
requests of the raw materials, in such a way that the
production process is not stopped because of them. Finally,

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

11

the smart products can cooperate with the shipping
organization, so that the products reach the final consumer
appropriately and in time.

In this Industry 4.0 scenario, the 3C processes are
fundamental to achieve the goals of the production process.

Fig 14. Industry 4.0 scenario with the 3C processes.

In order to carry out the coordination, cooperation or
collaboration processes through a MAS, each device (thing) and
smart product must be instantiated as agent. Nevertheless,
because their capabilities are limited, many of their
functionalities will be executed in the cloud, and eventually in
the fog, for which it is required that the agents can establish
communication with these services. It is here where the SML
layer of MiSCi can be configured to help deal with that issue.
Fig. 15 shows how would be the process of communication
between the elements of the smart factory instantiated as agents,
and the cloud or fog services.

Fig. 15. Instantiation of the Industry 4.0 case study using MiSCi.

Fig. 15 shows how the coordination process led by a smart

product would be carried out.
1. In this case, the smart product is the one that gives the

orders to the other devices of the production system
(arms, conveyor belt, etc.), according to the coordination
plan that it handles.

2. These devices must perform certain tasks that allow
adding layers to the final product, and for that, they
benefit from the paradigm of cloud computing. In order
to invoke the corresponding service, the devices must
speak with the WSA agent (there is a WSA for each web
service registered in the SMA) that characterizes the
corresponding service in the system.

3. The WSA will communicate with the agent FogA, in
order to know if the required service is located in the
cloud or in the fog.

4. Then, the FogA requests the system information to the
SMonA, as well as contextual information, using the
context web services, which helps to determine what are
the needs of real-time processing, low latency, among
other things, in order to determine the location of the
respective service, and returns the result to WSA.

5. WAS uses this information to adequately invoke the
service (in the cloud or in the fog).

6. Once the WSA receives the results of the invoked
service, it will return that information to the requesting
device agent, who will be able to carry out its task.

7. Finally, the device agent informs about its task to the
smart product agent, so that it can adequately adjust the
coordination plan, if it is needed.

In the same way, we would proceed with the other cases for
cooperate and collaborate. In that sense, this research is useful
to introduce the MAS capabilities in the industry 4.0, by
integrating them with the cloud computing paradigm, in order
to deal with real-time needs, low latency, among other things,
that are essential in the context of the Industry 4.0.

Particularly, as we explained before, all the devices on the
production line are characterized as agents on the system, and
they access services in the cloud or fog, to plan their tasks
appropriately. For example, a smart product can access a
process model as service, which has the knowledge base and
specification on how to build the product, also, a scheduling
service can be useful, in order to schedule the tasks of each
device. On the other hand, device agents can request services
that return the specifications on how to perform a specific task
for a specific product (ex. trajectories, specific cuts, and 3d
models), etc. In general, all the systems need to access services
in the cloud, and it is very important to avoid real-time and low
latency issues, in order to allow an appropriate production line,
and to prevent to stop the production process.

VI. COMPARISON WITH PREVIOUS WORKS
In this section, we compare our approach with previous

works. Table I resumes these differences using the next criteria:

M1. SOA-MAS Enabled. It indicates if the work allows the
communication between agents and web services.

M2. Bidirectional SOA-MAS Integration. It indicates whether
the agents are able to consume web services, and the web
services are able to invoke the agent’s tasks.

M3. SOA-MAS Enabled Autonomously. It indicates if the
system administrator does not need to create any gateway or
communication channel manually to allow SOA-MAS
integration, and if agents/web services do not need to make
neither message transformation. That means, all the
communication is made transparently.

M4. Fog Enabled. It indicates if the work supports the Fog
computing paradigm.

M5. Fog Enabled Autonomously. It indicates if the fog layer of
the architecture is able to decide whether the data must be

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

12

processed autonomously (cloud or fog), according to the
current context.

TABLE I
COMPARISON WITH PREVIOUS WORKS

Work M1 M2 M3 M4 M5
[22]     
[25]     
[26]     
[29]     
[5]     
[8]     

[31]     
[17]     
[18]     

MiSCi     

As it can be observed from Table I, MiSCi is the only
middleware that is able to integrate the SOA-MAS-Fog
paradigms in an autonomous way. That means, the agents and
web services can communicate in a bidirectional way, in order
to solve the situations that arises in the environment, avoiding
real time and latency issues by autonomously using the fog
computing paradigm. In addition, our SOA-MAS-Fog
integration architecture can be used in different AmI contexts,
such as Smart Cities, Industry 4.0, among others.

VII. CONCLUSION
In this work, we have shown a component that allows the

integration of the MAS, SOA and Fog computing paradigms in
intelligent environments, to allow agents and web services to
communicate naturally, and in turn, to be able to use the fog
computing paradigm automatically. This allows taking
advantage of the capabilities of both paradigms (MAS and
cloud computing), while at the same time resolving typical
problems of cloud computing based systems, like low latency,
real time, geo-distribution, among others.

In particular, the integration architecture presented has
shown good results in the cases studied, where we focus on
solving real-time problems and low latency, demonstrating that
this solution provides better results to deal with such problems,
when the fog-computing component is enabled. For example,
from Fig. 10, we can notice that when the fog layer is enabled,
the total response time on average is reduced considerably,
having in most cases response times lower to 1 second, and in
all cases lower than 1 minute. That result is very desirable in
real time systems. In the same way, the average response time
for services on the cloud are also lower when the fog layer is
enabled, because of having less traffic over internet.

An important remark since the Figures 4, 7 and 10 is that the
local response time is always low, and which has not a lineal
dependency with respect to the number of requests. That means
that MiSCi guarantees low response time when data require real
time processing.

As well, with respect to the proposal of Mohamed et al. [29],
it has been shown that this proposal provides better results, both
when invoking local services and when using services in the
cloud. In general, the main difference of this research with
respect to the works cited in section II is that our work does not
only allow MAS and SOA to communicate in a bidirectional

way, but also, in a transparent way. Thus, each agent does not
need to worry about SOA specifications, and SOA services do
not need to deal with the FIPA details. On the other hand, works
on the section II do not deal with the real time and latency
issues. They only consider the integration of the MAS and SOA
paradigms, but, in most cases in a non-transparent way, and in
others only in one direction (from MAS to SOA), which means
that SOA services cannot start a conversation with the agents.
Our approach autonomously uses the fog computing paradigm
according to the context of the information, based on the real
time and latency needs of the moment.

On the other hand, the case study presented in the context of
Industry 4.0 shows that our integration proposal can easily be
adapted to these systems, such is the case of cyber physical
systems, Smart factories, among others. Particularly, the result
of this research can be useful on the industry 4.0, with the
objective of the invocation of everything mining tasks (process
mining, services mining, people mining, data mining, etc.) as
services [44], in order to provide knowledge that allow
performing coordination, cooperation and collaboration
processes autonomously.

In this way, a new middleware can be thought, based on the
SML and Fog Layers, in order to facilitate the integration with
different systems. Another future work is focused on the
specific utilization of the Fog and SML Layers in the context of
the industry 4.0, in order to allow autonomous coordination
processes in a production environment. Finally, another future
work is oriented towards the implementation of this component
in the MiSCi architecture, which will allow including all the
features of the fog computing paradigm, among others.

REFERENCES
[1] M. Sanchez, J. Aguilar, J. Cordero, and P. Valdiviezo,

“Basic Features of a Reflective Middleware for
Intelligent Learning Environment in the Cloud (IECL),”
2015, pp. 1–6. doi:10.1109/APCASE.2015.8.

[2] J. Aguilar, P. Valdiviezo, J. Cordero, and M. Sánchez,
“Conceptual design of a smart classroom based on
multiagent systems,” in Proceedings on the
International Conference on Artificial Intelligence
(ICAI), Las Vegas, 2015, pp. 471–477. .

[3] J. Aguilar, M. Mendoça, M. Jerez, and M. Sanchez,
“Emergencia ontológica basada en análisis de contexto,
como servicio para ambientes inteligentes,” DYNA, vol.
84, no. 200, pp. 28–37, Jan. 2017.
doi:10.15446/dyna.v84n200.59062.

[4] J. Aguilar, M. Jerez, M. Mendonca, and M. Sánchez,
“MiSCi: Autonomic Reflective Middleware for Smart
Cities,” in Technologies and Innovation: Second
International Conference, CITI 2016, Guayaquil,
Ecuador, November 23-25, 2016, Proceedings, R.
Valencia-García, K. Lagos-Ortiz, G. Alcaraz-Mármol, J.
del Cioppo, and N. Vera-Lucio, Eds. Cham: Springer
International Publishing, 2016, pp. 241–253.
doi:10.1007/978-3-319-48024-4_19.

[5] B. Archimède, M. A. Memon, and K. Ishak,
“Combining multi-agent model, SOA and ontologies in
a distributed and interoperable architecture to manage

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

13

multi-site production projects,” Int. J. Comput. Integr.
Manuf., vol. 30, no. 8, pp. 856–870, Aug. 2017.
doi:10.1080/0951192X.2016.1224389.

[6] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H.
Johansson, “Coordination of Multi-agent Systems with
Intermittent Access to a Cloud Repository,” in Sensing
and Control for Autonomous Vehicles, Springer, Cham,
2017, pp. 453–471. doi:10.1007/978-3-319-55372-6_21.

[7] V. Jain and M. K. Madan, “Multi Agent Driven Data
Mining For Knowledge Discovery in Cloud
Computing,” “International J. Res. Comput. Appl.
Manag., vol. 3, no. 1, pp. 111–117, Mar. 2017. .

[8] M. Al-Ayyoub, Y. Jararweh, M. Daraghmeh, and Q.
Althebyan, “Multi-agent based dynamic resource
provisioning and monitoring for cloud computing
systems infrastructure,” Clust. Comput., vol. 18, no. 2,
pp. 919–932, Jun. 2015. doi:10.1007/s10586-015-0449-
5.

[9] D. Greenwood, P. Buhler, and A. Reitbauer, “Web
service discovery and composition using the web
service integration gateway,” in The 2005 IEEE
International Conference on e-Technology, e-
Commerce and e-Service., 2005, pp. 789–790. .

[10] A. Sánchez, G. Villarrubia, C. Zato, S. Rodríguez, and
P. Chamoso, “A Gateway Protocol Based on FIPA-ACL
for the New Agent Platform PANGEA,” in Trends in
Practical Applications of Agents and Multiagent
Systems, Springer, Cham, 2013, pp. 41–51.
doi:10.1007/978-3-319-00563-8_6.

[11] C. A. Marín et al., “A Conceptual Architecture Based
on Intelligent Services for Manufacturing Support
Systems,” in 2013 IEEE International Conference on
Systems, Man, and Cybernetics, Manchester, UK, 2013,
pp. 4749–4754. doi:10.1109/SMC.2013.808.

[12] FIPA, “FIPA ACL Message Structure Specification,”
Foundation for Intelligent Physical Agents. [Online].
Available:
http://www.fipa.org/specs/fipa00061/index.html.
[Accessed: 20-Dec-2017].

[13] S. S. Singapogu, K. Gupton, and U. Schade, “The Role
of Ontology in C2SIM,” in 21st International Command
and Control Research and Technology Symposium,
London, UK, 2016. .

[14] R. Geetha and K. L. Shunmuganathan, “Intelligent
query processing from biotechnological database using
co-operating agents based on FIPA standards and
hadoop, in a secure cloud environment,” in 2017 4th
International Conference on Advanced Computing and
Communication Systems (ICACCS), Coimbatore, India,
2017, pp. 1–4. doi:10.1109/ICACCS.2017.8014599.

[15] Oracle, “Simple Object Access Protocol Overview,”
Oracle9i Application Server Oracle9iAS SOAP
Developer’s Guide. [Online]. Available:
https://docs.oracle.com/cd/A97335_02/integrate.102/a9
0297/overview.htm. [Accessed: 20-Dec-2017].

[16] W3C, “Extensible Markup Language (XML).” [Online].
Available: https://www.w3.org/XML/. [Accessed: 20-
Dec-2017].

[17] M. Fuksa, “Methods and Tools for Intelligent ESB,”
Master, Czech Technical University in Prague, Prague,
2014.

[18] A. Pinto Pereira, “Towards robustness and self-
organization of ESB-based solutions using service life-
cycle management,” Master Thesis, Polytechnic
Institute of Bragança, Bragança, 2014.

[19] M. Sanchez and J. Aguilar, “Integrating SOA and MAS
in Intelligent Environments,” DYNA, p. Reviewing. .

[20] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
computing and its role in the internet of things,” in
Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, Helsinki, Finland, 2012,
pp. 13–16. .

[21] J. Aguilar, M. B. Sanchez, M. Jerez, and M. Mendonca,
“An Extension of the MiSCi Middleware for Smart
Cities Based on Fog Computing,” J. Inf. Technol. Res.
JITR, vol. 10, no. 4, pp. 23–41, 2017.
doi:10.4018/JITR.2017100102.

[22] M. Amadeo, A. Molinaro, S. Y. Paratore, A. Altomare,
A. Giordano, and C. Mastroianni, “A Cloud of Things
framework for smart home services based on
Information Centric Networking,” 2017, pp. 245–250.
doi:10.1109/ICNSC.2017.8000099.

[23] F. Riggins and T. Keskin, “Introduction to Internet of
Things: Providing Services Using Smart Devices,
Wearables, and Quantified Self Minitrack,” in
Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.
doi:10.24251/HICSS.2017.166.

[24] S. Sengupta, N. Gupta, and V. (Advisor) Naik,
“Firewall for internet of things,” Indraprastha Institute
of Information Technology, New Dehli, 2017.

[25] Z. Peng, B. Xu, A. M. Gates, D. Cui, and W. Lin, “A
Study of a Multi-Agent Organizational Framework with
Virtual Machine Clusters as the Unit of Granularity in
Cloud Computing,” Comput. J., vol. 60, no. 7, pp.
1032–1043, Jul. 2017. doi:10.1093/comjnl/bxw042.

[26] A. Giordano, G. Spezzano, and A. Vinci, “Smart Agents
and Fog Computing for Smart City Applications,” in
Smart Cities, 2016, pp. 137–146. doi:10.1007/978-3-
319-39595-1_14.

[27] S. Zanero, “Cyber-Physical Systems,” Computer, vol.
50, no. 4, pp. 14–16, Apr. 2017.
doi:10.1109/MC.2017.105.

[28] N. Jazdi, “Cyber physical systems in the context of
Industry 4.0,” in 2014 IEEE International Conference
on Automation, Quality and Testing, Robotics, 2014, pp.
1–4. doi:10.1109/AQTR.2014.6857843.

[29] N. Mohamed, J. Al-Jaroodi, I. Jawhar, S. Lazarova-
Molnar, and S. Mahmoud, “SmartCityWare: A Service-
Oriented Middleware for Cloud and Fog Enabled Smart
City Services,” IEEE Access, vol. 5, pp. 17576–17588,
2017. doi:10.1109/ACCESS.2017.2731382.

[30] M. Faheem and V. C. Gungor, “Energy efficient and
QoS-aware routing protocol for wireless sensor
network-based smart grid applications in the context of
industry 4.0,” Appl. Soft Comput., Jul. 2017.
doi:10.1016/j.asoc.2017.07.045.

Service Oriented Computing and Applications
https://doi.org/10.1007/s11761-018-0238-0

14

[31] J. A. García Coria, J. A. Castellanos-Garzón, and J. M.
Corchado, “Intelligent business processes composition
based on multi-agent systems,” Expert Syst. Appl., vol.
41, no. 4, Part 1, pp. 1189–1205, Mar. 2014.
doi:10.1016/j.eswa.2013.08.003.

[32] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting
BPEL Web Services,” in Proceedings of the 13th
International Conference on World Wide Web, New
York, NY, USA, 2004, pp. 621–630.
doi:10.1145/988672.988756.

[33] G. Decker, O. Kopp, F. Leymann, and M. Weske,
“BPEL4Chor: Extending BPEL for Modeling
Choreographies,” in IEEE International Conference on
Web Services (ICWS 2007), 2007, pp. 296–303.
doi:10.1109/ICWS.2007.59.

[34] J. Aguilar, A. Ríos, F. Hidrobo, and M. Cerrada,
Sistemas Multiagentes y sus aplicaciones en
Automatización Industrial, 2nd ed. Mérida: Talleres
Gráficos, Universidad de Los Andes, 2013.

[35] M. Sánchez, J. Aguilar, J. Cordero, and P. Vadiviezo,
“A Smart Learning Environment based on Cloud
Learning,” Int. J. Adv. Inf. Sci. Technol., vol. 4, no. 7,
pp. 36–49, Jul. 2015. doi:10.15693/ijaist/2015.v4i7.36-
49.

[36] J. Aguilar, M. Jérez, E. Exposito, and T. Villemur,
“CARMiCLOC: Context Awareness Middleware in
Cloud Computing,” 2015, pp. 1–10.
doi:10.1109/CLEI.2015.7360013.

[37] M. Mendonça, J. Aguilar, and N. Perozo, “MiR-EO:
Middleware Reflexivo para la Emergencia Ontológica
en Ambientes Inteligentes,” Lat. Am. J. Comput. Fac.
Syst. Eng. Natl. Polytech. Sch., vol. 3, no. 2, p. 16, 2016.
.

[38] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog
computing and its role in the internet of things,” in
Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, Helsinki, Finland, 2012,
pp. 13–16. .

[39] R. Mahmud, R. Kotagiri, and R. Buyya, Fog computing:
A taxonomy, survey and future directions. Springer,
2018.

[40] D. Li, H. Tang, S. Wang, and C. Liu, “A big data
enabled load-balancing control for smart manufacturing
of Industry 4.0,” Clust. Comput., vol. 20, no. 2, pp.
1855–1864, Jun. 2017. doi:10.1007/s10586-017-0852-1.

[41] Z. Huang, H. Yu, Z. Peng, and Y. Feng, “Planning
community energy system in the industry 4.0 era:
Achievements, challenges and a potential solution,”
Renew. Sustain. Energy Rev., vol. 78, no. Supplement
C, pp. 710–721, Oct. 2017.
doi:10.1016/j.rser.2017.04.004.

[42] D. Romero, T. Wuest, J. Stahre, and D. Gorecky,
“Social Factory Architecture: Social Networking
Services and Production Scenarios Through the Social
Internet of Things, Services and People for the Social
Operator 4.0,” in Advances in Production Management
Systems. The Path to Intelligent, Collaborative and
Sustainable Manufacturing, 2017, pp. 265–273.
doi:10.1007/978-3-319-66923-6_31.

[43] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang,
“Towards smart factory for industry 4.0: a self-
organized multi-agent system with big data based
feedback and coordination,” Comput. Netw., vol. 101,
no. Supplement C, pp. 158–168, Jun. 2016.
doi:10.1016/j.comnet.2015.12.017.

[44] M. Sanchez, J. Aguilar, and E. Exposito, “Industry 4.0
Survey and Challenges since an Integration
Perspective,” Univeristé de Pau et des Pays de l’Adour,
Anglet, France, Technical Report 186, Nov. 2017.

	I. INTRODUCTION
	II. RELATED WORKS
	A. Integration MAS-Fog Computing
	B. Integration MAS-SOA or MAS-Cloud Computing.

	III. Extended Architecture Of MiSCi
	A. Multilayer Architecture of MiSCi
	1) MAS Management Layer (MMAL)
	This layer is an adaptation of the FIPA standard [34] what defines the rules that allow a society of agents to coexist and be administered, encouraging the interoperability with other technologies. The Agents in this layer are: AMA (Agent Manager Agen...
	2) Service Management Layer (SML)
	This is an essential layer in the architecture of MiSCi, because it makes possible the integration between the MAS and SOA paradigms in a bidirectional way. That means that agents can register, discover and consume web services in the cloud, and vice ...
	3) Context-Awareness Layer (CAL)
	The purpose of this layer is to offer context services, allowing agents of MiSCi to manage important information about location, time, and devices, among others. This information is managed in a cycle that is composed by the discovering and modeling o...
	4) Ontological Emergence Layer (OEL)
	The objective of this layer is to provide a set of services with very specific tasks for handling ontologies. These services have been proposed in [37]. In this work has been defined group of services for Ontology Registration, for Ontology Searching,...
	5) SC Logical Management Layer (SCLML)
	It is responsible for providing intelligence to the Smart City. This layer is where all the applications (software, virtual objects, etc.) and persons present in the Smart City are characterized. Each element/person corresponds to one agent (is an abs...
	6) SC Physical Management Layer (SCPML)
	It allows managing the physical devices in the Smart City. In this layer, all the physical elements of the environment are characterized thought the DA (Device Agent), allowing the interaction between agents and devices of MiSCi. Thus, each physical d...
	7) Smart City Physical Layer (SCPL)
	This layer is the smart city itself. It is in this layer where all the physical components of the smart city are deployed, such as: a) Sensors, to capture the useful information for services and smart objects in the environment. b) Effectors, to modif...
	8) Smart City Logical Layer (SCL)
	This layer includes the main sub-systems of a smart city, which are responsible for managing the elements of the city in a global way, such as: Vehicular Smart System, responsible for control the traffic; Mobility Smart System, responsible of facilita...
	9) Fog Layer (FL)
	This layer enables the Fog computing paradigm in MiSCi. The agents in this layer help to decide whether the data might be processed locally or in the cloud, being the Fog Agent (FogA) responsible for this task. FogA uses a meta-ontology provided by th...

	B. Motivation of the MiSCi extension.

	IV. Experiments
	A. General Considerations for simulation.
	B. Simulation cases and results.

	V. Soa-Mas Integration In The Context Of The Industry 4.0
	VI. Comparison with previous works
	M1. SOA-MAS Enabled. It indicates if the work allows the communication between agents and web services.
	M2. Bidirectional SOA-MAS Integration. It indicates whether the agents are able to consume web services, and the web services are able to invoke the agent’s tasks.
	M3. SOA-MAS Enabled Autonomously. It indicates if the system administrator does not need to create any gateway or communication channel manually to allow SOA-MAS integration, and if agents/web services do not need to make neither message transformatio...
	M4. Fog Enabled. It indicates if the work supports the Fog computing paradigm.
	M5. Fog Enabled Autonomously. It indicates if the fog layer of the architecture is able to decide whether the data must be processed autonomously (cloud or fog), according to the current context.

	VII. Conclusion
	References

