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A SysML-based methodology for mechatronic systems architectural design

Faïda Mhenni ⇑, Jean-Yves Choley, Olivia Penas, Régis Plateaux, Moncef Hammadi

LISMMA-SUPMECA, 3 Rue Fernand Hainaut, Saint-Ouen, France

Mechatronic systems are characterized by the synergic interaction between their components from dif-

ferent technological domains. These interactions enable the system to achieve more functionalities than

the sum of the functionalities of its components considered independently. Traditional design approaches

are no longer adequate and there is a need for new synergic and multidisciplinary design approaches

with close cooperation between specialists from different disciplines.

SysML is a general purpose multi-view language for systems modeling and is identified as a support to

this work.

In this paper, a SysML-based methodology is proposed. This methodology consists of two phases: a

black box analysis with an external point of view that provides a comprehensive and consistent set

requirements, and a white box analysis that progressively leads to the internal architecture and behavior

of the system.

1. Introduction

Over the last decades, complexity of systems has considerably

grown and systems are involving more and more functionalities

and new innovative technologies. New functionalities are achieved

by the interconnection and synergic interactions between compo-

nents from different disciplines such as mechanical, electric/elec-

tronic and software components [1,2]. Such systems, called

mechatronic systems are characterized by their synergic and

multi-disciplinary aspect [1] and are equipped with various com-

ponents such as sensors, electronic components, actuators and

mechanical structures that interact in order to perform the overall

function(s) required. A successful design can be achieved only if

the overall system is considered and the interactions between

components are thoroughly understood and planned [1]. Tradi-

tional design for multidisciplinary systems employed a sequential

design-by-discipline approach. In such approach, the design is

made up of a succession of sequences. The design of an electrome-

chanical system for instance, is often accomplished in three steps.

First, the mechanical parts are designed and when the mechanical

design is complete, the power and microelectronics are designed

and finally, the control algorithm is designed and implemented

[3]. In this sequential approach, each sequence locks some aspects

of the design that become additional constraints to the next

sequence. In this way, the final system is not optimized. Another

drawback of this approach, is that it is time consuming since each

team can begin working only when the previous has finished.

Sequential approach is thus no longer adequate and there is a need

for new synergic and multidisciplinary design approaches and

tools [4] allowing close cooperation between specialists from dif-

ferent disciplines [2,5]. To cope with this need, new approaches,

standards and tools emerge.

Systems Engineering (SE) is an ‘‘interdisciplinary approach and

means to enable the realization of successful systems’’ [6] that

focuses on the entire system rather than on different components

independently. SE is thus appropriate for the design of complex

systems [7], for instance mechatronic systems. Many standards

dealing with SE arose to describe the processes and activities to

be undertaken to assist the engineering of complex systems. The

IEEE 1220 standard [8] focused on the technical processes of SE

from the requirements analysis to the definition of the physical

system. Three processes are described in detail in this standard:

Requirements analysis, Functional analysis and allocation and,

Synthesis, each process having verification and validation sub-pro-

cesses. The EIA 632 standard [9], covers a larger scope since, in

addition to the technical processes of system design, it includes

the acquisition and supply, technical management, product reali-

zation and technical evaluation processes. Finally, the third well

known standard about SE, the ISO-IEC-15288 [10], describes the

processes of the whole lifecycle of a product.
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In addition to the process standards cited above, some tools and

languages were developed in order to support the processes

described in the standards. Among systems engineering dedicated

languages, SysML [11,12], the object-oriented Systems Modeling

Language developed by the Object Management Group (OMG)

and the International Council on Systems Engineering (INCOSE) is

being widely used for various purposes in both academic and

industrial fields [13–18].

Having experienced SysML in the O2M (Modeling and Design

Tools for Mechatronics) French research project [19] as well as in

different teachings, the authors are convinced of its capabilities

in the design process in general and especially in the mechatronics

design. These capabilities are discussed along this paper.

However, the availability of standards and tools is not enough

for the successful development of complex systems. Only an

appropriate methodology can lead to an optimal use of the avail-

able tools by providing a set of practices, procedures and rules to

follow during the design phase. As long as we know, few method-

ologies were developed to describe how to achieve the appropriate

processes of the available standards with SysML. This led the

authors to developing their own methodology using SysML trying

to take benefit of this language and the model based approach,

be compliant with the standards processes while not loosing the

key concepts they have been using for several years like APTE-

FAST-SADT based methodologies. These methodologies, although

relevant, are not implemented by tools allowing to build a consis-

tent complex (multi-view, multi-level) model. These concepts

were enriched and expressed with some of the SysML diagrams

presented in the proposed methodology.

This methodology, based on the authors’ experience in mechan-

ical engineering design and on the knowledge acquired from their

contribution in several research projects as part of multi-disciplin-

ary teams, is presented in this paper.

The paper is organized as follows. A brief summary of the most

known SE methodologies is given in Section 2. Section 3 discusses

the adequacy of SysML for mechatronic systems design. The pro-

posed methodology is given in Section 4 through a case study

example. A discussion is given in Section 5 and finally a conclusion

is given in Section 6.

2. State of the art

The most widely used methods for systems engineering are

summarized in [20] and include Harmony-SE, OOSEM (Object-Ori-

ented Systems Engineering Method), RUP-SE (Rational Unified Pro-

cess for Systems Engineering) and Vitech Model-Based System

Engineering (MBSE) Methodology. Among these methods, the

two more popular methodologies Harmony-SE and OOSEM are

described hereafter.

Rational Harmony for Systems Engineering (Harmony-SE).

Harmony-SE is part of an Integrated Systems and Software

Development Process: Harmony. It is a service request driven

approach using SysML language ([20,21]). It includes three top-

level processes: Requirements analysis process consisting in collect-

ing stakeholder requirements and translating them into (functional

and non-functional) system requirements, System functional analy-

sis process consisting in translating functional requirements into a

coherent representation of system operations and finally Design

synthesis process consisting in the development of a system archi-

tecture satisfying both functional requirements and performance

constraints. Most of the artifacts of this methodology are built with

SysML diagrams.

Object-Oriented Systems Engineering Method (OOSEM).

OOSEM is a ‘‘top-down, scenario-driven process that uses

SysML (the SysML specification was adopted by OOSEM since

2006) to support the analysis, specification, design, and verification

of systems’’ [22]. OOSEM includes the following development

activities [20] Analyze stakeholder needs, Define system require-

ments, Define logical architecture, Synthesize candidate allocated

architectures, Optimize and evaluate alternatives and Validate and

verify system. These activities are performed in an iterative way

and can be applied at each hierarchy level of the system. Manage-

ment process is used to support each of these activities. SysML is

the predominant modeling language used in generation of the

activities artifacts.

In these methodologies, system functionality is mainly sce-

nario-based or service request-based and serves as a support for

the software coding. There is a lack of a hierarchical breakdown

of system functions that facilitates the definition of alternative

architectures by means of different functional groupings. There’s

also no traceability links clearly established between system func-

tions and components in the presented methodologies. The contri-

bution of this paper is to provide a methodology that copes with

these lacks.

Indeed, having a mechanical engineering background, the

authors are used to functional analysis tools like SADT (Structured

Analysis and Design Technique) also known as IDEF0 (Integration

Definition for Functional Modeling) [23] that allows a successive

breakdown of system functions into different hierarchical levels

also showing the flows distribution. This way of functional analysis

gives a better understanding of system functionality and allows

innovation through the different possible ways of grouping the

system functions and allocating them to components. Different

system architectures can then be defined and compared. The

extensions included in SysML to support systems modeling include

these constructs (see Section 3.2.2) that are maintained in the pro-

posed methodology.

3. SysML for mechatronic systems design

In this section, the adequacy of SysML for mechatronic systems

design will be discussed. For this purpose, Section 3.1 first

describes the requirements for a successful design of mechatronic

systems. Then Section 3.2 gives an overview of SysML diagrams

and how far they match with mechatronic systems design model-

ing requirements.

3.1. Mechatronic system design

Mechatronic systems are multi-disciplinary systems and con-

tain subsystems or components from different integrated disci-

plines interacting together. Their design aims at satisfying

system-level requirements or functionalities. These are only

obtained thanks to the interactions between components. The

old fashion of splitting design into separate disciplines is no longer

relevant for mechatronic design where the disciplines are interde-

pendent. Collaborators from different disciplines have to work

together simultaneously on a system-level model to understand

the whole behavior of the system and the dependencies among

their different disciplines [2]. This usually leads to some issues,

mainly communication and understanding issues, due to their

respective different backgrounds and jargon.

Building a system-level model, in a unified unambiguous lan-

guage, is a key point for a successful mechatronic design. Sys-

tem-level model is the reference each contributor during the

system design should refer, to at anytime, to have unique, up-to-

date data that is shared by everyone. However, it is necessary that

everybody can easily find the information needed. Then, a multi-

view model with different representations of the main system is
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necessary. These different views shall be linked together with

traceability links and be consistent with each other.

3.2. SysML overview

SysML is a profile of UML (Unified Modeling Language) dedi-

cated to systems engineering modeling. It has been built from

the experience gathered on UML2.0 and on successful engineering

graphical representations [24] such as Enhanced Functional Flow

Block Diagram (EFFBD). UML was firstly used for software develop-

ment and consequently it has overly software-oriented semantics.

So it was not really appropriate for complex systems design

namely because it does not propose a clear expression of physical

flows passing between the systems components. Managing some

system aspects needed proper stereotypes to be developed. These

lacks led the OMG (Object Management Group) to derive a new

profile specified for SE, the SysML language. It was constructed

as a subset of UML, completed by additional modeling possibilities

specific for SE.

SysML is designed to provide simple but powerful constructs to

model a wide range of systems engineering problems. It is partic-

ularly effective in specifying requirements, structure, behavior

and allocations, and constraints on system properties to support

engineering analysis [12]. It has inherited UML abilities, notably

the advantages of object-oriented methods for complex system

design and of its standardized aspect.

This new profile, SysML, helps performing several design tasks

such as reliability study [16], complex and embedded systems

modeling [25]. It is also more and more adapted by industrials such

as Valeo, a supplier of automobile systems [14,26] and Airbus, a

designer and integrator of aeronautic systems [13] to cite only a

few examples of SysML deployment.

3.2.1. Requirements modeling with SysML

Requirement managing includes requirement capture, and then

requirements analysis (defining critical requirements, making

trade-offs between conflicting requirements etc.) and finally allo-

cation (allocating requirements to use cases, components, test

cases etc.). Requirement diagram, helps capturing, analyzing

and maintaining traceability of requirements in the system model-

ing. A non-ambiguous expression of requirements and an appropri-

ate allocation of requirements to corresponding parts of the system

are compulsory to ensure the validation of final product.

When viewing a large number of requirements on a require-

ment diagrams it is very hard to depict and relate requirements.

In this case, requirements can also be displayed in tables or matri-

ces showing the desired properties and relationships among

requirements and other model elements.

SysML also allows specification of test cases and linking them to

the corresponding requirements to specify how these require-

ments should be verified.

3.2.2. Behavior modeling with SysML

SysML provides different diagrams to model different behavior

kinds and thus offers a comprehensive description of behavior that

helps to reach a complete specification of system [22].

� Flow-based behavior: behavior is detailed in terms of the flow

of inputs, outputs and control. An Activity diagram represents

a controlled sequence of actions that transforms inputs into

outputs. It details functional architecture of the system and

describes the different functions to be performed by the system

and their hierarchical breakdown showing flow distribution.

� Event-based behavior is expressed in terms of response of

blocks to internal and external events. State machine diagrams

are used to identify different states (or operating modes) of sys-

tem. Establishing such diagrams helps to define the transition

from one state to another. Each mode is then treated separately

and a comprehensive description of the behavior of system is

established. If particular functions or requirements are needed

for one state they will not be omitted. State Machine Diagram

illustrates the different states (operating modes) the system

will have through its lifecycle.

� Functionality of system, in terms of the services it provides to

potential users, is represented by use cases. Use Case Diagrams

represent functionalities in terms of how a system or other

entity is used by external entities (such as actors) to accomplish

a set of goals.

� Message-based behavior: used to model service-oriented con-

cepts. Sequence diagrams represent interactions either

between system and its environment or between different com-

ponents of system at various levels of system hierarchy. It illus-

trates scenarios of use cases.

3.2.3. Structure modeling with SysML

� Block Definition Diagram represents structural elements that

are called blocks with their properties, relationships and

composition.

� Internal Block Diagram represents the interfaces and connec-

tions between parts of a block, it is a modification of the UML

composite structure diagram.

� Parametric Diagram represents constraints on property values

and parameters relationships. A parametric diagram aims at

identifying the main system parameters as well as their rela-

tionships seen as constraints (e.g. through equations), in order

to be exported to other simulation tool to be solved.

� Package Diagram represents the organization of a model in

terms of packages that contain modeling elements.

4. SysML based methodology for mechatronic systems

architectural design

4.1. Methodology overview

The development of a new mechatronic system (product) goes

through different steps from requirements to the final product.

These steps can be represented by the cycle in Fig. 1 [27]. As the

chart shows, the development process begins with a system design

phase. In this phase, the system is considered as a whole. The sys-

tem level specifications and constraints are identified and then

derived into component level specifications while taking into

account the upper level constraints. Domain specific design is then

started in a coordinated way such as the interactions between dif-

ferent domains and their consequences are thoroughly accounted

for as it was stated in the system design phase. The scope of the

SysML-based methodology presented in this paper is limited to

the System Design phase. Indeed, SysML is meant to complement

the already existing domain specific tools by bringing a system

view which the domain specific views shall keep consistent with.

As a complement to the methodology presented in this paper,

domain specific design is performed with a variety of other tools

such as Computer Aided Design and Finite Element Analysis tools.

The proposed SysML-based methodology aims at assisting the

designer in the system design phase to have a consistent modeling.

It also attempts to guide the designer facing the variety of dia-

grams in SysML by giving a sequence of uses of these diagrams

in different design stages. It is a two-phase modeling process. In

the first phase, the system is considered as a black box and the

phase, called black-box analysis only gives an external point of

view of the system. The second phase, called white-box analysis

is an internal point of view of the system where the internal
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architecture is progressively determined. Each analysis phase is

made up of several steps like described in Fig. 2. In each step,

one or more SysML diagrams are used to describe a specific point

of view of the system. The sequence of diagrams contributes pro-

gressively in the emergence of a consistent set of requirements

for the first phase and system architectures for the second one.

Bad requirements specification could lead to significant cost

and schedule overruns, failures to deliver all of the functionality

specified, and systems that do not have adequate quality [28].

The aim of the black-box analysis is to build a comprehensive and

consistent set of requirements to minimize expansive design

changes due to bad specification. This is made through a sequence

of steps with potential iterations between them. First, the system

mission and objectives are determined. Then, the whole lifecycle

is identified in order to take into account the constraints of each

phase of the lifecycle. The system boundary specifying what is

inside the system shall also be thoroughly identified since the early

stages in the design process. For each phase of the system lifecycle,

the system context including the interactions the system has with

its surrounding shall be considered. Based on this, the external

interfaces supporting these interactions shall be defined. Then,

the external behavior (with regard to the user) of the system is

modeled through the user operating modes, the services (or use

cases) of the system and functional scenarios.

Requirements are collected during all the steps of the black-box

analysis and traced to the model elements that helped in their

identification and specification.

In the white-box analysis, the system architecture is progres-

sively identified. First a hierarchical model of the system functions

Fig. 1. Mechatronic system development cycle [27].

Fig. 2. Black-box and white-box analysis steps.

Fig. 3. Case study the go-to-GPS telescope.

Fig. 4. Initial requirements.
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breakdown is established. Then, based on the functional model,

components are allocated to functions to synthesize candidate log-

ical architectures. By logical architecture we mean an architecture

based on general classes of components and not specific fully

defined components. Based on trade-offs and further simulations

with external tools, physical architecture is defined by allocating

the optimal physical (existing COTS or new) components to the

logical ones. During this phase, new requirements may emerge

and shall be traced to the black-box requirements and to the

related model elements.

More detail about all these steps and how they are represented

with SysML will be given below in the case study section. Even

though these steps are given in a sequential way, in each step we

can go back to previous steps either because a requirement is mod-

ified (which is a current event in industrial projects) or because the

designer reminds aspects that have not be accounted for.

Thus the proposed methodology addresses the following prob-

lems. First, it gives a kind of road-map to help persons intending

to use SysML choosing the right diagrams (among the variety of

available diagrams) for the right purpose. It also highlights how

to build a consistent model an maintain consistency between the

different views of the system during all the design phase. Finally,

the solution is defined progressively based on a comprehensive

set of requirements thouroughly determined and a hierarchical

functional modeling.

The methodology will be illustrated on a telescope named ‘‘Go-

To GPS Telescope’’ (Fig. 3). In the next section, the case study is

briefly introduced. Then, the steps of the Black-box analysis phase

Fig. 5. System lifecycle.

Fig. 6. Telescope context.
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and the white-box analysis phase are presented respectively in

Sections 4.3 and 4.4.

4.2. Case study: the go-to GPS telescope

The ‘‘Go-To GPS Telescope’’ used as a case study in this paper is

computerized and includes a double-axis motorized half-fork

mount. It is equipped with an optional GPS receiver, a built-in

magnetic north sensor (compass) and an integrated electronic level

sensor, in order to permit an automatic initialization of the mount

and an easy access to sky objects (Fig. 3).

This Go-To technology is patented and mainly proposed by Cel-

estron (NexStarTM, SkyalignTM, All-Star Polar AlignmentTM) and

Meade (ETX, Autostar, LightSwitchTM). Three operating phases will

be studied: the set-up of the mount (polar alignment) in equatorial

or alt-azimuth mode, the online flash upgrading of the embedded

software and online updating of the built-in sky objects database,

and finally the visual observation of sky objects.

4.3. Black-box analysis

The proposed methodology is a top-down approach. It begins

with a black-box analysis where the system of interest is consid-

ered as a black box, meaning that its internal structure is still not

defined. This modeling phase is an external point of view of the

system aiming at defining a consistent set of requirements the sys-

tem must satisfy, and that will be the baseline for the next phases.

Fig. 7. External interfaces.

Fig. 8. User operating modes.
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4.3.1. Step 1: Definition of the global mission of the system

In this step, the global mission (or function) of the system shall

be identified. It is usually issued from textual, oral or partial defi-

nitions of the user needs. The main mission may be given in a hier-

archical decomposition into sub-functions. It is captured in SysML

as one or more requirements with possible sub-requirements. A

Requirement diagram (Req) represents these initial requirement(s)

and their relationships to each other. Containment links are used to

link the main requirement to its sub-requirements (Fig. 4). During

the next steps of analysis, other requirements will be identified

and will progressively be captured in the system model.

4.3.2. Step 2: Identifying the system lifecycle

In order to have a comprehensive set of requirements, all the

system lifecycle phases as well as the stakeholders in each phase

shall be identified, and the corresponding requirements captured.

Indeed, government regulations are imposing more restrictions

on all the lifecycle phases of system to take into account environ-

mental aspects, safety measures etc. Available manufacturing,

assembly, testing, transportation and all other needed means dur-

ing the whole system lifecycle shall be considered. A State Machine

Diagram (STM) is used in order to define the different stages of the

whole lifecycle of the system and the transition conditions from

one stage to another. Each stage of the lifecycle is represented by

a ‘‘state’’. An example of lifecycle is given in Fig. 5. Each phase of

this lifecycle will then be detailed in further diagrams, all along

the different steps of this modeling process.

4.3.3. Step 3: Modeling the system context

It is very important to define the boundary of the system in the

beginning of the study to identify what is within the boundary and

what is outside, in other words, what exactly has to be developed.

Boundary definition prevents from doing extra work by developing

things outside the boundary, not delivering what is actually

needed by excluding some parts. Then, for each phase of the

lifecycle, an exhaustive list of the external interfacing elements

Fig. 9. Use case diagrams.

Fig. 10. The functional scenarios.
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(stakeholders, external systems and actors) and their interactions

with the studied system are specified. A SysML Block Definition

Diagram (BDD) represents the system and its interactions with

its surroundings. These interactions shall be considered during

the design phase and specified within the requirements. Let’s note

that, in SysML, an actor (represented by the stickman icon) speci-

fies a role played by an external entity that interacts with the sub-

ject. This external entity is not necessarily a human. To ensure

consistency, each context diagram is linked to the appropriate

phase of the lifecycle, i.e. to the state representing this lifecycle

stage (see Fig. 6).

4.3.4. Step 4: The external interfaces

In order to define more precisely the interfaces between the

system of interest and the actors that interact with it, an internal

block diagram (IBD) is created to complete the BDD of the context

(Fig. 7). The external interfaces shall be consistent with the context

diagram i.e. all the actors that figure in the context diagram shall

also be on the IBD representing the external interfaces.

Identifying the interface ports at this early stage prevents from

forgetting some of them later when identifying the internal struc-

ture cause once defined, the ports are kept in the model and auto-

matically populated in future diagrams. Consistency is then

ensured both with previous steps in the black-box phase as well

as with the next white-box phase. Future changes of these ports

will also be automatically propagated back to the black-box

models.

4.3.5. Step 5: The user operating modes

For each phase of the lifecycle (at least for the main operating

phase), the user operating modes have to be determined and inter-

connected with a State Machine Diagram (STM) in terms of states

and transitions. The Operating modes of the Telescope are repre-

sented in Fig. 8. The system operating modes detail the usage of

the system during its ‘‘Operating’’ stage of its lifecycle. The ‘‘oper-

ating modes’’ state diagram is then linked to the ‘‘Operating’’ state

of the lifecycle.

4.3.6. Step 6: The services provided by the system

For each user operating mode, each services provided by the

system to the end-user is modeled by a Use Case. The dependency

relationships among use cases as well as the actors that are

involved in each use cas are represented in a Use Case Dia-

gram (UCD). To ensure consistency with the system operating

modes, each use case is linked with the relevant operating mode

(i.e. state).

UCD diagrams for Initialization and Update user modes are given

in Fig. 9. In the first diagram, we see that the Set-up use case

includes three use cases. This dependency should be accounted

for when detailing the system behavior.

4.3.7. Step 7: The functional scenarios

For each service (or use case), a sequential description of func-

tional scenarios may be defined with one or more sequence dia-

grams (SEQ). Sequence diagrams are strongly coupled to the UC

they detail. In a sequence diagram, the interactions between the

system and its context (external actors and/or systems) are

detailed. The same actors that are linked to the use case shall be

on the corresponding sequence diagram. Internal operations may

also emerge from this diagram and will be used in the functional

model during the white-box analysis.

An Example of sequence diagram is given for the telescope

(Fig. 10). At the right hand side we can find the lifeline of the sys-

tem, and in the left hand side the lifelines of the different actors.

Interactions are represented as exchanged messages (arrows on

the diagram). Reflexive messages (arrows with the same source

and target) represent the operations that the system shall perform.

Fig. 11. Requirements specification.
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4.3.8. Step 8: Requirements specification

All the information captured within the previous diagrams shall

be elicited in the model database as requirements. The set of

requirements has to be structured with the appropriate links

among: derive, refine and contain relationships. These relationships

can be displayed in a requirement diagram that summarizes the

initial requirements (representing the global mission) as well as

the requirements derived from the other diagrams of the black-

box analysis like the UCD for the system services or the interac-

tions of the BDD context. The requirements for the Telescope are

given in (Fig. 11).

4.3.9. Step 9: Requirements traceability

In order to be able to trace all requirements, and ensure consis-

tency of the black-box phase, some relationships are specified in

some additional requirements diagrams (Fig. 12). The following

traceability links are used:

� ‘‘refine’’ between Requirements and UC;

� ‘‘allocate’’ between Requirements and roles in BDD context;

� ‘‘satisfy’’ between Requirements and external ports (IBD).

4.4. White-box analysis

In the previous phase, an external point of view analysis was

established in order to identify a comprehensive set of require-

ments and specifications of the system. A baseline is now available

to go further and identify different candidate solutions. This mod-

eling phase is conducted with an internal point of view on the

studied system, in order to model its internal structure and behav-

ior, with respect to the set of requirements (REQ) specified during

the black-box analysis.

4.4.1. Step 10: Functional architecture

In this step, the functional requirements identified in the

black-box analysis (from use cases and operations identified on

Fig. 12. The requirements traceability.
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Fig. 13. The functional architecture.

Fig. 14. Logical breakdown.
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sequence diagrams) are translated into a coherent description

giving the functional architecture of the system. Systems func-

tions are represented by means of activities, and shall be linked

to the corresponding requirements. The functional architecture is

defined with activity diagrams (ACT), with a top-down break-

down of the main function of the system into sub-functions.

Activity diagrams show the progressive transformations of input

flows into output flows. Both object flows and control flows

are supported. External PINs must be consistent with the exter-

nal ports of the previous external interfaces IBD (step 4) (see

Fig. 13).

4.4.2. Step 11: Logical breakdown and allocation (logical structure)

In this step, system functions are allocated to logical compo-

nents. By logical component we mean a general class of compo-

nents, mainly a kind of technology: motors, gears, etc. Thus, a set

of logical components is chosen in order to achieve all functions

specified in the functional breakdown (step 10). Allocations

between activities and components can be displayed in a Block

Definition Diagram (BDD) in Fig. 14. In this diagram, one or more

functions (activities) are allocated to one logical component. At

this step, several candidate logical structures can be proposed

and then compared. Moreover, and to ensure consistency with

black-box analysis, the operations identified in sequence diagrams

can be allocated to relevant components.

4.4.3. Step 12: Requirements to logical components traceability

Once the logical components are identified and allocated to

activities, component-level requirements are derived from sys-

tem-level requirements and allocated to the corresponding

requirements. The logical components shall satisfy these require-

ments. Satisfy relationships are used to show this dependency

and are displayed in a new requirements diagram (REQ) (Fig. 15).

New requirements can also emerge from the choice of the logical

components and shall then be added to the requirements database

and linked to the corresponding components.

4.4.4. Step 13: The logical architecture

The logical components are now identified, but the way they

interact is still not specified. In this step, the internal interactions

between the components are given. An internal block diagram

(IBD) displays the system architecture with the interactions among

components and the different flows they interchange with each

other (Fig. 16).

4.4.5. Step 14: Use of the parametric diagram

As long as we have identified a set of parameters that can be

linked together with mathematical equations to describe the

required behavior, and that a resolution is needed either for

dimensioning or for trade-off, a parametric diagram is very useful.

This can be useful for example if there are different candidate log-

ical architectures. These could be compared in preliminary design

with respect to simulation results that can be obtained with para-

metric diagrams.

In a parametric diagram (PAR), modeling parameters (compo-

nent and system level parameters) can be linked to each other

meaning constraint blocks carrying the set of equations to be

solved (Fig. 17). Parametric diagram gives a description of param-

eters dependency in the system level model, and is intended to be

simulated using external tools. It’s a kind of bridge between SysML

and simulation tools and allows to share the same parameters

between SysML and other tools used along the design process. It

also offers the possibility to feed back the system model with sim-

ulation results. It may be used at any step of the modeling process

whenever equations are available and need to be solved, forFig. 15. Requirements to logical components traceability.

Fig. 16. The logical architecture.
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instance to check the consistency of a set of performance require-

ments (see step 8).

4.4.6. Step 15: The physical allocation (physical structure)

After having checked with simulation (Modelica, Simulink,

HIL) that the logical architecture is relevant to fulfill the set of

requirements, it is time to choose physical components (compo-

nents off-the-shelf (COTS), machined or molded parts, e.g.

instances with suppliers references) and allocate them to logical

components. The physical breakdown of the telescope is pre-

sented in Fig. 18.

4.4.7. Step 16: Physical architecture

An internal block diagram (IBD) allows specifying the interac-

tions (flows) between the physical components. The physical archi-

tecture may be not similar to the logical architecture which is the

case for the telescope (Fig. 19). In this case, consistency shall be

maintained by allocating the physical components and ports to

Fig. 17. Use of the parametric diagram.

Fig. 18. The physical allocation (physical structure).
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the corresponding logical ones and justify if new components or

ports are added.

5. Discussion

The proposed methodology gives a way to translate progres-

sively user needs (or an initial set of requirements) into a feasible,

well defined solution that takes into account the different aspects

and constraints concerning the whole lifecycle of the system. A

black-box analysis firstly aims at identifying a comprehensive set

of requirements. A white-box analysis is then performed on order

to define the system behavior and structure. Is should be bared in

mind that it is question of an iterative process. Some diagrams may

reveal information that was not considered in previous steps. the

designer shall then go back to add the missing information and

check all the impacts of this change on the model. The sequential

aspect presented in this paper aims at making the understanding

easier for the reader.

The presented methodology however, is not comprehensive and

shall be extended with additional support processes. It is kind of

the basic skeleton on which other engineering processes can be

added. For instance, it does not yet offer processes for ranking

and prioritizing requirements, establishing trade-offs and perform-

ing safety analyses.

Currently, the authors already work on these extensions. Devel-

opments about the integration of safety analysis into a SysML-

based SE process are being done and some results are available

in [17,18]. Other works on metrics are also being developed to help

the designer to take decisions and trace his choices [29].

For a seamless process, some tools, like Model Center for

instance, are developing bridges between SysML and other model-

ing and simulation tools. This is a good point that the authors are

exploiting to further extend the current methodology.

6. Conclusion

In this paper, a SysML based methodology for mechatronic sys-

tems design is proposed. This method is made up of two main

phases. A black-box analysis phase with the objective of collecting

all the requirements and necessary data that will be a baseline for

the next design phase. A white-box analysis phase is then per-

formed to identify and compare candidate solutions and then

select the final physical architecture of the system. The methodol-

ogy is iterative and, at each stage, designers can go back and mod-

ify previous steps. The adequacy of SysML to hold these steps is

demonstrated with a case study example.

Detailed design simulations and trade-off studies however are

performed in parallel with this process with other dedicated tools.

The main advantage of the methodology and of the use of SysML is

a unique systemmodel shared by all the contributors. Mechatronic

systems may interact and communicate together in a kind of

‘‘internet of things’’ to form Cyber-Physical Systems (CPS). In our

future work, we consider to extend the current methodology to

support CPS modeling.
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