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Abstract

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW)
candidates from Advanced LIGO’s first observing run (O1). As demonstrated by the multimessenger observations of
GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the
astrophysical source, and in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we
investigate low-significance GW candidates from the O1 compact binary coalescence searches using the Fermi Gamma-
Ray Burst Monitor (GBM), leveraging its all sky and broad energy coverage. Candidates are ranked and compared to
background to measure the significance. Those with false alarm rates (FARs) of less than 10−5 Hz (about one per day,
yielding a total of 81 candidates) are used as the search sample for gamma-ray follow-up. No GW candidates were
found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In
addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting
GBM events, the two with the lowest FARs were the gamma-ray transient GW150914-GBM presented in Connaughton
et al. and a solar flare in chance coincidence with a GW candidate.
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1. Introduction

The first observing run (O1) of the Advanced LIGO
detectors (Aasi et al. 2015) marked the dawn of gravitational
wave (GW) astronomy with the groundbreaking discovery of
merging black holes (BHs; Abbott et al. 2016e, 2016g) and
Abbott et al. (2016b). The second observing run (O2)
continued unveiling the population of binary BHs (BBHs;
Abbott et al. 2017b, 2017c, 2017d), saw the addition of the
Virgo observatory to the detector network (Abbott et al.
2017d), and culminated in the spectacular multimessenger
observations of a binary neutron star (BNS) merger, summar-
ized in Abbott et al. (2017e, 2017f). Simultaneously observing
the same astrophysical event in both gravitational and
electromagnetic radiation will continue to uniquely enrich our
understanding of sources. Because GWs negligibly interact
with matter they are directly encoded with information about
the central engines of the most violent, dynamic processes in
the universe. Electromagnetic (EM) waves, on the other hand,
are tightly coupled to matter thus providing information about
the material and surrounding environment being affected by the
central engine (Metzger & Berger 2012).
Several astrophysical transient phenomena are thought to

produce GW and EM emission strong enough to be detected by
current or proposed observatories, including soft gamma-ray
repeaters, rapidly rotating core collapse supernovae, BNS
mergers, and gamma-ray bursts. Here, we focus on short
gamma-ray bursts (SGRBs), now directly confirmed to arise
from the mergers of compact stellar remnants to which ground-
based GW detectors are most sensitive (Abbott et al. 2017a).
This paper is limited in scope to analysis of times during O1,
and focuses on the follow-up searches of data from the Fermi
Gamma-ray Burst Monitor (GBM) near in time to the GW

search candidates. Results for the search in GW data for known
GRBs that occurred during O1 can be found in Abbott et al.
(2017g).
Despite the consensus view that there would be no bright

EM emission associated with stellar-mass BBH mergers,
comprehensive observing campaigns with EM observatories
were carried out. For example, 25 participating teams of
observers received and responded to notifications of the
GW150914 detection, with follow-up observations taken from
the radio to gamma-ray bands (Abbott et al. 2016f). In the
follow-up analysis of the time around the first BBH merger
observation, GW150914, the Fermi GBM found a weak
transient signal (Connaughton et al. 2016), GW150914-GBM,
though no corresponding signal was observed in other gamma-
ray instruments (Hurley et al. 2016; Savchenko et al. 2016;
Tavani et al. 2016), nor was a similar signal found in relation to
the other unambiguous GW detection in O1, GW151226
(Abbott et al. 2016e; Adriani et al. 2016; Racusin et al. 2017),
though 85% of the LIGO localization for GW151226 was out
of view by Fermi, occulted by the Earth (Racusin et al. 2017).
The case for a GW candidate too low in significance to be

claimed as an unambiguous detection would be strengthened
by an EM detection consistent with the putative GW event. To
that end, this paper reports on the search of GBM data for
potential EM counterparts to any GW binary merger candidates
found in the O1 data set with a false alarm rate (FAR) below
10−5 Hz by the LIGO–Virgo analyses. Two GW candidates
were identified in coincidence with gamma-ray signals
exceeding the GBM background: a gamma-ray transient found
in the follow-up of GW150914, previously reported in
Connaughton et al. (2016), and a second GBM transient most
likely due to a chance coincidence with a solar flare.
The paper is organized as follows. In Section 2, we describe

the data analysis methods used to identify compact binary
coalescence (CBC) triggers in GW data and to identify gamma-
ray transients in the GBM data. Section 3 presents the search
results. Section 4 summarizes the results and conclusions, and
discusses the role for GBM and LIGO–Virgo joint analyses
during future observing runs.
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2. Data Analysis Methods

2.1. Advanced LIGO

The LIGO observatories are two modified Michelson
interferometers located in Livingston, Louisiana, and Hanford,
Washington. Each arm of the interferometer is formed by two
mirrors separated by 4 km. Passing GWs produce a strain,
typically denoted as h, which changes the separation of the
mirrors, inducing a relative phase difference in the light when it
returns to the beam-splitter, which transmits an optical signal
proportional to the incident strain. The large separation
between the observatories reduces the false-alarm background
due to coincident instrumental or environmental contamination,
and differences in time and phase of arrival constrain the sky
location of astrophysical sources. For a full description see Aasi
et al. (2015).

The data are analyzed for continuous (Aasi et al. 2014b; Abbott
et al. 2016h), stochastic (Abbott et al. 2016j), and transient
astrophysical sources. Transient searches include “all sky”
searches for new GW sources, and “targeted” searches for known
astrophysical objects, e.g., GRBs (Abbott et al. 2017g) and
supernovae (Abbott et al. 2016c). All sky sources can be divided
into two broad classes: transients for which the GW signal is well
modeled, enabling the use of template waveforms in matched
filtering searches for BBHs (Abbott et al. 2016b), BNSs and
NSBH systems (Abbott et al. 2016i), and cosmic strings (Aasi
et al. 2014a); and “unmodeled” sources for which excess power
searches are used (Abbott et al. 2016a).

This work focuses on follow-up searches in GBM data of
results from the template-based all sky search for CBC events,
i.e., transient signals from the final stages of binaries containing
compact stellar remnants (BHs and/or NSs) as GW emission
drives the objects to coalescence. Because the GWs from CBC
sources are well modeled and computationally tractable (see,
for example, Buonanno & Damour 1999; Blanchet 2006; Ajith
et al. 2007), data analysis strategies for such sources rely on
template waveforms.

The candidate sources for GBM follow-up were acquired
from two independently developed CBC search pipelines,
PyCBC (Dal Canton et al. 2014; Usman et al. 2016; Nitz et al.
2017) and GstLAL (Privitera et al. 2014; Messick et al. 2017).
Here, we briefly summarize both searches. For a more detailed
descriptions see Abbott et al. (2016d) and Abbott et al.
(2016b). Both PyCBC and GstLAL use accurate models of the
gravitational waveform from coalescing binaries to perform a
phase-coherent matched filtering search. The mass and spin
parameter space of plausible CBC signals is covered by a grid
of 105( ) points and a template waveform is computed at each
point. The pipelines cover a total mass range between 2 M and
100 M with mass ratio from 1 to ∼100. The component spins
are assumed to be parallel to the orbital angular momentum.
Their dimensionless magnitudes can range from 0 to ∼0.99 for
components heavier than 2 M and from 0–0.05 for compo-
nents lighter than 2 M. Each template is correlated with the
detectors’ strain data to calculate the signal-to-noise ratio
(S/N). Data for which the same template produces a S/N
above the pre-established detection threshold in each detector
within 15 ms (slightly longer than the light travel time between
detectors), are promoted to coincident triggers and ranked with
a “network statistic,” which while different for PyCBC and
GstLAL, is a function of the single-detector S/Ns and a
measure of how consistent the data are with the template

waveform. Both pipelines estimate the background distribution
of the network statistic in the absence of GWs, which is then
used to map the network rank of each coincident trigger to the
FAR of the search. In the remainder of this work, the FAR from
the GW searches will be referred to by FARGW. Candidates
with FARGW less than one per month exceeded the threshold
for alerting EM observing partners participating in the O1
follow-up program (e.g., Abbott et al. 2016f). Fermi GBM has
a unique data-sharing agreement with the LIGO Scientific and
Virgo Collaborations, and has access to all CBC coincident
triggers.
Because of their different assumptions and implementation

details, PyCBC and GstLAL may produce different sets of
triggers from the same data. Strong CBC signals are ranked by
either pipeline to correspond to sufficiently low FARGW,
although not numerically equal between pipelines. However, a
weak signal can in principle be detected by only one pipeline.
For this reason, here we combine the triggers produced by both
pipelines into a superset of CBC candidates. For duplicate
triggers found by both pipelines, we select the candidate with
the lowest FARGW. The time range covered by the trigger set is
from 2015 September 12 to 2016 January 19, with a total two-
detector live-time of ∼50 days. Approximately 104 triggers
were recorded by PyCBC and GstLAL. In keeping with the
spirit of an “eyes-wide-open” search for gamma-ray counter-
parts, no selection cuts were made to select for CBC candidates
favoring systems theorized to produce potential electro-
magnetic counterparts (i.e., binaries containing at least one
NS, and in the case of NSBHs, a sufficiently comparable mass
ratio to tidally disrupt the NS).
The CBC searches were repeated when improvements to the

calibration of the detectors or the configuration of the pipelines
were available. The triggers employed in the joint analyses
were obtained from the first analysis using the offline CBC
pipelines, and an intermediate calibration of the data. Data
produced with the final calibration were not available at the
onset of this study. The candidate list used here was compared
to that produced using the final calibration, and the only
differences between the two were consistent with random noise
fluctuations around the detection threshold of the CBC
searches.

2.2. Fermi GBM

The Fermi GBM is an all-sky instrument onboard NASA’s
Fermi Gamma-ray Space Telescope. The GBM has an
instantaneous field of view that subtends 70% of the celestial
sphere (with the remaining 30% occulted by the Earth), with an
85% live-time, and energy coverage from 8 keV to 40MeV.
These capabilities make GBM an ideal partner in the searches
for joint detections with ground-based GW observatories. The
omnidirectional, broad energy coverage is accomplished
through the use of 12 sodium iodide (NaI) detectors and two
bismuth germanate (BGO) detectors.
The responses for the NaI detectors are strongly dependent

on the incident angle to the source, while the responses for the
BGO detectors are not. Additionally, responses from all
detectors are dependent on the source spectrum, since the
blockage or attenuation of photons by the spacecraft and
scattering off spacecraft components are energy dependent.
These properties of the response will cause a signal to appear
with a different strength in each detector, and the relative
observed strength between all detectors allows the localization
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of signals with an accuracy on the order of a few to tens of
degrees (Connaughton et al. 2015). In practice, the expected
photon rates at each detector are calculated over a grid of
possible source spectrum templates and sky locations, and the
observed relative rates are then compared to this expectation.

There are currently three distinct searches used on GBM data
in the joint analysis of GW sources: the onboard triggering
algorithm for automatic detection of strong GRBs (Meegan
et al. 2009; von Kienlin et al. 2014; Bhat et al. 2016); the
ground-based untargeted search for weak SGRBs; and the
targeted search used for follow-up GW candidates (Blackburn
et al. 2015). The onboard triggering and ground-based
untargeted GBM searches are the means by which SGRBs
are identified in the GBM data without any input about when or
where a possible GW source may have occurred. The targeted
search of GBM data uses as input the arrival time of a GW
candidate and uses the angular and energy dependencies of the
detector response to find spectrally and spatially coherent weak
signals.

2.2.1. Blind, Untargeted GRB Searches

The GBM flight software will trigger on board when count
rates in the time-binned data of two or more NaI detectors
exceed the background count rates, determined by averages of
∼15 s of the previous data, by pre-specified thresholds
(typically 4.5σ). The onboard trigger is activated by approxi-
mately 40 SGRBs/year. For a full description of GBM and the
onboard triggering algorithm see (Meegan et al. 2009; von
Kienlin et al. 2014; Bhat et al. 2016).
The untargeted, ground-based analysis searches primarily for

SGRBs in continuous time-tagged event data. While a full
description of the untargeted search will be in a forthcoming
article we present a brief description here. The primary science
goal of the search is to rapidly identify SGRBs missed by the
triggering algorithm in order to maximize the potential for
multimessenger observations, either through GW follow-up
searches or to identify counterparts to astrophysical neutrinos.
The analysis searches for signals with durations ranging from
64 ms to 32 s. Candidates are identified when two NaI detectors
have an excess number of counts, with one exceeding 2.5
standard deviations (σ) relative to the background, and at least
one other exceeding 1.25σ. Correcting for the number of time
bins in a day, the Poisson probability of the excess in the two
detectors must be less than 10−6. The untargeted search is
currently finding approximately 80 SGRB candidates per year
in addition to those found by the onboard triggering
algorithm.180

2.2.2. Follow-up Targeted GRB Search

The targeted search was developed to examine GBM data for
gamma-ray transients in coincidence with GW candidates from
LIGO’s sixth science run (S6) and the concurrent second and
third science runs (VSR2 and VSR3, respectively) of the Virgo
3 km interferometer in Cascina, Italy (Accadia et al. 2012). A
description of how this method was applied to the S6+VSR2/3
data is presented in Blackburn et al. (2015).

The targeted search identifies candidate gamma-ray transi-
ents over a 60 s window centered on the GW trigger time. The
60 s time window is a conservative choice to not exclude

precursor EM emission from the merger, or a delay between the
compact objects’ coalescence and launching of the relativistic
jet. Operating during O1, the targeted search utilized the daily
continuous time (CTIME) data, with a nominal time resolution
of 256 ms and 8 energy channels. The search was performed on
binned data with bin-widths ranging from 256 ms to 8.192 s.
The targeted search uses three template spectra to coherently

forward model the detector response. The templates are Band
spectra (Band et al. 1993) comprised of two power-law
components with spectral indices α and β smoothly joined at
the energy, Epeak. The definition of Epeak, and therefore the
spectral model, are modified from the original definition in
Band et al. (1993) and are explicitly shown in Connaughton
et al. (2015). The templates are referred to as “soft,” “normal,”
and “hard” spectra with Band function parameters α, β,
Epeak= (−1.9, −3.7, 70 keV), (−1, −2.3, 230 keV), and (0,
−1.5, 1 MeV), respectively. Each of the templates are utilized
independently during the search, and then the most significant
spectrum is identified for each time bin of the search.
The detection statistic Λ for the targeted search is derived

from a log likelihood ratio formalism that measures the GBM
signal strength relative to a polynomial fit to the background
count rate. A detailed discussion of the search’s methodology
can be found in Blackburn et al. (2015).

3. Search Results

3.1. Advanced LIGO Sample

Figure 1 shows times relative to the start of the search
sample (2015 September 12) for the combined CBC triggers
produced by the GstLAL and PyCBC pipelines. Intervals with
no triggers correspond to times when one or both detectors
were unable to produce science data, or when the data were
vetoed due to well-understood instrumental or environmental
disturbances. With the exception of the two high-confidence
detections GW150914 (green triangle) (Abbott et al. 2016g)
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Figure 1. Time series of CBC triggers relative to the start-time of the joint
analysis (September 12, windows 2015). The horizontal line denotes the
inverse live-time for the search sample (∼50 days). The joint GBM/LIGO
analyses used the blue points as the background sample, with FARGW

>10−3 Hz. The gray circles correspond to the search sample, with FARGW

<10−5 Hz, or approximately fewer than one per day. The green and orange
downward-pointing triangles correspond to the upper limits on FARGW for
GW150914 and GW151226, respectively. The purple diamond corresponds to
LVT151012. These colors and marker styles are preserved throughout the
article.

180 https://gcn.gsfc.nasa.gov/admin/fermi_gbm_subthreshold_announce.txt
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and GW151226 (orange triangle) (Abbott et al. 2016e), and the
low-significance candidate LVT151012 (purple diamond)
(Abbott et al. 2016b), no CBC triggers were more significant
than the inverse live-time of the search ∼2×10−7 Hz (black
horizontal line). For the targeted GBM search, the 81
subthreshold candidates with FARGW<10−5 Hz (1 day−1)
marked by gray circles were used as the search sample, while
the 2935 blue dots (FARGW>10−3 Hz) served as the back-
ground sample. The candidates between the background and
search samples (black dots) were discarded for two reasons.
First, to avoid the scenario where the background and search
samples were sufficiently close in significance that the
determination of which sample a candidate belonged in was
up to random chance. Second, due to the long tails in the GBM
search statistics, the threshold used for the background sample
provided sufficient triggers to measure the significance of
anything in the search sample, making the inclusion of
additional background triggers unnecessary.

3.2. Triggering and Untargeted Search

The simplest step in the joint analysis is to compare the list
of times of known gamma-ray transients to the list of times of
CBC candidates and search for a match. This comparison is
complementary to the dedicated follow-up of known GRBs in
GW data of GRBs, as reported in Abbott et al. (2017g) in two
ways: first, here we do not impose a maximum time offset
between the GW and gamma-ray candidates, and second, this
study includes subthreshold GBM candidates from the
untargeted search, which in O1, were not incorporated in the
LIGO–Virgo GRB follow-up searches.

For the joint analysis, events found in the GBM triggering
and untargeted searches during O1 are combined and correlated
with the combined list of CBC candidates, searching for
coincident events in the two observatories. The GBM trigger
list includes 115 GRBs, about half of which are SGRBs. The
search statistic is the shortest absolute time offset between a
GRB and the search sample of CBC triggers, allowing for the
possibility that the EM signal can precede or follow the
compact binary merger event.

Using CBC candidates with FARGW>10−3 Hz as a
background sample (blue dots in Figure 1) and FARGW
<10−5 as the search sample, we find the 90th percentile of the
absolute offset time from the closest GRB in our sample to be
∼104 s. Approximately 10% of the search sample is closer in
time to a GRB, as expected for a null result based on the
background sample. The agreement between cumulative
distribution functions of the absolute time offset TD∣ ∣ for
the background sample (blue dotted line) and the search sample
(gray solid line) is shown in Figure 2. The shortest interval
between the event times of a triggered GRB and a CBC
candidate was T 426.26 sD =∣ ∣ .

3.3. Targeted Search

The targeted search follow-up of PyCBC and GstLAL CBC
coincident triggers used the same selection criteria as described
earlier, with an additional down-selection of triggers, which
appeared in both CBC pipelines within 1 s of each other, in
which case the trigger with the highest FARGW was removed
from the sample. By this procedure, there were 17 times that a
trigger was found by both pipelines: nine triggers with no offset
( T 0.01D <∣ ∣ s), seven triggers with offset of T 0.01 sD ~∣ ∣ ,

and one occurrence with an offset of T 0.02 sD ~∣ ∣ . Of the
remaining times of interest, 10% occur when Fermi was not
taking data due to transit of the South Atlantic Anomaly
(SAA), consistent with expectations. There were no cases
where Fermi entered or exited the SAA during the 60 s search
interval. For the remaining GW triggers with GBM data, GBM
observed between 52% and 92% of the GW sky map
probability, with an average observing fraction of 69%.
Figure 3 shows the cumulative event rate of the GBM
background and search samples as a function of the detection
statistic Λ. The distribution of the search samples is largely
consistent with that of the background.
The GBM FAR, FARGBM, for coincidences in the targeted

follow-up of CBC candidates with FARGW<10−5 Hz can be
mapped to a false alarm probability (FAP) p-value. Here, the p-
value is similar to the quantity defined as the FAP in
Connaughton et al. (2016), which used an analytic approx-
imation to estimate the significance of a candidate.
However, the significance calculation used in this work

differs from that in Connaughton et al. (2016). For a given
candidate found in the GBM follow-up search, the FAP is
intended to report the probability of detecting a false associated
signal (either statistical fluctuation or real unassociated signal)
with a ranking that is at least as significant as the candidate.
As in Connaughton et al. (2016), search candidates are first

ranked by R T1 FARGBM= D( ∣ ∣), where FARGBM is the
cumulative event rate of the background distribution at the
candidate’s value for the search statistic (see Figure 3), and

TD∣ ∣ is the absolute value of the time offset between the closest
GW trigger time and the GBM candidate. We impose a
minimum ΔTmin equal to the bin-width of the GBM data,
which is 256 ms.
For this analysis we empirically measure the FAP by using

background noise events from the GW searches to seed
GBM follow-up. Background events are ranked using the
same statistic R. The FAP of a candidate event is the p-value of
the background distribution with that candidate’s ranking
statistic, R.

Figure 2. Cumulative distribution function of minimum absolute offset time
between a GRB found by the triggered or untargeted GBM searches and a CBC
candidate. The search sample (gray solid line) is consistent with the
background distribution (blue dotted line), indicating that there are no
significant coincidences between independently identified GBM and CBC
triggers during O1.
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Figure 4 shows the cumulative distribution of p-values for all
of the CBC triggers follow-up candidates. GW150914-GBM
had the lowest p-value of any follow-up event, due to the fact

that it had both the lowest FARGBM and had the shortest time
offset to its GW trigger time. The p-value for GW150914-
GBM is an upper bound, because although there were more
significant events in the background sample as determined by
detection statistic Λ, the short time offset from the GW trigger
caused it to have a higher ranking statistic, R, than any of the
events in the background distribution. The blue dashed lines
envelop the expected 1-σ (dark blue) 2-σ (blue), and 3-σ (light
blue) confidence intervals, assuming that the search distribution
is statistically identical to the background distributions based
on the number of events analyzed. From this it is clear that
GW150914-GBM is a 1.5σ event. This is a lower
significance than reported in Connaughton et al. (2016) owing
to the large number of CBC events in the search sample, due to
the low threshold chosen for trigger selection. This was
intentional, as the point of this study was to search for
subthreshold joint detections, and we treat all CBC candidates
in the search sample as equally worthwhile of follow-up.
Also note that the second lowest FAR (FARGBM

=2.6×10−4 Hz) of the search occurred in the analysis of
the GBM transient detected at 2015 September 29 12:15:43.6
UTC. The event was at the edge of the search window, 26 s
before the GW trigger time that prompted the GBM analysis,
resulting in p-value∼1. The event was found using the soft
template and the longest (8.192 s) timescale of the search. A
search for other possibly associated astrophysical transients at
that time revealed that the GBM event occurred during the
exponential decay tail of an M-class solar flare (e.g., GBM
triggers 150929346 and 150929553). The GBM localization
for this candidate is consistent with the Sun and inconsistent
with the LIGO sky map, thus we conclude this GBM event is
due to solar activity.

4. Conclusions and Discussion

The GBM follow-up analyses searched for gamma-ray
transients associated with a list of CBC candidates during
O1. These CBC candidates were well below the standards for
the GW trigger alone to be considered likely due to a compact

Figure 3. Cumulative event rates of the background (blue dotted lines) and
search (gray solid lines) samples for the GBM targeted follow-up of CBC
triggers as a function of the detection statistic Λ. The panels in the figure from
top to bottom correspond to results from the soft, normal, and hard template
spectra. The distribution of the search samples is largely consistent with that of
the background. The two most significant events from the search distribution
are the GBM transient identified in the follow-up to GW150914 (green
diamond) and a soft, long-duration, transient found 26 s after a low-
significance GW trigger. The long, soft transient is likely due to solar activity,
and in a chance coincidence with a GW trigger.

Figure 4. Cumulative distribution function of empirically determined of
p-values for the targeted search. The black solid line corresponds to the null
hypothesis that the search sample is consistent with background. The blue
dashed lines envelop the 1-σ, 2-σ, and 3-σ confidence intervals. The highest
ranking (lowest p-value) event is GW150914-GBM (green diamond), which
for this search, has a significance of 1.5σ.
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merger, but significant enough that if a gamma-ray transient
was found by GBM in coincidence, it would support an
astrophysical origin of the GW transient.

There were no coincidences between GBM transients found
by the triggered or untargeted searches and the LIGO CBC
candidates. For the targeted follow-up of GW candidates,
GW150914-GBM is the most significant event of the search.
The analysis presented here was not designed to revisit the
significance of the GW150914-GBM association; additional
observations of BBH mergers with GBM will be needed to
establish or rule out the astrophysical nature of GW150914-
GBM. No other significant transients were found in the GBM
targeted search, ruling out the possibility of a low-significance
GW event being identified by its association with a gamma-ray
transient during O1.

The significance of GW150914-GBM reported by the search
described in this paper (1.5σ) is conservative in part because
of the choice to not include in the candidate ranking the
significance of the GW triggers. By not using the GW
significance in our assessment of the validity of a GBM
counterpart, the targeted search is hampered by implicitly
placing marginal GW events on equal footing with more
plausible ones. Joint GW/EM events may prove to be rare, and
the search strategy as adopted is to cast a wide, model-
independent, net when looking for possible subthreshold
coincidences in both observatories. Deriving a joint signifi-
cance that includes information about the likelihood of the GW
candidate being astrophysical is subtle; having a high-
significance GW event does not necessarily imply a high
likelihood for an associated gamma-ray transient. Incorporating
the significance of the GW candidate into the GBM follow-up
analysis is an area of investigation for future joint observing
campaigns (Ashton et al. 2017).

For the targeted search, the long tails in the background
distribution out to high values of the ranking statistic limited
the sensitivity of the search in O1. Further analysis has revealed
that many (>20%) of the high likelihood events in the
background can be attributed to large background fluctuations
due to high particle activity associated with Fermi’s proximity
to the SAA. For analyses of later observing runs, the
background fitting procedure and the vetoing of data from
entry and exit of the SAA have been improved (Goldstein
et al. 2016).

The multimessenger observations of the BNS merger
associated with a short GRB, and the resulting kilonova and
GRB afterglow observations, demonstrated a best-case scenario
of a bright, nearby transient, which was identified unambigu-
ously gravitationally and electromagnetically. However, the
event had the closest recorded redshift for any GRB despite its
relatively low brightness (Goldstein et al. 2017), while the
BNS system was well within the detection horizon for the
LIGO–Virgo network (Abbott et al. 2017e). It is therefore not
difficult to imagine scenarios where subthreshold searches
would have been critical for identifying the association. Joint
analyses that can elevate the significance of candidate events
are needed to best exploit the rich data sets from GW and
gamma-ray survey instruments. The searches reported here,
while not producing any unambiguous counterparts, will serve
as a foundation for future joint analysis.
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