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Introduction
This work focuses on the behavior of bubbles con�ned in an oscillating depth microchannel. This
situation is encountered in a recently developed device, an \electrochemical and vibrating Hele-Shaw
cell", designed to synthesize colloidal metallic nanoparticles (cMnP) [1]. The principle is to make
grow metallic rami�ed branches by galvanostatic electrolysis of a metal salt aqueous solution inside
the cell, Fig. 1a. These fragile branches are composed of nanocrystals (the desired cMnP), whose
the dissociation is achieved by the mechanical action resulting from the activation of a piezoelectric
diaphragm (PZT) integrated into the cell as one of its largest side, Fig. 1a; the variations of the channel
depth are induced by the bending of the PZT surface. In the case of the production of iron cMnP, the
branches growth is accompanied by the formation of H2 bubbles (co-reduction of H+), Fig. 1a. High
speed visualizations of the fragmentation process highlight the key role of these bubbles whose the
oscillations induce both microstreaming and branches fragmentation in close vicinity of their surface,
Fig. 1b-c. An e�cient fragmentation is obtained only when the PZT is driven with a square signal,
Fig. 1c. The observed dependence of the bubbles behavior, to the waveform used, is analyzed with
the support of speci�cally derived theoretical models for both breath oscillations (Rayleigh-Plesset
like equation) and shape oscillations (stability analysis) of a single bubble in an oscillating depth
microchannel. The speci�city of the oscillating depth (the driving force), acting simultaneously on
both the bubbles size and the liquid 
ow, is taken into account using a modi�ed Darcy’s law adapted
to small depth variations.
Experimental results
The images sequence of the fragmentation scene, using a sinusoidal signal (f = 4 kHz and Vpp =
250 V), Fig. 1b, shows that the branches are broken and the fragments are grouped into several
blocks, set in a stationary rotational motion in the plane of the channel (red arrows in Fig. 1b),
between the bubbles. These rotational motions are the signature of microstreaming induced by the
bubbles oscillation. Nevertheless, these 
ows are not su�ciently fast to fragment the branches into
small particles. It has to be noted that the bubbles network is una�ected by the PZT vibrations
(no motions and no surface deformations). By performing the same experiment, but using a square
signal, Fig. 1c, a more complex scene is visualized. Some of the initial bubbles coalesce to form
larger bubbles which exhibit surface deformations, splitting/coalescence events and motions inside the
channel. Microstreaming is also observed (red arrows in Fig. 1c) and the resulting 
ows break the
branches and set them in motion. The fragments end up being \attracted" to the surface of unstable
bubbles, where they are fragmented and ejected in the form of a cloud of particles, as it is shown in

Figure 1: a) Sketch of the elec-
trochemical and vibrating Hele-Shaw
cell. b-c) Images sequences of the
fragmentation process for sinusoidal
b) and square c) signals, the arrows
indicate the observed particles mo-
tions (f = 4 kHz, Vpp = 250 V, aqui-
sition frequency = 1500 FPS; FeCl2
0.1 M, 80 mA/cm2, growth duration
= 300 s).



Figure 2: a) The model situation
considered. b) Pulsation amplitude
threshold for the onset of shape de-
formations as a function of the bub-
ble size for several modes n and for
both a sinusoidal waveform at 4 kHz
(thin lines) and a square waveform at
f = fr(R0) (thick lines).

Fig. 1c. To sum-up, the fragmentation of the branches is observed only when large bubbles, formed
by coalescence, oscillate with surface deformations when the PZT is driven with a square signal. To
explain the appearance of the �rst coalescence events, and so the setting in motion of the initial
bubbles, the assumption is made that using a square signal, bubbles pulsation amplitude is su�ciently
high to induce the onset of shape deformations which lead to erratic bubbles motion, when di�rent
modes of shape oscillation interact; this phenomenon is known as \dancing bubbles" for spherical and
uncon�ned bubbles [2].
Derivation of the pulsation amplitude threshold for the onset of shape deformations
The bubbles oscillation is considered in a simpli�ed and model situation: a single con�ned bubble, of
rest radius R0, located at the center of an oscillating thickness circular �lm as sketched in Fig. 2a. The
oscillation of the bubble is driven by an imposed oscillation of the �lm thickness e(t) = e0 + �(t) which
the 
uctuation �(t) is synchronized with the driving voltage. The modeling is based on the classical
theory for the oscillations of uncon�ned bubbles aiming to derive a Rayleigh-Plesset equation, to
describe the temporal evolution of the bubble radius R(t), and an equation for the amplitude of surface

uctuations. The liquid 
ow is modeled by a modi�ed Darcy’s law (taken into account inertia) adapted
to small depth variations. This law is derived assuming the liquid velocity pro�le across the thickness
is parabolic (this is valid for small Reynolds number [3] and so small j�j). First, breath oscillations
(no shape deformations) are considered and after integration and linearization of the Darcy’s law, the
equation of an equivalent forced and damped harmonic oscillator, providing the resonance frequency
of the bubbles fr (among other parameters), is obtained.

Next, the stability of the circular shape of the bubble is considered by authorizing small distortions
of the surface rs(�; t) = R(t) + a(t)	n(�) (with jaj � 1 and 	n is a circular harmonic of degree n)
and assuming that the corresponding 
ow perturbation is the same as in the case of a long 2D bubble
(e � R). The previous integrations are re-performed, to obtain a second order equation on a which
is converted into the Mathieu’s equation, as classically done. Using the theory on the stability of the
corresponding solutions, an expression for the threshold, �Rt=R0, is obtained. This result is easily
applied to the case of a sinusoidal waveform but it cannot be directly applied to a square waveform.
Nevertheless, since the resonance frequency of the initial bubbles fr = 30 kHz (R0 = 50 �m) is well
higher than the applied frequency of 4 kHz, the bubbles should oscillate at their resonance frequency
after a step (rise or fall) of the square signal. By considering these oscillations as stationary (low
damping parameter), the threshold for the square waveform used can be estimated. The predicted
thresholds are plotted as a function R0 for several n in Fig. 2b. The developed theory shows that
no shape deformations should occur for the initial bubbles when using a sinusoidal signal at 4 kHz
whereas they should appear if pulsation amplitude exceeds �3% when using a square signal. The
pulsation amplitude has not been measured, but it has been veri�ed that below a threshold voltage
amplitude (� 120 V), no coalescence events are observed. Additionally, keeping the same voltage
amplitude of 250 V, but varying the frequency (0.1 - 4 kHz), coalescence and fragmentation events
are always observed. These results are in agreement with the developed theory.
Conclusion
The observed coalescence of bubbles con�ned in an oscillating depth microchannel, occurring when
using a square waveform, is required to dissociate the cMnP. This particular behavior is explained by
the appearance of shape deformations leading to a dancing bubbles e�ect. The developed theoretical
models can be applied to other acousto
uidics devices using a low-frequency piezoelectric diaphragm
in direct contact of con�ned bubbles.
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