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Abstract

We present a unifying viewpoint at Hybrid High-Order and Virtual Element methods on general
polytopal meshes in dimension 2 or 3, both in terms of formulation and analysis. We focus on a model
Poisson problem. To build our bridge, (i) we transcribe the (conforming) Virtual Element method
into the Hybrid High-Order framework, and (ii) we prove H™ approximation properties for the local
polynomial projector in terms of which the local Virtual Element discrete bilinear form is defined. This
allows us to perform a unified analysis of Virtual Element/Hybrid High-Order methods, that differs from
standard Virtual Element analyses by the fact that the approximation properties of the underlying virtual
space are not explicitly used. As a complement to our unified analysis, we also study interpolation in
local virtual spaces, shedding light on the differences between the conforming and nonconforming cases.

1 Introduction

The design of arbitrary-order Galerkin methods that support meshes with general polygonal/polyhedral
cells has been attracting the attention of the community for more than 40 years now. In practice, the
use of general meshes, when not an inherent constraint like e.g. in subsurface modelling, can bring ma-
jor advantages. In particular, it increases the flexibility in meshing complex geometries (interfaces, cut
cells. . .), and simplifies the refinement/coarsening procedures in adaptive simulations. Standard arbitrary-
order polytopal discretisation approaches encompass the (polytopal) Finite Element (FE) method [48, 46],
and the (polytopal) discontinuous Galerkin (dG) method [45, 42, 3, 32, 5, 16]. The construction of FE shape
functions on arbitrarily-shaped cells that both (i) satisfy the desired conformity prescriptions, and (ii) for
which closed-form expressions can be obtained (and numerically integrated), is highly challenging. However,
when such shape functions are available, one can fully benefit from the fact that FE belong to the class of
skeletal methods. We refer to Section 3 for a precise definition of skeletal methods, but basically they are
those methods featuring bulk and skeletal degrees of freedom that are amenable to static condensation (bulk
degrees of freedom can be locally eliminated in terms of the skeletal degrees of freedom, hence reducing the
global linear system to a system posed in terms of the skeletal unknowns only). On the opposite side of the
spectrum, the dG method, which is not (without further modification/hybridisation) a skeletal method, is
based on completely nonconforming discrete spaces. One hence has the opportunity to consider simple poly-
nomial local approximation spaces. However, the price to pay for such a flexibility is an increased number of
(globally coupled) degrees of freedom, which makes of dG a computationally more expensive method than
(statically condensed) FE on standard meshes. This is all the more true that the order of approximation
increases. When considering meshes featuring cells with an important number of faces, things are not that
clear anymore, and dG may definitely become a competitive computational approach. However, on general
cells, the existence of Fortin operators for dG spaces is not clear. This may become limiting when it comes
to robustly approximate tricky operators like the divergence (think, e.g., of a linear elasticity model in the
quasi-incompressible limit) or curl operators.

More recently, a new paradigm has emerged. The idea is to define a finite element whose construction is
generic with respect to the shape of the element. The underlying local approximation space (i) is spanned
by functions that are (at least for some of them) implicitly defined (usually as the solutions to some PDEs
posed in the cell), (ii) is built so that the desired conformity properties can be obtained at the global
level, and (iii) is constructed so as to enjoy sufficient approximation properties (for instance, so as to
contain the polynomial functions up to a given degree). The fact that one cannot obtain a closed-form
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expression for all shape functions is the reason why they are called virtual in that context. In practice,
the numerical method is defined using computable (in terms of the degrees of freedom) projections of the
virtual functions, and is stabilised through a subtle penalisation, that shall also be computable. The most
salient example of such an approach is the (polynomial-based) Virtual Element (VE) method [7, 8], which
has first been introduced under its conforming version (denoted c¢-VE). Another example is the Hybrid
High-Order (HHO) method [35], first introduced/analysed for linear elasticity [33], and then for the Poisson
problem [34]. Whereas the VE method is classically defined in terms of (virtual) functions, the HHO method
is directly defined in terms of the degrees of freedom. For this reason, in the sequel, we will refer to the
VE framework as “functional”, whereas we will refer to the HHO one as “algebraic”. In [24, Section 2.4], the
HHO method has been proven equivalent (up to identical bulk polynomial degree, choice of stabilisation,
and treatment of the right-hand side) to the nonconforming version of the VE method (denoted nc-VE)
introduced in [43], and posteriorly analysed in [4]. In [24], the HHO method has also been bridged to
the Hybridizable Discontinuous Galerkin (HDG) method [27, 23], in the sense that it is possible to recast
the HHO method as a HDG method, with distinctive numerical flux trace. This work has shed light on
the fact that the quite subtle choice of stabilisation advocated in HHO results in HDG formulation in a
numerical flux trace that ensures superconvergence on general polytopal meshes. Note that efforts towards
superconvergence for standard HDG methods (and the hybridised version of mixed methods) have also been
undertaken (cf., e.g., [25], which gives a general theory of how to do so). All these methods belong to the
class of skeletal methods (cf. Section 3). Finally, in [31], the nc-VE/HHO methods are proven to be Gradient
Discretisation methods [37].

Let Q be a bounded and connected open subset of R%, d € {2,3}, whose boundary is assumed to be
composed of a finite union of portions of affine hyperplanes. We focus on the following model Poisson
problem: find u € H}(Q) solution to

a(u,v) := JQ Vu-Vu = J-Q fo=1(v) for all v e Hy (), (1)

with source term f € L?(Q). In this work, we complete the construction of the bridge between HHO and
VE undertaken in [24, Section 2.4]. To do so, (i) we transcribe the ¢-VE method into the HHO algebraic
framework, and (ii) we prove H™ approximation properties for the local polynomial projector in terms of
which the local VE discrete bilinear form is defined. This allows us to perform a unified study of VE/HHO
methods, that differs from standard VE analyses by the fact that the approximation properties of the
underlying virtual space are not explicitly used. We build upon existing contributions, especially [30] on
the analysis of schemes in fully discrete formulation, [17] on the unified analysis of ¢/nc-VE methods,
and [44, 13, 19] (see also [10, 15, 18] for the treatment of faces with arbitrarily small measure, that our
mesh assumptions will forbid in the present work) on the analysis of c-VE. We consider throughout this
paper standard VE spaces (i.e., neither enhanced VE spaces [1], nor Serendipity VE spaces [9]), with
bulk polynomial degree k — 1 (k > 1), which simplifies the treatment of the lowest-order case without
compromising the computational efficiency (since bulk unknowns are statically condensed). The aim of
the present work is threefold. First, the transcription of the VE method into the HHO framework (and
its analysis) is intended to contribute in a better understanding, by those more familiar with VE, of the
HHO standpoint, and reciprocally. Second, we believe that the derivation, in the conforming case, of H™
approximation properties for the local polynomial projector in terms of which the local VE discrete bilinear
form is defined may be of interest (up to its adaptation to a more general LP setting) for the VE analysis
of nonlinear problems. Finally, and as a complement to our unified analysis, we aim at clarifying what are
the differences in terms of interpolation between the conforming and nonconforming cases.

The main results of this paper are contained in Sections 4 and 5.

In Section 4, we focus on interpolation in local virtual spaces. We study, in the conforming and non-
conforming cases, the approximation properties of the local canonical interpolation operator (denoted Zr).
We derive L?-norm and H'!-seminorm approximation results for Zr (cf. Theorems 4.13 and 4.19). In the
conforming case, such results are not new. They can be found in [13]. Nevertheless, we include them for
two reasons. First, we propose a new path to derive them. In particular, our analysis does not explicitly
hinge on an inverse inequality for virtual functions as it is the case in [13]. Second, we make a comparison
between the conforming and nonconforming cases. A crucial observation that is made clear in this paper
is the following. The main difference between those two cases is that, in the nonconforming case, the local
canonical interpolation operator Zr is the elliptic projector onto the local virtual space (cf. Eq. (33)). This
is not true in the conforming case, which happens to complicate the analysis. In this latter case, in order
to prove stability properties for Zr (which is actually the cornerstone of the analysis), one has to estimate
a dual norm of the boundary normal flux of virtual functions (cf. Lemmas 4.7 and 4.12, and Remark 4.8).



For that, one has to make the following assumption.

Assumption 1.1. For any function v on 0T that is equal to the trace of a virtual function, there exists a
lifting Lrv e HY(T) such that Lvjor = v, and satisfying the following scaled estimate:

htlerolr + 1V Lrolr < e (hp P lolor + IV iwlor) (2)

where V denotes the tangential derivative, and ¢ > 0 is a constant independent of hr.

When T is star-shaped with respect to a ball of radius comparable to hr, the result (2) does hold (cf. [13,
Eq. (2.48) for d = 2 and Lemma 5.3 for d = 3]). When T is not star-shaped, which is a case our mesh
assumptions will allow, we are not aware of a proof of (2). In the Section 4 of [13] dedicated to the relaxation
of the star-shapedness assumption, this tricky aspect (especially in 3D) is eluded. In [19], the star-shapedness
assumption is weakened, but the arguments are restricted to the 2D case, and to mesh assumptions that
are a bit less general than those we consider here. We will hence keep (2) as an assumption of our analysis
in the conforming case (cf. Remark 4.8). As opposed to the conforming case, in the nonconforming one,
owing to the fact that Zr is the elliptic projector onto the local virtual space, an estimate such as (2) is not
needed to prove stability for Zr (cf. Lemma 4.17 and Remark 4.18).

In Section 5, we perform our unified analysis of VE/HHO methods. Letting IIr denote the elliptic
projector onto the polynomial subspace P(T) of the local virtual space, the local polynomial projector Pr
in terms of which the local VE discrete bilinear form is defined is actually equal to IIp o Zp. Splitting the
error in broken H!-seminorm (recall that the only computable/computed quantity is Ppus = IT,uy,) along

IVh(u —Hpup)| < [Va(u = Prw)| + [Vrlla(Zou — un)|, (3)

one is left with estimating the two terms in the right-hand side of (3). The first term is an approximation
error, whereas the second is bounded by the consistency error of the scheme (discrete energy-norm error);
cf. [30, Section 2.4.1]. In standard c-VE analyses (including [30, Theorem 19]), the first term in the right-
hand side is split along

IVa(u=Pru)| < [Va(u —hu)| + [Valln(u — Zyu)| < [Vi(u — Thu)| + [Va(u — Zhu)|,

where one uses the stability property of II;. Similar splittings are deployed to take care of the consistency
term. With such splittings, the approximation properties of the local virtual spaces invite themselves into
the picture. To perform the analysis, one thus has to use the interpolation results of Section 4. In the
nonconforming case, since Zr is the elliptic projector onto the local virtual space, one actually has Pr = Il
(this has already been pointed out in [30, Remark 25]). The analysis hence inherently simplifies, as one
can conclude by standard approximation results on II;. This explains why the approximation properties
of the underlying virtual space do not appear explicitly in standard HHO error bounds. The virtual space
is anyway not even introduced. In this article, we directly investigate the approximation properties of
the polynomial projector Pr (especially in the conforming case), for which we prove H™ approximation
properties (cf. Theorem 5.4). Interestingly, Assumption 1.1 is not needed to prove so (cf. Remark 5.5).
Irrespectively of the conformity of the underlying global virtual space, we then split the error in broken H'-
seminorm along (3), and we perform the analysis only using the H™ approximation properties of P,. We end
up with a factorised analysis inspired from that of HHO methods (cf. Theorem 5.12 and Corollary 5.14), that
differs from standard VE ones by the fact that the approximation properties of the underlying virtual space
are not explicitly used. We also perform, in the same vein, a factorised L?-norm analysis (cf. Theorem 5.16
and Corollary 5.17).

The material is organized as follows. In Section 2, we introduce the notation, we detail our admissibility
assumptions on mesh sequences, and we introduce a number of analysis tools that will be useful in the
sequel. In Section 3, we undertake a general description of skeletal methods, such as the VE or HHO
methods. In Section 4, we study interpolation in local virtual spaces. Finally, in Section 5, we provide
our unified formulation/study of VE/HHO methods, as well as a description of the general workflow of the
methods.

2 Notation, mesh assumptions, and basic analysis tools

We collect in this section all the conventions, tools, and results that will be useful in the sequel.



2.1 Notation
2.1.1 Geometry

Forle {1,...,d}, we let |-|; denote the I-dimensional Hausdorff measure. In what follows, the term polytope
refers to polygons if d = 2, and to polyhedra if d = 3. The discretisation of the domain 2 is described in
the following manner.

e 7T denotes a mesh of the domain (2, i.e. a collection of disjoint open polytopes T (the cells) such that
UTeTh T = Q. The parameter h is the meshsize, defined as h := maxye7;, hr, where hy stands for the
diameter of the cell T.

e F}, denotes the collection of faces of the mesh 7;. Since the cells of T, are polytopes, their boundary
is composed of a finite union of (closed) portions of affine hyperplanes, called facets. A closed subset
F of Q with |F|4_1 # 0 is a face as soon as (i) F is equal to the intersection, for T}, Ty two cells of
Th, of a facet of T1 and a facet of T, or (ii) F is equal to the intersection, for T cell of Ty, of a facet
of T and a facet of 2. In the first case, F' is termed an interface, whereas in the second, F' is termed a
boundary face. Interfaces are collected in the set F, }L, boundary faces in the set F; ,E’, in such a way that
Fn = ]:,il u]—',?. For acell T € Ty, we let Fr :={F € Fp, | F < 0T} be the collection of faces composing
its boundary, and nr be the unit normal vector to ¢T pointing outward T (that is defined almost
everywhere on 0T'). For F € Fp, we also let np p := ny|F; remark that ny r is a constant vector on
F since F is planar. Finally, for any face F' € Fj, we denote hp its diameter (and, for T € Ty, we let
hor be such that hop g 1= hp for all F'e Fr), and we let Tp:={T €Ty, | F' < 0T} be the collection
of cells sharing F' (two cells for an interface, one for a boundary face).

e 07p denotes the (d—1)-dimensional skeleton of the mesh 7y, that is 07, = Jpcz, F-

e When d = 3, &, denotes the collection of edges e, |e|; # 0, of the mesh Ty, defined from the collection
Fp, of faces. For a cell T € Ty, (respectively a face F € Fp,), we let Ep := {e € &, | e < 0T’} (respectively
Er ={e€ &, | e c OF}, that will also be denoted Fr with a slight abuse in notation) be the collection
of edges composing its boundary.

e V), denotes the collection of vertices v of the mesh 7j,. For a cell T € T, (respectively a face F € Fp,),
we let Vp := {v e V), | v e 0T} (respectively Vp := {v € V},, | v € 0F}) be the collection of its vertices.
The position of any vertex v € V}, is denoted x, € Q.

When d = 2, faces are sometimes called edges in the literature. We will not use this vocable in this article.
The term edge will always refer to a 1-manifold in dimension d = 3. We finally introduce, for v € V},, the
set Fp, :={F € Fp | v € Vp} and, when d = 3, for e € &, the set F. :={F € Fp, | e€ Er}.

2.1.2 Functions spaces

For X < Q, and m = 0, we let 'l ;m.x and [-],,, x respectively denote the seminorm and norm on the Sobolev
space H™(X;RY), I € {1,d}, with the convention that H°(X;R!) = L2(X;R!) (hence, Ilo.x = I-lo.x)- We
also define |||, y as the norm on L*(X). We finally let (-,-)_,,, x be the duality pairing between H~"™(X)
and its topological dual.

For ¢ e Nand [ € {1,...,d}, we let P/ be the vector space of l-variate polynomial functions of total
degree less than or equal to q. We also let

NY = dim(P¥) = (q ; l) ,

and we adopt the conventions P, ! = {0} and N; ' = 0. For T € Tj, we define P%(T') as the restriction of P
to T. For F € F,, we let PY_, (F') be the restriction of P to F. When d = 3, for e € &, we let P{(e) be the
restriction of P? to e. For T € Ty, we also define the broken space

P (Fr) :={ve L*(T) | vp € Pi_,(F) VF € Fr},

and when d = 3, for F € Fj, we let P{(Ep) := {v e L?(0F) | v|. € P{(e) Ve € Ep}. We finally introduce, for

any T € Ty, a set of basis functions for P§(T'), that we denote {¢7.;}icq1,... 9}, and for any F' € Fp, a set of

basis functions for P?_. (F'), that we denote {¢% .}.c(1 ne 3. When d = 3, we further introduce, for any
d—1 F,j ]G{ ey d—l}

e € &, a set of basis functions for P{(e), denoted {1, }meu,... N9}-



Given a mesh T, of Q, we introduce the following notation for broken functions spaces on Tp:
X(Th) :={vn € L*(Q) | vyyr € X(T)VT € Ty }.

We introduce on H'(T}) the so-called broken gradient operator V, : H(T,) — L*(Q2) such that, for any
vp, € HY(T) and T € Ty, Vnvpr = V(v r). For any interface F e Fi with Tp = {T1, T}, we define the
jump [vx]F along F' of vy, € H*(Ty), s > Y2, by [vn]r := (vnry)|p — (Vnjm,)|F, and we let np = ng p.
For any F € Fp with Tp = {T}, we let [vp]r := (vp7)|F, and np := nyp. We finally introduce the
operator [-] : H*(T,) — L?(0Ty) such that, for any vy, € H*(Ts), [vn]|p := [vn]F for all F € F,. Assume
that v, € H*(Ty,) is such that v, € CO(T) for all T € Tj,. Then, the quantity [vy,] is piecewise continuous
on the skeleton, with (potential) discontinuities at vertices when d = 2 and on edges/vertices when d = 3.
Indeed, considering a vertex v € Vy, there are card(F, ) potentially different values for [v,] at x,, that are
the ([vn]r(®y)) per,- When d = 3, considering an edge e € &, there are, identically, card(F.) potentially

different functions [uv,] on e, that are the ([[’UhﬂF‘e)FE]_. .

2.2 Mesh assumptions

We define the notion of admissible mesh family.

Definition 2.1. The mesh family (Tr)n is admissible if, for all h, T, admits a matching simplicial submesh,
denoted Sy, and there exists v > 0, called mesh regularity parameter, so that, for all h,

(i) for all S € Sy, of diameter hg and inradius rs, Yhs < rg (in other words, Sy, is shape-regular);
(i) for all T € Ty, and all S€ Sy :={S €Sy | ST}, vhr < hs.

By matching simplicial submesh, we mean that Sy, is a (hanging node free) simplicial mesh satisfying: for
all S € Sy, there exists a unique T € T, such that S < T, and for all Z € Z;,, where Z;, collects the faces of
Sh, there exists at most one F' € F, such that Z € F (cf. [32, Definition 1.37]). Henceforth, we will use the
symbol < to indicate that an estimate is valid up to a multiplicative constant ¢ > 0, with ¢ only depending
on the dimension d, the mesh regularity parameter v, and, if need be, the underlying polynomial degree; in
particular, the bound is uniform with respect to the meshsize.

Let us mention three important consequences of Definition 2.1: for all h, and all T € Tj,,

(a) for all S € Sy, yhr < hg < hy, and card(Sr) < 1 (cf. [32, Lemma 1.40]);
(b) for all F € Fr, card(ZFp) < 1, where Zp :={Z € 2}, | Z < F} (cf. [32, Lemma 1.41]);
(c) for all F € Fr, ¥?hr < hr < hr, and card(Fr) < 1 (cf. [32, Lemmas 1.42 and 1.41]).

From (a) and (b), one can picture the general outline to prove inverse and trace inequalities on arbitrarily-
shaped (admissible) cells. One first considers the case of a simplex satisfying (i) of Definition 2.1, for which
these inequalities are standard. Then, the passage to arbitrary geometries follows from the fact that any
admissible cell is composed of an uniformly bounded number of simplices satisfying (i) (and, any admissible
face is composed of an uniformly bounded number of subfaces belonging to simplices satisfying (i)), and
whose diameters are comparable to the diameter of the cell under consideration (cf. Section 2.3.1). Note
that the notion of admissible mesh we consider here allows for cells that are not necessarily star-shaped.
The assumptions of Definition 2.1 are also sufficient to prove H™ approximation properties for standard
polynomial projectors (cf. Section 2.3.3). As for point (c), it is instrumental in the analysis of numerical
methods based on 7;,. When d = 3, it is an easy matter to show that, under the assumptions of Definition 2.1,
one also has, for any T' € Ty, F € Fr, and e € £, v2hp < he < hp, and card(Ep) < 1.

2.3 Basic analysis tools

Henceforth, 7, denotes a member of an admissible mesh family in the sense of Definition 2.1.

2.3.1 Useful inequalities
On any T € T}, the following inequalities hold:

e inverse inequality:
YwePYT),  [vlyp < byt |vlori (4)



e continuous trace inequality: for any F € Frp,
HY(T < hp”? h22 o)y pi
Vve HH(T), H”\FHO,F S hy vl + by |0l 13 (5)
e discrete trace inequality: for any F' € Fr,

voePYT), ol p s bz lolo s (6)

For the proofs of these different results, we refer to [32, Section 1.4.3] (note that therein, faces may even be
nonplanar). We also state the classical Poincaré inequality:

o e H(T) such that L v=0,  [vlor < cphrlv] o (7)

If T is convex, cp = 7! is optimal, independently of the ambient dimension; cf. [6]. For some insight on

the value of cp on more general element shapes, we refer to [47]. In the forthcoming analysis, we will also
need (i) the following nonstandard inverse and discrete trace inequalities, whose proofs can be found in [22,
Lemma 4.4 (take A. = 14)]: for all v € H!(T) such that Av € PY(T) for some g € N, there holds

|80] 7 < htfoly 7 (8)

if, in addition, for some F € Fp, Vojp-nrr € P§_, (F), then there also holds

|Vornr el . < e ol 9)

(ii) the following version of Sobolev inequality (cf., e.g., [14, Lemma 4.3.4]):

2 -4 = gz
Vv e H(T), [0l < hp?vllgp + Ry ® [oly g+ By ® [v]o s (10)

and (iii) the following estimate on a dual norm of the boundary normal flux, whose proof is postponed until
Appendix A.1, that is valid under Assumption 1.1: for any v € H*(T) such that Av e L*(T),

(Vujer -nr,2)_1 or

su

p _ < |U|1,T + hTHAUHO,Ta (11)
€@} hy |2l o + Rt 2]y or

where T(0T') ¢ H'(0T) denotes the space of traces on 0T of virtual functions (to be made precise in each
situation) that is referred to in Assumption 1.1.

2.3.2 Finite element in the sense of Ciarlet
The following definition is directly inspired from [20, p. 94]. Let I € {1,...,d}.
Definition 2.2. A finite element consists in a triple (X,V(X),Xx) where
e X is a bounded and connected Lipschitz subset of R? such that | X|; # 0;
o V(X) is a finite-dimensional vector space of functions v: X — R;
e Yx :={0k,...,0%}, nx € N*, is a collection of linear forms on V(X) such that the mapping
Sy :V(X)2v e (0% (v),...,0% (v))T e R™
is bijective (we then have dim(V (X)) = nx ).

The operator X is the so-called (local) reduction operator, and Xy (v) is the so-called vector of (local)
degrees of freedom (DoF). The bijectivity of Xy is in general referred to as unisolvence in the literature.
The following proposition is a direct consequence of the unisolvence property.

Proposition 2.3. Let (X,V(X),Xx) be a finite element. There exists a basis {¢px1,...,¢xnx} (referred
to as canonical) of V(X) such that o’ (px ;) = 6i; for alli,j € {1,...,nx}. The (vx.) , are the
so-called (local) shape functions.

Z'E{l,‘..,’ﬂx



Let rx : R™ — V(X) be the operator such that, for vy = (v%){e{l nxy € R rxvy = 200 viex
One can easily remark that, for all vy € R**, ¥y (ryvy) = vy, hence ry = ¥3' and, for any v € V/(X),

nx

v=r ZUX V)PX,i-

rx is the so-called (local, canonical) reconstruction operator.

Assume that there exists a normed vector space W(X) of functions w : X — R such that (i) V/(X) <
W(X), and such that (ii) every linear form o% of ¥x can be extended as a linear form &% on W(X). We
denote by X x this new collection of extended linear forms, and by Xy the corresponding (local) reduction
operator. We can then introduce the operator Zx : W(X) — V/(X) such that, for any w € W(X),
Ixw = rx(Zyx(w)) = 3% % (w)px;. With such a definition, there holds ZX(IXw) = Yy (w). The
operator Ty is the so-called (local, canonical) mterpolatlon operator (in a broad sense). Of course, for all
we V(X), Ixw = w since ZXW( x)=2x = ey

2.3.3 Standard polynomial projectors

For T € Ty, we define the L?-orthogonal and elliptic projectors, respectively 7% : L?(T) — P%(T) and
1% : HY(T) — PY(T), so that

for all v e L*(T), f Thow = Jva Yw e PY(T);

f VIIiv-Vw = f Vou-Vuw Yw e PY(T),
T

JHQTU=JU.
T T

Remark that I3 = W%|H1(T)' For l e {1,...,N%}, we let w%l denote the linear form on L?(T) such that, for
any v e L2(T), 7% (v) € R is the I'" coordinate of 7&v on the basis {7 i}ieqr,... nay of PY(T).

for all v e H'(T), (12)

Proposition 2.4 (Properties of 7% and II%.). Let T € Tj, and v e L*(T).

e preservation of polynomials: if v € P4(T), nfv = IThv = v;

o stability: [72vly . < [0lo.r and, ifve HY(T), [oly p < vl + 260 hrlol, 1

e optimality: |v — min v — 2|, and, if ve HY(T), lv—T7v[, p = min |o—2]; 5

zeP%(T) 2eP¥(T)

e H™ approximation: for ve H*(T), s € {1,...,q+ 1}, there holds, with w € {x%;11%.},

v — @), p S hy "ol formed0,... s}, (13)

and, for any F € Fr, and any (C1,-..,Cq) € N? such that Z?zl G =m,

s—m—1
6% 0% (v = wh)liply o S h " Plolyy  forme{0,...,s 1} (14)
The proof of the last result of Proposition 2.4 relies on (i) the ideas of [14, Chapter 4] and [38, Sec-
tion 7] (cf. also [13, Section 4]), and on (ii) two important features of w/., that are the preservation of
polynomials and its stability in the L?(T)-norm. For a detailed proof, and an extension to more general
Sobolev seminorms, we refer to [28] (L2-orthogonal projector) and [29] (elliptic projector). We also intro-
duce 7 : L*(Q) — P4(Ty,) and 11} : H'(T,) — P%(T,) such that, for any v € L?() (resp., v € H'(T3)),
mhvir = mh(vyr) (vesp., I}y := . (vr)) for all T € Ty,
For F € F,, we define '}, : L*(F) — P%_, (F) so that, for all v e L*(F),

J W%’UU]=J vw  YwePd (F).
F F

For le{1,...,N? |}, welet 7% ! denote the linear form on L2(F) such that, for any v € L2(F), 7? s ‘) eR
is the th coordmate of 7% on the basis {'LpF,j}]e{l,“., NY ) of P4_,(F). We also define, for T € Ty, mi; :



L*(0T) — P%_,(Fr) such that, for any v € L*(0T), nipvp := 7 (vyp) for all F € Fp. When d = 3, for
e € &, we define 74 : L?(e) — P{(e) so that, for all v € L?(e),

fwng:fvw Yw € P{(e).

For [ € {1,...,N{}, we let 7%! denote the linear form on L?(e) such that, for any v € L%(e), 7%!(v) € R is
the I*" coordinate of m%v on the basis {2 1 meta,...nay of Pi(e).

Remark 2.5 (Computation of n%v). It can be easily seen that, for X € {T,F,e} and v € L*(X), v =
ﬁng with 1 € {d,d—1,1} respectively. To compute whv for ¢ = 1, it suffices to solve a symmetric
positive-definite (SPD) system of size Nj. The procedure of choice is a Cholesky factorisation.

Remark 2.6 (Computation of ITf.v, ¢ > 1). One possibility (another one is to solve a problem posed on the
quotient space P%(T)/PY(T)) to compute I1%w is to consider the following coercive problem: find z € P4(T)
such that, for all w e PE(T),

f Vz-Vw + J Tz THW = J Vu-Vuw = —f v Aw + J vior VWwjor-nr.
T T T T oT

The elliptic projection is obtained by v = z + v, According to the expression above, to compute v,
it suffices to know selected moments of v e H*(T), namely whv for u = max(q — 2,0) and ﬂg;l(v‘afr). The
computation of v then requires to solve a SPD system of size N%. The procedure of choice is again a
Cholesky factorisation.

3 Skeletal methods

3.1 Generic structure

Galerkin methods on 7y, among which ¢/nc-FE, ¢/nc-VE, or dG methods, seek for an approximation uy of
the solution u € HZ () to Problem (1) in a broken space Vi, o0 € V(T,) « HY(Tr), with V(73) such that, for
all T € Ty, V(T) is a finite-dimensional vector space of functions on which exists a collection X7 of linear
forms so that (7, V(T),Xr) is a finite element in the sense of Ciarlet. The linear forms collected in X are
the local DoF of the method. For dG methods, V3o = V(7},), whereas for ¢/nc-FE/VE, V}, ¢ is a strict
subspace of V(7;,) that embeds more or less stringent conformity prescriptions (with respect to H{(2)); for
¢-FE/VE for instance, V}, ¢ is a subspace of H}(€2).

For those methods (like ¢/nc-FE/VE) based on a space V}, o embedding conformity prescriptions, locally
to any T' € Tp, the collection X7 of DoF can be split into (i) linear forms on V(0T := {vjor, v € V(T)}
(collected in the set $9.) and, (i) if need be, those linear forms on V(7)) that cannot be written as linear
forms on V(0T) (collected in the set ¥5). The linear forms in X4, are skeletal DoF, whereas those in 5.
are bulk DoF. We let ng. := card(X%), n$ := card(X9.), and nr = n% + n$ = dim(V(T)). From a global
viewpoint, the collection of global DoF of the method splits into (i) linear forms on

V(Fp) = {vh e L*(Th) | vnjr € —Frer Ve (F)VE € fh}

with V7 (F) := {vr, v € V(T)} (collected in the set ¥9) and, (i) if need be, linear forms on V(75) that
cannot be written as linear forms on V(F3) (collected in the set ¥3). Whereas ¥ := | Jp.7, %% where, for
any T € Tp, 2‘% is the collection of linear forms on V(7) given by i]OT = {U%(~|T), 0% € ZOT}, the global
skeletal DoF in X9 (that are linear forms on V(F},)) are intrinsically defined, and their local counterparts
are obtained by localization. More precisely, for any T € T, letting

Vr(Fp) = {vh € V(Fu) | vpjor € V(T), vpp = 0VF € fh\fT} and 2?} = {UIaVT(Fh,) £0,00€ Zi},

one has A
20 = {C((}%Ozh), &%ezg}, (15)

where Zj, is the zero extension operator from V(0T') to Vp(Fp), and ¢ is a constant depending on the
skeletal DoF under consideration and on 7', whose default value is 1 (cf. Remark 3.1). Note that whereas

Card(zg) = ZTGTh, ng, card(Zi) < ZTGTh n%



Remark 3.1 (Role of the constant c in (15)). Assume that V(T) = C%(T) for all T € Ty, which is relevant in
practice. Then, functions in V(F,) are piecewise continuous on the skeleton, with (potential) discontinuities
at vertices when d = 2 and on edges/vertices when d = 3. Yet, in the conforming case, in order to prescribe
conformity, one has to define DoF at vertices when d = 2 and on edges/vertices when d = 3. Let us then
describe how to do so. For a vertex v € Vy, the (global) skeletal DoF o e ZZ associated to a pointwise
evaluation at ., is defined, for any v, € V(Fp), by 0% (vy) := Wl(]-',,) Yrer, Unp(®y). Such a formula

card(F,)
card(F,nFr)’

as expected that the restriction of c® to a cell T € Ty, such that v € Vr is given, for any v € V(dT), by
U%V(v) = v(x,). Edge DoF when d = 3 can be handled in a similar way. For face DoF, one can always
take c = 1.

degenerates towards v (x,) whenever vy, is continuous at x,. Besides, letting ¢, = one obtains

For any F' € Fj, and vy € V(Fp), we let Rp(vn) € V/(F) be such that Rp(vn)|p = vpp and Rp(vp)|pr =
0 for all F" € F,\F. The approximation space, that also takes into account the boundary conditions, is

Vio :={vn € V(T1) | (67 o Rp)([vn]) = OVF € Fi, Yo' e 57}, (16)

with dimension ny := dim(Vh,0) < dim(V(73)) =: np (vemark that ny = Y.p7 nr). The conditions on
the jumps of discrete functions enforce the conformity prescriptions. The discrete problem then reads as
follows: find up, € V3, o such that

ap(up,vp) 1= Z ar (T, V) = 2 I (vpr) =2 In(vn) for all vy, € Vj, 0, (17)
TeTh TeTh

where the (bi)linear forms ay : V(Tr) x V(Tr) — R and I;, : V(T) — R are the sums of local contributions
expressed by the local forms ar : V(T) x V(T) — R and Iy : V(T) — R. This special structure of the
discrete problem ensures that the potential bulk DoF of the method are not coupled between adjacent cells
and can be eliminated locally in each cell T' € 7T, in terms of the local skeletal DoF. Algebraically, the
elimination consists in computing the Schur complement of the bulk-bulk block of the global linear system,
which is quite inexpensive as this block is itself block-diagonal. After elimination, the global linear system
to solve is expressed in terms of the skeletal DoF only. This explains why methods that are based on a
discrete space like (16) and on a variational formulation like (17) are referred to as skeletal.

Without describing too much the space V}, g, one can prove interesting structural properties on it. Let
us denote, for any F' € Fj, by @ the linear form on V(F3) so that #% := 7%(-p), with the convention
(henceforth adopted) that PY is identified to R.

Lemma 3.2. If {#%} per, € X9, then IV hllg.q defines amorm on Vi, and the following discrete Poincaré
inequality holds:
Vo € Vio,  lvnlog S 1Vavalog- (18)

Lemma 3.2, whose proof (which is quite classical but recalled for completeness) is postponed until Ap-
pendix A.2, gives sufficient conformity conditions for V}, o (that are reminiscent of lowest-order nc-FE) so
as to ensure that a discrete Poincaré inequality holds on it.

Remark 3.3. Obviously, the result of Lemma 3.2 remains valid under more stringent conformity prescrip-
tions (like it is for instance the case for c-FE).

3.2 Equivalent algebraic viewpoint

Since, for all T € Ty, (T,V(T),X7) is a finite element in the sense of Ciarlet, any function v, € V(7T3) can
be equivalently written as a vector R™ 3 v, := (y})}eﬂ with R"” 3 v, = (ygT,y(}T)T, v e R"r and
v} € R"r. The vector v;, that satisfies v = ZT(’UMT), is the restriction of v; to T. For T' € T} and

F e Fr, we let y% F € R™".# be the restriction of v5 to the face ' (with possible overlaps between faces,
Le. Dper, n% # = n%). Since the skeletal DoF are intrinsically defined at the global level, we necessarily
have that, for all F € .7-'}1 such that Tr = {T1, T3}, the vectors g%l’ r and 2%2, r are local reductions obtained
through the same collection of global linear forms. In particular, they have the same size, and we can let

[vplF = Y%,F fy%f. For F € F} such that T = {T'}, we let [v),]r := y‘%F. We introduce

V}L70 = {yh e R" | [yh]p =(0VF e fh} (19)



There holds dim(Vy, o) = np. For vectors v, € Vy, o, for every F € Fi we have K%,F = yaTZ,F, and for every
Fe .7-',';’ we have X%,F = 0. Problem (17) can be equivalently rewritten: find u;, € Vj o such that

an (W, vy) = Z ar(up, vp) = Z Ir(vy) = 1n(vs) for all v;, € Vi 0, (20)
TeT TeTh

where the (bi)linear forms ap : R™ x R™ — R and 1, : R™ — R are expressed in terms of the local forms
ar : R"” x R"™ — R and Ir : R"™ — R such that ar := agp(rr-,rr-) and 1y := Ip(rr-), where rp is the
(local, canonical) resconstruction operator of the finite element (T,V(T),X7). For all T € Ty, there holds
ur = Yy (up7), where up € R™ is the restriction to T of u, € Vj, o solution to Problem (20), and up, € Vi o
is the solution to Problem (17). Problem (17) and Problem (20) are strictly equivalent. They only differ by
the fact that the former is written in a functional framework, whereas the latter is written in an (equivalent)
algebraic framework, i.e. in terms of the discrete unknowns. In the rest of this section, we will stick to the
functional notation used for Problem (17), but in Sections 4 and 5 we will adopt the algebraic notation used
for Problem (20). In algebraic notation, roman fonts are used and vectorial quantities are underlined.

3.3 Examples of skeletal methods

The most famous examples of skeletal methods are surely given by the ¢/nc-FE methods. In that case, one
considers, for all T € Ty,

ar(w,v) = J Vw-Vv and Ir(v) 1= J firv for all w,v e V(T),
T T
in such a way that the discrete problem writes: find uy, € V3, o such that
ah(uh,vh) = J thh-thh = J fvh = lh(vh) for all Vh € Vh,O- (21)
Q Q

In the conforming case, since V3, o = HJ(£2), one can drop some h and directly write a, I, and V. For FE
methods, it is assumed that closed-form expressions are available for the local shape functions. In that case,
since ap (-, ) = HVh-Hg o, Lemma 3.2 gives a sufficient condition so as to ensure well-posedness of the discrete
problem in the sense of Hadamard (from (18) directly results the stability estimate IViunloa < Ifloq
on the solution uj, to Problem (21)). Under that same (sufficient) condition, as soon as the space Vi;,o
guarantees as well some approximability in a dense subspace of H}(f2), one can classically infer strong
convergence in H}(Q) of uy, to the solution u to Problem (1) [37]. The result of Lemma 3.2, that does not
assume that discrete functions in V}, o are piecewise polynomial, also applies to the mixed-order multiscale
HHO method of [22, Section 5.1|, for which the local (oscillatory) basis functions are considered to be all
explicitly known on each coarse cell (in practice, they are in fact approximated using a fine submesh of the
coarse cell).

Other examples of skeletal methods are given by the hybridised version of mixed FE methods, that can
be recast under the form (17) after local elimination of the flux variable [40, 2, 26].

Other, more recent examples of skeletal methods are the ¢/nc-VE methods, as well as the HDG and HHO
methods (cf. [11]). The specificity of VE methods with respect to FE methods is to consider virtual local
spaces V(T), i.e. local spaces which are spanned by functions that are (i) in general, not all computable,
and (ii) by definition, never all computed. The local virtual functions are usually implicitly defined as the
solutions to some PDEs posed in the cell. The VE methods are defined using computable (in terms of the
DoF) projections of the virtual functions, and are stabilized through computable penalisations. Polynomial-
based VE methods hinge on local virtual spaces (i) spanned by the solutions to PDEs featuring polynomial
data, and (ii) that contain the space P% for some k > 1. They are the VE methods that are classically
encountered in the literature. As such, we will henceforth refer to them simply as VE methods, and we will
exclusively focus on them in the sequel. An example of (nonconforming) method that hinges on a different
kind of virtual space is given by the equal-order multiscale HHO method of [22, Section 5.2], for which local
virtual functions do solve (oscillatory) PDEs with polynomial data, but the local virtual space does not
contain polynomials in general.

4 Interpolation in local virtual spaces

In this section and in the following, we will make an extensive use of the notation introduced in Sections 2
and 3. We let k£ > 1 be a given integer, that will stand for the order of the method. Doing so, we adopt
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the classical VE notation. HHO methods of the same order are classically defined using ¥’ = k —1 > 0. Let
T € Ty be a given cell.

4.1 Conforming case

For any v € Vr (respectively v € Vp, for F' € Fr), we let o7, (respectively (%) denote the linear form
on CY(T) (respectively CO(0F)) so that, for all v € C(0T) (respectively v € CO(OF)), 4 (v) = v(z,)
(respectively t%(v) = v(x,)).

4.1.1 Preliminary results

Let d = 2, and consider a face F' € Fr such that F := [x,,,x,,]. Then, we have the following classical
result.

Proposition 4.1. The triple (F,P}(F),%} 1), where the collection ¥ 1 splits into SR = (W ey, and
sho i (ko2 ’
L,F =\ je{l

To alleviate the notation, we have kept in the collection Elf; the symbol Wf,f” to actually denote m

NE-2ps is a finite element in the sense of Ciarlet.

yeeey

k—2,j
FIPY(F)’
This slight abuse in notation will henceforth be adopted. Letting n’f p = dim(P¥(F)), we introduce the

operator r’iF RMLE P¥(F) such that, for any

P ; k
v = ((VE Dveves (Vi) jeqr, . wi2y) T E R,

rf YV € PY(F) solves the well-posed problem

| otrepyw = = [ vput ¢ W@, -0 @) e PEE),
F , F (22)
T’f,FXF(wul) =vi",
k—2 .
where we have introduced the notation v$ := Z;\I:ll vy zﬁf{f e P¥2(F). Remark that we also have

Y pvp(T,) = V%Vz (it suffices to test (22) against any w € P1(F)).

Proposition 4.2. The operator r’f,F defined by (22) coincides with the (canonical) reconstruction operator
(=)t

Proof. Let RMLF 35 Vo= ;’f,F(v) for some v € P¥(F). Plugging v into (22), we obtain by integration by

parts (remark that v = 75 2v)

f (r]fyFyF)’w’ = J v w Yw e PY(F),
F

F
which, combined to the condition 7§ pvp(@,,) = v(;;’”l = v(®,,), yields that rf pv, = r’f,F(;]f,F(v)) = v.
This is true for any v € P}(F), hence r{ j = (Zlf’F)_l. O

The collection E’f’ 7 of linear forms on P¥(F) can patently be extended to a collection ili r of linear
forms on CY(F). We can hence define the interpolation operator IfF : CO(F) — PY(F) such that I} , :=

—k
k
", F OZ1,F-

Lemma 4.3 (Stability of I{“’F). For all ve C°(F), there holds HIfFvaf < vl -

Proof. To prove the result, we test (22) with v := ETF(”U) We get
| @y == [ ow+ @) @) v@a)e (@] e PiE)

where we have used that w” € P’f_Q(F ). By Cauchy—Schwarz inequality, an inverse inequality on the 1-
simplex F (cf., e.g., [39, Lemma 1.138]) and a reverse Lebesgue embedding (cf., e.g., [28, Lemma 5.1]) for
w' € PE71(F), we infer

<hp ol plwl, o Ywe PE(P).

f@hww
JC:t
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Taking w = IﬁFv € P}(F) yields

_1
AU s (23)

Now, using the fact that Zf v(x,,) = v(z,,) and writing

T

TH po(@) = (@) + J (TF o),

Ty

we finally obtain, by Cauchy—Schwarz inequality and (23), that

178 pol, o < 0l e+ BEIZE £0L, e S N0l e

Remark 4.4. One can equivalently choose, to define the finite element (F,P¥(F), EIf,F): to consider Zlf% =
{L%}VGV%, where V3 is a set of k — 1 internal points of F' chosen such that the matriz defined by M :=

k o - ko ~ k N (-1 k
(wF;j(x”))VEVFUV;’,,jE{l,‘..,N’f} is invertible. The operator 17 i is then given by i pvp := 3,1, (M KF)ij}j,

and one can easily prove L*-stability for Z{“,F.

4.1.2 The case d =2

If d = 2, we let our conforming local virtual space on T be defined by

VH(T) = {v e H\(T) | v e PYH(T), vor € PY(Fr)}, (24)
where P]f’c(]-"qj := P¥(Fr) n C°(0T). One can show (cf., e.g., [13, Remark 2.3]) that functions in V(T
belong to C°(T). Besides, P5(T) < V#(T). The following result is standard.
Proposition 4.5. The triple (T, VF(T), E;T), where VF(T) is given by (24) and the collection EQT splits
mnto

k.o . , FeFr ko | k—1,i

Sy = {7 }evy U {2 |F>}je{1,...,N’f*2} and X577 = {7y Z}ieu,...,N’;*l}v
s a finite element in the sense of Cliarlet.

Letting n’2€,T := dim(V§(T)), for any

5,] )FE}—T

. 2, i T 5
Vr = ((VTV)VEVT7( VTR jeq,. Nk—2}a(VOTl)ie{L...,N’;*l}) € R,

0, 0,
we have v5 = ((v3")vevy, (VTJF);;{J;TH

T nSl o _ (0w 4 T nk
Nkﬂ}) € R"™T, vi p = (v )uevw(VT,F)je{L..‘,N’f*Z}) € R"1.7 for
o Ns™' o) k1 k-1 ; k ng k,c
any I' € Fr, and we let v§ := 3,2 vp'gr, € Py (T). Defining rf o : R"27 — Py°(Fr) so that, for
3 k.0 . . o .
any v9. € R"21 rk (?TX%F :=rk v . for all F e Fr where r¥ . is defined by (22), we are now in position

to introduce the operator rQT (R VF(T) such that, for any v, € Rm2.7 ré“)TyT e VJF(T) solves the
well-posed problem

f VTSyTyT'Vw = ff vy Aw + <Vw|aT~nT, TfaTX%>,% J Yw € VQI“(T),
T T '

k _ o
f To, TV —f vr.
T T

Proposition 4.6. The operator r’iT defined by (25) coincides with the (canonical) reconstruction operator
(ZIS,T)_l

Proof. Let R".7 5 Vo= Z’;T(v) for some v € VF(T). Plugging v, into (25), we infer by integration by

parts (remark that v§ = 75~ 'v)

(25)

f Vrlg’TyT-Vw = —J 7TT Lo Aw + <Vw|aT n;mr]f aT(Eg;( ))> ) = J Vou-Vw Yw e VQk(T),
T T —3,0T T

where we have used that Aw € PE™1(T) and that, for all F € Fr, r’f aT(Eg’g( ))IF = r’fF(Eg’gF( )) =
r’fﬁF(zlfﬁF(vw)) = vjp (cf. Proposition 4.2). Since {75 vy = §,m v = §,.v, we finally infer that
r§ vy =15, (Eé,T(v)) = v. This is true for any v € V{f(T), hence r§ , = (Zz,T) L O
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Let us introduce the operator Zf ;. : C°(0T) — PY(Fr) so that, for any v € CO(aT), If orvip =
IfF(v|F) for all F' e Fr. It is clear that the collection Z§7T of linear forms on Vi (T) can be extended to a

collection ES’T of linear forms on
HY“(T) := H'(T) n C°(T).

We can hence define the interpolation operator Z§ . : H¢(T') — V{§(T)) such that 7§, := r§, o EST
Besides, we remark that, for all v € HY“(T), r} 57 (igi(v)) = I} o7 (vjor). We have the following stability
result for I§7T.

Lemma 4.7 (Stability of I;T). Under Assumption 1.1, for all v e H*(T), there holds
* |I§,T’U‘1,T S |”|1,T + hT|”|2,T:'
* ”Ig,TU”QT < lvllgp + hrlvly o + h3lvly o
Proof. First, remark that if v € H?(T), v € C°(T) and hence v € H%“(T); consequently, I§’TU has a sense.
Let us test (25) with v := E];T(v) There holds
L VIS0V =— L v Aw + <Vw|aT~nT,IfaT(v|aT)>7%’aT Yuw e V3 (T),

where we have used that Aw € P5™(T) and that rf 5 (Eg; (v)) = Zf o (vjor). We equivalently rewrite the
equality above as

J VI;TU-Vw = —J (v— W%v) Aw + <Vw‘aT-nT,If’aT(v‘aT — 7r%v)>_l or Yw e VQk(T)
T T 2

and, by Cauchy-Schwarz inequality we infer, for any w € Vi (T),

1
UT VI§7TU~VM‘ < HU — W%UHOIHA’LU |0’T + (hT2 HI{iaT(UIﬁT — W%U)Ho,aT

(Vwpr - nr, Z>—%,6T

su s
zePhe(Fr\(o} hy ||z

1
+h72"If75T(U|aT - ﬂ%v)h,aT) =% + Ts.

1/2
lo.or t hr 2]y o7

To estimate T;, we apply (8) to w € VF(T), and the Poincaré inequality (7) to (v — 79v). We get
%1 < |v‘1,T‘w|1,T'

To estimate the second factor in Ty, we make use of the estimate (11) with T(0T) = P¥“(Fp) < HY(OT).
This yields, using again (8),

(Vwpor -nr, 2)_1 or

su —1 1 ~ ‘w|1,T'
cePbeFono g 12llg op + B2l op

To estimate the first factor in T, we first use an inverse inequality (cf., e.g., [39, Lemma 1.138]) for
IfF (vjp — 73v) € PY(F) on the 1-simplex F for all F € Fr, to infer

_1 1
hT2 Hz-f,(?T(vk‘)T - W%U)HO@T + h%|I{€,5T(U‘0T - 7T’(])“’U>|1,(‘)T

_1
S hp? [T or (vor = 77|y op < | Zler (vior = 729) |, o
Then, applying Lemma 4.3, and since v € C%(T'), there holds
_1 1
ha* |t or (Wor = 720) | o + D3| TEor (Vo = 720)|, o < [vior = 720] 4, o S |0 = 770] . 1
which, by application of the Sobolev inequality (10), and of the Poincaré inequality (7), yields

_1 X 1
he? }‘If,aT(U\aT - W%U)Ho,aT + h%lffaT(va - 77%“)|170T 3 |U|1,T + hT|U|2,T-
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Finally, we get
%2 < (|U‘1,T + hT|v‘2,T)‘w|1,T'

In conclusion, there holds, for any w e VF(T),

fT VI;TU-VU]‘ < (|v|1’T + hT|v|2’T)|w\1’T.

Taking w = I§7TU € V§(T) provides the expected estimate in the H'(T)-seminorm. To obtain the estimate
in the L?(T)-norm, it suffices to remark that §Z5 ;v = §. Ty = § v. Hence, by the triangle inequality
and the Poincaré inequality (7), we infer

”IQTUHQT < HUHO,T + HU o I§7TUHO,T S HU |O,T + hT(|v|1,T + |I§7Tv|1,T)'

The conclusion then follows from the estimate in the H*'(7')-seminorm. O

Remark 4.8. We note that the only moment in the proof of Lemma 4.7 where Assumption 1.1 is needed
is when it comes to use (11). The result (11) provides an estimate on a dual norm of the boundary normal
flux of virtual functions, which is actually what we need. Indeed, owing to the lack of a priori regularity of
virtual functions (H**~¢(T) for any € > 0; cf. [13, Remark 2.3]), one cannot expect to control a L?>-norm of
their boundary normal flux. The proof of (11) requires the result (2) to hold. This latter states the existence
of a lifting operator with optimal scaling for traces of virtual functions (against which we test). Since we
are not aware of a proof of (2) that is valid under our mesh assumptions (we recall that our cells may not
be star-shaped), we keep (2) as an assumption.

With a view towards the case d = 3, we state a sharper stability estimate for the interpolation operator.

Lemma 4.9 (Sharper stability estimate for Ié"’T). Under Assumption 1.1, for all v e HY*(T), there holds
& & 3
”IZ,T(U”O’T + hT’IQ,TU|1’T < HUHO,T + hT|U|1,T + h7/12|’l)|%7T.

Proof. The proof exactly follows the one of Lemma 4.7, with a slight variation when it comes to apply the
Sobolev inequality (10). We make use of the following sharper estimate (cf., e.g., [15, Eq. (2.4)]): for all
ze H7*(T),

— 1
l2loor < hzt Izl + L2l 7 + B2l s e

We thus obtain

1
Ty < (ol + BFols ) 0l 1

which finally yields the desired estimate. O

4.1.3 The case d =3

If d = 3, we let our conforming local virtual space on T be defined by
VH(T) = {ve HY(T) | Ave PyTHT), vor € VI (Fr)}, (26)

where V;7°(Fp) := Vi (Fp) n CO(0T) with broken space
VE(Fr) := {ve L*(T) | vr € V3*(F)VF € Fr},

where V§(F) is given by (24) with T' «— F (recall that Fp = £r). One can show (cf., e.g., [15, Remark 5.1])
that functions in V{¥(T') belong to C°(T). Besides, P5(T) = V{#(T). The following result is standard.

Proposition 4.10. The triple (T, VF(T), Z’g)T), where VI(T) is given by (26) and the collection Z’:;f,T splits
mto
k,0 . v —2m ee& k—1,j FeF
o 337 = {h}veyy U {7h72 ('|e)}me{Tl,...,N';*2} u{rp ]('|F)}je{1,T...,N§*1} and

ko ._ k—1,i
o Yy =Ty }ie{l LNk

s a finite element in the sense of Ciarlet.
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Letting n’?iT := dim(VF(T)), for any

. 0 2, & 0,j \FeF Ji T k
Yr = ((VTV)VGVW (VT’?)::ESV---,N]ffz}’( TJF)j:{lT Nl;—l}’ (Vg’l)ie{L,,,,N’;*l}) € RnS’Ta

o 2, 2, £ 0,j \FeF k.2
we have v5 = ((v3")vevy, (VT:)Z;{TL.“’N,;?Z}, (VTfF)j:{J_.,N’g*l}) e R,

o,v 6,m)eeé‘p ﬁj

0 T k
v = (V7 veve, (V7 me{l,...,Nk" 2}’( Fjeq,. Né‘l}) € R™r for any F'e Jr,

—1
and we let v% = ZZ 1 k-l e PYTYT) and, for further use, v§ € Py !(Fr) so that V%F =
k,0 k,0
Z;\T 1 1/) Pg_l( ) for all F' € Fp. Defining rQaT ;R — Vzk’c(]-'T) so that, for any v € R,
r2ﬁTK%IF g réﬂFX%F for all F € Fr with r’iF given by (25) with T" « F, we can now introduce the

operator r’?iT CRUT VE(T) such that, for any v, € R”‘ET, 7”’3€,TXT € VJ(T) solves the well-posed problem

k k 2 k
J Vrs pvpVuw = ff v Aw + <Vw|5T‘nT,r276TyT>7% or Yw e V3H(T),
T T '

k _ o
f T3 r¥r —f V.
T T

Proposition 4.11. The operator 1"’3“7T defined by (27) coincides with the (canonical) reconstruction operator
(Z5,)7"

(27)

Proof. Let R".T 3 Vp o= E’;T(v) for some v € VF(T). Plugging v into (27), we infer by integration by

parts (remark that v§ = 7%~ 1)

f Vr]?f’TyT.Vw = fj wéi_lv Aw + <Vw|aT~nT71"]2“73T(2§:§1(v))> = J Vo-Vw Ywe VE(T),
T T

—3.,0T

where we have used that Aw € PE™1(T) and that, for all F € Fr, Ty aT(Eg’g(v) F = T2 F(ZB’TF( )) =
r’iF(Zg’F(vw)) = vp (cf. Proposition 4.6 with T' — F). Since {.7§ ;v = §, Ty = §; v, we finally infer
that 5 jvp =7 (;lg’T(v)) = v. This is valid for any v € Vi(T), hence 7§ ;. = (& T) L O

Let us introduce the operator Z§ o : C°(3T) — VJJ“(Fr) so that, for any v € C°(3T), T 5 orVIF 1=
I p(vjp) for all F e Fp with Z§ . being Z§ » defined in Section 4.1.2 with T« F. The collection Xf ;. of

linear forms on V{(T) can clearly be extended to a collection ig’T of linear forms on H>¢(T'). Thus, we can
define the interpolation operator I:ﬂf’T : HY¢(T) — VEF(T) such that I;T = T’?f,T o EﬁT We remark that,
for all ve HY¢(T), rlg’aT (2];:5«(1))) = If’aT(va). We have the following stability result for I§7T.

Lemma 4.12 (Stability of IQT). Assume that the assumptions of Lemma 4.9 where T «— F are met for all
F € Fr. Then, under Assumption 1.1, for all ve H?(T), one has

* |I§7TU|1,T < ol p + hrlvly s
. HI:I;T’U”O,T < [l + hrlvly p + h%|v|27T.

Proof. First, remark that if v € H?(T), v € C°(T) also in that case and hence v € H¢(T); consequently,
T% v has a sense. Let us test (27) with v, := Z];T(v) There holds

J VI;TU‘VU) = —J v Aw + <Vw|aT'nT,I§ﬁT(v|5T)>7% o7 Yw e ng(T).
T T ’
We equivalently rewrite the equality above as

J VI;TU'VIU = —f (v —790) Aw + <Vw|aT-nT,I§78T(U‘;;T — 7r%v)>_l or Yw € V3k(T),
T T 2
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and, by Cauchy-Schwarz inequality, we infer, for any w € V& (T),

_1
’ L vngv.w’ < o = w90l pldwlor + (h 125 or (or — 90) |, oy

1 <Vw\6T nT72>—l 0T
+h%|I§7aT(U|(‘; — v |1 aT) sup =: T + %o.
sevieEnoy by lelo or + hi 12l or

The term ¥; and the second factor in Ty can be handled as in the proof of Lemma 4.7 (here, T(0T) =
V;’C(]:T) c H'(T)). To estimate the first factor in Ty, we remark that for all F € Fr, (vp — n00) €
H**(F). We can hence apply Lemma 4.9 where T' < F to infer

1/2

_12|

‘IQF'UlF 7rTv HOF+h |IQF1)‘F 7TT’U’1F

< hp /HUIF 7rTU”OF"_h ’vlF‘1F+hF|U\F’3F

By (a sharper version of) the continuous trace inequality (5), and the Poincaré inequality (7), we obtain,
summing over F' € Fp,

hy HI2 oT U\(”T 7TTU HO ot th/2|I§,aT(U\aT - ﬂ-%v)‘l,&T < |U|1,T + hT|U|2,T-

Hence, there holds, for any w € V¥(T),
UT VI!{TU-Vw‘ < (|v|1’T + hT|v|2’T)|w\1’T.

Taking w = I§7TU € V&(T) provides the expected estimate in the H!(T)-seminorm. To obtain the estimate
in the L?(T)-norm, we follow the same reasoning as in the proof of Lemma 4.7. O

4.1.4 Approximation properties

Theorem 4.13 (Approximation properties for IdT, conforming case). Assume that the assumptions of
Lemma 4.7 (when d = 2) or 4.12 (when d = 3) are met. Let ve H*(T), for s€ {2,...,k + 1}. Then, there
holds

Hv — Ic’lf-,T”Ho,T + hT}v - I§=T”|1,T < hST\v\&T, (28)
and, for any F € Fr,
H (v =TI} ) \FHO I h;71/2|v|s,T' (29)

Proof. We follow the ideas of [14, Chapter 4] and [38, Section 7] (cf. also [13, Section 4]). Under our mesh
assumptions, 7' is indeed a finite union of star-shaped subcells. We proceed by density of C*(T) in H*(T).
The function v € C*(T') admits the following Sobolev representation:

v =Q7v + Rjv,

where Q5v € Pfl_l(T ) € PX(T) is an averaged Taylor polynomial, and the remainder Riw satisfies, for
r € {0, ..., s}, the Bramble-Hilbert lemma:

|B7l, r < hy "ol r (30)

One can easily see that, since Q5v € P%(T) and I(IZC’TU = v for all v € PE(T) = VF(T), there holds
v — I;Tv = R5v — Ig}T(RSTU). Thus, for m € {0, 1},

|v — I[’l“’Tv}m’T < |R5Tv|m7T + ‘I!;,T(R%U)‘WT'

By the stability result of Lemma 4.7 or 4.12, we infer

2
|U _I(];,TU}mVT < |R%U|m,T + Z h%7m|R§“v|a,T'

a=m
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Applying the Bramble-Hilbert lemma (30) for r € {m, ..., 2}, we finally obtain (28). For F' € Fr now, the
continuous trace inequality (5) yields

0= Zhr0) ]| < Bl — Tholy g+ 1~ Thgol,

The conclusion then follows from (28). O

Remark 4.14. Note that general H™ approzimation properties for IZET cannot be obtained easily because
of the fact that we do not know if inverse inequalities hold for the derivatives of virtual functions (as opposed
to polynomials, derivatives of virtual functions may not be virtual functions). This remark remains valid in
the nonconforming case.

4.2 Nonconforming case

We let our nonconforming local virtual space on 7' in dimension d be defined by
Vi(T) :={ve H(T) | AvePE(T), Vojornr € PA=1(Fr)}. (31)

As opposed to the conforming case, the definition of the nonconforming local virtual space does not depend
on the ambient dimension. We have P%(T) = V.¥(T). The following result is standard.

Proposition 4.15. The triple (T, V,j(T), %k 1), where VF(T) is given by (31) and the collection ¥ 1. splits
into
. k—1 FeF: k,o . k 1,i
E 7 = {ﬂ' ‘7 }Je{lT k i} a’l’Ld Ed,T T

s a finite element in the sense of Ciarlet.

}ze{l,‘.wN’;*l}’

Letting n’j’T := dim(V}(T)), for any
. 0,7 \FeF 0,1 nk
Vo= ((VTfF) e NE-1y (vy )ie{17‘__,N571})T e Rt

k—1 k— 1
we let v == Y% vk e PATH(T) and vi € PATH(Fr) so that v, = D) vidhol € PAZL(F)

for all F' € Fr. We can now introduce the operator 7"5,7“ . RMAT VE(T) such that, for any vrp € R"E,T,
rk pvp € Vi (T) solves the well-posed problem

f Virk vy Vw = —f vy Aw + J v Vwpnr Yw e V(T),
T ' T oT

k _ o
f Tar¥T = f V.
T T

Proposition 4.16. The operator Ts,T defined by (32) coincides with the (canonical) reconstruction operator
(25"

Proof. Let RM4.T 5 vp o= Z’j r(v) for some v € VF(T). Plugging v into (32), we infer by integration by

parts (remark that v§, = 75" iy and Vo = ngl(v|5T))

(32)

J Vrg,TyT-Vw = —J Ty Aw + f i (ior) Vwjor ny = f Vu-Vw Ywe VHT),
T T oT T

where we have used that Aw € PX™1(T) and that, for all F € Fr, Vwpnrr € P*=1(F). Since §r r’j’TyT =
ST my v = § v, we finally deduce that r§ v, = r% (£} 7(v)) = v. This is valid for any v € Vf(T), hence
rd = (E )L O

The collection Z’;,T of linear forms on de(T) can be patently extended to a collection ift,T of linear
forms on H*(T). Thus, we can define the interpolation operator IZZT : HY(T) — VF(T) such that I§7T =

rfj,T o Es,r We have the following stability result for I(’;T.

Lemma 4.17 (Stability of I(’j’T). For all ve HY(T), there holds

17



Tk v‘ < |v
a1, 1

T 0| < lor + 2ep hrlol, -

0,7

Proof. We test (32) with v := EZT(U), for some v € H*(T). By integration by parts, there holds

f VI vV = J Vo-Vw  for all we VJ(T). (33)
T T

Testing with w = I(I;T'U € VF(T), we immediately obtain the estimate in the H!(7T)-seminorm. Then, since
SpZh v =1Sr iy = §-v, by the triangle and Poincaré (7) inequalities, there holds

HIQTUHO,T < HUHO,T + H” - Ig,TUHO,T < HU“O,T +cp hT(|U|1,T + |Ic,l€,T“|1,T)7
which enables to conclude. O

The equation (33) shows that, in the nonconforming case, the local (canonical) interpolator IC’ZT is actually
the elliptic projector onto the local virtual space. This is not true in the conforming case.

Remark 4.18. In the proof of Lemma 4.17, and as opposed to the proofs of Lemmas 4.7 and 4.12, no
estimate on a dual norm of the boundary normal flux is needed for virtual functions. As a consequence, one
does not need Assumption 1.1. The difference results from the fact that, in the nonconforming case, virtual
functions have L? boundary normal flux. In that case, one can actually prove an approximation result on
the boundary normal flux (see (35)).

Theorem 4.19 (Approximation properties for I(’ZT, nonconforming case). Letv e H*(T), forse {1,...,k+
1}. Then, the following holds:

HU_Ir’;,T’UH(LT +hT}U_ TU|1T hT‘U‘s ) (34)
and, for any F € Fr,

s—1
H (v— Ij;Tv)wHO ot 6S>1hTHV(v - IgvTv)lF.nTVFHO LS el (35)

Proof. From (33), the fact that ST IZZT’U = ST v combined with Poincaré inequality (7), and the fact that
PS(T) < de (T), we infer

v — Ig,T“Ho,:r + hylv — Ig,TU|1,T <(cp+1)hp werg}r(lT) |v —wl|; ¢ < (cp + 1) hr g)lir(lT v —wly 7

The derivation of (34) is then straightforward using the approximation properties of standard polynomial
projectors (cf. Proposition 2.4). Concerning (35), the first trace estimate can be easily proven as in Theo-
rem 4.13, whereas the proof of the second is based on (9). We write, when s > 1,

HV(U — Ig’TU)|F'nT’FHO - < HV(U — Wéiv) \F'nTvFH + HV(W;’?U — 157TU)|F-nT,F‘)

0,F 0,F

Since PX(T) = VF(T), one has (rhkv — Ifj v) € VE(T) and can apply (9) to infer
HV(’/’T?«’U - IgyTv)lF-nTFHO p < hy /2’7@11 - I§7Tv|1)T.

Adding/subtracting v, and using the result in the H!(T)-seminorm and the approximation results on the
L?-orthogonal projector of Proposition 2.4, yields the conclusion. O

5 Bridging the Hybrid High-Order and Virtual Element methods

In this section, we formulate and analyse the VE/HHO methods within a unified algebraic framework
inspired from HHO methods.
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5.1 Local polynomial projector

Let T € T, be a given cell. In this section, we introduce the local polynomial projector ps’T in terms of
which the local VE/HHO discrete bilinear form is defined.

Let [ be an integer such that [ = k£ in the conforming case with d = 2, and [ = k — 1 in the conforming
case with d = 3 and in the nonconforming case. Recall that n’;,T denotes the dimension of V.F(T). For any

k,0
vy € R™7 | we define torvy € P!, (Fr) such that
. thy% = r’fﬁTyg« € P]f’c(}'T) in the conforming case with d = 2;
. t(;Ty% = v% € PS:%(}'T) in the conforming case with d = 3 and in the nonconforming case.

We introduce the operator p’;’T L R Pk(T) such that, for any v, € R, p’iTyT € P(T) solves the
well-posed problem

J VpZVTyT-Vw = —J v Aw + f taTy% Vwer-nr Yw € PS(T),
T T

oT (36)
J pZ,TYT = f v
T T

We note that, in each case, the definition of pZ’T is the same as the definition of r{ij (see Section 4), up
to the fact of testing against a strict subspace of V¥(T'), that is P%(T) (in the conforming case with d = 3,
remark that v§ is equal to ngfl(rgaTyaT)). It is an easy matter to see that actually p’;)T =1%o TQ’T, with
115 defined by (12).

Remark 5.1. As opposed to r;T whose computation necessitates the knowledge of a basis for de (T) (and
even for de_l (Fr) in the conforming case with d = 3), the operator p’iT 1s entirely computable. It depends on
the DoF through v € ngl(T) and taTy?p € Pldfl(]:T)' In the conforming case with d = 2, thy‘% € Plf’c(]:T)
o, 0,j \FEF
depends on (v3")yey, and (V}fF)j:{LTMN,f_Q

nonconforming case, ng(]—'T) 3 thy% = ng.

) through (22). In the conforming case with d = 3 and in the

Let us set WH(T) := HY¢(T) in the conforming case and W5 (T) := H(T) in the nonconforming
case. We can now define the operator P, : Wj(T) — P(T) such that P, := pfj ;. o EZ’T. We have
PfiT = Ik OI§,T~ Since PX(T) =« WE(T) and PZZTU = v for all v € PX(T), the operator P¥(T) is a
(polynomial) projector. It satisfies the following properties:

J 73§’Tv =k for all v € VF(T);

e in the nonconforming case, since Ifj’T is the elliptic projector onto V.F(T) and P%(T) = V.}(T), Pg’T =
I1% (this has already been pointed out in [30, Remark 25]).

Remark 5.2. With the specific choice of virtual space we have made in the conforming case with d = 3, we
actually also have in that case P§7T = HI%\HLC(T)' Yet, in that case, IQT 18 not the elliptic projector onto
the local virtual space.

Let s be an integer such that s = 2 in the conforming case and s = 1 in the nonconforming case.

Lemma 5.3 (Stability of 735,71). For all ve HE(T), there holds
HP(]ZTUHO’T < HU”QT + hT|U|1,T + Oc,d=2 h%“h"z,T- (37)

Proof. In the nonconforming case and in the conforming case with d = 3 (cf. Remark 5.2), the result is a
direct consequence of Proposition 2.4. In the conforming case with d = 2, ’P§7TU satisfies, for all w € P5(T),

f VP%“TUVUJ = ff ﬂg_lvAw+J Ing(U\aT)waT'nT
T ’ T or

k
= —J vAw + J Iy o7 (vjor) Vwjor nr,
T oT
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where we have used that Aw € Pg_Q(T). We equivalently rewrite the equality above as
J V’P;T’U'V’w = ff (v— ’/T%U)Aw + J IfaT(fUWT — W%U)Vw‘aTnT,
T T or
and, by Cauchy-Schwarz inequality we infer, for any w € P5(T),
UT VP;TU'VU)‘ <o - W(Z]“'UHO,T”AU)HO,T + | ZF o (vjor — 7T%U)Ho,aT”VWIBT'nTHo,aT'

By the Poincaré inequality (7) and the inverse inequality (4) for the first term of the right-hand side, and by
the stability result of Lemma 4.3 and the discrete trace inequality (6) for the second, we infer the estimate

[ 9P520-90| < bl ol + foor = ol ol

The Sobolev inequality (10) combined to the Poincaré inequality (7) then yields

UT VPfyTv-Vw‘ < (|’U|1)T + hT|’U|2)T)|’LU|17T.
Taking w = Pg)TU € P5(T), we infer
k
’PQ,TU‘LT < ol p + hrlvly o

The triangle inequality, the Poincaré inequality (7), and the fact that ST Pé“,Tv = STU finally proves the
result in the L?(T)-norm. O

Theorem 5.4 (H™ approximation properties for 735’T). Let ve H*(T), for s€ {s,...,k+ 1}. Then, the
following holds:
’v—’P(’ZTU|mT < h;‘m\v\s’T forme{0,..., s}, (38)

and, for any F € Fr, and any (1, ...,Cq) € N® such that Z?:1 G =m,

H [0S ... 0% (v — ’P(’va)] < hSTfmfl/2|v|s,T forme{0,...,s—1}. (39)

\FHO,F

Proof. In the nonconforming case and in the conforming case with d = 3 (cf. Remark 5.2), the result directly
follows from (13) and (14) of Proposition 2.4. To prove the result in the conforming case with d = 2, we
follow the ideas of [14, Chapter 4] and [38, Section 7] (cf. also [13, Section 4]). Under our mesh assumptions,
T is indeed a finite union of star-shaped subcells. We proceed by density of C*(T) in H*(T). The function
v e C®(T) admits the following Sobolev representation:

v = Qv+ Ry,
where Q5w € P5™1(T) < P5(T) is an averaged Taylor polynomial, and the remainder R5w satisfies, for
r€{0,...,s}, the Bramble Hilbert lemma (30). One can easily see that, since Qjv € P5(T) and P§ v = v
for all v € P§(T), there holds v — P§ ;v = Ryv — P§ (R5v). Thus,

lv— ngTU‘m,T < |Rpvl,, r + |P§}T(R§1v)|m7T.

Applying m times the inverse inequality (4) to P5(Rjv) € P5(T), and then the stability result (37) for
Py in the L?(T)-norm, we infer

2
!v - P§7TU‘mT < |RTU\mT + h_mH’PQT R5wv) HOT < |RT’U|mT + Z hg~ m|RTU|a -
a=0

By the Bramble-Hilbert lemma (30) for r = m and r = a € {0, ..., 2}, we finally obtain (38). For F € Fr
now, the continuous trace inequality (5) yields

[1: 282 (o= P, < o = Phael, o 4 1o~ Pl

The conclusion then follows from (38) (remark that, for me {0,...,s =1}, m+ 1€ {1,...,s}). O

Remark 5.5. Note that the proofs of Lemma 5.8 and Theorem 5.4 do not rely, even in the conforming case
and as opposed to those of Section 4.1, on the use of the result (11). We hence do not need Assumption 1.1.
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5.2 Discrete problem

Let us define, for any T € T, the following seminorm on R™d.7: for all Vo € R”Z’T,

in the conforming case with d = 2 and in the non-

2
=12/ o 0
hor (VT\aT - tOTXT) ‘ 0.0T

2 2
o lyrfy = 1955 + |

conforming case;

—1/2

2
2 2
o [valy = IVVIE o+ [hor (Gor —v8) |+ Yrer,

with d = 3, where T]f,aF is T]fyaT defined in Section 4.1.2 where T « F'.

2
o k 0,0 3 ;
VIR rl’aFyT)FHO o0 the conforming case

N
,O

Letting |yh|i = Yrer, ‘XTlg“ for any v, € R™i.n, one can easily see that |-|,, defines a norm on V(’j’h’O defined
by (19).

Let us write down the discrete problem. We consider Problem (20), where the local linear form is given
by

Ir(vr) == JT firvrs

and the (symmetric) local bilinear form, based on the local polynomial projector of Section 5.1, by

ar (W, vr) = f Vol 7wVl oy + sT (W, vr),
T

with (symmetric positive semidefinite) stabilisation
o sp(Wp,vyp) 1= SaT hg%wéT (5§,TWT|0T — taTE(%)ﬂ'éT (5§,T¥T\9T — taTy%) in the conforming case with
d = 2 and in the nonconforming case,

) —1_k—1 k—1 )
o s7(Wp,Vy) 1= SaT hormar (5§,TWT|5T - W%)%T (5§,T!T\9T - V%)

k k 0,0 k k 2,0\ » : . _
+ D rery $or (53,TET|0F — Tl,aFﬂT,F) (53’TyT‘9F — Tl,aFYT,F) in the conforming case with d = 3,

where PX(T) > 5§,T¥T = p’;,TyT + 77551 (VOT — p’;’TyT). Note that the stabilisation bilinear form is entirely
computable in terms of the DoF. Other choices of stabilisation are possible (cf., e.g., [10]). Basically, any
stabilisation satisfying the assumptions of [36, Assumption 4.1] is admissible. Here, we build upon the
standard HHO choice of stabilisation (see [33, 34]). To the best of our knowledge, in the conforming case,
the stabilisation we propose is new (it is a close variant of existing ones).

Remark 5.6. As expected, one can verify that our stabilisation bilinear form wvanishes when one of its
arguments is the reduction of a polynomial in PX(T). Furthermore, if all the occurrences of p’j’T in the

expression of ap were replaced by r’j’T (assuming that it is computable), then the stabilisation bilinear form
would be identically zero, and one would recover a standard FE method (up to the treatment of the right-hand
side) on the space V’;,h’O.

Remark 5.7 (Equivalent functional viewpoint). Letting w,v € Vi (T) such that w := r}  wy and v :=

v oy, and since ply . = I o rl 1, one can equivalently consider Problem (17), with local (bi)linear forms

Ir(v) = J f|T7T§~_1U, ar(w,v) = J VIEw - VIE + sp(w,v),
T T
with stabilisation
st(w,v) = LT h_%ﬂéT([As,Tw - w]|aT)7TéT([A§,TU - U]|6T)

in the conforming case with d = 2 and in the nonconforming case, and stabilisation supplemented with the
term

FZJ:T LF (Af 7w~ w)\aF (Af v - ”)|aF
(SNl

in the conforming case with d = 3, where Aﬁ,Tv 1= b + 7kt (v —IT%w).
We now prove well-posedness for Problem (20).

Lemma 5.8 (Local coercivity and boundedness). For all T € Ty, and all vy € R”g’T, the following holds:

2 2
|¥T|T < ar(vp, vr) S |¥T|T-
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Proof. Let us show local coercivity. Testing (36) with w = v$ € PX~1(T) < P5(T), we infer

—J VR AVE = J Vp];’TyTVV% - j taTyg« VV%WT%T.
T T oT
Integrating by parts the left-hand side, there holds
IVvel2 = | Vpk v Vve + (Vo1 — to7V5) VYV or
Tlo, T . a,7¥XT T . T|oT or¥r TloT T
which yields, by Cauchy—Schwarz inequality, and the discrete trace inequality (6),

HVVOTHO,T S HVPS,TKTH(LT + Hh(;:;/z (V(I)“|5T - t(?TX%)HO o (40)

Now, adding/subtracting 74, (5§’T1T‘9T), by stability of 7k in the L?(F)-norm for all F € Fr, we infer

712 71/2 k— k
HhaT VT|aT - taTVT) ‘o o7 < Hh (pd TV — Tp (pd,TXT))wT ‘0 o7

+ Hh “nhn (0F v — torvd H .
oT aT( d,7¥rjeT — toT vT) 06T
By the discrete trace inequality (6), and an application of (13) with s = 1 and m = 0, we infer
— o 1 k A
‘haT/Z (Vjor — tor¥T) Ho < |Vl TVT”O r+ HhaT/ZWaT (8 7¥rior — torvT) ‘0 o (41)

In the conforming case with d = 2 and in the nonconforming case, we infer local coercivity as a direct
consequence of (40) and (41). In the conforming case with d = 3, one has to estimate two terms in the

stabilisation part of the seminorm. The first one is handled as above (I = k—1). It then remains to estimate

o k 2,0
the term HleaF —T1orVT R

‘ for all F € Fr. Adding/subtracting 0% rVriop, We have for any F' € Fr,
0,0F ’

0,0

o k "6
HVTV)F ",or¥T F

k
+ H53,T!T\(‘)F 7”1 oFYT,F

k k=1 k
(5 7y7 — 77 1(p3,TYT)) \6FH Ho oF

hoer <1
0,0F 0,0F

Since (p§ pvy — 75" (ph rvr)) € P5(F), we can apply a first time the discrete trace inequality (6) (with
T « F) to obtain

k— -1 k—
H(plg,T!T — T l(plg,TKT))‘gFH < hp 2 (plg,TXT — Tp l(pl?f,TXT))\FH

0,0F 0.F
and a second time (as it is) to obtain

k—1

H (plg,TXT - lee‘_l(plg,TXT)) ‘gFH h;luplg,TKT - T (PQTXT)HO,T-

0,0F
An application of (13) with s = 1 and m = 0 finally yields

69

o 0,0
Vrlor — 7"1 OFYT F

< HVP]pf,TXTHOj + H‘S]?f,TXTmF - T’f,aFXT,F

Ho Ho,aF’

which concludes the proof of local coercivity in the conforming case with d = 3. We omit the proof of local
boundedness, which relies on the same kind of arguments. O

Well-posedness follows as an immediate consequence of Lemma 5.8, and of the fact that |-|, defines a norm
on Vk 0

Corollary 5.9 (Well-posedness). For all v, € Rnsﬁ, there holds

2
Viln S an(vp, vp)-
As a consequence, Problem (20) is well-posed.

Before proceeding with the convergence analysis, let us investigate the consistency of our stabilisation.
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Lemma 5.10 (Cousistency of the stabilisation). Let v € H*(T), for s € {s,...,k + 1}. Then, letting
v = ES,T(’U), the following holds:

st (v, ) < hi ol (42)
Proof. In the conforming case with d = 3 and in the nonconforming case, we have to estimate the quantity
Hh(;,;,/zﬂ'aT (5§,T¥T\6T - v%)”o . We have v§ = 75t (vjor) and v§ = 75710, hence, by stability of 757,

there holds

—Y2_k—1/(sk 0
HhaT Tor (5d,TXT|aT - VT)H

(;71’/2 (Pd TV — )|3T’

0,0T H 0,0T

Y2 _k—1(. . _ pk
* HhaT (v = Par) \aTHo,aT'
To estimate the first term in the right-hand side, we directly apply the result (39) for m = 0. To estimate the
second term, we successively use the discrete trace inequality (6), the stability of 775“51 in the L?(T)-norm,

and the result (38) for m = 0. The conclusion easily follows. In the conforming case with d = 2, we have to
estimate the quantity

- k0 k
Since 77 574 = I op(vjar), there holds

,12

—1/3 k 0
HhaT 62TVT\9T 7“1,9T¥T)H

k a
hor 7raT (52 TV¥T)]oT — T1,0TV. T) H

0,0T 0,0T

oor

HhaT/27T§“ 1( _,Pg,TU)

71 71
HhaT27TaT (65 TVT|oT — Y oy ) ‘ HhaT2 P rvior — IF o7 (vjor))

\aTHo,aT'

The second term in the right-hand side can be estimated as previously. The first one is handled remarking
that P rvjor — IfaT(UwT) = I} o ([P§ ;v — v]jor). Applying Lemma 4.3, we thus have

hatl? (Pl rvor = T orwen))| < (0= Phrodor]y op < [0 = Pl 1o

0,0T

By the Sobolev inequality (10) for d = 2, combined to (38) with m = a € {0, ..., 2}, we finally infer

Hh_l/ Pg,TUwT - IfaT(’UwT))H

2
< Z he—ty — rpk < Bl .
o.or S A T |U 2,T7f|a’T T |U|5,T

We are left with estimating, in the conforming case with d = 3,

k k 0,0
3, 7YT|0F — Tl"?FXTvFHo . for all F € Frp.

We follow the same path as previously, and end up having to estimate ”I{“ aF([Pé“TU — v]wF)H . By
’ ' 0,0F

Lemma 4.3 and (10) for d = 3, we infer

_3 1 1
|22 or ([P5. 20 — v)jor) Ho,aF S h;/Q (hT2 Jv— P;f,T””o,T +hy? v = Péﬂ,TU‘LT +hilv - Péf,T”’z,T) :

The conclusion then follows from (38) with m € {0,...,2}. O

5.3 Convergence analysis
Let us begin this section with the following remark.

Remark 5.11 (Regularity of the solution to (1)). Since the boundary of the domain § is assumed to be
composed of a finite union of portions of affine hyperplanes, one has (see, e.g., [/1, Theorem 4.4.3.7]) the
following elliptic reqularity result: there is € € (0,1/2] so that u € H3te (Q) and

||UH%+E,Q S Hf”o,Q-
If Q is in addition convex, one can actually prove full elliptic reqularity, i.e. uw e H?(Q) and
| < [1fllo - (43)

In any case, and since div(Vu) = —f € L?(2), there holds: for all F € F), [Vu]rnr =0 a.e. on F.

23



Let ||§h = ap (). According to Corollary 5.9, ||, , defines a norm on Vg,h,O' For B := (Br)per, €
(2,...,k + 1}°2d7) " we define

HP(Ty) := {vn € L*(Q) | vpyr € HP*(T) VT € Ty, } .

Theorem 5.12 (Discrete energy-norm error estimate). Assume that the solution u € HE () to Problem (1)
further belongs to HB(Ty,). Then, the following estimate holds:

1/2
2 —1 2
ehs(Z hyr Huw) : (44)

—k
‘Zd,h(u) — Uy
TeTh

where R 3 Esh(u) = (EZ,T(UIT)T)IFeTh’ and u;, € V’j’h’o is the unique solution to Problem (20).

Proof. Since u e H27¢(Q) n HL(Q) (cf. Remark 5.11), u € C°(Q) and ujon = 0, hence Egh(u) € V’;,h’O, and
so does the difference (E’;h(u) —u,). We can then write

—k
= max an (Zd,h(u) — W, vp).- (45)
eh eVl o |Xh|e,h:1

=k
);d,h(u) — Uy
Since u,, solves Problem (20), we have to estimate, for any v, € Vg,h,o such that |v,|, , =1,
. =k
Chln)i= Y Crlur), with Crlyp) i=or (Shrtum).vr) = | firvi-
T

TeT

Using the strong form of Problem (1), and integrating by parts, we infer, for any T € Tp,
o o <k
Crtsr) = [ VPhr(ur) Vikrsr - | Vuvvi+ [ v Vuarne + se(Shrtur),vr).
T T oT

Using the definition (36) of PS,TXT (where the first term in the right-hand side is integrated by parts), and
since P§7T(u|T) € PX(T), we then have

Cr(vy) = L V (P} r(wr) — u) Vvy — LT (V101 — tory ) VPS 1 (uyr) o nr
—k
+ _L Vipor Vujor T + ST (Zd,T(uw),yT).
T

Summing over T € 7, and invoking the continuity of the boundary normal flux of the exact solution along
interfaces (cf. Remark 5.11), combined to the fact that v,, € V’j,h’O, we infer

Culw) = Y (fTV(Ps,T<u|T>—u)~Vv%

TeTh
+ LT (v%wT —torvy) V (u — P,’iT(u‘T)) or T + ST (EZT(uT),vT)). (46)

Applying Cauchy—Schwarz inequality, and the approximation results (38)—(39) with s € {8r}rer, and m = 1,
we obtain

1/2
Clvy) < (z (hin”|u§T,T+sT(z’;,T<u|T>,z§,T<uT>))> (Ivaln + ales) -
TeTh

The conclusion then follows from Lemma 5.10 with s € {87 }re7,, Corollary 5.9, and the fact that |v,,[, , =1
by assumption. 0

Remark 5.13. In the nonconforming case, to prove that ZS}L(U) belongs to V’;’h,o, it is sufficient to use
that w € HE(Q)). Furthermore, the first term in the right-hand side of (46) is identically zero. Indeed, in
that case, for all T € Ty, P§7T = TI% (recall that v € PE~1(T) = PE(T)). Such a property is not true in the
conforming case.
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Corollary 5.14 (H!(7T;,)-seminorm error estimate). Under the reqularity assumption of Theorem 5.12, the
following estimate holds:

12
[V (u = p§ ) .0 (Z h%ﬁT‘”w@T,T) : (47)
TeTh

where pk ;- R™d.n — Pk(Th) is such that, for all T € Ty, pgvhyth = pZ,TyT.

<k
Proof. Letting Pg, n = pgh 03X, p, by a simple triangle inequality, we infer

V0= )l < 90 = P) |+ [ (S0 — )

0,0

Using the definition of |-|, ,, we obtain

=k
th(“ - ps,hﬂh) HO,Q S th(“ - Pg,hu) Ho,g + ‘Zd,h('@ - Hh‘e . (48)
The conclusion follows from the approximation result (38) with s € {fr}re7, and m = 1, and from the
discrete energy-norm error estimate (44). O

The proof of Theorem 5.12—Corollary 5.14 is inspired from the one for HHO methods, but is here valid
whatever the conformity of the underlying global virtual space. The derivation of our error estimate in
H!(Tp)-seminorm is based on a splitting (48) of the error that follows [30, Section 2.4.1]. Basically, the error
splits into an approximation error, and the discrete energy-norm error, that is nothing but the consistency
error of the scheme (see (45)). All the analysis can be performed only resorting to the H™ approximation
properties of the polynomial projector ’PC’ih. In that respect, in the conforming case, it constitutes an
alternative to standard VE analyses, where the approximation properties of the local virtual spaces are
usually explicitly used (hence under Assumption 1.1). The same remark also holds for the L2(2)-norm
analysis below.

Remark 5.15. Assume that we want to derive a H(Ty)-seminorm error estimate on the difference (u—uy,),
where up, € de,h,o is such that upr := T's’TQT forallT € Ty,. In view of Lemma 3.2 and Remark 5.5, it is clear

2\ /2
that, for v, € R"», the quantity (ZTeTh HVTE TXTH > , which can be equivalently written ||V op|o o
’ 0,T '

for vy, € de(’ﬁL) such that vy = r{j v for all T € Ty, defines a norm on V’j no- Furthermore, one can

easily prove (we omit the proof for brevity) that, for any v, € R”ZJI',

1/
(z|w%wﬁﬁ < Il "

TeTh

To prove (49) in the conforming case, one has to use on all T € Ty the same arguments as in the proof of
Lemma 4.7 (when d = 2) or /.12 (when d = 3). We will hence assume, in the conforming case, that the

assumptions of the corresponding lemma are met for all T € Tp,. Let us apply (49) to v, = Zsh(u) —uy,.
We get, by Corollary 5.9,

; (50)

[V (Z = un) | < [Slia(0) — ],

where T} u € V), o is such that T} yup = I (urp) = r’j_’T(EZT(u‘T)) for all T € Ty. Since, by the
triangle inequality,

[V (u=un) o0 < [Vn(u = Z5n0) o 0 + 1Va(Zinu —un) o

lo.c

we can prove, using (28)—~(34) with s € {Br}re, and m =1 (same assumptions as above in the conforming
case) for the first term in the right-hand side, and (50) combined to (44) for the second, that under the
same regularity assumption as in Theorem 5.12, there holds

13
»vmwwmms(zhﬁrnﬁﬂj. 61)

TeTh

Obuviously, the discrete solution up is not computable/computed in practice, only the polynomial projection
p’j,hgh = Hﬁuh 18.
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Let us now derive an estimate on the error between pfj’hgh and v in the L?(Q)-norm. To prove our
result, we reuse some ideas from the proof of [30, Theorem 22]. We assume that k > 2. The lowest-order
case would require a specific treatment, and additional regularity on the source term. We omit its study
here for brevity.

Theorem 5.16 (Supercloseness of bulk unknowns). Let k > 2. Assume that the solution u € H3 () to
Problem (1) further belongs to HP(Ty,). Assume full elliptic reqularity for Problem (1) (cf. Remark 5.11).
Then, there holds

12
et g < ( 5 h%wﬂ) , 62)
TeTh

where u§, € PX~Y(T;,) is such that up i i=ug for all T € Th.

Proof. We follow the standard Aubin—Nitsche argument. Setting g := (7'1'571’[1, —u9) € L*(), we let 2 €
HL(Q) be the unique solution in H(Q) to —Az = g in Q, with 2 = 0 on 0. By (full) elliptic regularity,
z € H?(Q) and, in view of (43), there holds

lzll20 < ”71'}]?71“ - u?LHO,Q' (53)

Writing

ho=— X [ () -

TeTh

e =

and integrating by parts, we infer, since z € H2(f2) (hence [Vz]r-nr = 0 almost everywhere on interfaces
Fe Fj,), and ue Hj(Q) n H*(Q) as well as u, € Vi, o,

it il = X ([ 9 ) i) v
TeTh

_ LT [(ﬂ?‘l(U|T) - U%)‘QT - (taT (Esjg(uw)) — taTg(%>] VZaT'nT) .

Adding/subtracting the term Z f Vp’j’T (EI;,T(u‘T) - HT)-VPQT(ZlT), and using the definition (36)
TeTh T
(where the first term in the right-hand side is integrated by parts), we infer that

Hm’f—lu — u‘,iHiQ =%+ (Lz VhPZZhu-VhPihz —ap (uh,257h(z))>

—k
+ Z ST (ET7;d,T(Z|T)) =%+ %o + %3, (54)
TeTh

where

%= Z (JT V(WIZIC“_I(UIT) - u%)~V(z - Pg,T(Z‘T))

_ JaT [(ﬂﬁ—l(um) —u}) or ~ (taT @Z,’;(um)) - tangﬂ)] V(z =P r(z7)) aT'”T) .

We now have to estimate the different terms in the right-hand side of (54). To estimate T, we apply
successively the Cauchy—Schwarz inequality, (38)—(39) with s = 2 and m = 1, and Corollary 5.9. We get

<k
T < ’Zd,h(u) _Hh‘ hhmz,m
€,

which, in turn, by (44) and (53), gives

1/2
aS<ZhW“%%m>hW?%ﬂ%m~ (55)
TeTh 7
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To estimate T3, we use the fact that

Z ST(ET7ZS,T(Z|T)) = Z ST(ES,T(U\T)72§,T(Z|T)) - Z ST(EZ,T(UIT) _QT72];,T(Z\T))
TeTh TeTh TeTh

to infer, using successively the Cauchy-Schwarz inequality, (42) with s € {Br}reT, for uip, (44), (42) with
s = 2 for 27, and (53),

1/2

2(Br—1 2 k— o

Ty < (Z WP >|u|ﬁT,T> A EA TR I (56)
TeThH

We are left with estimating 5. Recall that ay, (gh,gs)h(z)) = SQ fﬂﬁflz since u;, € V'j’,uo solves Prob-

lem (20). Adding/subtracting to T the term f VhH,lf;u-VhPfihz, there holds
Q

Ty = (J Vhﬂﬁwthg,hz +J Au W’le) + ( Vi (I§7hu — u)-VhPfj,hz) =%+ %Ta9.
Q Q Q

Let us first estimate T 1. An integration by parts yields

12,1 = ( f AHT U|T) 7TT 1(Z\T) f 7T(9T (Id T(Z\T)\GT) VHT(U|T)\&T TLT)
TeTh oT

+ ) <—J VU'VW?l(Z\T)ﬁLL 7T§“1<ZT)6TVU6T'"’T)7
T T

TeTh

where we have used that —AII (ur) € P*=2(T) < PA~1(T) and 7&~* <I§’T(Z‘T)) = ﬂ?ﬁl(zw), and that
VH’%(U|T)|5T~nT € PZ:}(}'T). A new integration by parts of the very first term then yields

Ta1 = <J VHT U\T) V7TT (Z\T) J [Wéfﬂil(le)\aT 7TaT (IdT(Z|T)\aT)] VH”}(”lT)&T'"T)
TeTh oT

+ < JVquT (z\T) J W?ﬂl(ZT)aTvuaT'nT)7
oT

TeTh
which finally provides, by orthogonality of 1% combined to the fact that wé‘l(z‘T) € P’;_l(T) < PE(T), and
since u € H2(2) and 2 € H} () n H(Q),
To1 = Z J 7T,;T T Z\T)IOT - Id T(Z|T)\6T] V(U - H?P(U\T))WT'RT
TeTh
By the same kind of arguments, we also obtain
Too = Z f mar ! [wor — Zir(wr)or] V (2 _P§7T(Z|T))|0T ‘nr.
TeTh
In the conforming case with d = 3 (cf. Remark 5.2) and in the nonconforming case, one has
7TaT (Id T(U\T)wT) = WST (’U|aT)

hence Tz 5 = 0 and T3 1 can be estimated using successwely (i) Cauchy—Schwarz inequality, (ii) (14) with
s € {Br}rer;, and m = 1, (iii) the stability of 7T5T in the L?(0T)-norm, (iv) (14) with s = 2 and m = 0
(recall that k > 2), and (v) (53). One obtains

1/2
Ty S hfm =g o ( D hZT(BT_l)u|§T7T> . (57)

TeTh

It remains to treat the conforming case with d = 2. In that case, I§7T(U|T)‘3T = IfaT(UWT). The term Ty ;
can be estimated as previously remarking that

™ (2 )or — IF or(2i0r) = It or (75 (2y1) o1 — 2jo7) -
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By the stability result of Lemma 4.3, and the Sobolev inequality (10) combined to (13) with s = 2 and
m € {0,...,2} (recall that k > 2), we infer

12
smshﬁlw«mm(zh%TW%ﬂ)-
TeTh

The term %52 can be estimated remarking that
UloT — If,aT(u\aT) = (U - Pg,T(U\T))WT - IfaT ([U - ,PS,T(UlT)]wT) .

The conclusion then easily follows from the stability of 75-" in the L?(0T)-norm, from Lemma 4.3 and the
Sobolev inequality (10), from the approximation results (38)—(39), and from (53). We infer the same kind
of estimate as for T5 1, and finally we infer (57), also in that case. Collecting (54), (55), (57), and (56), we
conclude the proof. O

Corollary 5.17 (L?(Q)-norm error estimate). Under the assumptions of Theorem 5.16, the following esti-
mate holds:

1/2
u—ﬁwmmsh(zth%%ﬂj | 9)
TeTh

Proof. By the triangle inequality, and by stability of 79 in the L?(€2)-norm, we infer

[ = phinunlyq < it =il o + [ (u = phaws) =i (m~ u = i) | o

We then remark that ST (u — p’(fl,TgT) = ST s (w%‘l(uw) - u‘%) for all T' € T,. Hence, by the Poincaré
inequality (7), there holds

u— psvhtho,Q S Hﬂl}j_lu - u(;LHO,Q +h[[ Vi (u — pg ) Ho,ﬂ'

The conclusion then follows from (52) and (47). O

Remark 5.18. Assume that we want to derive a L*(2)-norm error estimate on (u—uy,). Asin Remark 5.15,
we assume, in the conforming case, that the assumptions of Lemma 4.7 (when d =2) or 4.12 (when d = 3)
are met for all T € Ty,. Noticing that 7 (u — up) = 7 (ﬂ",j_l(u — uh)) = (ﬂ',]i_lu - u?l), we can write, by
stability of ©% in the L*()-norm,

lu —unlly o < H?Tﬁ*lu - uZHO,Q + (= up) — iy (u — uh)”o,ﬂ'
Then, the Poincaré inequality (7) yields

= unlo,o < 7" =R o + AIVR(u = un) g -

From (52) and (51), we finally infer, under the assumptions of Theorem 5.16, that

1/
2(Br—1)| |2
[w— uh||07Q <h ( Z hT(’BT )|u|ﬁT,T> )

TeTh

5.4 General workflow

As for any Galerkin method, the general workflow for solving Problem (20) with the VE/HHO methods
splits into (i) an offline stage, that is independent of the source term and of the boundary conditions, and
which aims at performing the assembly of the general problem matrix, and (ii) an online stage, that consists,
for given source term and boundary conditions, in solving the resulting global system. A change in the data
only affects the online stage (cf. Remark 5.19). The precomputations that are performed in the offline stage
are all local; hence, this stage can naturally benefit from parallel architectures.

Let us describe, in details, these two stages for Problem (20), beginning with the offline stage.
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1. In the conforming case with d = 2 (respectively, d = 3), one first computes the operator r’i p defined
by (22) for all F € F, (respectively, r’f’e for all e € &,). This requires to solve a SPD system of size
k + 1 (cf. Remark 2.6), for k + 1 right-hand sides. In both the conforming and nonconforming cases
now, locally to any T' € T}, one computes the operator p’jvT defined by (36). Its computation requires

to solve a SPD system of size N% (cf. also Remark 2.6), for a number of right-hand sides that is (i)
NA=! 4 card(Fr) x (k—1) + card(Vr) in the conforming case with d = 2, (ii) N&~! 4 card(Fr) x N5~
in the conforming case with d = 3, and (iii) Ns_l + card(Fr) x N’;j in the nonconforming case
(cf. Remark 5.1). Once the operator p’(iT has been computed, one computes, still locally to any
T € Ty, the bilinear form, that writes in terms of the DoF and of the different already computed

quantities.

2. As common to any skeletal method (cf. Section 3), bulk DoF are locally eliminated by static conden-
sation in terms of the local skeletal DoF. Locally to each T € Ty, one has to solve a SPD system of
size N’ffl for a number of right-hand sides that is the number of local skeletal DoF.

Let us now describe the online stage, for a given source term f € L?((Q).

3. One computes the right-hand side, which requires, locally to any T' € T, to integrate fip against

polynomials in P’;_l(T), and to perform its static condensation. Then, one eliminates the boundary
(Dirichlet) DoF from the global system.

4. One solves the resulting SPD global system, that is of size
card(Fi) x (k — 1) 4 card(V})
in the conforming case with d = 2,
card(Fi) x NE=1 4 card (&) x (k — 1) + card(V))
in the conforming case with d = 3 (cf. Remark 5.21), and card(F}) x N*~! in the nonconforming case.
For an example of implementation of the method using generic programming, we refer to [21].

Remark 5.19. Except point 3, the description above of the general workflow of the method applies verbatim
to the case of a Problem (1) featuring nonhomogeneous mized Dirichlet—Neumann boundary conditions.

Remark 5.20. In a multi-query context in which the datum is the diffusion coefficient, part of the offline
stage becomes online (in particular, the static condensation part). Depending on how are defined the poly-
nomial projectors (if their definition includes or not the diffusion coefficient), the part of the offline stage
becoming online may be more or less important. In that case, one would better consider reduced basis like
techniques.

Remark 5.21. In the conforming case with d = 3, one can reduce the size of the global system by using
enhanced virtual spaces [1] or Serendipity spaces [9] on the faces F € Fr of the cells T € Ty, instead of
VE(F). Typically, with enhancement, one reduces the number of face DoF to card(F}) x Ngfz instead of
card(F}) x Ngfl. The inclusion of enhanced virtual spaces into our general framework will be the topic of
a forthcoming work.
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A Proofs of (11) and Lemma 3.2

A.1 Proof of (11)
By Assumption 1.1, for any z € T(0T) < H'(dT), there exists z € H'(T) such that Z 57 = z and

— 7 7 —1 1
het 2oz + 12l r < hy P zlo or + 2] or (59)
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Now, since v € H(T) is such that Av e L?(T), by the divergence formula there holds

<VU|6T “nr, Z>,%’5T = J Vv-VzZ + J AVZ,
T T
and hence, by Cauchy—Schwarz inequality,
(Vojor - r, 2)_1 or < [0ly 72y 1 + b | Dol ph7 Z o 1

The estimate (59) enables to conclude.

A.2 Proof of Lemma 3.2

Assume that, for vy, € Vi 0, [Vavn[yq = 0. Then, for all T'€ Ty, V(vyr) = 0 and there is ¢y € R such that
vpr = cr. Since {7} per, S 39, then for all F € Fi, §-[vn]F = 0 and there exists ¢ € R such that cp = ¢
for all T' € T. The fact that SF vpp = 0 for some (here, all) F' € .7-'};’ finally yields that vy, = 0 on Q. To
prove (18), we start from the following discrete Poincaré inequality on H(Ty) (cf., e.g., [12]):

2 2 — 2
Yo, e HY(Tn),  |walig < IVivnlio + D hp'llval el »
FeFy,

and we show that > .~ hRt [[vh]]FH(?J S HthhHg q for all v, € Vj, 9. To prove so, since for v, € Vi o,
§olvn]r = 0 for all F e Fj, there holds

2
el = | fon = wondebonle < [fon = mhodely pllondelor.

and we can use the continuous trace inequality (5) and the Poincaré inequality (7) to infer

_1 1 1 1
hp? [[velFlo F < het Z (hp? [onr — 7T%(Uh\T)Ho,T + hiz"HV(”h\T)Ho,T)
TeTr
1 1
Shp® D) W3V )|y,
TeTr

Finally, since hp is comparable to hp for T' € Tp, and card(Fr) < 1 for all T € T, (cf. Section 2.2), the
conclusion follows.
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