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A lot of effort has been made to optimize linear electromagnetic energy harvesters under harmonic or random excitation, connected to simple or more complicated electrical extraction circuits. Nevertheless, the internal electrical losses of electromagnetic coils are often neglected in these optimization analyses. To this end, the present paper investigates systematically and for the first time the influence of internal impedance of coils on energy harvesting performance under various types of ambient excitation sources, which are, respectively, external force acting directly on the seismic mass, base displacement-induced motion and disturbance generated by base acceleration. Our analysis highlights that under sinusoidal excitation, the resonant load outperforms its non-resonant counterpart in terms of energy harvesting performance when the internal resistance is very small, while its increase deteriorates significantly the broadband harvesting capability of resonant circuits. When subjected to random vibration, the resonant load presents no advantage compared to the latter one. The optimum design of non-resonant circuit is then carried out in each excitation scenario leading to well-known criteria and expanding to cases where no optimal conditions were defined or obtained. It is also reported that the neglect of internal losses underestimates the maximum available power.

Introduction

Energy harvesting from surrounding energy sources has attracted a lot of interest over the past few decades, and becomes a promising technique to supply low consumption of embedded electronic devices, such as actuators and wireless sensors [START_REF] Roundy | A piezoelectric vibration based generator for wireless electronics Smart[END_REF][START_REF] Anton | A review of power harvesting using piezoelectric materials (2003-2006[END_REF][START_REF] Harne | A review of the recent research on vibration energy harvesting via bistable systems Smart[END_REF][START_REF] Roundy | On the effectiveness of vibration-based energy harvesting[END_REF][START_REF] Lee | Robust segment-type energy harvester and its application to a wireless sensor Smart[END_REF]. Due to its high availability and ubiquity, mechanical vibration has received considerable attention and numerous transducers have been proposed and extensively studied in the literature, among which three most popular converting principles are: piezoelectric [START_REF] Erturk | Issues in mathematical modeling of piezoelectric energy harvesters Smart[END_REF], electromagnetic [START_REF] Wang | Vibration energy harvesting by magnetostrictive material Smart[END_REF] and electrostatic [START_REF] Boisseau | Optimization of an electret-based energy harvester Smart[END_REF].

As initially proposed by Williams and Yates [START_REF] Williams | Analysis of a micro-electric generator for microsystems[END_REF], a generic model of energy harvesters can be represented by a massspring-damper system of single degree of freedom (SDOF) coupled with an energy transducer. Tremendous research efforts have been devoted to energy harvesting optimization for this SDOF configuration under sinusoidal excitation [START_REF] Williams | Analysis of a micro-electric generator for microsystems[END_REF][START_REF] Roundy | A study of low level vibrations as a power source for wireless sensor nodes[END_REF][START_REF] Stephen | On energy harvesting from ambient vibration[END_REF][START_REF] Saha C R | Optimization of an electromagnetic energy harvesting device[END_REF][START_REF] Dutoit | Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters[END_REF], leading to the well-known optimal condition which states that maximum power pumping is observed when the excitation frequency and electrical damping are matched to natural frequency and mechanical damping, respectively. However, as indicated by Tai and Zuo [START_REF] Tai | On optimization of energy harvesting from base-excited vibration[END_REF], a two-stage process has been adopted by a lot of authors to pursue the maximized energy transfer, in which the excitation and natural frequencies are matched prior to the matching between electrical and mechanical impedances. Nevertheless, in order to maximize the energy extraction from the mechanical to electrical domain, the electrical damping and excitation frequency should be simultaneously involved in the optimization analysis.

For that purpose, Tai and Zuo [START_REF] Tai | On optimization of energy harvesting from base-excited vibration[END_REF] conducted a twovariable optimization study for a SDOF energy harvester with either electromagnetic or piezoelectric transducer under baseexcited harmonic vibration, in which the coil inductance was omitted. The authors revealed that the long-believed optimal condition is correct only in the case of base excitation with constant acceleration amplitude, and is only an approximation for the constant displacement amplitude case under the condition of small mechanical damping (i.e. < 2%). They also underlined that in the latter excitation scenario, the optimal damping ratio and the excitation frequency are always greater than the mechanical damping and the natural frequency, respectively. Despite the novelty in their optimization process, the internal resistance of electromagnetic transducer was considered as a constant ratio of external resistive load instead of a fixed value, and the study was only conducted under specific harmonic cases. Besides, Tang and Zuo [START_REF] Tang | Vibration energy harvesting from random force and motion excitations Smart[END_REF] investigated the optimization of dual-mass and single-mass electromagnetic energy harvesters under random force and motion excitations with the coil inductance neglected. In [START_REF] Caruso | Broadband energy harvesting from vibrations using magnetic transduction Trans[END_REF], the electromagnetic energy harvester is connected with a resonant load and is subject to sinusoidal force excitation. With coil resistance being omitted, it was demonstrated that this specific energy converter exhibits the capability of harvesting maximum power over the whole bandwidth of frequencies. Mann and Sims [START_REF] Mann | On the performance and resonant frequency of electromagnetic induction energy harvesters[END_REF] studied a linear electromagnetic energy harvester connected with a simple resistive load with taking into consideration the total impedance of coil, and it was reported that the influence of coil inductance should not be neglected and its presence could alter the electrical resonance frequency. Wang et al [START_REF] Wang | Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters[END_REF] investigated the similarity and duality between electromagnetic and piezoelectric energy harvesters by assuming that the internal resistance of coil is negligible. Tang et al [START_REF] Tang | Analytical solutions to h 2 and h ∞ optimizations of resonant shunted electromagnetic tuned mass damper and vibration energy harvester Trans[END_REF] derived the analytical formulae of electrical parameters for an energy harvester shunted with a resonant circuit under both harmonic and random force excitation, while the coil inductance was neglected. Zhang et al [START_REF] Zhang | Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance[END_REF] investigated the effect of electrical loads containing non-resistive components (i.e. rectifiers and capacitors) on electromagnetic energy harvesting performance. In this work [START_REF] Zhang | Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance[END_REF], the inductance of coil is again neglected and a conclusion has been drawn that optimum design for a purely resistive load can not be generalized to cases where non-resistive components are involved. However, ignoring a part of internal impedance could result in erroneous remarks for optimization analyses in certain excitation scenarios, which will be addressed in this work. Moreover, these aforementioned works only focused on energy harvesting performance under certain ambient vibration cases, and a complete and uniform optimization encompassing all excitation scenarios has not been yet proposed in literature.

Hence, the motivation and originality of our research is to propose a global optimization study for linear electromagnetic energy harvesting covering four ambient excitation cases and taking into account the internal impedance of electromagnetic transducer. The mechanical structure is shunted with three possible circuits: resistive (R), resistive-inductive (RL) and resistive-inductive-capacitive (RLC). And it undergoes two types of excitations: harmonic and random, which acts directly on the seismic mass (force type), or stems from the base movement (motion type).

The rest of this paper is organized as follows. Section 2 is dedicated to model the energy harvester associated with a generalized RLC circuit by taking into account the electrical losses of electromagnetic transducer. In this section, the Laplace transform method is adopted to yield the steady state frequency response. In section 3, the resonant circuit is considered and a three-variable optimization analysis is performed, which underlines the significant influence of electrical losses on its broadband energy harvesting performance. Section 4 considers the non-resonant circuit case, where some original results and optimal formulae of system parameters are presented. In this section, it is reported that the classic optimal condition is not always suitable for all excitation scenarios, and the exclusion of internal losses could result in a considerable underestimation of maximum attainable power, e.g. an underestimate of 10.4% is predicted for an energy harvester with mechanical damping ratio of 0.1 under force harmonic vibration.

Electromechanical modeling

We consider an electromagnetic vibration energy harvester, as depicted in figure 1. As mentioned earlier, one can distinguish three possible configurations of harvesting circuitry in practice, which are: (i) R type; (ii) RL type; (iii) RLC type (see figure 2). It is noticeable that the two first circuits can be regarded as particular forms of RLC circuit by vanishing certain electrical components. Hence, the proposed generalized model is based on a SDOF energy converter shunted by a resonant RLC circuit.

Force excitation

Figure 1(a) shows a single-mass electromagnetic energy harvester, where an excitation of external forcing type is applied directly on the mass. The equations governing the electromechanical system can de described by
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where M s is the seismic mass, C s denotes the parasitic damping, K s is the equivalent stiffness, x is the absolute displacement of the seismic mass, i stands for the current induced in the coil, C is the capacitance and a dot denotes differentiation with respect to time. Moreover, R=R i +R e and L=L i +L e stand for the total resistance and inductance in the circuit, in which the subscripts, i and e, refer to internal impedance of electromagnetic transducer and external electrical loads, respectively.

F emf =k f i represents the reaction force generated by the electromagnetic transducer and acts on the mechanical subsystem.

= Ė kx emf v indicates the voltage induced in the coil. k v and k f are voltage and force constant of electromagnetic transducer, respectively. The relationship between k v and k f can be simplified as k v =k f =k e .

Taking the Laplace transform of (1) yields to: Where ξ m is the mechanical damping ratio, f is the frequency tuning ratio, κ 2 is the stiffness ratio (the electromechanical coupling stiffness k L e 2 divided by the mechanical stiffness K s ), ξ e is the electrical damping introduced by resistive load R e , α represents the excitation frequency ω normalized by the natural frequency ω s , λ indicates the internal electrical loss of coil, w = KM ss s denotes the undamped natural frequency of mechanical structure and w = LC 1 e refers to the resonant frequency of electrical circuit.
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Motion excitation

The single-mass energy harvester is now subject to motion excitation from the base, as depicted in figure 1(b). And its dynamics in such a scenario can be described by the mathematical model • Acceleration profile:
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(a) R circuit ( ¹ R 0 i , L i =0, =¥ C ); (b) RL circuit ( ¹ R 0 i , ¹ L 0 i , =¥ C ); (c) RLC circuit ( ¹ R 0 i , ¹ L 0 i , ¹¥ 
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x We firstly carry out the optimum design of a SDOF energy harvester which is shunted with a resonant circuit and is subjected to sinusoidal vibration. By squaring (3), ( 6) and (7), the normalized harvested power through the resistive load R e for three excitation scenarios can be expressed as 
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It is obvious that the harvesting performance is the same under all three excitations and the only difference resides in the change rate of harvested power with respect to excitation frequency α. By solving the previous differential equations [START_REF] Saha C R | Optimization of an electromagnetic energy harvesting device[END_REF], two common optimal expressions are found:
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It is worth noting that the optimal frequency ratio f opt is exactly the same as that in [START_REF] Caruso | Broadband energy harvesting from vibrations using magnetic transduction Trans[END_REF], while the optimal electrical damping ξ e,opt deviates from the one in [START_REF] Caruso | Broadband energy harvesting from vibrations using magnetic transduction Trans[END_REF], where the difference results from the internal resistive loss λ.

Regarding the stiffness ratio κ, no optimal value could be found. As reported in [START_REF] Caruso | Broadband energy harvesting from vibrations using magnetic transduction Trans[END_REF], there is no constraint on the choice of κ at an excitation frequency lower than its natural mechanical frequency (  a 1), while for α>1, the harvested power reaches its maximum if the stiffness remains lower than a maximal value:
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In this study, the stiffness tuning ratio is chosen as κ opt =1 for any  a 1; otherwise, κ opt =γκ max , where γ is a known parameter and is less than unity.

Figure 3 compares electromagnetic energy converters connected with R circuit

(i.e. ¹ R 0 i , L i =0, =¥ C ) and RLC circuit (i.e. ¹ R 0 i , ¹ L 0 i , ¹¥ C
), in terms of output power for various internal electrical losses. The metric of harvesting performance is chosen as the half-power bandwidth, which is defined as the frequency bandwidth between which the harvested power is superior to the half of maximum power, as illustrated in figure 3(a).W h e n λ=0.1, the half-power bandwidth of RLC circuit is 4.98 times as many as that of resistive load. If the internal loss increases to 1, the improvement of resonant load compared to its resistive counterpart is significantly reduced to 63% merely. As λ goes up to 10, the two curves of harvested power relevant to resonant and resistive loads are completely coincident with each other. Therefore, a conclusion can be drawn that compared to simple resistive load, the resonant circuit can harvest energy at higher magnitude over a larger bandwidth when the internal electrical loss λ is relatively small, while this outperformance disappears rapidly as λ increases. One can also remark that the maximum output power is the same for these two electrical extraction circuits (R and RLC).

Figure 4 summarizes energy harvesting performances of the resonant circuit under different values of internal losses λ. In the case of an idealized transducer (i.e. λ=0), the energy scavenger can harvest power at the same magnitude over the whole frequency range, which depends only on the mechanical damping ratio ξ m and is equal to 1/16ξ m complying with [START_REF] Caruso | Broadband energy harvesting from vibrations using magnetic transduction Trans[END_REF]. When a non-idealized transducer is considered, the half-power bandwidth of energy extraction narrows rapidly and the peak output power reduces considerably as the internal electrical loss λ increases. When λ=0.1, the dimensionless peak power Pfm a x , is 1.238 with its dimensionless half-power bandwidth being 1. As λ arrives at 1, the peak power and half-power bandwidth reduce by, respectively, 8.2% and 67% compared to the case of λ=0.1. If a considerable internal loss presents (i.e. λ=10), the decreases of peak power and half-power bandwidth become to, respectively, 49.5% and 85.9%.

Random excitation

3.2.1.

Force-induced vibration. The electromagnetic harvester is now subjected to a random force vibration which acts directly on the mass. In light of the stability, linearity and time invariance of this energy harvester, the power spectral density (PSD) of harvested power S p can be formulated as [START_REF] James | Theory of servomechanisms[END_REF] 
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where ( ¯) S s i denotes the PSD of the input random force, considered as a stationary Gaussian process, which has a sufficiently large bandwidth and whose PSD is independent of frequency, i.e. = ( ¯) S sS if . The mean square value of output power under white noise force excitation of spectral density S f c a nb ef o r m u l a t e da s : with all coefficients given by xk The indefinite integral in (17) can be calculated by either using the residue theorem [START_REF] Bak | Applications of the Residue Theorem to the Evaluation of Integrals and Sums[END_REF] or applying directly the analytical formulae provided in [START_REF] James | Theory of servomechanisms[END_REF][START_REF] Jeffrey | 3-4-definite integrals of elementary functions Table of Integrals[END_REF]. For the sake of completeness, several formulae are annexed in the appendix A. Then, the performance index of harvested power with a resonant circuit is expressed as
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It is clearly seen from (20) that PI f is a function of electrical damping ξ e , frequency tuning ratio f and stiffness ratio κ,i . e . PI f =PI f (ξ e , f, κ). In order to optimize the energy harvesting performance, a similar approach as in the case of harmonic excitation is employed to locate the global maximum of PI f (ξ e , f, κ),n a m e l y :
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Now special attention is paid to the optimal condition related to the frequency tuning ratio f, which leads to a polynomial function in f in the concise form of
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Given that ξ e , ξ m and λ are all positive, hence only two potential roots can be retained: f opt,1 =0a n df opt,2 =1:

(1) f opt,1 =0. The nullity of f opt,1 imposes that the electrical resonance does not exist, i.e. =¥ C . Therefore, the ultimate energy harvesting performance under random force vibration is attainable by connecting with a non-resonant circuit, which will be investigated in detail in section 4.

(2) f opt,2 =1. In order to facilitate the optimization analysis, f opt,2 is substituted in the expression of PI f . As a consequence, the other two optimal conditions in (21) yield two expressions briefly formulated as:
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() a It is noticeable that no rational solutions could be obtained for ξ e and κ. Therefore, one can reach a conclusion that under random force vibration, no optimal configuration of resonant circuit exists for electromagnetic energy harvesting. In other words, no additional benefits could be obtained by introducing electrical resonance into harvesting circuitry under random vibration. where S x 0 represents the spectrum of random base displacement, and the integral term can be regarded as the square value of H 2 norm of ( ¯) G s x 0 . The corresponding It is remarked that the output power is infinite, which is due to the fact that the rational function ( ¯) G s x 0 is not strictly proper, according to Plancherel and Parseval's theorem [START_REF] De Oliveira | Fundamentals of Linear Control: A Concise Approach[END_REF]. Therefore, it suggests that the output power is of ideal white noise type when subjected to random base vibration of displacement profile.

Base acceleration type. Equation [START_REF] Wang | Vibration energy harvesting by magnetostrictive material Smart[END_REF] implies that when shunted with RLC circuit, the optimization procedure of an harvester undergoing a random acceleration disturbance is exactly the same as in the case of random force vibration.

Non-resonant circuit

In this section, an optimization analysis of electromagnetic energy harvester connected to a non-resonant circuit ( =¥ C , L=L i , figure 2(b)) is performed in the scenarios of sinusoidal and random vibration, and some ready-to-use formulae of optimal resistive load are derived analytically.

Sinusoidal excitation

Given that the frequency tuning ratio f=0, the expressions of normalized output power under all three excitation scenarios (8)-( 10) can be further simplified into: with all aforementioned coefficients given by: The optimal expressions of normalized excitation frequency α under different excitation scenarios will be derived separately in the following context. In order to solve the simultaneous equations (29) and (31), two different approaches could be imagined. The first approach is described as follows: with (31) being regarded as a cubic equation in α 2 , the closed form of optimal α 2 can be then obtained analytically as a function of ξ e by using the cubic formula provided in [START_REF] Weisstein | [END_REF]; then substituting it into (29), yields an eventual function which depends only on the electrical damping ξ e , from which one can determine ξ e,opt and consequently α opt can be achieved by the back substitution. The second approach is exactly the reverse sequence of previous one. The authors remark that the latter strategy is more effective to yield optimal expressions in a concise way, which is then adopted in the following study.
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The optimal expression for α can be eventually given in the form of: One can observe that the polynomial expression (32) is of order 20 in α, the results demonstrated in the following work are then calculated numerically. Figure 5 depicts the optimization analysis of electromagnetic energy harvesting under harmonic force (or base acceleration) excitation. Two series of simulations have been performed for two extreme cases, namely no electrical losses (-: λ=0, κ=1 × 10 50 ) and considerable losses ( : λ=100, κ=1). It is noticeable that as the mechanical damping increases, the optimal α remains unchanged under these extreme circumstances, thus one can conclude that the optimal scenario takes place when an energy harvester is excited at its resonant frequency. Including internal electrical losses in the optimization process leads to the well-known results. Figure 5(b) shows the evolution of optimal normalized resistive load defined as xk = Re e 2 for these two extreme cases. One can notice that Re is dimensionless.
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Finally, we conclude that the optimal Re is formulated as
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which can be rewritten in a dimensional form as:
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which is consistent with the finding of Stephen [START_REF] Stephen | On energy harvesting from ambient vibration[END_REF].A s depicted in figures 6(a)-(c), the harvested power including internal losses (34) is always greater than the power harvested without including losses, namely with

x = R 14 e opt m ,
. Hence, one can remark that the maximum output power (marked by filled circles in figure 6) can be successfully predicted by using (34) and the exclusion of internal losses will reduce the maximum attainable power. The underestimation of maximum attainable power rises from 0.2% (ξ m =0.01) to 10.4% (ξ m =0.10) when internal losses are neglected. In other words, the internal electrical losses can be neglected for lightly damped system, while for moderately or highly damped structure, this simplification can lead to considerable underestimation. And the underestimation of maximum power rises as the mechanical damping ratio ξ m increases. One can also observe from figure 6 that the normalized power Pf and the optimal load R e, opt decreases dramatically as the mechanical damping ratio ξ m increases. Figure 6(d) demonstrates the frequency responses of harvested power in the optimal scenario for three different values of mechanical damping ratio ξ m . All peaks locate at 1, namely the forcing frequency is equal to the natural frequency and their magnitudes match with the ones found in previous contour plots. And a decrease of 85% is recorded for the maximum achievable power as the mechanical damping ratio ξ m increases from 0.01 to 0.05. Similar to the previous case, the optimal expression with respect to α can be formulated as: The aforementioned strategy is again adopted in this problem. Figure 7 depicts the contours of normalized output power with respect to normalized excitation frequency α and normalized resistive load Re for two cases, namely no electrical losses (λ=0, κ=1 × 10 50 ) andwithlosses(λ=5, κ=25).Itis clearly seen from figures 7(a) and (b) that unlike the case of force/base acceleration vibration, the optimal excitation frequency deviates from its resonant frequency and more the mechanical damping increases, more the deviation is important in both cases with and without electrical losses. And it is noted that without electrical losses, no local maximum can be found when the mechanical damping ratio exceeds a certain limit, as shown in figure 7(c). For the purpose of comparison, the maximum powers predicted by the classical formula (34) in the force excitation case and by the exact equation (37) are located for different mechanical damping ratios in figure 7. One can observe that there does exist an extremum of power in the rational range of mechanical damping ratio ξ m .I ti sa l s o noticeable that the maximum power predicted by (34) is close to the exact one when ξ m is small, while the prediction error becomes considerable as ξ m increases gradually (at ξ m =0.10, an underestimate of 7.2% for maximum power is observed and the optimal excitation frequency deviates by 4% from its natural frequency).
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Without electrical losses, a critical damping ratio ξ cr has been underlined above which no local maximum can be found. Figure 8 plots the change of critical damping ratio ξ cr as a function of internal resistive loss λ, with excluding the influence of self-inductance of coil, i.e. k ¥(the derivation of critical damping is discussed in detail in appendix C).Wi th λ=0, the critical damping ratio ξ cr is equal to 0.0754, which agrees with the results in figures 7(a)-(c). Besides, our original optimization analysis highlights that when the resistive loss λ lies in the interval [1, 3.5], the critical damping ratio is always larger than 0.1, which means that there always exist an extremum for a typical mechanical system (i.e. ξ<10%).I f λ resides outside this range, the critical damping ratio ξ cr fluctuates significantly and no evident distribution rule could be distinguished. with a 0 , a 1 , a 2 and a 3 defined as previously. Thus, the squared transfer function from the force to the square root of power is simplified as:

It is noticed that a negative sign is present in its numerator, which is due to the fact that a =-s 22 . The mean square value of output power under white noise random force excitation of spectral density S f can be formulated as: The influence of self-inductance can not be excluded if the product ω s L i is not ignorable any more. When the selfinductance L i of coil is negligible, the optimal resistive load is then related to the internal resistance by the following expression Substituting the optimal electrical damping ratio (45) into (43), the maximum performance index reads If the self-inductance L i is sufficiently small, i.e. k ¥ ,t h e maximum performance index (48) could be further simplified as Remark 1. The previous expressions indicate that for an electromagnetic energy harvester under random force excitation, there does exist an optimal external electrical load (thus a maximum of output power can be observed), when one considers the presence of internal resistance and selfinductance of coil. This new result contrasts sharply with the conclusion drawn in [START_REF] Tang | Vibration energy harvesting from random force and motion excitations Smart[END_REF] that no optimal value can be found when internal losses are neglected. mechanical damping ratio ξ m is preferred for greater energy harvesting performance, as depicted in figure 9.
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Remark 3. As indicated in (48) and (49), the maximum performance index is inversely proportional to the seismic mass M s . And it is clearly seen from the simplified expression (49) that if the product λξ m is constant, a lighter mass will then enhance the harvesting performance under random force excitation.

Remark 4. Considering an extreme case where the electrical losses and inherent mechanical damping are sufficiently small (i.e. l  0, x  0 m and k ¥ ), then the maximum performance index (48) can be written in an extremely concise form: PI f,max =1/2M s , which is in accordance with [START_REF] Tang | Vibration energy harvesting from random force and motion excitations Smart[END_REF]. In this idealized case, the maximum output is only dependent of the seismic mass. With this transfer function begin not strictly proper, we conclude that the mean square value of output power in this scenario is infinite, as remarked in section 3.2.2. Base acceleration type. When the base acceleration is chosen as excitation input, the output power of energy harvester can be related to that under force excitation by
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, according to [START_REF] Wang | Vibration energy harvesting by magnetostrictive material Smart[END_REF]. Therefore, the optimization procedure and the optimal formulations are the same as in the circumstance of random force excitation. Besides, the previous remarks 1 and 2 will hold in this scenario, while the last two remarks related to seismic mass (remarks 3 and 4) have to be modified due to the presence of factor M s 2 . Thus the upper bound on the harvested power is reformulated as
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, which agrees with [START_REF] Halvorsen | Energy harvesters driven by broadband random vibrations[END_REF][START_REF] Langley | A general mass law for broadband energy harvesting[END_REF].

Conclusions

To the best knowledge of the authors, this paper investigated systematically for the first time the influence of internal electrical losses of electromagnetic transducer on the optimization of electromagnetic energy harvesting under various excitations.

The optimization analysis related to energy harvesting coupled with a RLC circuit indicates that, under sinusoidal excitation, the energy converter can exhibit ultra-wide bandwidth harvesting performance in the absence of internal electrical losses, while this capability is considerably influenced by the presence of internal losses. The performance of energy harvester connected with resonant circuits ceases to outperform its counterpart coupled to a simple resistive circuit when the internal loss exceeds a certain threshold. When subjected to random excitation, the authors demonstrate that no additional gain can be attained by introducing electrical resonance in the circuit, i.e. the optimum design under random vibration is to connect electromagnetic transducers with non-resonant circuits.

When shunted by a non-resonant circuit, it is shown that the long-believed optimization condition always holds regardless of magnitude of internal losses under the circumstance of force or base acceleration vibration, while the optimal resistive load should be equal to the sum of internal resistance of coil and the electrical analog of the mechanical damping. In the case of base displacement vibration, the optimal excitation frequency is always greater than the natural frequency, and the degree of deviation depends on the mechanical damping. Besides, there exists a critical damping ratio ξ cr , beyond which no optimum can be achieved. And this threshold is 7.54% in the absence of electrical losses. An evolution of ξ cr with respect to the resistive loss λ is depicted, which suggests that there always exist a local maximum for a typical mechanical system (i.e. ξ<10%) if λ satisfies l Î [] 1, 3.5 . When subjected to random excitation, an optimal expression of resistive load is derived analytically in the scenario of force or base acceleration vibration, which contrasts sharply with the existing literature in which the influence of internal losses is excluded and a conclusion has been drawn that no optimum could be obtained. It is also noted that the upper bound of attainable power is only a function of the seismic mass and the PSD of excitation sources.

It should be emphasized that the current work focuses on linear electromagnetic energy harvesting so that the conclusions made and optimal parameters derived can not be extended to cases where nonlinearity presents in the electromechanical system.

Finally, the optimization analyses performed in this paper is based on maximizing the power harvested by the resistive load. Meanwhile, optimum design of harvesters can be also carried out according to other metrics, such as energy harvesting efficiency, which is defined as the ratio between the power harvested by the electrical load and the total input energy. The proposed optimization framework can be easily adapted to analyses according to optimizing the energy harvesting efficiency. It is observable that dP I f /d ξ m <0 always holds for any positive value of ξ m .

Appendix C. Derivation of critical damping ratio ξ cr

By omitting the influence of self-inductance of coil, the eventual optimal expression (37 As mentioned in [START_REF] Tai | On optimization of energy harvesting from base-excited vibration[END_REF], the necessary and sufficient condition of absence of local maximum for a polynomial equation is that its corresponding discriminate is equal to zero. Given that (C.1) is of order 5 in α 2 , the critical damping ξ cr at each value of λ is estimated numerically by using Maple. For λ=0, the previous quintic equation (C.1) is reduced to cubic one, and its discriminate can be analytically expressed as  which yields the value at ξ cr,λ=0 =0.0754, validating the finding in [START_REF] Tai | On optimization of energy harvesting from base-excited vibration[END_REF].
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Figure 1 .

 1 Figure 1. Electromagnetic energy harvester: (a) external force excitation; (b) base excitation.

Figure 2 .

 2 Figure 2. Circuit configurations corresponding to three possible approximations: (a) R circuit ( ¹ R 0

Figure 3 .

 3 Figure 3. Normalized power Pf versus normalized frequency α for ξ m =5% and γ=0.5 under harmonic force excitation: (a)-(c) harvesting performance of a SDOF energy scavenger shunted with R and RLC circuits for different internal electrical losses λ=0.1, 1 and 10.

3. 2 . 2 .

 22 Base motion vibration. Base displacement type. When the energy harvester undergoes a random motion excitation of displacement type, the mean square value of output power is expressed as:

Figure 4 .

 4 Figure 4. Harvesting performance of a SDOF energy harvester shunted with RLC circuit for ξ m =5% and γ=0.5 under harmonic force excitation. (-: λ=0, LLL: λ=0.1, ---: λ=1, -•-•-: λ=10).

where f 1

 1 =e 1 and f 2 =e 2 , and other coefficients are expressed as:

Figure 5 .

 5 Figure 5. Optimization analysis harmonic force or base acceleration-induced vibration for two extreme cases (-: λ=0, κ=1 × 10 50 ; : λ=100, κ=1): (a) optimal normalized excitation frequency α opt against mechanical damping ξ m ; (b) optimal normalized resistive load Re opt , versus mechanical damping ξ m .

4. 2 .

 2 Random excitation 4.2.1. Force-induced vibration. The SDOF electromagnetic energy harvester attached with RL circuit, as shown in figure 2(b), is now subject to random force excitation. The frequency tuning ratio f is equal to zero and the generalized

Figure 6 .

 6 Figure 6. Harvesting performance under harmonic force or base acceleration-induced vibration for different mechanical damping ratios with λ=5 and κ=25: (a)-(c) contour of normalized power Pf (or Px ¨0) as a function of α and Re (filled blue square markers: maximum power without electrical losses, filled red circle markers: maximum power predicted by (34) with consideration of internal losses); (d) frequency responses of harvested power with optimal parameter (34)( black line: ξ m =0.01, red line: ξ m =0.05, cyan line: ξ m =0.10).

Figure 7 .

 7 Figure 7. Contours of normalized output power Px0 as a function of α and Re under harmonic base excitation of displacement profile for two series of parameters: (a)-(c) no electrical losses (λ=0, κ=1 × 10 50 ); (d)-(f) with electrical losses (λ=5, κ=25). Filled blue square marker: maximum power predicted by (34) with consideration of internal losses; Filled red circle marker: maximum power obtained by (37).

transfer function ( 3 )

 3 can be further reduced to:

4. 2 . 2 .

 22 Motion-induced vibration. Base displacement type. When the base displacement is again characterized by a stationary random process, we focus on the corresponding transfer function which leads to:

Figure 8 .

 8 Figure 8. Critical damping ratio ξ cr versus internal resistive loss λ with k ¥under harmonic base excitation of displacement profile.

Figure 9 .

 9 Figure 9. Maximum performance index PI f,max predicted by (48) as a function of mechanical damping ratio ξ m and internal electrical loss λ under random force excitation with M s =1 and κ=25.
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  Appendix A. Formulae of indefinite integralsSeveral formulae are provided here for indefinite integrals described by the highest power of h n (x), with the two functions being in the general form =++ n=3 and 4, the integrals are analytically formulated by Derivative of PI f with respect to ξ mThe denominator function of optimum performance index (Therefore, the derivative of optimum performance index PI f with respect to mechanical damping ratio ξ m is formulated as

  It should be mentioned that the normalized power Pf , Px 0 and Px ¨0 are all dimensionless. And their common denominator D A=α 2 -1 and B=f 2 -α 2 . It is noted from (8) to (10) that the output power is now controlled by electrical damping ratio ξ e , frequency tuning ratio f and stiffness tuning ratio κ. Mathematically speaking, the global maximum of
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	with xf k ¯() P ,,				
	• Force excitation:				
	w == ¯() xka P FM D 2 .8 ss 2 f e P 24				
	• Displacement excitation:				
	w == ¯() xka P 28 P KX D ss 0 2 .9 e x 2 0				
	• Acceleration excitation:				
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e is attained at points satisfying the following conditions
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  =0, b 1 =-ξ e κ 2 and b 2 =0. The performance index of energy harvester is then expressed as:

							One can also transform (45) into a dimensional form of
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	where E[•] denotes the mean square value, and these two
	functions are defined as, respectively:
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	with b 0 From (43), the mean square value of output power E[P f ] is
	now controlled by the electrical damping ratio ξ e . The global
	maximum of PI(ξ e ) is located at points satisfying the
	following condition:				
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	which yields the following optimal expression
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  Remark 2. Given that the internal electrical losses R i and L i are constant, the optimum energy performance index (48) is a monotonically decreasing function of ξ m (a detailed derivation is provided in the appendix B). It suggests that a smaller
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