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Abstract

The present paper obtains a complete description of the limit distributions of sample covariances in
N x n panel data when N and n jointly increase, possibly at different rate. The panel is formed by N
independent samples of length n from random-coefficient AR(1) process with the tail distribution function
of the random coeflicient regularly varying at the unit root with exponent 8 > 0. We show that for
B € (0,2) the sample covariances may display a variety of stable and non-stable limit behaviors with

stability parameter depending on 8 and the mutual increase rate of N and n.
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1 Introduction

Dynamic panels providing information on a large population of heterogeneous individuals such as households,
firms, etc. observed at regular time periods, are often described by simple autoregressive models with random
parameters near unity. One of the simplest models for individual evolution is the random-coefficient AR(1)
(RCAR(1)) process

X(t)=aX(t—1)+¢e(t), teZ, (1.1)
with standardized i.i.d. innovations {e(¢),t € Z} and a random autoregressive coefficient a € [0, 1) indepen-
dent of {e(t),t € Z}. Granger [10] observed that in the case when the distribution of a is sufficiently dense
near unity the stationary solution of RCAR(1) equation in (1.1) may have long memory in the sense that the
sum of its lagged covariances diverges. To be more specific, assume that the random coefficient a € [0, 1) has

a density function of the following form
$(z) = (@)1 —2)", we0,1), (1.2)

where 5 > 0 and ¥(x), € [0,1) is a bounded function with lim,4; ¥(x) =: ¢(1) > 0. Then for g > 1 the
covariance function of stationary solution of RCAR(1) equation in (1.1) with standardized finite variance

innovations decays as t—(8 _1), viz.,

~ ((1)/2)0(B -t = oo, (1.3)




implying » ., | Cov(X(0),X(t))| = oo for B € (1,2]. The same long memory property applies to the
contemporaneous aggregate of N independent individual evolutions {X;(¢)},7 = 1,..., N of (1.1) and the
limit Gaussian aggregated process arising when N — oo. Various properties of the RCAR(1) and more general
RCAR equations were studied in Gongalves and Gouriéroux [9], Zaffaroni [32], Celov et al. [3], Oppenheim
and Viano [18], Puplinskaité and Surgailis [25], Philippe et al. [19] and other works, see Leipus et al. [14] for
review.

Statistical inference in the RCAR(1) model was discussed in several works. Leipus et al. [13], Celov et
al. [4] discussed nonparametric estimation of the mixing density ¢(x) using empirical covariances of the
limit aggregated process. For panel RCAR(1) data, Robinson [29] and Beran et al. [1] discussed parametric
estimation of the mixing density. In nonparametric context, Leipus et al. [15] studied estimation of the
empirical d.f. of a from panel RCAR(1) observations and derived its asymptotic properties as N,n — oo,
while [16] discussed estimation of 8 in (1.2) and testing for long memory in the above panel model. For a
N x n panel comprising N samples {X;(t),t =1,...,n} of length n, ¢ = 1,..., N of independent RCAR(1)
processes in (1.1) with mixing distribution in (1.2), Pilipauskaité and Surgailis [20] studied the asymptotic

distribution of the sample mean

n

. 1
X = 5 ) ltzgxi(t) (1.4)
1= =

as N,n — oo, possibly at a different rate. [20] showed that for 0 < § < 2 the limit distribution of this
statistic depends on whether N/n” — oo or N/nf — 0 in which cases X N,n is asymptotically stable with
stability parameter depending on /3 and taking values in the interval (0,2]. See Table 2 below. As shown in
[20], under the ‘intermediate’ scaling N/n® — ¢ € (0,00) the limit distribution of Xy, is more complicated
and is given by a stochastic integral with respect to a certain Poisson random measure.

The present paper discusses asymptotic distribution of sample covariances (covariance estimates)

1

= Pyp— . —_ % . J— % 2
'YN,n(ty 3) = Nin Z Z (Xz(k) XN,n)(XH-s(k + t) XN,n)> (tv 8) €L 5 (15)
1<i,i+s<N 1<k,k+t<n

computed from a similar RCAR(1) panel {X;(t),t=1,...,n,i=1,..., N} asin [20], as N, n jointly increase,
possibly at a different rate, and the lag (t,s) € Z? is fixed, albeit arbitrary. Particularly, for (¢,s) = (0,0),

(1.5) agrees with the sample variance:
1O ,
AN (0,0) = ——> D (Xi(k) — Xnm)>. (1.6)

The true covariance function y(t, s) := EX;(k)X;1s(k +t) of the RCAR(1) panel model with mixing density
in (1.2) exists when 8 > 1 and is given by

(t,5) = v, =0, (1.7)
0, s # 0,

where 7(t) defined in (1.3). Note that (t) cannot be recovered from a single realization of the nonergodic
RCAR(1) process {X(¢)} in (1.1). However, the covariance function in (1.7) can be consistently estimated
from the RCAR(1) N x n panel when N,n — oo, together with rates. The limit distribution of the sample

covariance may exist even for 0 < 8 < 1 when the covariance itself is undefined. As it turns out, the limit



distribution of A, (t, s) depends on the mutual increase rate of N and n, and is also different for temporal,
or iso-sectional lags (s = 0) and cross-sectional lags (s # 0). The distinctions between the cases s = 0 and
s # 0 are due to the fact that, in the latter case, the statistic in (1.5) involves products X;(k)X;1s(k + t)
of independent processes X; and X4, whereas in the former case, X;(k) and X;(k + t) are dependent r.v.s.
The main results of this paper are summarized in Table 1 below. Rigorous formulations are given in Sections
3 and 4. For better comparison, Table 2 presents the results of [20] about the sample mean in (1.4) for the

same panel model.

Mutual increase rate of N,n | Parameter region | Limit distribution
N/nP — oo 0<fB<2,8#1 | asymmetric B-stable
N/nf =0 0<pB<2,8#1 | asymmetric B-stable
N/nP — ¢ € (0,00) 0<pB<2,B+#1 | ‘intermediate Poisson’
Arbitrary 8 >2 Gaussian

a) temporal lags (s

0)

Mutual increase rate of N,n | Parameter region | Limit distribution
N/n?? — oo 1< B<3/2 Gaussian

1/2<p8<1 symmetric (23)-stable
N/n? =0 3/4< B <3/2 symmetric (43/3)-stable
N/n? — c € (0,00) 3/4< B <3/2 ‘intermediate Poisson’
Arbitrary B> 3/2 Gaussian

b) cross-sectional lags (s # 0)

Table 1: Limit distribution of sample covariances Yy (¢, s) in (1.5)

Mutual increase rate of N,n | Parameter region | Limit distribution
N/nf = oo 1<pB<2 Gaussian

0<p<1 symmetric (23)-stable
N/nf =0 0<p<2 symmetric 3-stable
N/n? — ¢ € (0,00) 0<p<2 ‘intermediate Poisson’
Arbitrary 8> 2 Gaussian

Table 2: Limit distribution of the sample mean Xy ,, in (1.4)

Remark 1.1. (i) B-stable limits in Table 1 a) arising when N/n® — 0 and N/n® — oo have different scale

parameters and hence the limit distribution of temporal sample covariances is different in the two cases.

(ii) ‘Intermediate Poisson’ limits in Tables 1-2 refer to infinitely divisible distributions defined through certain

stochastic integrals w.r.t. Poisson random measure. A similar terminology was used in [22].

(iii) It follows from our results (see Theorem 4.1 below) that a scaling transition similar as in the case of

the sample mean [20] arises in the interval 0 < 8 < 2 for temporal sample covariances and product random



fields X, (u) X, (u + t), (u,v) € Z?* involving temporal lags, with the critical rate N ~ n® separating regimes
with different limit distributions. For ‘cross-sectional’ product fields X, (u)Xyys(u + t), (u,v) € Z2,s # 0
involving cross-sectional lags, a similar scaling transition occurs in the interval 0 < § < 3/2 with the critical
rate N ~ n?? between different scaling regimes, see Theorem 3.1. The notion of scaling transition for long-
range dependent random fields in Z? was discussed in Puplinskaité and Surgailis [26], [27], Pilipauskaité and
Surgailis [22], [23].

(iv) The limit distributions of cross-sectional sample covariances in the missing intervals 0 < 8 < 1/2 and
0 < B < 3/4 of Table 1 b) are given in Corollary 3.1 below. They are more complicated and not included
in Table 1 b) since the term Nn(Xny,)? due to the centering by the sample mean in (1.5) may play the

dominating role.

(v) We expect that the asymptotic distribution of sample covariances in the RCAR(1) panel model with
common innovations (see [21]) can be analyzed in a similar fashion. Due to the differences between the two
models (the common and the idiosyncratic innovation cases), the asymptotic behavior of sample covariances

might be quite different in these two cases.

(vi) The results in Table 1 a) are obtained under the finite 4th moment conditions on the innovations, see
Theorems 4.1 and 4.2 below. Although the last condition does not guarantee the existence of the 4th moment
of the RCAR(1) process, it is crucial for the limit results, including the CLT in the case f > 2. Scaling
transition for sample variances of long-range dependent Gaussian and linear random fields on Z? with finite
4th moment was established in Pilipauskaité and Surgailis [23]. On the other side, Surgailis [31], Horvath
and Kokoszka [12] obtained stable limits of sample variances and autocovariances for long memory moving
averages with finite 2nd moment and infinite 4th moment. Finally, we mention the important works of Davis
and Resnick [6] and Davis and Mikosch [5] on limit theory for sample covariance and correlation functions of

moving averages and some nonlinear processes with infinite variance, respectively.

The rest of the paper is organized as follows. Section 2 presents some preliminary facts, including the
definition and properties of the intermediate processes appearing in Table 1. Section 3 contains rigorous
formulations and the proofs of the asymptotic results for cross-sectional sample covariances (1.5), s # 0 and
the corresponding partial sums processes. Analogous results for temporal sample covariances and partial sums
processes are presented in Section 4. Section 4 also contains some applications of these results to estimation

of the autocovariance function ~y(¢) in (1.3) from panel data. Some auxiliary proofs are given in Appendix.

2 Preliminaries

This section contains some preliminary facts which will be used in the following sections.

2.1. Double stochastic integrals and quadratic forms. Let B;,i = 1,2 be independent standard

Brownian motions (BMs) on the real line. Let

L(f) = /Rf(S)dBi(S), Lij(g) == /RQ9(81’82)d3z‘(81)d3j(82), i,j=1,2, (2.1)

denote It6-Wiener stochastic integrals (single and double) w.r.t. B;, B;. The integrals in (2.1) are jointly



defined for any (non-random) integrands f € L*(R), g € L*(R?); moreover, EI;(f) = El;;(g) = 0 and

0 " |
EL(L(f) = L prerm), (2.2)
<f)f,>a ’L:Z/,
EL(f) 1y (g) = 0, Vi, i',j',  f € L*R),g e L*(R?),
0, (i,9) ¢ {(Z',3"), (4", 1)},
ELj(9)liy(9) = < (9,9, (i,9) € {(@,5), (7))}, i #34, 9.9 € L*(R?),
2(g,symg’), i=1i=j=7j,
where (£, f') = [ J(s)f(s)ds (1| == /(T 1) (9.9') = Jgo 9(s1.52)g (1, s2)dsadsy (] = /(g.9)) denote

scalar products (norms) in L2(R) and L?(R?), respectively, and sym denotes the symmetrization, see, e.g.,
([7], sec. 11.5, 14.3). Note that for g(s1,s2) = f1(s1)f2(s2), fi € L2(R),i = 1,2 we have I;;(g) = L;(f1)Li(f2) —
(f1, f2), Li2(g) = L(f1)I2(f2), in particular, I12(g9) =q ||fillllf2]|Z1Z2, where Z; ~ N(0,1),i = 1,2 are

independent standard normal r.v.s.
Let {g;(s),s € Z},i = 1,2 be independent sequences of standardized i.i.d. r.v.s, Eg;(s) = 0, Eg;(s)ey(s') =1
if (i,8) = (¢, 8), Eei(s)ep(s') = 0if (i,8) # (¢/,8'), 1,4 = 1,2, s,s" € Z. Consider the centered quadratic form
Qij(h) = Y h(s1,s9)[ei(s1)(s2) — Beils1)ej(s2)], 6,5 = 1,2, (2.3)

51,52€7Z
where h € L?(Z?). For i = j we additionally assume Ee}(0) < co. Then the sum in (2.3) converges in L? and
var(Qi;(h)) < (1 + Ee}(0)6;5) Z h?(s1,52), (2.4)

51,52€7Z

see ([7], (4.5.4)). With any h € L?(Z?) and any aj, as > 0 we associate its extension to L?(R?), namely,
R0 (51, 85) = (ara2)/?h(larst], lazsa)),  (s1,82) € R?, (2.5)

with |[(e1:02) |2 = 3 s1.59€7 h2(s1,s2). We shall use the following criterion for the convergence in distribution

of quadratic forms in (2.3) towards double stochastic integrals (2.1).

Proposition 2.1. ([7], Proposition 11.5.5) Let i,j = 1,2 and Qi;(ha; as), 01, a2 > 0 be a family of quadratic
forms as in (2.3) with coefficients ha, .o, € L*(Z?). For i = j we additionally assume Ec}(0) < co. Suppose
for some g € L*(R?) we have that

lim |[R{e1e2) —g|| = 0. (2.6)

1,0
oq,000—>00 1,62

Then Qij(hayas) —d Lij(9) (o1, 0 = 00), where 1;;(g) is defined as in (2.1).

2.2. The ‘cross-sectional’ intermediate process. Let dMg = Mg(dz,dze,dB1,dBs) denote
Poisson random measure on (R, x C(R))? with mean

dpg = pp(dey, dee, dBy, dBa) = ¢(1)*(z122)° da day P(d By ) Pp(d By), (2.7)

where 3 > 0 is parameter and Pp is the Wiener measure on C(R). Let M g = dMp —dpug be the centered

Poisson random measure. We shall often use finiteness of the following integrals:

f]R2+ min {1, m}(mlm)ﬁ_ldxldm <oo, V0<pB<3/2, (2.8)
fRi min {1, ——}(212)" 2da1dzy < oo, V1< p<3/2, (2.9)



see Appendix. Let
Vi(u; ) = / e ABy(s), ueR, x>0, (2.10)

—00
be a family of stationary Ornstein-Uhlenbeck (O-U) processes subordinated to B; = {B;(s),s € R}, B;,i =
1,2 being independent BMs. Let

;2
z(Tyx1,m0) = /Hyi(u;mi)du, T >0, (2.11)
0 =1

be a family of integrated products of independent O-U processes indexed by x1,x2 > 0. We use the repre-
sentation of (2.11)

;2
z2(Tyx1,2) = /R2 {/0 [[lexi(usi)l(u > s;)du}d By (s1)dBa(s2) (2.12)

as the double It6-Wiener integral in (2.1). The ‘cross-sectional’ intermediate process Z3 is defined as stochastic

integral w.r.t. the Poisson measure Mg, viz.,

Zg(t) = / 2(T5 21, x2)d Mg +/ 2(7';5017332)d./i\/l/57 (2.13)
L1 ﬁi'
where
Ly :={(21,72,B1, B2) € (Ry x C(R))* : (1 + ) < 1}, =R+ x CR)*\ Ly (2.14)

and pg(L1) < co. For 1/2 < 8 < 3/2 the two integrals in (2.13) can be combined in a single one:

Z3(1) = / 2(ry 71, 22)d M. (2.15)
(Ry xC(R))?

These and other properties of Z3 are stated in the following proposition whose proof is given in the Appendix.

We also refer to [28] and [20] for general properties of stochastic integrals w.r.t. Poisson random measure.

Proposition 2.2. (i) The process Zg in (2.13) is well-defined for any 0 < B < 3/2. It has stationary

increments, infinitely divisible finite-dimensional distributions, and the joint ch.f. given by

E i) 0,Z5(1;)) = / 1205 Oax(menee) 1) el 2.16
exp{l];1 iZ5(m)} = e i (e Jdps | (2.16)

where §; € R,7; > 0,5 = 1,...,m, m € N. Moreover, the distribution of Zg is symmetric: {Zg(r), 7 >
0} =faa {—25(7),7 > 0}.

(11) E|Z5(T)|P < 0o for p < 28 and EZ5(1) =0 for 1/2 < < 3/2.

(i1i) For 1/2 < B < 3/2, Z5 can be defined as in (2.15). Moreover, if 1 < < 3/2, then EZE(T) < o0 and

EZ3(m1)Z5(70) = (0%/2) (11D 4 3% _my — P8 1y >0, (2.17)

where o3, := ¥(1)’T (8 — 1)%/(4(2 - B)(3 - 26)).

() For 1/2 < 8 < 3/2, the process Z3 has a.s. continuous trajectories.



(v) (Asymptotic self-similarity) As b — 0,
VP 2Z25(b7) —tad 0eoBap(1),  if1< B <3/2, (2.18)

b~ (log b)Y 2D Z4(br) —aq Vg, ifo<pB <1, (2.19)

where {By_g(7), 7 > 0} is a fractional Brownian motion with E[By_5(1)]> = 72?9, 1> 0,2 € (1/2,1),

o2 is given in (2.17), and Vap is a symmetric (283)-stable r.v. with ch.f. Eel?V2s = e=cal0” g e R, cop 1=

»(1)2217280(B + (1/2))T(1 — B)/+/7. For any 0 < 3 < 3/2, as b — oo,
b2 24(b7) —paq AY?B(7), (2.20)

where A > 0 is a (2/3)-stable r.v. with Laplace transform Ee %A = exp{—006?%/3}, § > 0, o9 =
Y(1)2272831(1 — (28/3)) B(8/3,3/3)/(28), and {B(1), 7 > 0} is a standard BM, independent of A. Finite-

dimensional distributions of the limit process in (2.20) are symmetric (4/3/3)-stable.

2.3. The ‘iso-sectional’ intermediate process. Let dMj = Mj(dz,dB) denote Poisson random

measure on Ry x C'(R) with mean
dus = pj(de,dB) = Y(1)z’~tdzPp(dB), (2.21)

where 0 < § < 2 is parameter and Pp is the Wiener measure on C'(R). Let dﬂz = dMj — dpuj be the

centered Poisson random measure. Let V(-;z) = Vi(-;x) be the family of O-U processes as in (2.10), and
2 (myx) = / V2(u; x)du, 7>0, >0, (2.22)
0

be integrated squared O-U processes. Note Ez*(7;2) = 7EY?(0;2) = Tff)oo e?*5ds = 7/(2x). We will use

the representation

T oelus)
2 (r;x) = /R? {/0 il;[le 1(u > s;)du}dB(s1)dB(s2) + 7/(2x) (2.23)

as the double Ito-Wiener integral. The ‘iso-sectional’ intermediate process Zj is defined for 5 € (0,2),5#1

as stochastic integral w.r.t. the above Poisson measure, viz.,

dM%, 0< B <,
Za(r) = / Hra)d P ’ 7> 0. (2.24)
R xC(R) AMy, 1< <2,

Proposition 2.3 stating properties of Zg is similar to Proposition 2.2.

Proposition 2.3. (i) The process 25 in (2.24) is well-defined for any 0 < B < 2,8 # 1. It has stationary

increments, infinitely divisible finite-dimensional distributions, and the joint ch.f. given by

Eexp {i37%,0;25(m5)} = exp{ fp o (€207 %7 0 —1 130 6,2" (mj;0)1(1 < 8 < 2))dus}, (2.25)

where 0 € R, 7; >0, j=1,...,m, m € N.
(i) E|Z5(1)[P < oo forany 0 <p<B <2, B#1 and EZ5(1) =0 for 1 < <2.

(iii) For 1 < 8 < 2, the process Z5 has a.s. continuous trajectories.

7



(iv) (Asymptotic self-similarity) For any 0 < 8 <2, f # 1,

TVE as b — 0,

b Z5(bT) —aa (2.26)

TVIB+ as b — oo,

where VB+’ Vi are a completely asymmetric B-stable r.v.s with ch.f.s BelVs = = exp{(1) [y (e 10/(2x) _ 1 —
i(0/(22))1(1 < B < 2))a’da}, Ee®Y5 = exp{w(1) [ E(e?7*/20) — 1 -i(02%/(22))1(1 < § < 2))a’~'dz},
0 €R and Z ~ N(0,1).

2.4. Conditional long-run variance of products of RCAR(1) processes. We use some facts
in Proposition 2.4, below, about conditional variance of the partial sums process of the product Yj;(t) :=
X;(t)X;(t) of two RCAR(1) processes. Split Y;;(t) = YJ (t)+Y;; (t), where YJ(t) =D eihse>1 al=*tal” Gt >
s1V s2)ei(s1)gj(52), Y5 (1) = X4, nsa<o al” slag "21(t > 51V s2)ei(s1)ej(s2). For i = j we assume addltlonally
that Ee}(0) < oc.

Proposition 2.4. We have

Var[Zng(tﬂai,aj] ~ Var[ZYJ(t)\ai,aj] ~ Ain, n — 0o, (2.27)
t=1 t=1
where
1—|—alaJ i ;é .
a; as a;a;)’ Js
Ay = (1-af)(1-a3)(1-asa;) (2.28)
1+a2 2 cum4 .
1—a?((1—a 2)2 + ) t=J

with cumy being the 4th cumulant of €;(0). Moreover, for anyn > 1, 1,5 € Z, a;,a; € [0,1)

= C’ian .
Var[;%(t)\auaj] < A= a)d—a) mm{l,M}, (2.29)

where Cyj :=4 (1 # j), := 2(2 + |cumy]) (i = j).
Proof. Let i # j. We have E[Y;;()Yi;(s)|ai, a;] = E[X;(£) X;(s)|ai|E[X; (1) X;(s)]aj] = (aa;)t=1/(1 —a?)(1 -
a?) and hence

n n

2 n t
Tn(ai,a;) =E[(D Y1) lai,a;] = 0= S (@) (1~

t=1 J/ t=—n

m). (2.30)

n

Relation (2.30) implies (2.27). It also implies J,(a;,a;) < 2n?/((1 — a;)(1 — a;)). Note also 1 — a;a; >
(1/2)((1 — a;) + (1 — a;)). Hence and from (2.30) we obtain

In(ai,a;) <

2 4
1—|—QZ ala] i < i

(1-a )(l—a l—az)(l—aj)(l—aiaj) (1—a)(1—aj)(2—a;—a;)’

proving (2 29). The proof of (2.27)—(2.29) for ¢ = j is similar using cov[Y;;(t), Yii(s)|ai] = 2(aLt_s|/(1 —a?))?+
cum4a |/( a}). O



3 Asymptotic distribution of cross-sectional sample covariances

Theorems 3.1 and 3.2 discuss the asymptotic distribution of partial sums process

[nT]
SN (T) Z > Xi(w)Xips(utt), 720, (3.1)
i=1 u=1

where t and s € Z, s # 0 are fixed and N and n tend to infinity, possibly at a different rate. The asymptotic
behavior of sample covariances Yy, (, s) is discussed in Corollary 3.1. As it turns out, these limit distributions
do not depend on ¢, s which is due to the fact that the sectional processes { X;(t),t € Z},i € Z are independent

and stationary.

Theorem 3.1. Let the mizing distribution satisfy condition (1.2) with 0 < 8 < 3/2. Let N,n — oo so as
N1/(28)

n

Then the following statements (i)-(iii) hold for Sf\’,fn(T), (t,5) € Z%, 5 # 0 in (3.1) depending on Ao in (3.2).

)‘Nﬁl = — Ao € [0,00]. (3.2)

(i) Let Aoo = 00. Then

ISP —rd 0sBapl(r), 1< B<3/2, (3.3)
n A (log An ) TV CISE (1) —gaa TVRg, 0<pB<1, (3.4)

where the limit processes are the same as in (2.18), (2.19).
(ii) Let Moo = 0 and E|e(0)|*? < oo for some p > 1. Then

nAGIRSR (1) —aa AV2B(r), (3.5)
where the limit process is the same as in (2.20).

(7ii) Let 0 < Ao < 00. Then
_2)‘N37<2S§vsn(7) —aa AL2Z5(7T/ M), (3.6)
where Zg is the intermediate process in (2.13).

Theorem 3.2. Let the mizing distribution satisfy condition (1.2) with B > 3/2 and assume E|(0)|?" < oo
for some p > 1. Then for any (t,s) € Z?,s # 0 as N,n — oo in arbitrary way,

n_1/2N_1/2S§\’,“fn(T) —tdd 0B(T), o2 :=EAjs, (3.7)
where Ayg is defined in (2.28).

Remark 3.1. Our proof of Theorem 3.1 (ii) requires establishing the asymptotic normality of a bilinear form
in i.i.d. r.v.s, which has a non-zero diagonal, see the r.h.s. of (3.52). For this purpose, we use the martingale
CLT and impose an additional condition of E|g(0)|?” < oo, p > 1. To establish the CLT for quadratic forms
with non-zero diagonal, [2] took similar approach and also needed 2p finite moments.

In Theorem 3.2 we also assume E|e(0)|?” < oo, p > 1. However, it can be proved under Ec?(0) < oo
applying another technique that is approximation by m-dependent r.v.s. Moreover, this result holds if (1.2)
is replaced by EA12 < 0.



Note that the asymptotic distribution of sample covariances Y, (t,s) in (1.5) coincides with that of the

statistics
Nty s) = (Nn) 1SR (1) = (Xnn)? (3.8)

For s # 0 the limit behavior of the first term on the r.h.s. of (3.8) can be obtained from Theorems 3.1 and 3.2.
It turns out that for some values of 3, the second term on the r.h.s. can play the dominating role. The limit

behavior of Xy, was identified in [20] and is given in the following proposition, with some simplifications.

Proposition 3.1. Let the mixing distribution satisfy condition (1.2) with 5 > 0.
(i) Let 1 < 3 <2 and N/n® — co. Then

N1/2n(5_1)/2XN7n —d 084, (3.9)

where Z ~ N(0,1) and 6?3 =y(1)I(B-1)/((3-8)2-5)).
(i) Let 0 < B < 1 and N/n” — oo. Then

NITV2X N =y Vag, (3.10)

where Vog is a symmetric (2/3)-stable r.v. with ch.f. EelfV2s — e_l_{ﬁ‘e‘w,f(g = (14T (1 - B)/B.
(i4i) Let 0 < B < 2 and N/n” — 0. Then

NITVBRI2 X =g W, (3.11)

where W is a symmetric B-stable r.v. with ch.f. EelfWs — e*’_%'e‘ﬁ, kg = »(1)27P21(1 - B/2)/8.
(iv) Let 3 > 2. Then as N,n — oo in arbitrary way,

N2 2 Xy =462, (3.12)
where Z ~ N(0,1) and % := E(1 — a) 2.

From Theorems 3.1 and Proposition 3.1 we see that the r.h.s. of (3.8) may exhibit two ‘bifurcation points’
of the limit behavior, viz., as N ~ n?? and N ~ n®. Depending on the value of 3 the first or the second term
may dominate, and the limit behavior of Ay ,(t,s) gets more complicated. The following corollary provides
this limit without detailing the ‘intermediate’ situations and also with exception of some particular values of
B where both terms on the r.h.s. may contribute to the limit. Essentially, the corollary follows by comparing

the normalizations in Theorems 3.1 and Proposition 3.1.

Corollary 3.1. Assume that the mizing distribution satisfies condition (1.2) with 8 > 0 and E|¢(0)|?? < oo
for some p > 1 and (t,s) € Z2, s # 0 be fized albeit arbitrary.

(i) Let N/n*® — 0o and 1 < B < 3/2. Then
N1/2nﬁ_1ﬁN,n(t,s) -4 OooZ,

where Z ~ N(0,1) and 0 is the same as in Theorem 3.1 (i).
(i4) Let N/n*® — oo and 1/2 < B < 1. Then

N1-1/(28) ~
log /A (N'1/(25) /) ANt s) —a Vag,
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where Vag is symmetric (203)-stable r.v. defined in Theorem 3.1 (i).
(i4i) Let N/n?*® — oo and 0 < 8 < 1/2. Then

NQ_I/ﬁfy\N,n(t, S) —d —(‘_/25)2, (313)

where Vog is symmetric (2[3)-stable r.v. defined in Proposition 3.1 (ii).
(iv) Let N/n*? — 0,N/n” — oo and 3/4 < 8 < 3/2. Then

NI=3/UARL25 (¢ s) —a Wag)s, (3.14)
where Wyg /3 is a symmetric (43/3)-stable r.v. with characteristic function EelfWas/s = o=(o0/22P/)015 g g
oo is the same constant as in Theorem 3.1 (ii).
(v) Let N/n*® — 0,1/2 < 8 < 3/4 and N/n?/(*=1) 5 oo. Then the convergence in (3.14) holds.
(vi) Let N/nP — 00,1/2 < 8 < 3/4 and N/n?P/(48=1) — 0. Then the convergence in (3.13) holds.
(vii) Let N/n?# — 0, N/nf — oo and 0 < B < 1/2. Then the convergence in (3.13) holds.
(viii) Let N/n® — 0 and 3/4 < B < 3/2. Then the convergence in (3.14) holds.

(iz) Let N/nf — 0,0 < 8 < 3/4 and N/n?P/5=48) _ oo, Then
N221035 (8, 5) =va —(Ws)?, (8.15)

where W is a symmetric B-stable r.v. defined in Proposition 3.1 (iii).
(z) Let 0 < B < 3/4 and N/n*3/=48) — 0. Then the convergence in (3.14) holds.

(xi) For 3/2 < B < 2, let N/n® — [0,00] and for B > 2, let N,n — oo in arbitrary way. Then

NY2pl/255 (¢, 8) —q N(0,02), (3.16)

2

where o* is given as in Theorem 3.2.

The proof of Theorem 3.1 in cases (i)—(iii) is given subsections 3.1-3.3. To avoid excessive notation, the
discussion is limited to the case (¢, s) = (0, 1) or the partial sums process Sy (7) := Zf\il tLZTIJ Xi(t) X41(t).
Later on we shall extend them to general case (t,s),s # 0.

Let us give an outline of the proof of Theorem 3.1. Similarly to [20] we use the method of characteristic
function combined with ‘vertical’ Bernstein’s blocks, due to the fact that Sy, is not a sum of row-independent

summands as in [20]. Write

SNa(T) = SNnsa(7) + S g (1) + Sk g (7), (3.17)
where the main term
Nq [nT] R N
SNpiq(T) = ZYk,n;q(T)v Yienig(T) = Z Z Xi(t)Xiy1(t), 1 <k < Ng:= LiJv (3.18)
k=1 (k—1)g<i<kq t=1 q

is a sum of Nq ‘large’ blocks of size ¢ — 1 with
q=qNn — © as N,n — oo. (3.19)
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The convergence rate of ¢ € N in (3.19) will be slow enough (e.g., ¢ = O(log N)) and specified later on. The

two other terms in the decomposition (3.17),

S}-Vyn;q(T) Zk 1 tn”l—J XkQ(t)qu+1 (t)7 S]i\ﬂn;q( ) = ZqN <i<N ZLnT 'L( ) 'H’l(t)? (320)

contain respectively Nq =o(N) and N — qu < q = o(N) row sums and will be shown to be negligible. More

precisely, we show that in each case (i)(iii) of Theorem 3.1,

AN SN (1) —tad Sp(7), (3.21)
ANlnSNn q(T) = Op(l); A]_V,lnS;FV,n;q(T) = OP(1)7 (322)

where Ay, and Sz denote the normalization and the limit process, respectively, particularly,

A Aoo =00, 1 <3< 3/2,
Ang = 12 Ana(log Ava) /@), A =00, 0< B <1, (3.23)
A2 Ao € [0,00), 0 < B < 3/2.

Note that the summands Yy p.q,1 < k < Nq in (3.18) are independent and identically distributed, and the
limit Sg(7) is infinitely divisible in cases (i)—(iii) of Theorem 3.1. Hence use of characteristic functions to
prove (3.21) is natural. The proofs are limited to one-dimensional convergence at a given 7 > 0 since the
convergence of general finite-dimensional distributions follows in a similar way. Accordingly, the proof of
(3.21) for fixed 7 > 0 reduces to

Py (@) — (0), as N,n— 00, ANy = Ao, VO ER, (3.24)
where
B g (0) 1= NyE[eAxn imaD _ 4] §() := log Eei®Ss(7), (3.25)
To prove (3.24) write
A Yimg(r) = S0 i(r), - where yi(r) = AR, S Xi(6) X (1), (3.26)
We use the identity:
[Th<icg+wi) =1 =3 wi + 32 p>2 [iep wis (3.27)

where the sum -, is taken over all subsets D C {1,...,q — 1} of cardinality |D| > 2. Applying (3.27)

with w; = el%i(7) _ 1 we obtain
PN g (0) = Ng(g — )[BT —1] + Ny 37 g B Tiep [ —1]. (3.28)

Thus, since N,(g — 1)/N — 1, (3.24) follows from

N([Ee™ ™) —1] — o(0), (3.29)
N Y EJ] [ -1 = o. (3.30)
|D|>2 €D
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Let us explain the main idea of the proof of (3.29). Assuming ¢(z) = (1 —2)%~!in (1.2) the Lh.s. of (3.29)

can be written as

N[Ee (™ 1] = N E[e™(™) —1]a; =1 — 2,0 = 1,2](2120)" " 'dz1des
(0,1]2
N : .
= 25 E[eloZN’”(T’xl’”) — 1} (wlxg)ﬁ_ldwldxg, (3.31)
By, J(0,By )2
where
[nT] 2 Ti i
ann(Tin,w2) = AR D ei(s1)ea(s2) H(1—B’ S (S (3.32)
$1,59€7 t=1 i=1 Ny

and By, — oo is a scaling factor of the autoregressive coefficient. In cases (ii) and (iii) of Theorem 3.1
(proof of (3.5) and (3.6)) we choose this scaling factor By, = N'/(?%) so that BJQ\;

N,n
integral in (3.31) converges to [p» E[el?*(#1:22) —1](z129)% " dw1dws = ®(6), where 2(7; 21, 72) is a random
+

= 1 and prove that the

process and ®(f) is the required limit in (3.24). A similar scaling By, = (Nlog An.,)"/(??) applies in the
case Ao = 00, 0 < B < 1 (proof of (3.4)) although in this case the factor N/B?\fn = 1/log AN, in front of
the integral in (3.31) does not trivialize and the proof of the limit in (3.24) is more delicate. On the other
hand, in the case of the Gaussian limit (3.3), the choice By, = n leads to N/sz\fn = )\25 — oo and (3.31)
tends to (1/2)|6]? fRi E2%(1; 21, 29) (2122)? " Tdzidas = ®() with z(7; 21, 29) defined in (2.11) as shown in
subsection 3.3 below.

To summarize the above discussion: in each case (i)—(iii) of Theorem 3.1, to prove the limit (3.21) of the
main term, it suffices to verify relations (3.29) and (3.30). The proof of the first relation in (3.22) is very
similar to (3.21) since S}Lv’n;q(’T) is also a sum of i.i.d. r.v.s and the argument of (3.21) applies with small
changes. The proof of the second relation in (3.22) seems even simpler. In the proofs we repeatedly use the

following inequalities:

0" — 1 <2Alzl, e —1-iz] < (22 A(7/2), zER (3:33)

3.1 Proof of Theorem 3.1 (iii): case 0 < A\, < 00

Proof of (3.29). For notational brevity, we assume Ay, = Ao = 1 since the general case as in (3.2)

requires unsubstantial changes. Recall from (2.16) that ®(6) = [po E[el*(7#1.22) _1](2129)%~1dadxy, where
+

z(T;x1,x2) is the double It6-Wiener integral in (2.11). Also recall the representation (3.31), (3.32), where

ANy = n?, By =nand 2y, (7521, 22) = Qi2(hn (57521, 22)) is a quadratic form as in (2.3) with coefficients
[nT] 2

hn(s1,82;T; 21, @2) 1= 7221_[ 1—— t=siq 1(t > s), $1, 82 € Z. (3.34)
t=1 =1

By Proposition 2.1, with oy = aiy = n, the point-wise convergence

E[eiezN,n(’r;m,xz) o 1] _ E[eiQle(hn(.;r;m,a:z)) o 1] N E[eiez(r;xl,xg) _ 1] (3'35)
for any fixed z1, 29 € Ry follows from Le-convergence of the kernels:
(-3 7521, 9) — B 720, 22)| = 0, (3.36)

13



where

[nT] 2
~ 1 Tiyt—|ns;
Tn(s1, 827521, 22) = nhg(|nsi), [nso)smian,00) = — R s ()
"islia "
;2
— / He_“(t_si)l(t > s;)dt =: h(sy, s2;T;21,22) (3.37)
0 =1

point-wise for any x; > 0,s; € R,s; # 0,7 =1,2,7 > 0 fixed. We also use the dominating bound
|hn (81, 82; 521, 22)| < Ch(s1, s2; 27521, 2), s1,52 € R, 0<z1,70 <m, (3.38)

with C' > 0 independent of s;, x;,7 = 1, 2 which follows from the definition of En(, T; 21, 2) and the inequality
1 -2 <e®x>0. Since h(-;27;21,72) € L*(R?), (3.37), (3.38) and the dominated convergence theorem
imply (3.36) and (3.35).

It remains to show the convergence of the corresponding integrals, viz.,

/ Elefnn(Tiz122) _ ]2 29) M daydag — [ E[e%250%2) _1](2120)% ' dedas = ®(0).  (3.39)
(0,n]2

2
RY

From (3.31) and Ezy ,,(7; 21, x2) = 0 we obtain

1, r1x2(x1 + m2) < 1,

’E[eiezz\r,n(r;m,xz) _ 1” < C (3.40)
Ezjzvyn(T;.Tl,l‘g), r1xa(x + T2) > 1,
where
[nT] 9 .
EzJZV’n(T;xl,:pg) = AN?nE[( ; Ylg(t)) la; =1— BN,nJ = 1,2]
[nT| 9 .
_ TﬂE[( 3 Ylg(t)> jai=1- i 1,2}
t=1
C ) 1 IO
B " Gy T me g G

see (3.32) and the bound in (2.29). In view of inequality (2.8), the dominated convergence theorem applies,
proving (3.39) and (3.29).

Proof of (3.30). Choose ¢ = qn,, = |logn|. Let J,(f) denote the Lh.s. of (3.30). Using the identity

ZDC{l,...,q—l}:|D|22 [Liepwi = Zl§i<j<q WiWy Hi<k<j(1 + wg) with w; = el%i(™) — 1, see (3.27), we can
rewrite Jg(0) = 31, <, Tij(0), where

ng(e) — NE (eiGyi(T) _ 1)(ei€yj(7') — 1) exp {i9 Zi<k<j yk(T)}(l(ai < CL]’_H) + 1(ai > CL]’_H)) (3.42)
= T;(0) + T;5(6).

Since |J4(0)] < ¢ maxi<icj<q|Tij(0)| < (logn)? maxi<icj<q|Ti;(0)], (3.30) follows from

T;(0)] <Cn™°,  V1<i<j, (3.43)
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with C,d > 0 independent of n. Using E[y;(7)|ax,€;(k),k,j € Z,j # i] = 0 and (3.41) we obtain

IN

|T7;(0)| CNE[min {1, E[y}(7)|ax, k € Z]}1(a; < aj41)] (3.44)

1
Cn_ﬂ/ min{l, }:cx 1Zi41 B=19 (. 1 < z;)dx;dzidag
(0,n]3 l’il’i+1(l’i—|—xi+1) ( vt ]JF) ( i+ z) AT+ i+

IN

1
Cn_ﬂ/ min{l, —}azw*lmﬁ*ldaj dze < Cn~P(T! + 1),
(02 1’11‘2(1'1 +:L,2) 1 2 19402 > ( n n)

. 1 26—-1_ p-—1 "
min {1, 7102 }xl oy dxidxs, T,

1 951 1/y/x1 1 n n 959 n
/ xlﬁ_ dxl[/ mg_ dxo —l—a:l_l/ xg_?’dxg} +/ xlﬁ_ dx1/ xg_?’dmg
0 1 1/\/ﬁ 1 1

1 n
C{/ xi’ﬁ/z_ldxl —i—/ x§5_4dx1] < Cn3PIVO(1 4 1(B =1)logn).
0 1

min{l, L }x?ﬁ_lxg_ldxldxg.

.
where T} : pe 7

Next,

= f0<cc1<x2<n = f0<x2<ac1<n

3
I

IN

Similarly,

1 x1 n z72 n 1
T = / m%ﬁ_ldxl/ $§_1d$2+/ x%ﬁ_ldxl/ ' .%'g_ld.%'g—i-/ xfﬂ_?)d:cl/ xg_Qdmg
0 0 1 0 1 x7?
< O((logn)1(B < 1) + (logn)?1(8 = 1) + n3P=D1(8 > 1)).
Whence, the bound in (3.43) follows for T};(¢) with any 0 < § < S A (3 —28), for 0 < 8 < 3/2. Since

|T7:(0)] < CNE[min{1, E[y?(7)|ak, k € Z]}1(aj4+1 < a;)] can be symmetrically handled, this proves (3.43) and
(3.30).

Proof of (3.22). Since Aji\f,lnsjv,n;q(T) = Zivil Yrqg(T) is a sum of N, iid. 1.v.s yge(7),k = 1,..., N,, so the
first relation in (3.22) follows from

NE[E( —1] - 0, VeeR. (3.45)

Clearly, (3.45) is a direct consequence of (3.29) and the fact that N,/N — 0.
Consider the second relation in (3.22). Let L, := N — ¢, be the number of summands in S}CV nq(T)- Then
. L
ANt i g (7) =tta i wi(7) amd
Fel0AN S Shma™ _ 1 — LB — 1]+ Y B [ —1], (3.46)
|D|>2 €D

where the last sum is taken over all D C {1,...,Lg},|D| > 2. Since Ly < ¢ = o(N) from (3.29), (3.30) we
infer that the r.h.s. of (3.46) vanishes, proving (3.22), and thus completing the proof of Theorem 3.1, case

(ii).
3.2 Proof of Theorem 3.1 (ii): case A\, =0, or N = o(n?").
Proof of (3.29). Note the log-ch.f. of the r.h.s. in (3.5) can be written as

®(@) = log Eel0A?B(r) _ log Ee~(*7/2)A _ —00(927'/2)2'8/3
2
= —(1)? fRi (1 - exp{ - m}) (z172)°~1da das (3.47)
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with og > 0 given by the integral

0 = 1p(1)22720/3 fRi (1 — exp{ — m})(mm)ﬁ_ldxldxg (3.48)

Relation (3.47) follows by change of variable x; — (827/4)Y/3z;,i = 1,2. The convergence of the integral in
(3.48) follows from (2.8). The explicit value of o¢ in (3.48) is given in Proposition 2.2 (v) and computed in
the Appendix. Recall the representation in (3.31) where By, = N1/@2B) N/B?fn =1and

InT| 2 ‘ .
(i1, m9) = N3y =12 Z e1(s1)e2(s2) H (1 — %) 1(t > s;).  (3.49)

S1,82€7Z t=1 i=1

Let us prove the (conditional) CLT:
aNn(Ti 21, %) —paa (2z122(21 + 22)) V2 B(7), (3.50)
implying the point-wise convergence

E[l o ei@zN,n('r;m,xQ)] 1= 6—927'/(4501902(5514‘952)) (3.51)
of the integrands in (3.31) and (3.48), for any fixed (z1,22) € R%. As in the rest of the paper, we restrict the
proof of (3.50) to one-dimensional convergence, and set 7 = 1 for concreteness. Split (3.49) as zn ,(1; z1,22) =

zj(,m(:cl,:vg) + Z&7n($1,$2), where zj{,’n(xl,xg) = N—3/48p~1/2 281 sy—1 €1(51)€2(82) - -+ corresponds to the

sum over 1 < s1,s9 < n alone. Thus, we shall prove that

1
= (z1,x9) = 0p(1) and 2zt (z1,22) — N(o, —) 3.52
ZN,n(x1 1'2) Op( ) an ZN,TL(‘I.I ‘:UQ) d 2$1$2(IE1 +x2) ( )

Arguing as in the proof of (2.29) it is easy to show that

E(zy (21, 72))? NS/%ﬁ)n (217(23)-2{ (%)4 + (%)4 + (Nlié%’))_l (Nli?m))_l}
= CAyp(z1+ :cQ)_Q{:an + x52 + (:U1332)_1},

IN

where Ay, — 0, implying the first relation in (3.52). To prove the second relation in (3.52) we use the
martingale CLT in Hall and Heyde [11]. (The same approach is used to prove CLT for quadratic forms in

[2].) Towards this aim, write zj([’n(xl, x2) as a sum of zero-mean square-integrable martingale difference array

@1, ma) = Spy Ziy Zi = e1(k) st f(k.s)ea(s) +ea(k) 021 f(s, k) ex(s) + e1(k)ea(k) £ (k. k)

with respect to the filtration Fj generated by {e;(s), 1 <s < k,i=1,2}, 0 < k <n, where

n 2
_ t i
f(Sl,Sg) = 3/ 4ﬁ 1/2 E H Nl/(Qﬂ s 1(t > Si), 1 <s51,89 <n.
t=11i=1

Accordingly, the second convergence in (3.52) follows from

1

ZE ZH| Fra] —p TR e

and EZ Zi| >¢€)] =0 for any e > 0. 3.53
> L YEZ(A > o) y (35)

k=1
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Note the conditional variance v} := E[Z?|F;_1] = (Zf;ll f(k, 8)82(8))2 + (Zk;ll f(s, /c)al(s))2 + f2(k, k),

S
where
1

_ 3.54
21‘11‘2(1‘1 + .%'2) ( )

n n n

ZEZ,% = ZEU% = Z f2($1,82) = E(Z;7n($1,$2))2
k=1 k=1 s1,52=1

is a direct consequence of the asymptotics in (2.27), where a; = 1 —x1 /N8 q; = 1 —29 /N5 Therefore

the first relation in (3.53) follows from (3.54) and

n

Ry = (v — Ev}) = op(1). (3.55)

k=1

To show (3.55) we split R,, = R}, + R/ into the sum of ‘diagonal’ and ‘off-diagonal’ parts, viz.,

2
el(s)—1), Ry =) > ci(s1, s2)ei(s1)ei(s2),

i=1 1<s1,80<n,817#52

where 01(8) = Zs<k§nf2(37k)7 CQ(‘S) = Zs<k§nf2(k7s)7 01(81782) = 231V52<k§nf(sl7k)f(827k)7
ca(s1,82) = D vey<k<n f(ky51) f(k, 82). Using the elementary bound for 1 < s1,80 <
STy al o1t > s) < (a3721(1 < sp < s1) + a1 < 51 < 59))S(a1,02), S(ar,a2) o=

tho(alag) = (1 —ajas)~ !t <2(2—a; —as)~!, we obtain

||Mm

lci(s)] < Cnta; Yy + 22) 72, Z Z(s1,82) < CANpz; (21 4+ 22) 74, i=1,2. (3.56)

s1,82=1

By (3.56), for 1 < p < 2 and z1,x2 > 0 fixed

2 n—1

ElR,[P < CY Y Jals)P < Cn=70 = o(1), (3.57)
i=1 s=1

E[R;[? < Z > c(s1,82) < Chnn = o(1), (3.58)

i=1 s1,52=1

proving (3.55) and the first relation in (3.53). The proof of the second relation in (3.53) is similar since it
reduces to Ty, := >_p_, E[|Zx|??] = o(1) for the same 1 < p < 2, where E|Z|? < C(E| SETL (K, 5) ea(s) |22 +
B S5t f(s k) en(s)P + | f(k, B)PP) < C((SEZ] f2 (R, 9)P + (42t f2(5, k)P + | £(k, k)[*) by Rosenthal’s
inequality, see e.g. ([7], Lemma 2.5.2), and the sum T}, = O(n~®~1) = o(1) similarly to (3.57). This proves
(3.53), (3.52), and the pointwise convergence in (3.51).

Now we return to the proof of (3.29), whose both sides are written as respective integrals (3.31) and (3.47).
Due to the convergence of the integrands (see (3.51)), it suffices to justify the passage to the limit using a
dominated convergence theorem argument. The dominating function independent of N, n is obtained from
(3.31) and Ezn (75 21, 22) = 0 and from (3.40), (3.41), (2.8) similarly as in the case Ao € (0,00) above. This
proves (3.29).

Proofs of (3.30) and (3.22) are completely analogous to those in the case As € (0,00) except that we now
choose ¢ = |log N | and replace n in (3.43) and elsewhere in the proof of (3.30) and (3.22), case A € (0, 00),
by N1/28. This ends the proof of Theorem 3.1, case (ii).
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3.3 Proof of Theorem 3.1 (i): case \,, = 00, or n = o N'/(9)

Case 1 < 3 < 3/2. Proof of (3.29). In this case, ®(0) := —02,7227%02/2 Bx,, =n and Ay, = ”2)‘?\/71 =
n?~fN1/2. Rewrite the Lh.s. of (3.29) as

N[Eeigyl(ﬂ — 1] = f[o n)? EAN,(0;T; :cl,xg)(xlxg)ﬁ_ldxldxg, where (3.59)
- .
AN,n(97 T; X1, x2) = )\?\?n [eIGAN,nzN,n(T,atl,ém) 1— 19)\ ZNn(T x1, 1‘2)]

and where Zn ,,(7; 21, 22) is defined as in (3.32) with Ay, replaced by AN,n =n? = AN,n/)\]ﬁV’n. As shown

in the proof of Case (iii) (the ‘intermediate limit’), for any x1,z2 > 0
ENn(T;21,22) —q 2(T;21,22) and Eé?\,,n(T; x1,x2) — EZQ(T;I‘l,J,‘Q), (3.60)

see (3.35), where z(7;x1,22) is defined in (2.11) and the last expectation in (3.60) is given in (A.2).
Then using Skorohod’s representation we extend (3.60) to Zn ., (7;21,22) — 2(7;21,22) a.s. implying also
AN n(T521,29) — —(0%/2)2%(T521, 22) a.s. Since |An,(0; 7521, 22)| < CE%V’n(T;CCl,SUQ) and (3.60) holds, by
Pratt’s lemma we obtain

Gnn(Tiw1,00) — —3E2%(15m1,29), Y (21,72) € RY. (3.61)

Relation (3.29) follows from (3.59), (3.61) and the dominated convergence theorem, using the dominating
bound

C . 1 . _
g T1T2 min {1’ z1+a:2} - G(:Ela :E2)7 (362)

|GNn(T21,22)] < CEZR (7521, 72)

see (3.41), and integrability of G, see (2.9).

Proof of (3.30) is similar to that in case (iii) 0 < Ao < o0 above with ¢ = |logn|. It suffices to check
the bound (3.43) for Tj;(0) = T};(0) + 1;}(0) given in (3.42). By the same argument as in (3.44), we obtain
T7;(0)] < CNE[y?(7)1(a; < aj11)]. The bound on Eéfvjn(T; x1,22) in (3.62) further implies

1 1
IT7;(6)] < Cn™" / , min {1, }(161062363)6_11(333 < @1)dardeadas < O~ F(T), + 1)),
(0 n}d 12 I +1‘2

where

n 1 T B 1 B n B
T, ::/ min{l,—} 2p- 2d$1/ m'g 2dzy = C’(/ x:{"g Sda —I—/ ZL'?ﬁ 4dx1) < Cp3h3
0 L1 0 0 1
" 1 2 2 93 9 ! " 4
T/ ::/ min{l,—}mg_ dxg/ xlﬁ_ dz; = C’(/ xgﬁ_gdmg +/ :cgﬁ dx2> < Cn38-3,
0 T2 0 0 1

Then |T73(0)| < C’NE[yJQ-(T)l(ai > a;41)] can be handled in the same way. Whence, the bound in (3.43)
follows with any 0 < § < 3 — 24, for 1 < § < 3/2. This proves (3.30). Proof of (3.22) using N,/N — 0 and
L,=N — qu < q = o(N) is completely analogous to that in case (iii) 0 < As < 0o. This completes the
proof of Theorem 3.1, case (i) for 1 < 8 < 3/2.

and

Case 0 < 8 < 1. Proof of (3.29). In the rest of this proof, write A\ = Ay, = N/ /n — oo for brevity.
Also denote X := A(log A\)'/2% log \'/log A — 1. Let By, := \'n, then

lnT] 2
1 )
ANn(Ti21,22) = Nn?2 § , e1(s1)ea(s2) E H i t 1t > 5). (3.63)
S1,82€7Z t=1 i=1
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Split the r.h.s. of (3.29) as follows:

1
IOg A (0,A"n)?

NE[e?() 1] = (L1 < @14+ 22 < A) + L(21 + 22 > A) + L(21 + 22 < 1))
_ 3
xE[elezN’"(T;xl’“) - 1] (:clxg)ﬁfld:cldxg =: Z L;.
=1

Here, L; is the main term and L;,7 = 2,3 are remainders. Indeed, |Ls| = O(1/logA) = o(1). To estimate Lo

we need the bound

min{l, N } (3.64)

Ez? T T, L) <
N,n( ’ ’ ) 71 + T3

122

which follows from (2.29) similarly to (3.41). Using (3.64) we obtain

C N C
L i {1—} B1dzydzy = ——(J, + J7), 3.65
Bl = g /mm»mm prmalan ) 10 = ROAEI) (B6)
where, by change of variables: x1 + x2 =y, x1 = yz,
J/l\ = / 1(:1}1:1)2(1‘1 + 1'2) < )\/)(xll'g)ﬁ_ldl‘ldl‘g
r1+T2>A

= /oo /1 1(y32(1 — 2) < N)y?P~Hz2(1 — 2))Ptdzdy
A 0

0o 1/2 o0
< C/\ y%_ldy/ P82 < 2X)dz < C()\’)’B//\ y P 1y = C(log \)'/?
0

since 0 < B < 1. Similarly,

Jy = )\’/ 1(z122(21 + 22) > N) (21 + xz)_1($1x2)5_2d$1dw2
x1+T2>A
0 1/2
< C’)\'/ y25_4dy/ P21(y32 > N)dz < Clog\)Y2.
A 0

This proves |La| = O(1/log A) = o(1).

Consider the main term L;. Although Ee?2V.n(7521.22) and hence the integrand in L; point-wise converge for
any (r1,r2) € Ri, see below, this fact is not very useful since the contribution to the limit of L from bounded
x;’s is negligible due to the presence of the factor 1/log A — 0 in front of this integral. It turns out that the
main (non-negligible) contribution to this integral comes from unbounded z1,ze with x1/z9 4+ z2/x1 — 0

and 172 — z € Ry. To see this, by change of variables y = x1 + x2, 21 = yw and then w = z/y? we rewrite

1 A dy
Ly = VN n(0;y)—, 3.66
1 1Og)\/1 Nal(03y) " (3.66)
where
y*/2 z z z\B-1
. ._ : L2 _ _ B=1(1 _
Vn(by) = 2/0 E[exp {1921\77”(7', y,y(l y2)} 1]2 (1 y2) dz. (3.67)

In view of L; = o(1),i = 2, 3 relation (3.29) follows from representation (3.66) and the existence of the limit:

lim N Vn(0;9) = V(0) := —koo|0|*7%, (3.68)

y—00,y=0(
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where the constant ko, > 0 is defined below in (3.71). More precisely, (3.68) says that for any € > 0 there
exists K > 0 such that for any N, n,y > K satisfying y < A\, A > K

[Vn(Bry) = VI(0)] <e (3.69)

To show that (3.69) implies L; — V() it suffices to split Ly — V(0) = (log A)~ fK (Van(0;y) — V(O))%y +
(log )~ fl (VNn(0;y) — V(H))d—;’ and use (3.69) together with the fact that |V, (6;y)| < C is bounded

uniformly in N, n,y.
To prove (3.69), rewrite V' (#) of (3.68) as the integral

V(6) = 2/ PIE(0T4 %/ (V) _ 1) dz = —2E/ P = e TN A = —ky [02P728 (3.70)
0 0
with Z31, Zs ~ N(0,1) independent normals and

koo = 2B [207N(1 - e 4i/(2))dz = 21730E| 212 [ 2011 — e V/)d2
217%0(8 + 5)T(1 = B)/(VaB). (3.71)

Let Ann(zyy) := E[exp {iHZN’n(T; 5, y( - y%)} ] =Ele 1072122/ (2v/7) _ 1] denote the corresponding
expectations in (3.67), (3.70). Clearly, (3.69) follows from

hmy—)oo,y:O(/\) AN,n(»z; y) = A(Z), YV z>0, (372)
and
AN n(z59)] < C(LA(1/2)), VO<y<\ 0<z<y?/2. (3.73)

The dominating bound in (3.73) is a consequence of (3.64). To show (3.72) use Proposition 2.1 by writing
2Nal(T32/y,9), Y == y(1 — z/y?) in (3.67) as the quadratic form: zn,(7;2/y,v') = Q12(hay s (- 75 2)) With

Lm—j 2
t S;
1T = 1 - — ‘1(t > 7 .74
hal,OfQ(Sl’SQﬂT?Z) zy \/mn Z H 061 (t 52) 81,82 € 4, (3 7 )
a; = Nny/z, oy = )\'n/y.
If
n,a1,a2,y,y — oo sothat y/y' —1 and n=o(q;), i=1,2, (3.75)
then
e (s1,50:m52) = Varazha ay(larsi], [asa )75 2)
Ln’rj 2 1
_ /7 = 1— —) 7l > (agsi))
2y t= 1 i= 1 i
— % [[esll si < 0) =: h(s1,s2;7; 2) (3.76)

point-wise for any 7 > 0, z > 0, s; € R, s; # 0, ¢ = 1,2 fixed. Moreover, under the same conditions
(3.75), [RS8 (5 7;2) — h(s732)]| — 0, implying the convergence Qua(hayaz (173 2)) —a Lia(A(752)) =a
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77175/ (2v/z), Zi ~ N(0,1),i = 1,2 by Proposition 2.1. Conditions on n,y,y’,\" in (3.75) are obviously
satisfied due to y,3’ = O(\) = o()\’). This proves (3.72) and (3.68), thereby completing the proof of of (3.29).

Proof of (3.30). For T;;(0) defined by (3.42) let us prove (3.43). Denote N} := (N log\)'/?#. Similarly to
(3.44) we have that

C

|EJ(9)‘ Nl/Q(].Og )\)3/2

/ min {1, EZJQVm(T; 1, xg)}(xlxgxg)ﬁfll(:cg < z1)dz1dzedes
(0,N3]3

with 2y, (7; 21, 22) defined by (3.63). Whence using (3.64) similarly as in the proof of case (i) we obtain

c : )\ 26-1_p-1
|EJ(6)‘ < N1/Z(log \)3/2 f(llN;]Q min {1, z 1x2 min {17 T1+72 }}l’l Ty dz1dxs

_ c 3 )
- 1\[1/2(10g )\)3/2 Zi:l T)\,Za

where
1
Thg = / 1(z1 + 22 < X) min {1, 25 Ly dxlda:g,
(0 N/]Q T1T2
Tho = / 1(rywo(xy +20) < N, 21 + 29 > )\’)xfﬁflmgfldmldmg,
(0 N;]2
T)\,g = X /(0 - 1(:611'2(.%1 + IL'Q) > )\’,wl + x99 > A/)x%ﬁ_2$§_2dx1dx2/({£1 + 1'2).

By changing variables z1,z2 as in (3.66)-(3.67) we get Ty 1 < C’f)‘, yﬂ_ldy < C(N)B. Also, similarly to the
estimation of J3, J{, following (3.65) we obtain Th 2+ Ty 3 < C'(X f/\ y~ldy < C(N)Plog(N}/N). Hence,
we conclude that

C(X)Plog(N5/N) < C'logn
~  NY2(logA)3/2  — nPlog\’

T5(0)]

proving (3.43) with any 0 < 6 < . This proves (3.30). We omit the proof of (3.22) which is completely
similar to that in case (iii) and elsewhere. This completes the proof of Theorem 3.1 for (¢,s) = (0, 1).

Proof of Theorem 8.1 in the general case (t,s) € Z?, s > 1. Similarly to (3.17) we decompose Sf\}sn(T) in (3.1)

as

i) = SKng(7) + S (7) + SR (7, (3.77)
where the main term
Nq |nT]
Simg(T) = )Y (1), Yin (1) = > D Xi(u)Xiyo(u+t) (3.78)
k=1 (k—1)g<i<kq—s u=1

is a sum of independent N, = | N/q] blocks of size ¢ — s = qnn — s = 00, and

L] [nT]

fvsr:rq Z Z ZX Xits(u+1), S}f\’,‘fiq(ﬂ = Z ZX Xivs(u+1)

k=1 kq—s<i<kq u=1 qu <i<N u=1

are remainder terms.  The proof of (3.29)-(3.30) for Ay stq( ) = Y yrt(n), ut(r) =
A NnZL"TJ Xi(u)X;1s(u + t) is completely analogous since the dlstrlbutlon of yf (1) does not depend on
t and s # 0.
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3.4 Proof of Theorem 3.2

The proof uses the following result of [23].

Lemma 3.1. (23], Lemma 7.1) Let {&ni,1 < i < N,}, n > 1, be a triangular array of m-dependent r.v.s
with zero mean and finite variance. Assume that: (L1) &, 1 < i < Ny, are identically distributed for any
n>1, (L2) & —a €, EE2, — EE2 < oo for some rv. € and (L3) Var(ZZN:"l €ni) ~ 02Ny, 02> > 0. Then
Ny, WZZ L ni —a N(0,02).

For notational simplicity, we consider only one-dimensional convergence at 7 > 0. Let (Nn)~/ 25}5\’,?”(7) =
N=V25 N €., where &, == n~1/? an;lj Xi(u)Xips(u+1t), 1 <i < N are |s|-dependent, identically dis-
tributed random variables with zero mean and finite variance. Since &,;, 1 < ¢ < N are uncorrelated, it
follows that E(Zﬁl €ni)? = NEE2, where &1 =q &, := n~1/? Z}ZZIJ X1(u)X2(u). Proposition 2.4 implies
E[¢2|a1, as] ~ TA12, and so E&2 ~ 702, where 02 := EAjs < co. It remains to show that &, —q VA12B(7),
where Aj9 is independent of B(7). This follows from the martingale CLT similarly to (3.50). By the lemma
above, we conclude that (Nn)~Y/2S% (1) —q o B(7). Theorem 3.2 is proved. O

4 Asymptotic distribution of temporal (iso-sectional) sample covariances

The limit distribution of iso-sectional sample covariances Yy ,(t,0) in (1.5) and the corresponding partial sums

process St’o ,(7) of (3.1) is obtained similarly as in the cross-sectional case, with certain differences which

are dlscussed below. Since the conditional expectation E[S L (T)]a, -+ an] =: Tto .(7) # 0, a natural
decomposition is
SNn(7) = S (1) + T (), (4.1)
where gfvon(r) = Sf\’,?n(T) - T]t\}?n(T) is the conditionally centered term with E[gf(,?n(T)|a1, <+ ,an] =0, and
N
T0.(r) = [n7] > al/(1—af), t>0, (4.2)

is proportional to a sum of i.i.d. r.v.s al/(1 —a?),1 < i < N with regularly decaying tail distribution function
1
P(at/(l—aQ)>a:)~P(a>1—2—)~cax*f3, r — 00, ca i =(1)/2°8,
x

see condition (1.2). Accordingly, the limit distribution of appropriately normalized and centered term Tjt\’,on(T)
does not depend on ¢ and can be found from the classical CLT and turns out to be a (3 A2)-stable line, under
normalization nN/(82) (3 £ 2). The other term, 55\}?”(7'), in (4.1), is a sum of mutually independent partial
sums processes an (1) := ZLWJ( Xi(uw)Xi(u+t) —E[X;(u)X;(u+1t)|a;]), 1 <7 < N with conditional variance

2[t| 2|t\(

Var[Yt (1)|as] ~ nAL°

1 1 2t
i T 00, where AE;O . 1ra ( +a, \|+Cum4)>

1—a2 \ (1—a2)? 1-a

The proof of the last fact follows similarly to that of (2.28) and is omitted. As a; 11, A;‘T;O ~1/(2(1—a;)3) and
the limit distribution of g}&\}on (1) can be shown to exhibit a trichotomy on the interval 0 < § < 3 depending
on the limit A% in (4.3). It turns out that for 8 > 2 the asymptotically Gaussian term T]t\}on<7') dominates
§§\’,On(7') in all cases of A%, while in the interval 0 < 5 < 2 T]t\}?n(T) and gf{,On(T) have the same convergence
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rate. Somewhat surprisingly, the limit distribution of S}f\}?n(’i') is a (-stable line in both cases A5, = oo and
Ao = 0 with different scale parameters of the random slope coefficient of this line.

Rigorous description of the above limit results is given in the following Theorems 4.1 and 4.2. The proofs
of these theorems are similar and actually simpler than the corresponding Theorems 3.1 and 3.2 dealing
with non-horizontal sample covariances, due to the fact that S}S\}?n(’i') is a sum of row-independent summands
contrary to Sf\’fn(T), s # 0. Because of this, we omit some details of the proof of Theorems 4.1 and 4.2.
We also omit the more delicate cases § = 1 and 8 = 2 where the limit results may require a change of

normalization or additional centering.

Theorem 4.1. Let the mizing distribution satisfy condition (1.2) with 0 < 5 <2, B # 1. Let N,n — oo so

that 18
. N
/\N,n =

S € [0,00]. (4.3)

In addition, assume Ee*(0) < co. Then the following statements (i)-(iii) hold for Sj\}o’n(T),t € Zin (3.1)
depending on N5 in (4.3).

(i) Let X\, = oco. Then
nTINTYB(SE () — BSR(1)1(1 < B < 2)) —a TV, (4.4)
where Vﬁ* is a completely asymmetric B-stable r.v. with characteristic function in (4.7) below.
(ii) Let N5, = 0. Then
nTINTYE(SY () = BSy (111 < B < 2)) —aa TV, (4.5)
where VBJr is a completely asymmetric $-stable r.v. with characteristic function in (4.8) below.
(7ii) Let 0 < A}, < oo. Then
RTINS (1)~ BSY (M1(1 < B <2)) —aa Ao Zh(r/A%), (4.6)
where Zj is the ‘diagonal intermediate’ process in (2.24).

Remark 4.1. The r.v.s VJ and Vg in (4.4) and (4.5) have respective stochastic integral representations

V, ’ dB(s)}d
* — xTs * * 1
f /RMC(R){/ e ()} d(Mj —EME1(1 < B < 2)),

—00

v o= / (20) " d(M — EM51(1 < B < 2)
R+XC(R)

w.r.t. Poisson random measure M7 in (2.21). Note ono e™*dB(s) =jaw Z/V2x,Z ~ N(0,1). The fact that
both Vﬁ* and V; have completely asymmetric S-stable distribution follows from their ch.f.s:

B’ = exp {v(1) /OOE(eWZQ/(M) —1-i(02%/(22))1(1 < B < 2))2"'dz}
0

= exp{— 62]9]5(1 — isign() tan(73/2)) }, (4.7)
Ee®% — exp {(1) /OO (e 1 —i(0/(22))1(1 < B < 2))2~'dz}
0
= exp{ —cl01°(1 —isign(6) tan(73/2))}, 6 €R, (4.8)
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where

ot = ¢(1)F(22Bg(/f)00;)(7r5/2)’ ¢y = c}E|Z|* (4.9)

with E|Z|? = 2°T(8 + 1/2)/\/7 # 1 unless 3 = 1, implying that Vi and Vg have different distributions.

Theorem 4.2. Let the miving distribution satisfy condition (1.2) with 3 > 2. In addition, assume Ec*(0) <

0o. Then for any t € Z, as N,n — oo in arbitrary way,
nTINTV2(SYY (1) —ESY (7)) —aa To7Z, (4.10)
where Z ~ N(0,1) and (o})? := var(all /(1 — a?)).

Remark 4.2. If 8 < 1, then v(¢,0) is undefined for any ¢ € Z. Using the convention v(¢,0)1(1 < < 2) :=0
if <1 and ~(¢,0) if 8 > 1.

Corollary 4.1. (i) Let the conditions of Theorem 4.1 (i) be satisfied. Then for anyt € Z
NYYBFN (L, 0) = y(t,001(1 < B < 2)) —a V5.
(ii) Let the conditions of Theorem 4.1 (ii) be satisfied. Then for any t € Z
NYVBFN (t,0) = v(t,001(1 < 8 < 2)) —a Vj
(#ii) Let the conditions of Theorem 4.1 (iii) be satisfied. Then for anyt € Z
NTVB G o (8,0) = v(50)1(1 < B < 2)) —a A Z5(1/A%).
(iv) Let the conditions of Theorem 4.2 be satisfied. Then for anyt € Z
NY2ANn(t,0) = 7(t,0)) —a 0fZ,  Z~N(0,1).

Proof of Theorem 4.1. Let t > 0 and

[ )
yO(r) = ﬁ Z::l(X(u)X(u +1) — EX(u)X(u+t)1(1 < B < 2)). (4.11)

It suffices to prove that
O (0) = *(0), as N,n— o0, Ny, = N, VIER, (4.12)
where, using Ey'°(7)1(1 < 8 < 2) =0,
O (0) = NE[e"() —1 —igyt0(r)1(1 < B < 2)],  @*(9) := log Be'*%57), (4.13)

and S3(7) denotes the limit process in (4.4)—(4.6). Similarly to (3.31),

(I)S\}(?n(e) = (1) /(0 N E[eiezj‘}?"(“x) —1-— inf{,?n(T; )l < p < 2)]xﬂ_1dx, (4.14)
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where zf\’,on(T; x) = yt’O(T)‘azl_z/Nl/ﬁ. Next we decompose y*0(7) = y*(7) + y*(7), where

|nT)
yr(r) = an/B Z X(u+1) = E[X ()X (u+t)]a]),
s = T EXOX 0] - BXOX (010 < <) = DL p[TH=I<D])
Accordingly, we decompose zf\’,?n(T; T) =2y, (Ti2) + z;\”,’n(v'; x), where
L)
n(Tia) = Nl/ﬁ ST et Y (1- 555) T T w s u bt > s), (4.15)
51,8267 u=1
Halria) o= n%%(ﬁﬂ;ﬂ;f%p -B[EE2),
where 2(s1)e(s2) = (s1)e(s2) — Ee(s1)e(s2).
Proof of (4.12), case 0 < X%, < co. We have
% ( (1) fo° Blelfs= (/%) — 1 — i\ 2*(1/A5; 2)1(1 < B < 2)] 2P, (4.16)

where the last expectation is taken w.r.t. the Wiener measure Pp. Similarly as in the proof of (3.29) we

prove the point-wise convergence of the integrands in (4.14) and (4.16): for any x > 0

AL (Biw) = E[e0Nnl®) 1 3620 (ra)1(1 < 8 < 2)] (4.17)
= B[l (A% 1 igxr 2 (/N @) 1(1 < B < 2)].

The proof of (4.17) using Proposition 2.1 is very similar to that of (3.35) and we omit the details. Using
(4.17) and the dominated convergence theorem we can prove the convergence of integrals, or (4.12). The

application of the dominated convergence theorem is guaranteed by the dominating bound
|A§\’2n(0;x)| <COANA/e)){1(0<B<1)+(1/2)1(1 < B < 2)}, (4.18)

which is a consequence of |z;\?7n(7';:c)| < C’/x,E(z}‘\,’n(T;ac))2 < Cz72, see (2.29). Particularly, for 0 < 8 < 1
we get A2, (6 2)| < 2 and [AL0, (650)] < B[4 (rs0)| + |5 (73 0)]) < OBl (73 ) + (1)) < O,
hence (4.18) follows. For 1 < § < 2 (4.18) follows similarly. This proves (4.12) for 0 < A%, < oo.

Proof of (4.12), case A5, = 0. In this case
*(0) = (1) fp, [0/ —1—i6(r/(22))1(1 < B < 2)]2Pda,
see (4.8). From (2.29) we have E(z}"\,m(T;ac))2 < Cz~?min{1, AN.n/7} — 0 and hence
AR (O2) = €T/CT 1 —i6(r/(22))1(1 < B < 2)

for any & > 0 similarly as in (4.17). Finally, the use of the dominating bound in (4.18) which is also valid in
this case completes the proof of (4.12) for A% = 0.

Proof of (4.12), case A5, = oco. In this case,

% ( (1) Jg, B[e9CZ/@m) 1 —i6(72%/(22))1(1 < B < 2)] 2"~ da, (4.19)
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see (4.7). Write 2y, (73 @) in (4.15) as quadratic form: 2}, (7;2) = Qu1(h(7;2;-)) in (2.3) and apply Propo-
sition 2.1 with &y = as = a = NYP. Note ﬁ(""a)(T;x;sl,sz) = n! szlj(l - x/Nl/ﬂ)“*LNl/leJ(l -
o /NYBYHu=INYPs2]1 (4 > | NVBsy |, u+t> [NYBsy|) — g(s1, 2) := 7e¥51752)1 (51 V 59 < 0) point-wise a.e.
in (s1,s2) € R? and also in L?(R?). Then conclude 2y n(T32) —a Tii(g) =4 Jg2 9(s1,52)dB(s1)dB(s2) =4q
T{(fEOO es"’ﬁdB(s))2 — E(fEOO esde(s))2} =4 7(Z% —1)/(27) for any > 0, where Z ~ N(0,1). On the
other hand, Z?\;’n(T; x) — 7/2x and therefore
AL (0;2) — B[f72/C0 1 —ig(r22/(22))1(1 < B < 2)]

for any x > 0, proving the point-wise convergence of the integrands in (4.14) and (4.19). The remaining
details are similar as in the previous cases and omitted. This ends the proof of Theorem 4.1. U
Proof of Theorem 4.2. Consider the decomposition in (4.1), where nilTJt\}On(T) = (In7]/n) N al/(1 — a2)

i=1" %

is a sum of i.i.d. r.v.s with finite variance (07)? = var(all/(1 — a?)) and therefore
n~IN"1/2 (T]t\}?n(T) — ET]t\}?n(T)) —fdd TOLZ

holds by the classical CLT as N,n — oo in arbitrary way and where Z ~ N(0,1). Hence, the statement
of the theorem follows from gf\’f(}n(l) = 0,(nN'/2). By Proposition 2.4 (2.29) we have that Var(:S’th\’,?n(l)) =
NEvar[}"0_; X (u)X (u+t)|a] < CNn2E[(1—a) ?min{1, (n(1—a))~*}], where the last expectation vanishes

as n — oo, due to E(1 — a)™? < co. Theorem 4.2 is proved. O
B=15 B=25
0.075- 0.151
0.050 - 0.101
0.025 - 0.05
0.000 - 0.00
-10 -5 0 5 10
Vy— Vg~ =n=100- -n = 5000 —0,Z- ~n=100- -n = 5000

Figure 1: Density of the limiting random variables in cases [left] (i),(ii), [right] (iv) of Corollary 4.1 for t = 0
and their kernel density estimates constructed from a random sample of size 1000 from An,(0,0) in (1.6)
with N = 5000, a® ~ Beta(2, 3), £(0) ~ N(0,1).

To illustrate our results, we use a? ~ Beta(a, ), a, 3 > 0, as in [10]. Then condition (1.2) holds with
the same 8 and we can explicitly compute parameters of the limit distributions in cases (i), (ii), (iv) of

Corollary 4.1. Figure 1 shows the density of the corresponding limiting random variables for « = 2, § = 1.5,
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2.5 and t = 0. We also plot the kernel density estimates constructed using 1000 RCAR(1) panels with N =
5000, n = 100, 5000, £(0) ~ N(0,1). More specifically, we use a random sample of N5 (7 ,,(0,0) — ~(0,0))
if 8 =1.5and N'2(Jy5,(0,0) —v(0,0)) if 8 = 2.5. On the Lh.s. we can see that the empirical distribution
of Yn.,(0,0) is different for n = 100, 5000, whereas on the r.h.s. both kernel density estimates are quite close
to the limiting normal density.

In the finite variance case § > 1, Corollary 4.1 can be used for statistical inference about the covariance

v(t,0) = ~(t) in (1.3), provided parameters of the limit distributions are consistently estimated. Denote by
Fjy(2) :=P(V5 <), Fj,(x):=PV; <), T € R, (4.20)

the c.d.f.s of the above stable r.v.s, which are uniquely determined by g, ¥/(1) = ¢ in (1.2), see (4.7)—(4.9).
The same is true for the (marginal) distribution Z3(7) of the ‘diagonal intermediate’ process in (2.24). In

Corollary 4.2 we suppose the existence of estimators

Byn = BHop(1/logN), by =1 +o0p(1), (4.21)
Rt = (07) +0p(1), (4.22)
which is discussed in Remark 4.4 below. Corollary 4.2 omits the ‘intermediate’ case A%, € (0,00), partly

because in this case the limit distribution is less tractable and depends on A, which is difficult to assess in

a finite sample.

Corollary 4.2. (i) Let the conditions of Theorem 4.1 (i) be satisfied, 1 < 5 < 2, and BAN,n, ﬂN’n be estimators
as in (4.21). Then for any t € Z

Supex [P(N' V0% Gy n(1,0) = 1(1) <) = F5 o (@)] = op(1). (4.23)

(ii) Let the conditions of Theorem 4.1 (ii) be satisfied, 1 < 8 < 2, and BANyn,ﬂNyn be estimators as in (4.21).
Then for any t € Z

supeg |[P(NYA%n Fn 0 (8,0) = A(1) < z) — FF (@) = op(1). (4.24)

BN,nﬂZ)N,n
(iii) Let the conditions of Theorem 4.2 be satisfied, 5 > 2, and ‘}Jz\f,n,t be an estimator as in (4.22). Then for
any t € Z

supger [P((52-) 2 Ann(t,0) = 1(1) < 2) —~P(Z < 2)| = op(1),  Z~N(0,1). (4.25)

N,n,t

Proof.  Consider (4.23). Write Nl_l/BN»"@N,n(t,O) — () = NYVBANL(,0) — 4(t) + Enn, Where
Eng = (NWB=A/Bnn) 1) NT=B @y 1 (t,0) — v(t)) = 0p(1) due to (4.21) and Corollary 4.1(i). Therefore,

Sup e [PV (3, (1,.0) = 4(1)) < ) — F ()] — 0. Relation sup,ez [F (2) ~ . (x)] = 0p(1)
follows from (4.21) and continuity of continuity of the c.d.f. F 5 in B,9. This proves (4.23). The proof of
(4.24), (4.25) is analogous. O

Remark 4.3. Using Corollary 4.2 we can construct asymptotic confidence intervals for ~(t), as fol-

lows. For o € (0,1) denote by ggy(a) the a-quantile of the c.d.f. Fj , in (4.20). Then, since o =

o innGay gy, (@) as, POTTVON G (2,0) = (1) < g5, 5 (@) = a = op(1) follows from
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(4.23); moreover since the above quantity is non-random, we get that |P(N1_1/BN’”(3N,n(t,O) — (1) <
N (a)) — al = o(1), implying that

[Frn(t.0) = Nl (1= 0/2) A (0,0) = N0y (af2)

is the asymptotic confidence interval for «(t), for any confidence level a € (0,1). Analogous confidence

intervals for v(t) can be defined in the case (4.24); in the case (4.25) they follow in a standard way.

Remark 4.4. Estimation of the tail parameter 5 in the RCAR(1) panel model was studied in [16]. Particu-
larly, [16] developed a modified version j ~N.n of the Goldie-Smith estimator in [8] and proved its asymptotic
normality, under additional (rather stringent) conditions on the mutual increase rate of N and n. A similar
estimator zﬁNm can be defined following [8]. We expect that these estimators satisfy the consistency as in
(4.21) under much weaker assumptions on N, n. Finally, for ¢ > 0 the estimator 6]2\77”’1‘/ in (4.22) can be defined

(see the proof in Appendix) as

n—t N n—t

s = NZ(%Z}Q k+t> —( 1nZZXZ k+t)). (4.26)
k=1 =1 k=1

=1

Remark 4.5. In general, in the RCAR(1) model the autoregressive coefficient a can take a value from (—1,1).
In the latter case if the distribution of a is sufficiently dense at —1, the (unconditional) autocovariance function
of the RCAR(1) process oscillates when decaying slowly, which is usually referred to as seasonal long memory.
The restriction @ € [0,1) in the present paper (as well as in [23], [16] and some other papers) is basically
due to technical reasons. We expect that, under assumption (1.2), most of our results hold in the general
case a € (—1,1) provided the concentration of the mixing distribution near —1 is not too strong, e.g., if
E(1+a)~# < oo for some 5 > 3.

A Appendix

Proof of Proposition 2.2. (i) The existence of Z3 follows from

Jg = / |2(7; 21, 22) Pdpp < 00 (A.1)
L3
and pg(L1) < oo. We have pg(Li) = 11) ng (z129(x1 + 29) < 1)(2122)P Vdaiday < C’fo 1‘1 Yz,

fxll(ac < l/ml)x2 gy = (fo xl 1 0 .1'2 dxz—i-fl xl Yz, fol/xl zh de) < C( 01 x%ﬂ Yz, +
[ TP d:vl) < oo since > 0.
Consider (A.1). Then

Jg = C’/ 1(z129(21 4 22) > 1)E|2(7; 21, 22) | (2122) P~ da day,
2
where

E|z(7; 21, 22) / Ny HE (Vi (uas 23) Vi (uo; 2;)|durdug
0,7

Cr2

Z1x2

(1/\ ( ! ) (A.2)

T(T1 —|—$2>

/ e_($1+1’2)\U1_u2|du1dUQ <
4$1$2 (0,712
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Hence,
Jg < C'/ 1(z1ze(x1 + 22) > 1)(21 + xg)_l(xlscg)ﬂ_Qdmdxg
2

<C 1(xy > x1, 2125 > l)xf_2

2
R-O—

1 00 o) 00
= C(/ x?_2dx1/ :L‘g_?’dxg +/ x’f_del/ x§_3dx2) < 0
0 xfl/Q 1 1

if 0 < 8 < 3/2. The remaining facts in (i) are easy and we omit the details.

xg_gdxldaﬁg

(ii) Similarly as in ([20], proof of Proposition 3.1(ii)) it suffices to show for any 0 < p < 2 that

E|z(7; 21, 22) [P(z122)P " dayday, 0<p<2,
00 > J,5(7) = Jee (A.3)
fRi E[|z(m; 21, 22) [P V |2(7; 21, 22) ] (w122)P ' dan g, p > 2.

Let first 0 < p < 2. Using Bl|z(7; 21, 22)|P < (E|2(7; 21, 22)|?)P/? and (A.2), we obtain

/2
Jpﬂ(’i') S C/Q </( } e_(x1+x2)|u1_u2|duld’UJ2)p (xlxg)ﬁ_l_pﬂdxldxg =: CTQ(p_ﬂ)Ipwg, (A4)
]R+ 0,7
where
1 p/2
< p—1-p/2
Ipﬁ / (1 A P 1_2) (xlxg) dz1daxs
1 /2
< C/ / 1 /\ — P (l’ll'g)ﬁ_l_pmdl‘ldl‘g
— c/ 1 A— mfﬁ*p”dxl < 0 (A.5)
0 il?l

if p/2 < 8 < 3p/4, thus proving (A.3) for 0 < p < 2.
Next for 2 < p < 3 we need the inequality for double Ito-Wiener integrals: for any p > 2,g € L?(R?)

B faz 9(s1,52)dB1(51)dBa(s2)|” < C(E| fra 9(s1, 52)dB1(51)dBa(s2)[*)* = C( faz lg(s1, 52)[2ds1dss)” (A.6)

Indeed, by using Gaussianity and independence of Bj, By and Minkowski inequality for Ia(g) :=
Jr2 9(s1,52)dB1(s1)dBa(s2) we obtain

(EIL@)P)"" = (EnEs[lL9)P|Bi])*" < C(Ep (Ep,[|1(9)7|B1])/?)*"
CEp, {En, [|I2(9)[P| B2] Y7 < CEp,{ (B, [|I2(9)[?| B2] )"* }7
— CEp,Eg, [|L(9)?|Bs] = CE|Is(g)[>

IN

Using inequality (A.6) and (A.4), (A.5) we obtain
JIpp(T) < C(/ E|z(7; xl,x2)|p(x1x2)f31dx1dx2+/ E’Z(T;xl,xz)’2($1x2)571d$1d172)
R RZ
< Clpp(7) + Iz p(T)) < 00

if p/2 < p < 3p/4, thus proving (A.3) and part (ii).
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(iii) Follows from stationarity of increments of Z5 (part (i)) and Jo (1) = 0272275 where according to
(A.2),

o2 = /Ri Ez%(1; 21, 22)dpgs
= 2 updu Ooe_m‘ul_“ﬂxﬁ_z z)?
= w2 [ dudu( | )
= (¥(1)/2)’r(8 - 1)? /(0 . jur — o Pdurduz = (1(1)/2)°T(8 = 1)*/((2 - B)(3 — 28)).

(iv) Follows from stationarity of increments, E|Zg(7)[P < CJ,5(7), 1 < p < 2, where J, g(7) is the same as
in (A.3), and Kolmogorov’s criterion; c.f ([20], proof of Proposition 3.1(iv)).

(v) The proofs are very similar to those of Theorem 3.1 (i), (ii), hence we omit some details. For notational

simplicity, we only prove one-dimensional convergence at 7 > 0.
Proof of (2.18). As b — 0, consider

Dy (6) = log Eexp{ifb?2Z5(br)} = (1)? / EV(00°22(br; 21, 22) ) (2122)° "z day,

w2
where U(z) :=e'* — 1 —iz, 2 € R. Since b=2z(b7; 21, 22) =q 2(7; b1, bxs), rewrite

D(0) = w(l)Qb_Q’B/R EV (00 2(7; 21, x2)) (z122)° 1o das,

2
+
where b2 (00 2(1; 21, 22)) — —(02/2)2%(7; 21, 22) a.s. Note [b~2PW(0b%2(1; 21, x2))| < (0%/2)22(1; 21, T2),
where the dominating function satisfies (A.2) and (2.9). Hence, by the dominated convergence theorem,

Py (0) — —(92/2)1/)(1)2/ E2*(7; 21, 29) (2122)° w1 dwy = log E{ifo0e Ba (7)1,

&

which finishes the proof.
Proof of (2.19) follows that of Thm. 3.1(i), case 0 < 5 < 1. As b — 0, consider

b1 (1o p—1)— 1)2 02, (7
@b(e) = logEeleb 1(logb 1) 1/252[3(177') — lw(b)_l / E[elezb(T7x1,x2) _ 1](1'1372)6_1(11'1(1.’1}2,
0g R2

where
2 (1521, 29) := b ! (log bil)*l/(w)z(br; (log b~ 1)~ (log 671)71/(25)372)

satisfies

(A7)

-1 ~11/(26)
E|zy (7321, 22)]* < < (1/\b (logb™ ) >

T+ T2
see (A.2). Split

_ ()
~ logb!

y(0) /R2 (1l<zi+a2<b M)+ 1z +x2 > b)) +1(21 + 22 < 1))
+

3
X E[eiezb(“”l’“) — 1](:L‘1."L‘2)ﬁ_1dl‘1dl‘2 =: ZLi‘
i=1
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Using (A.7), we can show that L;, i = 2,3 are remainders. By change of variables: y = x1 + x2, 21 = yw and

then w = z/y?, we rewrite the main term

L & dy o [V 2\ p—
L logb—1 /1 Ve(0:y) Y’ Vo (6 y) = 2¢(1) /0 Ap(z9)2° (1 y2) dz (A.8)

with Ay(z;y) := Elexp{ifzp(r ,y,y(l - %))} — 1], which satisfies [Ay(z;y)] < C(1A L) for all 0 < y% < 3,

0 <y < b~'. Here the dominating bound is a consequence of (A.7). Then
Ly — log Belf™V28 = Qw(l)Q/ A(z)2Pdz, (A.9)
0

where A(z) := E[e?7%1%2/(2V2) _ 1] with Z; ~ N(0,1), i = 1,2 being independent r.v.s, follows from

I Ay(zy) = A(2),  Vz>0, A.10
e b(2;9) (2) z (A.10)

for more details we refer the reader to the proof of Thm. 3.1 (i) case 0 < f < 1. More precisely, (A.10)
says that for every € > 0 there exists a small § > 0 such that for all 0 < b < 6, if 5! < y < b~!, then
|Ap(z;y) — A(2)] < e. To show (A.10), note zb(T;i,y(l - y%)) = Tio(hy(+;7;2)) is a double Ito6-Wiener

stochastic integral w.r.t. independent standard Brownian motions {B;(s),s € R}, i = 1,2 for

;2
hi(s1,82;7;2) := (log b_l)_l/(w)/ He_a%‘(bu_si)l(si < bu)du, s1,s2 €R,
vi= (logb )Py 2 ay = (0gb™ )Py, y = y(1- ).
We have that z(7; £,y(1 — y%)) =4 Ia(hy(+;7;2)), where

hy(s1, 82; 73 2) == \Jaraghy(ays1, agse; T; 2)

2
T — 1 (bu—cuiss
- /Y | |e a; (bu azsl)l(aisi < bu)du, s1,s2 € R.
2" Jo i=1

If b— 0, y,5/ — oo so that y/y — 1 and b/ay — 0, i = 1,2, then ||hy(-;7;2) — h(+;7;2)|| = 0 with
h(s1,s2;7;2) fHesll s;i <0), s1,82 € R, (A.11)

implies the convergence zy(7; %, y(1 — 75)) —a Li2(h(-;7:2)) =a T7Z1Z5/2+/z. Conditions on b,y,y" are obvi-

ously satisfied due to y,y’ = ( 1) =o(b~!(logb~ )1/(25)). This proves (A.10) and (A.9), thereby completing
the proof of of (2.19).

Proof of (2.20) follows that of Theorem 3.1 (ii). We will prove that as b — oo,

logEeiabil/Zzﬁ(bT) = w(l)Q/ E[exp {iHbil/Qz(bT;xl,mg)} —1] (z129)PLdaday (A.12)
R2

927' 0 A1/2
2 AU 51 _ 10.41/2B(7)
— (1) /R2 [exp{ Toraa(m $2)} 1} (r122)" "dz1das = log Ee .
+
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By (A.2), we have that E[exp{ifb=1/2z(br; 21, 29)} — 1] < Cmin{1, (zx1z2(x1 + 22))~'}. In view of (2.8), the
dominated convergence theorem applies if the integrands on the r.h.s. of (A.12) converge pointwise, i.e. for
every (z1,72) € RZ,

B(r)

bil/QZ(bT; 1'1,1'2) —d .
21‘1IE2($1 + 1'2)

(A.13)

To simplify notation, let 7 =1 and all b € N. Define
b rb
z (21, m2) = / / f(s1,52)dB1(s1)dBa(s2), f(s1,82) :=b" 1/2/ H —uu=si) (u > 55)du,
0 Jo

and z; (z1,w2) = b~ V/22(b;21,29) — 2 (w1, 72). Since E(z, (21,22))? = O(b™') implies 2, (z1,22) = 0p(1),

we only need to prove that

2z (21, 2) = N(O, ! )) as b — oo. (A.14)

2z 122(21 + 2

Write Z; (x1,22) = 2221 Z as a sum of a sum of a zero-mean square-integrable martingale difference array
ko pk—1 k=1 rk
) = / / f(Sl, Sg)dBl(Sl)dBQ(SQ) + / f(SI; SQ)dBl(Sl)dBZ(32)
k—1.J0 0 k—1

k
+ / f(Sl,SQ)dBl(Sl)dBQ(SQ)
k—1Jk—1

w.r.t. the filtration Fj generated by {B;(s),0 < s <k,i=1,2}, k=0,...,b. By the martingale CLT in Hall
and Heyde [11], (A.14) then follows from

b b
1
E[Z;|F —y d E[Z?1(|Z —0 f 0. A.15
> BIEFcr] o gy gy W DI > 0] 50 forany > (A.15)

Since ZZ:1EZ,% fo fo (s1,82)ds1dsy = E(z;r(acl,xz))Q s (2z139(x1 + 22))"1, consider Ry =
S p_1(E[Z2|Fi—1] — EZ}), where

k-1

E[Z}|Fi_1] = /1:1 (/Ok_l f(31752)d32(82))2d81 + /1:1 (/0 f(51,82)d31(51))2d52

k k
+ / f2(81,82)d81d$2.
k—1Jk-1

By rewriting R, =4 23:1 fé)fObCZ'(Sl,82)dBi($1)dBi(32) with ¢1(s1,82) = fﬂ,l\/sﬂ f(s1,8)f(s2,s)ds,
co(s1,82) = fﬂ,wsﬂ f(s,81)f(s,s2)ds and using the elementary bound:

f(Sl, 82) < Cb_1/2 (e_xl(s2_sl)1(81 < 82) + e_IQ(sl_sz)l(Sl > 82)), 0< 51,52 < b, (A]_G)

we obtain E|Ry2 = 32, féj féj c2(s1,82)ds1dse = O(b™1) = o(1), which proves R, = 0p(1) and completes the
proof of the first relation in (A.15). Finally, using (A.6), (A.16), we obtain Zzzl E|Zy|* = O(b™1) = o(1),
which implies the second relation in (A.15) and completes the proof of (A.14).

Proposition 2.2 is proved. ]
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Proof of Proposition 2.3. (i) Split Z3(r) = 25(7) + TVBJr with

Z% L Y T * *
Zs(r) = /MC(R) () — 5 )A(M5 — EME1( < 5 < 2),

1
V+::/ —d(M%5 —EM31(1 < 3 < 2)),
) 2 xc(m) 20 (M3 pl(1<B<2)

where M is a Poisson random measure on Ry x C' (R) with mean pg = EMj given in (2.21). The existence
of VE followstrom Jo© min{1, 27}z 1da < 00 if B € (0,1) and [, min{z !, 272}z "1z < o if B € (1,2).
The process Z; is well-defined if

b 5(T) = / |2"(m;2) — 7/2x|Pdps = C/ Elz*(1;2) — 7/2zP2P~1dz < oo, (A.17)
’ Ry xC(R) 0

where 0 < p < 1 for B € (0,1) and 1 < p < 2 for B € (1,2). We have E|z*(r;z) — 7/2z[P < (var(z*(7;x)))P/?,

where
var(z*(1;x)) :/ cov(V?(u1; x), Y*(ug; x))duyduy
(0,7]2
= 2/ d51d52e_2$(“1+u2_51_52)1(81 Vosg < ui Aug)
(0,712 JR2

1

1 2 1
=52 e~ 2=zl duy = @(2:57' —14e 7)< ol (1 A —), (A.18)
(0,7]2

2 TT

hence, J5 5(7) < Ct%=PF < oo for p < B < 3p/2. This completes the proof of part (i).

(ii) E|Vﬂ+|p < oo for 0 < p < 3, since V; is a (-stable random variable. Similarly to (A.3), E’ZVE(TNP < 00
follows from Jj 5(7) < oo in (A.17), where p is sufficiently close to # and such that 0 < p < 8 < 3p/2. This
proves part (ii).

(iii) Follows from part (ii) by Kolmogorov’s criterion, similarly as in the proof of Proposition 2.2.

(iv) For notational simplicity, we only prove one-dimensional convergence at 7 > 0. We have
log Eexp{ifb=1Z5(b7)} = (1) e, Ay(z)xP~1dz, where

Ap(z) :=E[exp {i0b ' 2*(br;2)} — 1 —i0b~ 2% (br;2)1(1 < B < 2)].

Substituting E|z*(br;x)| < (BE|z*(br;2)|?)Y/? and E|z*(br;z)|? = var(z*(br;x)) + (b7/22)? < C(b/z)? by
(A.18) into

min {1, 'E|z*(br; )| }, 0<p<1l,

[Ap(2)] < C
min {b~'E|z*(br; 2)|, b7 2E[* (br; z)[*}, 1< B8 <2,

we obtain the bounds: |Ay(z)] < Cmin{l,z71} if 0 < 8 < 1, and |[Ay(z)| < Cmin{z~t, 272} if 1 < B8 < 2.
The result then follows from the dominated convergence theorem once we show that for all z € Ry,

Ay(x) exp{ifT/(2x)} — 1 — (i07/(22))1(1 < B < 2) as b — oo, (A.19)
Elexp{i0227/(22)} — 1 — (10227/(22))1(1 < B < 2)] asb— 0, '
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where Z ~ N(0,1). Using (A.18), we get E|b~12*(br;2) — (7/27)|? = b2 var(2*(br;z)) < Cb~! = o(1) as
b — oo, which implies the first convergence in (A.19). To prove the second convergence in (A.19), note
Z/\V2x =4 Y(0;z). It suffices to show that as b — 0,

Elb~'2* (b z) — V% (0;2)| = E\ / (V?(bu; ) — y2<0;x))du\ < / E|V?(bu; z) — Y*(0; z)|du = o(1).
0 0
Factorizing the difference of squares and applying the Cauchy-Schwarz inequality, this follows from

|- 2
2x(e 1)* < Cbhu

bu
E|Y(bu;x) — Y(0;2)]* = / e 25 s +
0
Prop. 2.3 is proved. O
Calculation of the constant oy in Proposition 2.2 (v). We have

225/3
70 - 2 = /R2 (1 — exp{—(u1 +u2) H(uruz) ~'}) (uruz)’~dusdus
+

- / (1 — exp{—uj 3(14vg) 7t vy })u?ﬁ_lvg_lduldvg
1 _ _ _

_1/3 3/ (1 —exp{—vi(1+v2)~ lvgl})vl 2873 11)5 'doyduy

1

1/((1+v2)v2)
/ e=at oy */ ol ™ dvgdo,

_ F(l ) U’Bildv 1/((1+v2)ve) 28/3-1
3 2

r(—22) re
= (3)/ (1 +U2)*25/3,U2f3/3*1dv2
2/ 0

_ 28y 1
_ I'(1 3 )/ 825/3(871 _1)5/371372(18
0

1
3

Proof of (4.22). By Corollary 4.1 (iv), ﬁzf\; PEXG(R)Xi(k 4 1) —p () = Elflz. Hence, relation
(4.22) for (4.26) follows from

1 N 1n—t 2 al 2
w2 [ ZXWX k) B ) (A20)

t

By the LLN, + ZZ 1( ) —p E(+%> o’ )2, Therefore by Minkowski’s inequality, for (A.20) we only need to

1—a?
show that

1 N at- 2
NZ( ZX Xi(k+1t)— 1_a2) = op(1).

i=1
By taking expectations this follows from

t

( ZX Xi(k+t) — —4 2)2:—Evar[ZX(k:) ik +1)|as

1—a;




a2(k—k|+1) a2\k7k’|+a2max{\k7k/|,t}

Using cov[X; (k) Xi(k +1t), Xi(K") X; (K 4 t)]a;] = ¢——7—cumy + (a7 and the same bound
as in (2.29) we see that the L.h.s. of (A.21) does not exceed CE[m min{1, m}] which vanishes as
n — 0o by the dominated convergence theorem, due to E(1 — a)~2 < co. O
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