
HAL Id: hal-01903006
https://hal.science/hal-01903006

Submitted on 24 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clone-and-Own Software Product Derivation Based on
Developer Preferences and Cost Estimation

Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury, Badih Baz

To cite this version:
Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury, Badih Baz. Clone-and-Own Software
Product Derivation Based on Developer Preferences and Cost Estimation. 12th International Con-
ference on Research Challenges in Information Science, RCIS 2018, May 2018, Nantes, France. �hal-
01903006�

https://hal.science/hal-01903006
https://hal.archives-ouvertes.fr

Clone-and-Own Software Product Derivation Based
on Developer Preferences and Cost Estimation

Eddy Ghabach and Mireille Blay-Fornarino
Université Cote d’Azur
I3S, CNRS UMR 7271

Sophia Antipolis, France
{ghabach,blay}@i3s.unice.fr

Franjieh El Khoury
Université de Lyon 1

ERIC EA 3083
Lyon, France

franjieh.elkhoury@eric.univ-lyon2.fr

Badih Baz
Université Saint-Esprit de Kaslik

Kaslik, Lebanon
badih.baz@usek.edu.lb

Abstract—Clone-and-own is a common reuse practice that
is widely adopted for evolving a family of software systems.
However, this practice loses its effectiveness if not supported with
valuable indicators that guide the derivation of new products. In
this paper, we propose an approach to support the derivation
of new product variants based on clone-and-own, by providing
the possible scenarios in terms of operations to perform to
accomplish the derivation. We generate a constraints system
prior to a product derivation, to facilitate the software engineer
selection of the suitable scenario and operations based on his
preferences. In addition, we propose a cost estimation for each
operation and respectively for each scenario, thus, a software
engineer can rely on it as an additional parameter to achieve
the derivation. The proposed scenarios and cost estimation are
based on indicators retrieved after an automated identification of
the mappings between the features implemented by the family of
software products and the assets in which they are implemented.
We preliminarily validate our approach on a case study where
results show that the provided support can considerably reduce
the amount of time and efforts that can be required to achieve
a product derivation.

Index Terms—Clone-and-own, product derivation, software
reuse.

I. INTRODUCTION

Establishing a family of software systems is done usually
either by adopting software product line engineering as a top-
down approach to construct a software product line (SPL) [1]
or by adopting an ad-hoc practice such as copy-paste-modify
or clone-and-own [2], [3]. SPLs proven their success in
providing a systematic reuse [4], [5] by reducing development
costs and time to market, and increasing software quality [6].
Regardless their impressive return on investment [6], SPLs
are considered as an expensive up-front investment [7] that
consists of initially defining reusable artifacts in a domain
engineering phase, before deriving new products through an
application engineering phase [6]. Hence, SPLs are often es-
tablished subsequently to the development of several software
variants using simple and rapid ac-hoc practices [8], [9], [10].
Several works in literature propose approaches to migrate
similar software variants into an SPL [11], [12], [13], [14].

Evolving a family of software products consists often in
deriving new variants by reusing the existing ones. Despite that
SPLs provide systematic reuse due to variability management,
product derivation is restricted to the product line portfolio.

Hence, deriving new products consists of evolving the SPL
at both domain and application engineering levels, a task that
is considered complex due to variability and interdependency
between products [15]. On the other hand, clone-and-own
(C&O) is a common intuitive practice that consists in cloning
an existing product variant (PV) then modifying it to add
and/or remove some functionalities in order to derive a new
PV [10], [16], [17]. C&O is characterized by the availability,
rapidity and simplicity of cloning an existing PV into a
new one ready for modification, in addition to the freedom
that a software engineer can benefit from to achieve product
derivation [3]. Although being a time and cost saving practice,
C&O might turn into an expensive and inefficient solution if
tracking about the artifacts existing in several clones is lacked,
which produces an incertitude in identifying the PV(s) to be
considered as source for cloning [3], [10].

In this paper, we address the derivation of new PVs from a
family of software products, where C&O is adopted to achieve
the derivation, regardless if it is performed in an SPL context
or not. We are interested in supporting the derivation without
automating it or imposing a specific solution to achieve it.
We aim to guide a software engineer to achieve the derivation
on his own, in order to preserve the “own” side of the C&O
practice, where the software engineer is the decision maker.

A PV is composed of a set of files a.k.a assets, and it im-
plements a set of business functionalities a.k.a features, where
the PVs that belong to the same family of software systems
share features in common [18]. The derivation of a new PV
is needed when no PV implements all and only the requested
features. Yet, the question is: what are the information and
indicators that can be investigated to determine the suitable
reuse scenario to derive the requested PV? Given a family of
3 PVs1 shown in Table I, to deliver a product that allows to
manage, add and delete matches, a new PV – say p4 – has to
be derived, since no PV implements all and only the requested
features. Thus, based on what a software engineer can decide
to derive p4 either by (1) cloning p2 and removing from the
clone the code fragments related to ModifyMatches, or (2)
by cloning p3 and extracting the code fragments related to

1The implementation files of the product variants are available on:
https://github.com/eddyghabachi3s/SoccerManager

DeleteMatches from p2 and integrate it in the clone? Hence,
a software engineer needs answers to the following questions
in order to decide which scenario is the suitable one to achieve
the derivation:

Q1: What are the existing PVs that implement the features
required for a derivation? and consequently, what are the
combinations of PVs that constitute each possible scenario?

Q2: What are the assets of the existing PVs that implement
a certain feature?

Q3: What are and how many are the assets that have to be
cloned and modified for each possible scenario (combination
of PVs)? and consequently, what might be the cost to perform
each of these asset level operations? Respectively, which
scenario provides the least expensive derivation cost?

In this paper, we propose an approach that responds to the
above questions by providing the following:

1) An automated and incremental technique to identify (and
update) mappings between the features implemented by
the PVs and the assets used to implement them.

2) An automated method to determine the possible scenar-
ios to achieve the derivation using C&O.

3) An auto-generated constraints system and cost estima-
tion for the operations to perform, guiding software
engineers to construct a derivation scenario based on
their own preferences and the provided cost estimation.

TABLE I
PRODUCT VARIANTS WITH THE FEATURES THEY IMPLEMENT

Products
p1 p2 p3

Features

ManageMatches X X X
AddMatches X X X
ModifyMatches X X
DeleteMatches X

II. APPROACH OVERVIEW

Given a set of software products P = {p1, ..., px}, the
set of features implemented by P is F = {f1, ..., fy} and
the set of assets employed by P is A = {a1, ..., az}. We
denote F (pj) the features implemented by a certain product
pj , and A(pj) the assets employed by pj . An asset represents
an implementation file, and since each product might exploit
a specific version of the file, we refer to file versions as asset
instances. Thus, for each asset ak ∈ A(pj), pj exploits one
of its instances aik. We denote AI(ak) the instances of ak,
and AI(pj) the asset instances exploited by pj to fulfill its
implementation.

A. Mapping features to assets

To determine what are the assets that contribute in the
implementation of a certain feature, mappings between the
features F and the assets A must be identified. Ziadi et al.
propose an approach to identify the features implemented by a
family of products in case they are not identified [9]. Feature
identification is achieved by analyzing the artifacts of the
products. In our approach, we are not interested in feature

identification, since we consider that the features implemented
by each product are determined by domain experts prior to
its implementation. Hence, at this level, we focus only on
identifying mappings between features and assets. Several
works in literature employ feature location techniques that
analyze the co-occurrence between features and assets to
identify mappings between them [11], [12], [16]. We propose
in this paper, a simple and automated technique to identify
mappings between features and assets for polyglot systems,
that in contrary to several existing approaches, is independent
of the artifacts type, and treats the products as a family of
related entities and not as individual independent entities [19].

In order to identify mappings, we define “correlations”. A
correlation2 indicates the coexistence between a feature and
an asset, or between a feature and an asset instance. An asset
is a global abstraction of a partial or a total implementation of
one or more features, since a feature implementation can be
spread into several assets, and similarly, an asset can include
implementation fragments of different features. On the other
hand, an asset instance realizes one of the asset implementa-
tions in one or more products. Instead of mapping a feature
or set of features (features interaction) to an implementation
block which can be composed of fragments of several assets,
we map each feature to the set of assets (atomic files) that
supposedly contribute in its implementation. Hence, a feature
might be correlated to several assets, and an asset might be
correlated to several features as well.

A correlation between a feature f and an asset a holds if
the following constraints are valid:

• For each product pj that implements f , pj employs a
(idem exploits any of its instances).

• There does not exist an asset instance ai exploited by pj
and by another product pk that does not implement f .

Thus, given P (f) the set of products that implement f and
P (a) the set of products that employ a, a correlation between
f and a denoted as c(f, a) holds, if P (f) ⊂ P (a) ∧ ∀ai ∈
AI(P (f)), ai /∈ AI(P (a) \ P (f)).

Respectively, given an instance ai of an asset a, a correlation
between a feature f and ai denoted as c(f, ai) holds if c(f, a)∧
∃ p, f ∈ F (p), ai ∈ AI(p).

To guarantee that a feature, asset or asset instance partic-
ipates at least in one correlation, we impose the following
rules:

1) No two products implement exactly the same set of
features.

2) There must exist at least one common feature between
all products.

3) If a product implements all features implemented by
another product and more, the former product must
employ at least all the assets employed by the latter
product.

2Correlation: a mutual relationship or connection between two or more
things (Oxford Dictionary)

B. Determining possible scenarios and operations to achieve
a derivation

Reusing artifacts of existing PVs is essential to achieve
the derivation of a new PV. This derivation might intro-
duce new features that were not implemented earlier by
existing PVs. We define a configuration cf as a pair com-
posed of two sets of features: EF (f) the existing required
features where EF (cf) ⊆ F , and NF (cf) the new re-
quired features where NF (cf) 6⊂ F . Thus, having cf4 the
configuration relative to the derivation of p4, EF (cf4) =
{ManageMatches,AddMatches,DeleteMatches}, while
NF (cf4) = {φ}. During derivation, if NF (cf) 6= {φ}, our
approach does not provide any guidance concerning which
assets are suspect to modification to integrate the new fea-
tures. For instance, if NF (cf) = {StatMatches} where
StatMatches is a required feature to display the statistical
details of a match, software engineers have to determine the
assets to be added and/or modified to introduce this feature in
the product to derive.

Several products or combinations of products can be
reused to achieve the derivation of a new PV. Hence, for
a given configuration cf , we define configuration scenar-
ios CS(cf) that represent the set of all possible combi-
nations of products that can achieve the configuration. We
define a configuration scenario denoted csi(cf) as a pair
〈{〈pk, {fq, ..., fs}〉}, {fx, ..., fz}〉, where {〈pk, {fq, ..., fs}〉}
is a combination of products that can be reused to achieve the
configuration and {fx, ..., fz} is NF (cf) if any. A product
is candidate for a configuration scenario if it implements
at least one of the features of EF (cf). Further, for each
combination, the unrequired features {fq, ..., fs} implemented
by a candidate product pk are identified.

In order to be able to determine the suitable configuration
scenario, a software engineer aims to have further information
about the operations to perform in each scenario to achieve the
derivation. Such information must involve the identification of
the assets required from the products of each configuration
scenario, in addition to the operations to perform at the level
of each asset in order to construct the required product. Given
a product p, an asset a employed by p is required for the
derivation if F (a)

⋂
EF (cf) 6= {φ}, where F (a) are the

features that a is in correlation with. Hence, for each required
asset, one of its instances has to be cloned, then modified if
necessary to remove implementation fragments corresponding
to unrequired features, and if there still exist some required
features that are not implemented by the cloned instance, their
implementation fragments must be extracted from the other
instances of the asset and integrated in the clone. The resulting
asset instance of each required asset has to implement the set
of features F (a)

⋂
EF (cf). Thus, we identify three types of

actions that might be taken over the instances of a required
asset in order to produce the desired instance:

1) Clone and Retain (CRT): clone an asset instance and
retain it as it is, without modifying its implementation.

2) Clone and Remove (CRM): clone an asset instance,

and remove from it the implementation fragments cor-
responding to the features that it is in correlation with
but are not required by the configuration.

3) Extract and Add (ETA): extract from an asset instance
the implementation fragments of some features required
by the configuration, and add them to a cloned instance
under construction. An ETA action is used only as
a subsequent to a CRT or CRM action in order to
complete the construction of a cloned instance with
extracted implementation fragments.

An action ac is defined as a triple 〈type, ai, {fj , ..., fn}〉,
where type corresponds to one of the types defined above:
{CRT,CRM,ETA}. For CRT and CRM actions, ai cor-
responds to the asset instance to clone. For an ETA action,
ai corresponds to an asset instance to extract from. Whereas,
{fj , ..., fn} corresponds to the set of features to remove from
ai if the action is CRM , or to extract from ai if the action is
ETA. Hence, the resulting asset instance for a required asset
is produced by cloning an asset instance exploited by a product
of the configuration scenario using a CRT or CRM action,
removing the implementation fragments corresponding to the
unrequired features in case of a CRM action, and extracting
the remaining required features from other instances using an
ETA action, if any.

We define an operation as the set of actions needed
to produce the desired asset instance. Thus, an opera-
tion op is a triple 〈a, {ac1, ..., acn}, ai〉 where a is the
required asset, and {ac1, ..., acn} noted as AC(op) is
the set of actions to be made to obtain the desired
asset instance ai. Given an asset style.css, the oper-
ation: 〈style.css, {〈CRM, style.css1, {ModifyMatches}〉,
〈ETA, style.css2, {DeleteMatches}〉}, style.css4〉 consists
of cloning the asset instance style.css1 and removing from
it the feature ModifyMatches, then extracting the feature
DeleteMatches from style.css2 and adding the extraction to
the clone, which produces a new instance style.css4.

For each configuration scenario, at the level of each asset,
several operations might be possible to construct the desired
instance of the asset. Therefore, to achieve the derivation of
a new PV, a software engineer is provided with all possible
configuration scenarios, and all possible operations that can
be performed at asset level. We call derivation scenario the
complete set of operations that a software engineer selects in
order to accomplish the derivation of a new PV.

C. Derivation based on developer preferences and cost esti-
mation

It is quite useful to support the derivation of a new PV
with all possible scenarios and operations. However, in case
of a large family of software products where assets might
have a large number of instances, the number of possible
scenarios and operations are supposed to become very large.
Therefore, if the provided support is not accompanied with
valuable indicators it might lose its relevance. For this reason,
we strengthen the support provided by our approach with two
factors.

The first factor is to allow software engineers to select
the suitable scenario or operations to perform based on their
personal preferences. To do so, based on the identified con-
figuration scenarios and operations, we construct a constraints
system by means of a feature model, that allows a software en-
gineer to choose a derivation scenario from several dimensions
within or outside the context of a configuration scenario. The
features of the generated feature model are the configuration
scenarios, their products, their operations and their correspond-
ing assets and asset instances, while the constraints correspond
to the dependencies between them. From the first dimension,
a software engineer can select the configuration scenario
that requires the least number of operations that impose a
construction of a new asset instance, or the configuration
scenario that is composed of the products that she is most
familiar with. From a second dimension, the constraints system
allows to filter the operations based on the deselection of some
undesirable products. From a third dimension, it allows to
filter operations by deselecting undesirable instances of assets
whenever possible, such as old or untrusted instances. Thus,
the constraints system allows not only to take the software
engineer preferences into consideration, but also to reduce
the number of decisions to be taken which simplifies the
construction of the derivation scenario.

The second factor is to provide an estimated cost in terms
of development effort and time for each operation and respec-
tively for each configuration scenario. The cost of an operation
has to be estimated based on the actions that it is composed
of. In case of a CRT action, an asset instance has to be cloned
without being modified, therefore, no cost has to be allocated.
In case of a CRM action, an asset instance has to be cloned
and implementation fragments corresponding to one or more
features must be removed from the cloned instance. Similarly,
for an ETA action, implementation fragments corresponding
to one or more features must be extracted from an instance and
integrated in the cloned instance. Therefore, for both CRM
and ETA a cost has to be allocated. We assume that an ETA
action costs 50% addition efforts compared to a CRM action,
since it consists in adding the extracted fragments to the clone
after their extraction. Thus, we define an action type weight
denoted aw, where aw = 0 for CRT , aw = 1 for CRM
and aw = 1.5 for ETA. We estimate the cost of removing or
extracting a feature based on the following global assumption:
as much as the correlation degree between a feature and an
asset instance is high, the removal or extraction of the feature
from the asset instance becomes hard. We define correlation
degree based on the following assumptions:

• As much as the number of features that an asset instance
is in correlation with increases, the correlation degree
between the asset instance and any of those features
decreases. The features that an asset instance ai is in
correlation with are denoted as F (ai). Hence, a feature
f ∈ F (ai) corresponds to 1÷ |F (ai)|.

• As much as the number of assets that a feature is in
correlation with increases, the correlation degree between

the feature and any of those assets decreases. The assets
that a feature f is in correlation with are denoted as A(f).
Hence, an asset a ∈ A(f) corresponds to 1÷ |A(f)|.

• As much as the number of instances of an asset that
a feature is in correlation with increases, in relation
to the overall number of instances of the asset, the
correlation degree between the feature and the asset
increases. The instances of an asset a that a feature f is
in correlation with are AI(a)∩AI(f). Hence, the number
of instances of a that f is in correlation with, in relation
to the overall number of instances of a corresponds to
|AI(a) ∩AI(f)| ÷ |AI(a)|.

We define a correlation degree between a feature f and an
asset instance ai as:

cd(f, ai) =
1

|F (ai)|
× 1

|A(f)|
× |AI(a) ∩AI(f)|

|AI(a)|
Thus, the cost of an action is the sum of the correlation

degrees of the features that have to be removed or extracted
from the asset instance of the action which are multiplied by
the action type weight aw.

cost(ac) =

fn∑
fj

(cd(fj , a
i)× aw)

Respectively, the cost of an operation is the sum of the cost
of all its actions.

cost(op) =

n∑
i=1

cost(aci)

Providing the estimated cost of the operations facilitates the
selection of an operation when several operations are possible
to construct an asset instance. Moreover, we consider the
cost of a configuration scenario as the sum of the estimated
cost of the operations having the lowest cost at each asset
level. Therefore, a software engineer can rely on the estimated
cost of the configuration scenarios as an additional parameter
during the construction of a derivation scenario. It is important
to mention that the estimated cost of removing or extracting
a feature from an asset instance does not necessarily assert
that some implementation fragments have to be removed or
extracted. We consider the estimated cost as the time and
development effort that must be achieved in order to revise
the asset instance source code, and determine if there exists
some source code related to the feature to remove or extract,
and if so, accomplish the task and test the cloned instance.

D. Sustainable evolution

Software engineers aim not only to acquire a support to
derive new PVs from a family of software systems, but also
to benefit from the newly derived PVs as additional elements
of support during the derivation. Our technique to identify
correlations is incremental, allowing the identification of new
correlations whenever new features, assets or asset instances
are added. In addition, it breaks existing correlations in case
they are not valid anymore. Hence, the identification of a

new PV implies an automated and incremental update of the
correlations. The evolution of the correlations reinforces reuse
and contributes in a sustainable evolution of the family of
software products.

III. PRELIMINARY VALIDATION

We preliminarily validated our approach on a real case study
that we developed for this purpose. The case study consists
of 8 variants of a web application. The family of products
comprises when it has its 8 variants a total of 93 features,
271 assets and 296 asset instances with an average of 66
features, 214 assets and 4.7KLOCs per variant. We achieved
the validation by analyzing statistical information that we
collected upon the incremental derivation of 5 variants from an
initial family of 3 variants. By incremental derivation we mean
that correlations are updated subsequently to the derivation of
a new PV that becomes a support element during the upcoming
derivation. Information about the features, assets and asset
instances added through derivations are show in Table II.

As shown in Fig 1 the average number of configuration
scenarios per configuration increases considerably whenever
the family of software products becomes richer. Respectively,
Fig 2 shows that the average number of products involved
in a configuration scenario increases too. These indicators
reveal the importance of our approach in providing a cost
estimation for the configuration scenarios, as well as filtering
configuration scenarios based on preferences over products.
Fig 3 shows that the average number of assets to modify
decreases whenever the family of products becomes mature.
The strength of our approach here is that it determines and
separates the operations requiring modifications (construction
of a new instance of an asset), from the ones that require only
a clone of one of the instances of an asset without modifying
the clone. This fact is manifested in the cost estimation
of the operations. The collected statistical information show
also in Fig 4 that the coefficient of variation between the
estimated cost of the configuration scenarios is elevated. The
coefficient of variation that ranges between 36% and 99% with
an average of 64% reflects that if software engineers select the
configuration scenarios having the lowest estimated cost, they
can save a considerable amount of time and effort.

IV. LIMITATIONS AND THREATS TO VALIDITY

1) Limitations: The correlations identification in our ap-
proach is dependent on the structural architecture of the
software variants. A modification of the structure or the name
of a certain artifact affects the identified correlations. Another
limitation consists in the correlations that are identified at file
level whereas several related works [12], [16] map features
to implementation blocks of several files. These approaches
could be complementary to our work, however, we consider
that dealing with polyglot systems such as web applications
necessitates to provide support at file level.

2) Threats to validity: The validation of our approach on
different case studies might produce different results depend-
ing on the architecture of the product variants in concern and

TABLE II
METRICS OF 5 CONFIGURATIONS TO DERIVE NEW PVS

Configuration cf4 cf5 cf6 cf7 cf8
Added features 0 0 25 0 0
Added assets 0 0 8 0 24
Added asset instances 3 1 11 1 25

Fig. 1. Average number of configuration scenarios per configuration.

Fig. 2. Average number of products involved in a configuration scenarios per
configuration.

Fig. 3. Average number of assets to modify per configuration scenario per
configuration.

Fig. 4. Coefficient of variation between the estimated cost of the configuration
scenarios per configuration.

the propagation of the features in the product variants and
respectively in their assets. For instance, we might face a
family of products where the average number of assets to
modify remains high when the family of products becomes
richer. However, the metrics that we rely on to identify
correlations or either estimate costs are generalized metrics
that are supposed to be correct regardless the architecture
of the software products. For the preliminary validation case
study, the order between estimated costs and actual workload
corresponds to those in practice, however, this does not guar-
antee that this assumption is correct for other case studies.

V. RELATED WORK

Lapeña et al. [17], [20] propose an approach called CACAO
to assist C&O. When a new product has to be derived,
the requested documented requirements are provided. CACAO

extracts keywords from the requested requirements and from
the existing product variants requirements and detects which
existing product variants are closer to the product variant
to derive in terms of requirements. Finally, it determines
which are the source code methods of the existing product
variants that are closer to the requested requirements. Hence,
CACAO provides ranking at products level and methods level.
The CACAO approach is very relevant to our work, despite
that in our approach we give interest in providing additional
operational support by proposing the detailed operations to
perform to achieve the derivation. A framework for enhancing
C&O with systematic reuse called ECCO is proposed by
Fischer et al. [16], [21]. ECCO integrates software variants
to provide a systematic reuse of the existing PVs. Further it
automates the derivation of new PVs, and if the derivation
requires a manual completion, it proposes the necessary hints
for completion. On the contrary, our approach provides the
possible operations to perform on the required assets, allowing
software engineers to complete the derivation based on their
own preferences, preserving the meaning of C&O which gives
software engineers the freedom to derive products on their
own. Martinez et al. [7], [12] propose an approach called
BUT4Reuse that allows the integration of software variants
into an SPL by constructing its feature model. BUT4Reuse
provides an automated derivation of existing and new variants.
However, it does not permit an incremental evolution of the
SPL. Similarly, AL-Msie’Deen et al. [11] propose an approach
to mine features and construct a feature model from product
variants. However, the approach is limited to object-oriented
based variants. Rubin and Chechik, suggest a framework to
manage PVs developed using C&O approach [14] and they
define a set of useful operators to manage PVs and derive new
ones. Some of those operators are provided by our approach,
while others can be integrated if needed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to support the
derivation of new product variants from existing ones us-
ing clone-and-own practice. First, we defined an automated
technique to identify correlations, which are the mappings
between features and assets of the product variants. Second,
to support the product derivation, we employ the correlations
to determine the possible configuration scenarios that can
lead to the derivation of the new product, in addition to
the operations to perform at asset level for each scenario.
We enhance the provided support with constraints system
allowing software engineers to select the suitable scenario
and operations based on their own preferences, in addition
to a cost estimation of the operations to facilitate their se-
lection. We preliminarily validated our approach on a case
study developed for this purpose, where results show that
our approach can save a considerable amount of time and
effort during product derivation. As future work, we aim to
validate the effectiveness of our approach by testing it on more
sophisticated systems of different architectures. Moreover, we
are interested in identifying additional metrics to refine the

cost estimation function [22] by taking organizational factors
in concern [23]. Finally, we aim to integrate our approach
in a global software product line environment [24] to benefit
from systematic reuse of existing products and variability
management during configuration.

REFERENCES

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, Boston, 2001

[2] G. Zhang et al., “Cloning practices: Why developers clone and what can
be changed”, ICSM, Italy, 2012, pp. 285–294

[3] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, K. Czarnecki,
“An exploratory study of cloning in industrial software product lines”
CSMR, Genova, Italy, Mar 2013, pp. 25–34

[4] S. Daniel and T Eisenbarth, “Evolutionary introduction of software
product lines”, SPLC, San Diego, CA, USA, Aug 2002, pp. 272–283

[5] J. Bosch, “Software product families: towards compositionality”, Funda-
mental Approaches to Software Engineering, Springer, 2007, pp. 1-10

[6] K. Pohl, G. Böckle, F.J. van der Linden, Software Product Line Engi-
neering: Foundations, Principles and Techniques, Springer, 2005

[7] J. Martinez, “Mining software artefact variants for product line migration
and analysis”, PhD, Université Pierre et Marie Curie - Paris VI, Oct 2016

[8] H. Eyal-Salman, A. Seriai, C. Dony, R. Al-msie’Deen, “Recovering
Traceability Links Between Feature Models and Source Code of Product
Variants”, in Proceedings of the VARiability for You Workshop: Variability
Modeling Made Useful for Everyone, Austria, Sep 2012, pp. 21–25

[9] T. Ziadi et al., “Feature Identification from the Source Code of Product
Variants”, CSMR, Hungary, 2012, pp. 417–422

[10] L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, and A. Egyed, “Using
Traceability for Incremental Construction and Evolution of Software
Product Portfolios”, in 8th International Symposium on Software and
Systems Traceability, IEEE/ACM, Florence, Italy, May 2015, pp. 57-60

[11] R. AL-MsieDeen, “Reverse Engineering Feature Models from Software
Variants to Build Software Product Lines”, PhD, Montpellier, 2014

[12] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Bottom-up adoption of software product lines: a generic and extensible
approach”, SPLC, USA, ACM, July 2015, pp. 101-110

[13] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. Le Traon, “Towards
a language-independent approach for reverse-engineering of software
product lines”, in Proceedings of the 29th Annual ACM Symposium on
Applied Computing, Gyeongju, Korea, ACM, Mar 2014, pp. 1064–1071

[14] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants: a
framework and experience”, SPLC, ACM, Aug 2013, pp. 101–110

[15] G. Botterweck, and A. Pleuss, “Evolution of Software Product Lines”,
Evolving Software Systems, Springer, Berlin, 2014, pp. 265–295

[16] S. Fischer, L. Linsbauer, R.E. Lopez-Herrejon and A. Egyed, “Enhancing
clone-and-own with systematic reuse for developing software variants”,
ICSME, Canada, Sep 2014, pp. 391–400

[17] R. Lapeña, M. Ballarin and C. Cetina, “Towards Clone-and-own Sup-
port: Locating Relevant Methods in Legacy Products,” SPLC, Beijing,
China, Sep 2016, pp. 194–203

[18] T. Berger et al., “What is a Feature?: A Qualitative Study of Features
in Industrial Software Product Lines”, SPLC, USA, 2015, pp.16–25

[19] J. Rubin and M. Chechik, “A survey of feature location techniques”,
Domain Engineering, Springer, 2013, pp. 29–58

[20] R. Lapeña, J. Font, C. Cetina, O. Pastor, “Model Fragment Reuse Driven
by Requirements”, in Proceedings of the Forum and Doctoral Consortium
Papers Presented at the 29th International Conference on Advanced
Information Systems Engineering, Esse, Germany, June 2017, pp. 12–16

[21] S. Fischer, L. Linsbauer, R.E. Lopez-Herrejon, A. Egyed, “The ECCO
tool: Extraction and composition for clone-and-own”, ICSE, IEEE Press,
Volume 2, 2015, pp. 665–668

[22] A. Magazinius, S. Börjesson, R. Feldt, “Investigating intentional distor-
tions in software cost estimation–An exploratory study”, in Journal of
Systems and Software, Elsevier, 85(5), 2012, pp. 1770–1781

[23] D. Badampudi, et al., “A decision-making process-line for selection
of software asset origins and components”, in Journal of Systems and
Software, Elsevier, 135, 2018, pp. 88–104

[24] E. Ghabach, M. Blay-Fornarino. F. El Khoury, B. Baz, “Guiding Clone-
and-Own When Creating Unplanned Products From a Software Product
Line”, ICSR, Madrid, Spain, 2018

