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Abstract

We present a unifying viewpoint at Hybrid High-Order and Virtual Element methods on general
polytopal meshes in dimension 2 or 3, both in terms of formulation and analysis. We focus on a model
Poisson problem. To build our bridge, (i) we transcribe the (conforming) Virtual Element method
into the Hybrid High-Order framework, and (ii) we prove Hm approximation properties for the local
polynomial projector in terms of which the local Virtual Element discrete bilinear form is defined. This
allows us to perform a unified analysis of Virtual Element/Hybrid High-Order methods, that sheds new
light on the similarities and differences between the conforming and nonconforming cases.

1 Introduction
The design of arbitrary-order Galerkin methods that support meshes with general polygonal/polyhedral
cells has been attracting the attention of the community for more than 40 years now. In practice, the
use of general meshes, when not an inherent constraint like e.g. in subsurface modelling, can bring ma-
jor advantages. In particular, it increases the flexibility in meshing complex geometries (interfaces, cut
cells. . . ), and simplifies the refinement/coarsening procedures in adaptive simulations. Standard arbitrary-
order polytopal discretisation approaches encompass the (polytopal) Finite Element (FE) method [48, 46],
and the (polytopal) discontinuous Galerkin (dG) method [45, 42, 3, 32, 5, 16]. The construction of FE shape
functions on arbitrarily-shaped cells that both (i) satisfy the desired conformity prescriptions, and (ii) for
which closed-form expressions can be obtained (and numerically integrated), is highly challenging. However,
when such shape functions are available, one can fully benefit from the fact that FE belong to the class of
skeletal methods. We refer to Section 3 for a precise definition of skeletal methods, but basically they are
those methods featuring bulk and skeletal degrees of freedom that are amenable to static condensation (bulk
degrees of freedom can be locally eliminated in terms of the skeletal degrees of freedom, hence reducing the
global linear system to a system posed in terms of the skeletal unknowns only). On the opposite side of the
spectrum, the dG method, which is not (without further modification/hybridisation) a skeletal method, is
based on completely nonconforming discrete spaces. One hence has the opportunity to consider simple poly-
nomial local approximation spaces. However, the price to pay for such a flexibility is an increased number of
(globally coupled) degrees of freedom, which makes of dG a computationally more expensive method than
(statically condensed) FE on standard meshes. This is all the more true that the order of approximation
increases. When considering meshes featuring cells with an important number of faces, things are not that
clear anymore, and dG may definitely become a competitive computational approach. However, on general
cells, the existence of Fortin operators for dG spaces is not clear. This may become limiting when it comes
to robustly approximate tricky operators like the divergence (think, e.g., of a linear elasticity model in the
quasi-incompressible limit) or curl operators.

More recently, a new paradigm has emerged. The idea is to define a finite element whose construction is
generic with respect to the shape of the element. The underlying local approximation space (i) is spanned
by functions that are (at least for some of them) implicitly defined (usually as the solutions to some PDEs
posed in the cell), (ii) is built so that the desired conformity properties can be obtained at the global
level, and (iii) is constructed so as to enjoy sufficient approximation properties (for instance, so as to
contain the polynomial functions up to a given degree). The fact that one cannot obtain a closed-form
expression for all shape functions is the reason why they are called virtual in that context. In practice,
the numerical method is defined using computable (in terms of the degrees of freedom) projections of the
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virtual functions, and is stabilised through a subtle penalisation, that shall also be computable. The most
salient example of such an approach is the (polynomial-based) Virtual Element (VE) method [7, 8], which
has first been introduced under its conforming version (denoted c-VE). Another example is the Hybrid
High-Order (HHO) method [35], first introduced/analysed for linear elasticity [33], and then for the Poisson
problem [34]. Whereas the VE method is classically defined in terms of (virtual) functions, the HHO method
is directly defined in terms of the degrees of freedom. For this reason, in the sequel, we will refer to the
VE framework as “functional”, whereas we will refer to the HHO one as “algebraic”. In [24, Section 2.4], the
HHO method has been proven equivalent (up to identical bulk polynomial degree, choice of stabilisation,
and treatment of the right-hand side) to the nonconforming version of the VE method (denoted nc-VE)
introduced in [43], and posteriorly analysed in [4]. In [24], the HHO method has also been bridged to
the Hybridizable Discontinuous Galerkin (HDG) method [27, 23], in the sense that it is possible to recast
the HHO method as a HDG method, with distinctive numerical flux trace. This work has shed light on
the fact that the quite subtle choice of stabilisation advocated in HHO results in HDG formulation in a
numerical flux trace that ensures superconvergence on general polytopal meshes. Note that efforts towards
superconvergence for standard HDG methods (and the hybridised version of mixed methods) have also been
undertaken (cf., e.g., [25], which gives a general theory of how to do so). All these methods belong to the
class of skeletal methods (cf. Section 3). Finally, in [31], the nc-VE/HHO methods are proven to be Gradient
Discretisation methods [37].

Let Ω be a bounded and connected open subset of Rd, d P t2, 3u, whose boundary is assumed to be
composed of a finite union of portions of affine hyperplanes. We focus on the following model Poisson
problem: find u P H1

0 pΩq solution to

apu, vq :“

ż

Ω

∇u¨∇v “

ż

Ω

f v “: lpvq for all v P H1
0 pΩq, (1)

with source term f P L2pΩq. In this work, we complete the construction of the bridge between HHO and
VE undertaken in [24, Section 2.4]. To do so, (i) we transcribe the c-VE method into the HHO algebraic
framework, and (ii) we prove Hm approximation properties for the local polynomial projector in terms of
which the local VE discrete bilinear form is defined. This allows us to perform a unified study of VE/HHO
methods. We build upon existing contributions, especially [30] on the analysis of schemes in fully discrete
formulation, [17] on the unified analysis of c/nc-VE methods, and [44, 13, 19] (see also [10, 15, 18] for the
treatment of faces with arbitrarily small measure, that our mesh assumptions will forbid in the present work)
on the analysis of c-VE. We consider throughout this paper standard VE spaces (i.e., neither enhanced VE
spaces [1], nor Serendipity VE spaces [9]), with bulk polynomial degree k ´ 1 (k ě 1), which simplifies the
treatment of the lowest-order case without compromising the computational efficiency (since bulk unknowns
are statically condensed). The aim of the present work is threefold. First, the transcription of the VE
method into the HHO framework (and its analysis) is intended to contribute in a better understanding, by
those more familiar with VE, of the HHO standpoint, and reciprocally. Second, we aim at clarifying what
are the similarities and differences in terms of analysis between the conforming and nonconforming cases.
Finally, we believe that the derivation, in the conforming case, of Hm approximation properties for the local
polynomial projector in terms of which the local VE discrete bilinear form is defined may be of interest (up
to its adaptation to a more general Lp setting) for the VE analysis of nonlinear problems.

The main results of this paper are contained in Sections 4 and 5.
In Section 4, we focus on interpolation in local virtual spaces. We study, in the conforming and non-

conforming cases, the approximation properties of the local canonical interpolation operator (denoted IT ).
We derive L2-norm and H1-seminorm approximation results for IT (cf. Theorems 4.13 and 4.19). In the
conforming case, such results are not new. They can be found in [13]. Nevertheless, we include them for
two reasons. First, we propose a new path to derive them. In particular, our analysis does not explicitly
hinge on an inverse inequality for virtual functions as it is the case in [13]. Second, we make a comparison
between the conforming and nonconforming cases. A crucial observation that is made clear in this paper
is the following. The main difference between those two cases is that, in the nonconforming case, the local
canonical interpolation operator IT is the elliptic projector onto the local virtual space (cf. Eq. (32)). This
is not true in the conforming case, which happens to complicate the analysis. In this latter case, in order
to prove stability properties for IT (which is actually the cornerstone of the analysis), one has to estimate
a dual norm of the boundary normal flux of virtual functions (cf. Lemmas 4.7 and 4.12, and Remark 4.8).
For that, one has to make the following assumption.

Assumption 1.1. For any function v on BT that is equal to the trace of a virtual function, there exists a
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lifting LT v P H1pT q such that LT v|BT “ v, and satisfying the following scaled estimate:

h´1
T }LT v}T ` }∇LT v}T ď c

´

h
´1{2

T }v}BT ` h
1{2

T }∇tv}BT

¯

, (2)

where ∇t denotes the tangential derivative, and c ą 0 is a constant independent of hT .

When T is star-shaped with respect to a ball of radius comparable to hT , the result (2) does hold (cf. [13,
Eq. (2.48) for d “ 2 and Lemma 5.3 for d “ 3]). When T is not star-shaped, which is a case our mesh
assumptions will allow, we are not aware of a proof of (2). In the Section 4 of [13] dedicated to the relaxation
of the star-shapedness assumption, this tricky aspect (especially in 3D) is eluded. In [19], the star-shapedness
assumption is weakened, but the arguments are restricted to the 2D case, and to mesh assumptions that
are a bit less general than those we consider here. We will hence keep (2) as an assumption of our analysis
in the conforming case (cf. Remark 4.8). As opposed to the conforming case, in the nonconforming one,
owing to the fact that IT is the elliptic projector onto the local virtual space, an estimate such as (2) is not
needed to prove stability for IT (cf. Lemma 4.17 and Remark 4.18).

In Section 5, we perform our unified analysis of VE/HHO methods. Letting ΠT denote the elliptic
projector onto the polynomial subspace PpT q of the local virtual space, the local polynomial projector PT
in terms of which the local VE discrete bilinear form is defined is actually equal to ΠT ˝ IT . Splitting the
error in broken H1-seminorm (recall that the only computable/computed quantity is Phuh “ Πhuh) along

}∇hpu´Πhuhq} ď }∇hpu´ Phuq} ` }∇hΠhpIhu´ uhq}, (3)

one is left with estimating the two terms in the right-hand side of (3). The first term is an approximation
error, whereas the second is bounded by the consistency error of the scheme (discrete energy-norm error);
cf. [30, Section 2.4.1]. In standard c-VE analyses (including [30, Theorem 19]), the first term in the right-
hand side is split along

}∇hpu´ Phuq} ď }∇hpu´Πhuq} ` }∇hΠhpu´ Ihuq} ď }∇hpu´Πhuq} ` }∇hpu´ Ihuq},

where one uses the stability property of Πh. Similar splittings are deployed to take care of the consistency
term. With such splittings, the approximation properties of the local virtual spaces invite themselves into
the picture. To perform the analysis, one thus has to use the interpolation results of Section 4. In the
nonconforming case, since IT is the elliptic projector onto the local virtual space, one actually has PT “ ΠT

(this has already been pointed out in [30, Remark 25]). The analysis hence inherently simplifies, as one
can conclude by standard approximation results on Πh. This explains why the approximation properties
of the underlying virtual space do not appear explicitly in standard HHO error bounds. The virtual space
is anyway not even introduced. In this article, we directly investigate the approximation properties of
the polynomial projector PT (especially in the conforming case), for which we prove Hm approximation
properties (cf. Theorem 5.4). Interestingly, Assumption 1.1 is not needed to prove so (cf. Remark 5.5).
Irrespectively of the conformity of the underlying global virtual space, we then split the error in broken H1-
seminorm along (3), and we perform the analysis only using the Hm approximation properties of Ph. We end
up with a factorised analysis inspired from that of HHO methods (cf. Theorem 5.12 and Corollary 5.14), that
differs from standard VE ones by the fact that the approximation properties of the underlying virtual space
are not explicitly used. We also perform a factorised L2-norm analysis (cf. Theorem 5.16 and Corollary 5.17).
In this norm, in the conforming case, one has to resort to the interpolation operator, whereas it is not needed
in the nonconforming case.

The material is organized as follows. In Section 2, we introduce the notation, we detail our admissibility
assumptions on mesh sequences, and we introduce a number of analysis tools that will be useful in the
sequel. In Section 3, we undertake a general description of skeletal methods, such as the VE or HHO
methods. In Section 4, we study interpolation in local virtual spaces. Finally, in Section 5, we provide
our unified formulation/study of VE/HHO methods, as well as a description of the general workflow of the
methods.

2 Notation, mesh assumptions, and basic analysis tools
We collect in this section all the conventions, tools, and results that will be useful in the sequel.
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2.1 Notation
2.1.1 Geometry

For l P t1, . . . , du, we let |¨|l denote the l-dimensional Hausdorff measure. In what follows, the term polytope
refers to polygons if d “ 2, and to polyhedra if d “ 3. The discretisation of the domain Ω is described in
the following manner.

‚ Th denotes a mesh of the domain Ω, i.e. a collection of disjoint open polytopes T (the cells) such that
Ť

TPTh T “ Ω. The parameter h is the meshsize, defined as h :“ maxTPTh hT , where hT stands for the
diameter of the cell T .

‚ Fh denotes the collection of faces of the mesh Th. Since the cells of Th are polytopes, their boundary
is composed of a finite union of (closed) portions of affine hyperplanes, called facets. A closed subset
F of Ω with |F |d´1 ‰ 0 is a face as soon as (i) F is equal to the intersection, for T1, T2 two cells of
Th, of a facet of T1 and a facet of T2, or (ii) F is equal to the intersection, for T cell of Th, of a facet
of T and a facet of Ω. In the first case, F is termed an interface, whereas in the second, F is termed a
boundary face. Interfaces are collected in the set F i

h, boundary faces in the set Fb
h , in such a way that

Fh “ F i
hYFb

h . For a cell T P Th, we let FT :“ tF P Fh | F Ă BT u be the collection of faces composing
its boundary, and nT be the unit normal vector to BT pointing outward T (that is defined almost
everywhere on BT ). For F P FT , we also let nT,F :“ nT |F ; remark that nT,F is a constant vector on
F since F is planar. Finally, for any face F P Fh, we denote hF its diameter (and, for T P Th, we let
hBT be such that hBT |F :“ hF for all F P FT ), and we let TF :“ tT P Th | F Ă BT u be the collection
of cells sharing F (two cells for an interface, one for a boundary face).

‚ BTh denotes the (d´1q-dimensional skeleton of the mesh Th, that is BTh “
Ť

FPFh F .

‚ When d “ 3, Eh denotes the collection of edges e, |e|1 ‰ 0, of the mesh Th, defined from the collection
Fh of faces. For a cell T P Th (respectively a face F P Fh), we let ET :“ te P Eh | e Ă BT u (respectively
EF :“ te P Eh | e Ă BF u, that will also be denoted FF with a slight abuse in notation) be the collection
of edges composing its boundary.

‚ Vh denotes the collection of vertices ν of the mesh Th. For a cell T P Th (respectively a face F P Fh),
we let VT :“ tν P Vh | ν P BT u (respectively VF :“ tν P Vh | ν P BF u) be the collection of its vertices.
The position of any vertex ν P Vh is denoted xν P Ω.

When d “ 2, faces are sometimes called edges in the literature. We will not use this vocable in this article.
The term edge will always refer to a 1-manifold in dimension d “ 3. We finally introduce, for ν P Vh, the
set Fν :“ tF P Fh | ν P VF u and, when d “ 3, for e P Eh, the set Fe :“ tF P Fh | e P EF u.

2.1.2 Functions spaces

For X Ă Ω, and m ě 0, we let |¨|m,X and }¨}m,X respectively denote the seminorm and norm on the Sobolev
space HmpX; Rlq, l P t1, du, with the convention that H0pX; Rlq ” L2pX; Rlq (hence, |¨|0,X ” }¨}0,X). We
also define }¨}8,X as the norm on L8pXq. We finally let x¨, ¨y´m,X be the duality pairing between H´mpXq
and its topological dual.

For q P N and l P t1, . . . , du, we let Pql be the vector space of l-variate polynomial functions of total
degree less than or equal to q. We also let

Nq
l :“ dimpPql q “

ˆ

q ` l
q

˙

,

and we adopt the conventions P´1
l “ t0u and N´1

l “ 0. For T P Th, we define PqdpT q as the restriction of Pqd
to T . For F P Fh, we let Pqd´1pF q be the restriction of Pqd to F . When d “ 3, for e P Eh, we let Pq1peq be the
restriction of Pq3 to e. For T P Th, we also define the broken space

Pqd´1pFT q :“
 

v P L2pBT q | v|F P Pqd´1pF q @F P FT
(

,

and when d “ 3, for F P Fh, we let Pq1pEF q :“ tv P L2pBF q | v|e P Pq1peq @e P EF u. We finally introduce, for
any T P Th, a set of basis functions for PqdpT q, that we denote tψqT,iuiPt1,...,Nqdu, and for any F P Fh, a set of
basis functions for Pqd´1pF q, that we denote tψqF,jujPt1,...,Nqd´1u

. When d “ 3, we further introduce, for any
e P Eh, a set of basis functions for Pq1peq, denoted tψ

q
e,mumPt1,...,Nq1u

.
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Given a mesh Th of Ω, we introduce the following notation for broken functions spaces on Th:

XpThq :“ tvh P L
2pΩq | vh|T P XpT q @T P Thu.

We introduce on H1pThq the so-called broken gradient operator ∇h : H1pThq Ñ L2pΩq such that, for any
vh P H

1pThq and T P Th, ∇hvh|T :“ ∇pvh|T q. For any interface F P F i
h with TF “ tT1, T2u, we define the

jump JvhKF along F of vh P HspThq, s ą 1{2, by JvhKF :“ pvh|T1
q|F ´ pvh|T2

q|F , and we let nF :“ nT1,F .
For any F P Fb

h with TF “ tT u, we let JvhKF :“ pvh|T q|F , and nF :“ nT,F . We finally introduce the
operator J¨K : HspThq Ñ L2pBThq such that, for any vh P HspThq, JvhK|F :“ JvhKF for all F P Fh. Assume
that vh P HspThq is such that vh|T P C0pT q for all T P Th. Then, the quantity JvhK is piecewise continuous
on the skeleton, with (potential) discontinuities at vertices when d “ 2 and on edges/vertices when d “ 3.
Indeed, considering a vertex ν P Vh, there are cardpFνq potentially different values for JvhK at xν , that are
the pJvhKF pxνqqFPFν . When d “ 3, considering an edge e P Eh, there are, identically, cardpFeq potentially
different functions JvhK on e, that are the

`

JvhKF |e
˘

FPFe
.

2.2 Mesh assumptions
We define the notion of admissible mesh family.

Definition 2.1. The mesh family pThqh is admissible if, for all h, Th admits a matching simplicial submesh,
denoted Sh, and there exists γ ą 0, called mesh regularity parameter, so that, for all h,

(i) for all S P Sh of diameter hS and inradius rS, γhS ď rS (in other words, Sh is shape-regular);

(ii) for all T P Th, and all S P ST :“ tS P Sh | S Ď T u, γhT ď hS.

By matching simplicial submesh, we mean that Sh is a (hanging node free) simplicial mesh satisfying: for
all S P Sh, there exists a unique T P Th such that S Ď T , and for all Z P Zh, where Zh collects the faces of
Sh, there exists at most one F P Fh such that Z Ď F (cf. [32, Definition 1.37]). Henceforth, we will use the
symbol À to indicate that an estimate is valid up to a multiplicative constant c ą 0, with c only depending
on the dimension d, the mesh regularity parameter γ, and, if need be, the underlying polynomial degree; in
particular, the bound is uniform with respect to the meshsize.

Let us mention three important consequences of Definition 2.1: for all h, and all T P Th,

(a) for all S P ST , γhT ď hS ď hT , and cardpST q À 1 (cf. [32, Lemma 1.40]);

(b) for all F P FT , cardpZF q À 1, where ZF :“ tZ P Zh | Z Ď F u (cf. [32, Lemma 1.41]);

(c) for all F P FT , γ2hT ď hF ď hT , and cardpFT q À 1 (cf. [32, Lemmas 1.42 and 1.41]).

From (a) and (b), one can picture the general outline to prove inverse and trace inequalities on arbitrarily-
shaped (admissible) cells. One first considers the case of a simplex satisfying (i) of Definition 2.1, for which
these inequalities are standard. Then, the passage to arbitrary geometries follows from the fact that any
admissible cell is composed of an uniformly bounded number of simplices satisfying (i) (and, any admissible
face is composed of an uniformly bounded number of subfaces belonging to simplices satisfying (i)), and
whose diameters are comparable to the diameter of the cell under consideration (cf. Section 2.3.1). Note
that the notion of admissible mesh we consider here allows for cells that are not necessarily star-shaped.
The assumptions of Definition 2.1 are also sufficient to prove Hm approximation properties for standard
polynomial projectors (cf. Section 2.3.3). As for point (c), it is instrumental in the analysis of numerical
methods based on Th. When d “ 3, it is an easy matter to show that, under the assumptions of Definition 2.1,
one also has, for any T P Th, F P FT , and e P EF , γ3hF ď he ď hF , and cardpEF q À 1.

2.3 Basic analysis tools
Henceforth, Th denotes a member of an admissible mesh family in the sense of Definition 2.1.

2.3.1 Useful inequalities

On any T P Th, the following inequalities hold:

‚ inverse inequality:
@v P PqdpT q, |v|1,T À h´1

T }v}0,T ; (4)
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‚ continuous trace inequality: for any F P FT ,

@v P H1pT q,
›

›v|F
›

›

0,F
À h

´1{2

T }v}0,T ` h
1{2

T |v|1,T ; (5)

‚ discrete trace inequality: for any F P FT ,

@v P PqdpT q,
›

›v|F
›

›

0,F
À h

´1{2

T }v}0,T . (6)

For the proofs of these different results, we refer to [32, Section 1.4.3] (note that therein, faces may even be
nonplanar). We also state the classical Poincaré inequality:

@v P H1pT q such that
ż

T

v “ 0, }v}0,T ď cPhT |v|1,T . (7)

If T is convex, cP “ π´1 is optimal, independently of the ambient dimension; cf. [6]. For some insight on
the value of cP on more general element shapes, we refer to [47]. In the forthcoming analysis, we will also
need (i) the following nonstandard inverse and discrete trace inequalities, whose proofs can be found in [22,
Lemma 4.4 (take Aε “ Id)]: for all v P H1pT q such that 4v P PqdpT q for some q P N, there holds

}4v}0,T À h´1
T |v|1,T ; (8)

if, in addition, for some F P FT , ∇v|F ¨nT,F P Pqd´1pF q, then there also holds

›

›∇v|F ¨nT,F
›

›

0,F
À h

´1{2

T |v|1,T ; (9)

(ii) the following version of Sobolev inequality (cf., e.g., [14, Lemma 4.3.4]):

@v P H2pT q, }v}8,T À h
´ d2
T }v}0,T ` h

p2´dq
2

T |v|1,T ` h
p4´dq

2

T |v|2,T ; (10)

and (iii) the following estimate on a dual norm of the boundary normal flux, whose proof is postponed until
Appendix A.1, that is valid under Assumption 1.1: for any v P H1pT q such that 4v P L2pT q,

sup
zPTpBT qzt0u

x∇v|BT ¨ nT , zy´ 1
2 ,BT

h
´1{2

T }z}0,BT ` h
1{2

T |z|1,BT
À |v|1,T ` hT }4v}0,T , (11)

where TpBT q Ă H1pBT q denotes the space of traces on BT of virtual functions (to be made precise in each
situation) that is referred to in Assumption 1.1.

2.3.2 Finite element in the sense of Ciarlet

The following definition is directly inspired from [20, p. 94]. Let l P t1, . . . , du.

Definition 2.2. A finite element consists in a triple pX,V pXq,ΣXq where

‚ X is a bounded and connected Lipschitz subset of Rd such that |X|l ‰ 0;

‚ V pXq is a finite-dimensional vector space of functions v : X Ñ R;

‚ ΣX :“ tσ1
X , . . . , σ

nX
X u, nX P N‹, is a collection of linear forms on V pXq such that the mapping

ΣX : V pXq Q v ÞÑ pσ1
Xpvq, . . . , σ

nX
X pvqqᵀ P RnX

is bijective (we then have dimpV pXqq “ nX).

The operator ΣX is the so-called (local) reduction operator, and ΣXpvq is the so-called vector of (local)
degrees of freedom (DoF). The bijectivity of ΣX is in general referred to as unisolvence in the literature.
The following proposition is a direct consequence of the unisolvence property.

Proposition 2.3. Let pX,V pXq,ΣXq be a finite element. There exists a basis tϕX,1, . . . , ϕX,nX u (referred
to as canonical) of V pXq such that σiXpϕX,jq “ δij for all i, j P t1, . . . , nXu. The pϕX,iqiPt1,...,nXu are the
so-called (local) shape functions.
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Let rX : RnX Ñ V pXq be the operator such that, for vX :“ pviXq
ᵀ
iPt1,...,nXu

P RnX , rXvX :“
řnX
i“1 viXϕX,i.

One can easily remark that, for all vX P RnX , ΣXprXvXq “ vX , hence rX “ Σ´1
X and, for any v P V pXq,

v “ rXpΣXpvqq “
nX
ÿ

i“1

σiXpvqϕX,i.

rX is the so-called (local, canonical) reconstruction operator.
Assume that there exists a normed vector space W pXq of functions w : X Ñ R such that (i) V pXq Ă

W pXq, and such that (ii) every linear form σiX of ΣX can be extended as a linear form σiX on W pXq. We
denote by ΣX this new collection of extended linear forms, and by ΣX the corresponding (local) reduction
operator. We can then introduce the operator IX : W pXq Ñ V pXq such that, for any w P W pXq,
IXw :“ rXpΣXpwqq “

řnX
i“1 σ

i
XpwqϕX,i. With such a definition, there holds ΣXpIXwq “ ΣXpwq. The

operator IX is the so-called (local, canonical) interpolation operator (in a broad sense). Of course, for all
w P V pXq, IXw “ w since ΣX|V pXq “ ΣX “ r´1

X .

2.3.3 Standard polynomial projectors

For T P Th, we define the L2-orthogonal and elliptic projectors, respectively πqT : L2pT q Ñ PqdpT q and
Πq
T : H1pT q Ñ PqdpT q, so that

for all v P L2pT q,

ż

T

πqT v w “

ż

T

v w @w P PqdpT q;

for all v P H1pT q,

$

’

’

&

’

’

%

ż

T

∇Πq
T v¨∇w “

ż

T

∇v¨∇w @w P PqdpT q,
ż

T

Πq
T v “

ż

T

v.

(12)

Remark that Π0
T “ π0

T |H1pT q. For l P t1, . . . ,N
q
du, we let πq,lT denote the linear form on L2pT q such that, for

any v P L2pT q, πq,lT pvq P R is the lth coordinate of πqT v on the basis tψqT,iuiPt1,...,Nqdu of PqdpT q.

Proposition 2.4 (Properties of πqT and Πq
T ). Let T P Th and v P L2pT q.

‚ preservation of polynomials: if v P PqdpT q, π
q
T v “ Πq

T v “ v;

‚ stability: }πqT v}0,T ď }v}0,T and, if v P H1pT q, }Πq
T v}0,T ď }v}0,T ` 2cP hT |v|1,T ;

‚ optimality: }v ´ πqT v}0,T “ min
zPPqdpT q

}v ´ z}0,T and, if v P H1pT q, |v ´Πq
T v|1,T “ min

zPPqdpT q
|v ´ z|1,T ;

‚ Hm approximation: for v P HspT q, s P t1, . . . , q ` 1u, there holds, with $q
T P tπ

q
T ; Πq

T u,

|v ´$q
T v|m,T À hs´mT |v|s,T for m P t0, . . . , su, (13)

and, for any F P FT , and any pζ1, . . . , ζdq P Nd such that
řd
i“1 ζi “ m,

›

›rBζ1x1
. . . Bζdxdpv ´$

q
T vqs|F

›

›

0,F
À h

s´m´1{2

T |v|s,T for m P t0, . . . , s´ 1u. (14)

The proof of the last result of Proposition 2.4 relies on (i) the ideas of [14, Chapter 4] and [38, Sec-
tion 7] (cf. also [13, Section 4]), and on (ii) two important features of $q

T , that are the preservation of
polynomials and its stability in the L2pT q-norm. For a detailed proof, and an extension to more general
Sobolev seminorms, we refer to [28] (L2-orthogonal projector) and [29] (elliptic projector). We also intro-
duce πqh : L2pΩq Ñ PqdpThq and Πq

h : H1pThq Ñ PqdpThq such that, for any v P L2pΩq (resp., v P H1pThq),
πqhv|T :“ πqT pv|T q (resp., Πq

hv|T :“ Πq
T pv|T q) for all T P Th.

For F P Fh, we define πqF : L2pF q Ñ Pqd´1pF q so that, for all v P L2pF q,
ż

F

πqF v w “

ż

F

v w @w P Pqd´1pF q.

For l P t1, . . . ,Nq
d´1u, we let πq,lF denote the linear form on L2pF q such that, for any v P L2pF q, πq,lF pvq P R

is the lth coordinate of πqF v on the basis tψqF,jujPt1,...,Nqd´1u
of Pqd´1pF q. We also define, for T P Th, πqBT :
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L2pBT q Ñ Pqd´1pFT q such that, for any v P L2pBT q, πqBT v|F :“ πqF pv|F q for all F P FT . When d “ 3, for
e P Eh, we define πqe : L2peq Ñ Pq1peq so that, for all v P L2peq,

ż

e

πqev w “

ż

e

v w @w P Pq1peq.

For l P t1, . . . ,Nq
1u, we let πq,le denote the linear form on L2peq such that, for any v P L2peq, πq,le pvq P R is

the lth coordinate of πqev on the basis tψqe,mumPt1,...,Nq1u of Pq1peq.

Remark 2.5 (Computation of πqXv). It can be easily seen that, for X P tT, F, eu and v P L2pXq, π0
Xv “

1
|X|l

ş

X
v with l P td, d´1, 1u respectively. To compute πqXv for q ě 1, it suffices to solve a symmetric

positive-definite (SPD) system of size Nq
l . The procedure of choice is a Cholesky factorisation.

Remark 2.6 (Computation of Πq
T v, q ě 1). One possibility (another one is to solve a problem posed on the

quotient space PqdpT q{P
0
dpT q) to compute Πq

T v is to consider the following coercive problem: find z P PqdpT q
such that, for all w P PqdpT q,

ż

T

∇z¨∇w `

ż

T

π0
T z π

0
Tw “

ż

T

∇v¨∇w “ ´

ż

T

v4w `
ż

BT

v|BT ∇w|BT ¨nT .

The elliptic projection is obtained by Πq
T v “ z ` π0

T v. According to the expression above, to compute Πq
T v,

it suffices to know selected moments of v P H1pT q, namely πµT v for µ “ maxpq ´ 2, 0q and πq´1
BT pv|BT q. The

computation of Πq
T v then requires to solve a SPD system of size Nq

d. The procedure of choice is again a
Cholesky factorisation.

3 Skeletal methods

3.1 Generic structure
Galerkin methods on Th, among which c/nc-FE, c/nc-VE, or dG methods, seek for an approximation uh of
the solution u P H1

0 pΩq to Problem (1) in a broken space Vh,0 Ď V pThq Ă H1pThq, with V pThq such that, for
all T P Th, V pT q is a finite-dimensional vector space of functions on which exists a collection ΣT of linear
forms so that pT, V pT q,ΣT q is a finite element in the sense of Ciarlet. The linear forms collected in ΣT are
the local DoF of the method. For dG methods, Vh,0 “ V pThq, whereas for c/nc-FE/VE, Vh,0 is a strict
subspace of V pThq that embeds more or less stringent conformity prescriptions (with respect to H1

0 pΩq); for
c-FE/VE for instance, Vh,0 is a subspace of H1

0 pΩq.
For those methods (like c/nc-FE/VE) based on a space Vh,0 embedding conformity prescriptions, locally

to any T P Th, the collection ΣT of DoF can be split into (i) linear forms on V pBT q :“ tv|BT , v P V pT qu

(collected in the set ΣBT ) and, (ii) if need be, those linear forms on V pT q that cannot be written as linear
forms on V pBT q (collected in the set Σo

T ). The linear forms in ΣBT are skeletal DoF, whereas those in Σo
T

are bulk DoF. We let nBT :“ cardpΣBT q, n
o
T :“ cardpΣo

T q, and nT :“ nBT ` no
T “ dimpV pT qq. From a global

viewpoint, the collection of global DoF of the method splits into (i) linear forms on

V pFhq :“
!

vh P L
2pBThq | vh|F P`TPTF VT pF q @F P Fh

)

with VT pF q :“ tv|F , v P V pT qu (collected in the set ΣBh) and, (ii) if need be, linear forms on V pThq that
cannot be written as linear forms on V pFhq (collected in the set Σo

h). Whereas Σo
h :“

Ť

TPTh Σ̌o
T where, for

any T P Th, Σ̌o
T is the collection of linear forms on V pThq given by Σ̌o

T :“
 

σo
T p¨|T q, σ

o
T P Σo

T

(

, the global
skeletal DoF in ΣBh (that are linear forms on V pFhq) are intrinsically defined, and their local counterparts
are obtained by localization. More precisely, for any T P Th, letting

VT pFhq :“
 

vh P V pFhq | vh|BT P V pBT q, vh|F ” 0@F P FhzFT
(

and Σ̂BT :“
!

σB|VT pFhq ı 0, σB P ΣBh

)

,

one has
ΣBT :“

!

c pσ̂BT ˝ Zhq, σ̂BT P Σ̂BT

)

, (15)

where Zh is the zero extension operator from V pBT q to VT pFhq, and c is a constant depending on the
skeletal DoF under consideration and on T , whose default value is 1 (cf. Remark 3.1). Note that whereas
cardpΣo

hq “
ř

TPTh n
o
T , cardpΣBhq ă

ř

TPTh n
B
T .
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Remark 3.1 (Role of the constant c in (15)). Assume that V pT q Ă C0pT q for all T P Th, which is relevant in
practice. Then, functions in V pFhq are piecewise continuous on the skeleton, with (potential) discontinuities
at vertices when d “ 2 and on edges/vertices when d “ 3. Yet, in the conforming case, in order to prescribe
conformity, one has to define DoF at vertices when d “ 2 and on edges/vertices when d “ 3. Let us then
describe how to do so. For a vertex ν P Vh, the (global) skeletal DoF σB,ν P ΣBh associated to a pointwise
evaluation at xν is defined, for any vh P V pFhq, by σB,νpvhq :“ 1

cardpFνq
ř

FPFν vh|F pxνq. Such a formula

degenerates towards vhpxνq whenever vh is continuous at xν . Besides, letting cνT “
cardpFνq

cardpFνXFT q , one obtains
as expected that the restriction of σB,ν to a cell T P Th such that ν P VT is given, for any v P V pBT q, by
σB,νT pvq “ vpxνq. Edge DoF when d “ 3 can be handled in a similar way. For face DoF, one can always
take c “ 1.

For any F P Fh and vh P V pFhq, we let RF pvhq P V pFhq be such that RF pvhq|F “ vh|F and RF pvhq|F 1 ”
0 for all F 1 P FhzF . The approximation space, that also takes into account the boundary conditions, is

Vh,0 :“
 

vh P V pThq | pσB ˝RF qpJvhKq “ 0@F P Fh, @σB P ΣBh
(

, (16)

with dimension nh,0 :“ dimpVh,0q ă dimpV pThqq “: nh (remark that nh “
ř

TPTh nT ). The conditions on
the jumps of discrete functions enforce the conformity prescriptions. The discrete problem then reads as
follows: find uh P Vh,0 such that

ahpuh, vhq :“
ÿ

TPTh

aT puh|T , vh|T q “
ÿ

TPTh

lT pvh|T q “: lhpvhq for all vh P Vh,0, (17)

where the (bi)linear forms ah : V pThq ˆ V pThq Ñ R and lh : V pThq Ñ R are the sums of local contributions
expressed by the local forms aT : V pT q ˆ V pT q Ñ R and lT : V pT q Ñ R. This special structure of the
discrete problem ensures that the potential bulk DoF of the method are not coupled between adjacent cells
and can be eliminated locally in each cell T P Th in terms of the local skeletal DoF. Algebraically, the
elimination consists in computing the Schur complement of the bulk-bulk block of the global linear system,
which is quite inexpensive as this block is itself block-diagonal. After elimination, the global linear system
to solve is expressed in terms of the skeletal DoF only. This explains why methods that are based on a
discrete space like (16) and on a variational formulation like (17) are referred to as skeletal.

Without describing too much the space Vh,0, one can prove interesting structural properties on it. Let
us denote, for any F P Fh, by π̌0

F the linear form on V pFhq so that π̌0
F :“ π0

F p¨|F q, with the convention
(henceforth adopted) that P0

l is identified to R.

Lemma 3.2. If tπ̌0
F uFPFh Ď ΣBh, then }∇h¨}0,Ω defines a norm on Vh,0, and the following discrete Poincaré

inequality holds:
@vh P Vh,0, }vh}0,Ω À }∇hvh}0,Ω. (18)

Lemma 3.2, whose proof (which is quite classical but recalled for completeness) is postponed until Ap-
pendix A.2, gives sufficient conformity conditions for Vh,0 (that are reminiscent of lowest-order nc-FE) so
as to ensure that a discrete Poincaré inequality holds on it.

Remark 3.3. Obviously, the result of Lemma 3.2 remains valid under more stringent conformity prescrip-
tions (like it is for instance the case for c-FE).

3.2 Equivalent algebraic viewpoint
Since, for all T P Th, pT, V pT q,ΣT q is a finite element in the sense of Ciarlet, any function vh P V pThq can
be equivalently written as a vector Rnh Q vh :“ pvᵀ

T q
ᵀ
TPTh with RnT Q vT :“

`

vB ᵀT , vo ᵀ
T

˘ᵀ, vBT P Rn
B
T and

vo
T P Rn

o
T . The vector vT , that satisfies vT “ ΣT pvh|T q, is the restriction of vh to T . For T P Th and

F P FT , we let vBT,F P Rn
B
T,F be the restriction of vBT to the face F (with possible overlaps between faces,

i.e.
ř

FPFT n
B
T,F ě nBT ). Since the skeletal DoF are intrinsically defined at the global level, we necessarily

have that, for all F P F i
h such that TF “ tT1, T2u, the vectors vBT1,F

and vBT2,F
are local reductions obtained

through the same collection of global linear forms. In particular, they have the same size, and we can let
rvhsF :“ vBT1,F

´ vBT2,F
. For F P Fb

h such that TF “ tT u, we let rvhsF :“ vBT,F . We introduce

Vh,0 :“
 

vh P Rnh | rvhsF “ 0 @F P Fh
(

. (19)
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There holds dimpVh,0q “ nh,0. For vectors vh P Vh,0, for every F P F i
h we have vBT1,F

“ vBT2,F
, and for every

F P Fb
h we have vBT,F “ 0. Problem (17) can be equivalently rewritten: find uh P Vh,0 such that

ahpuh, vhq :“
ÿ

TPTh

aT puT , vT q “
ÿ

TPTh

lT pvT q “: lhpvhq for all vh P Vh,0, (20)

where the (bi)linear forms ah : Rnh ˆ Rnh Ñ R and lh : Rnh Ñ R are expressed in terms of the local forms
aT : RnT ˆ RnT Ñ R and lT : RnT Ñ R such that aT :“ aT prT ¨, rT ¨q and lT :“ lT prT ¨q, where rT is the
(local, canonical) resconstruction operator of the finite element pT, V pT q,ΣT q. For all T P Th, there holds
uT “ ΣT puh|T q, where uT P RnT is the restriction to T of uh P Vh,0 solution to Problem (20), and uh P Vh,0
is the solution to Problem (17). Problem (17) and Problem (20) are strictly equivalent. They only differ by
the fact that the former is written in a functional framework, whereas the latter is written in an (equivalent)
algebraic framework, i.e. in terms of the discrete unknowns. In the rest of this section, we will stick to the
functional notation used for Problem (17), but in Sections 4 and 5 we will adopt the algebraic notation used
for Problem (20). In algebraic notation, roman fonts are used and vectorial quantities are underlined.

3.3 Examples of skeletal methods
The most famous examples of skeletal methods are surely given by the c/nc-FE methods. In that case, one
considers, for all T P Th,

aT pw, vq :“

ż

T

∇w¨∇v and lT pvq :“

ż

T

f|T v for all w, v P V pT q,

in such a way that the discrete problem writes: find uh P Vh,0 such that

ahpuh, vhq “

ż

Ω

∇huh¨∇hvh “

ż

Ω

f vh “ lhpvhq for all vh P Vh,0. (21)

In the conforming case, since Vh,0 Ă H1
0 pΩq, one can drop some h and directly write a, l, and ∇. For FE

methods, it is assumed that closed-form expressions are available for the local shape functions. In that case,
since ahp¨, ¨q “ }∇h¨}

2
0,Ω, Lemma 3.2 gives a sufficient condition so as to ensure well-posedness of the discrete

problem in the sense of Hadamard (from (18) directly results the stability estimate }∇huh}0,Ω À }f}0,Ω
on the solution uh to Problem (21)). Under that same (sufficient) condition, as soon as the space Vh,0
guarantees as well some approximability in a dense subspace of H1

0 pΩq, one can classically infer strong
convergence in H1

0 pΩq of uh to the solution u to Problem (1) [37]. The result of Lemma 3.2, that does not
assume that discrete functions in Vh,0 are piecewise polynomial, also applies to the mixed-order multiscale
HHO method of [22, Section 5.1], for which the local (oscillatory) basis functions are considered to be all
explicitly known on each coarse cell (in practice, they are in fact approximated using a fine submesh of the
coarse cell).

Other examples of skeletal methods are given by the hybridised version of mixed FE methods, that can
be recast under the form (17) after local elimination of the flux variable [40, 2, 26].

Other, more recent examples of skeletal methods are the c/nc-VE methods, as well as the HDG and HHO
methods (cf. [11]). The specificity of VE methods with respect to FE methods is to consider virtual local
spaces V pT q, i.e. local spaces which are spanned by functions that are (i) in general, not all computable,
and (ii) by definition, never all computed. The local virtual functions are usually implicitly defined as the
solutions to some PDEs posed in the cell. The VE methods are defined using computable (in terms of the
DoF) projections of the virtual functions, and are stabilized through computable penalisations. Polynomial-
based VE methods hinge on local virtual spaces (i) spanned by the solutions to PDEs featuring polynomial
data, and (ii) that contain the space Pkd for some k ě 1. They are the VE methods that are classically
encountered in the literature. As such, we will henceforth refer to them simply as VE methods, and we will
exclusively focus on them in the sequel. An example of (nonconforming) method that hinges on a different
kind of virtual space is given by the equal-order multiscale HHO method of [22, Section 5.2], for which local
virtual functions do solve (oscillatory) PDEs with polynomial data, but the local virtual space does not
contain polynomials in general.

4 Interpolation in local virtual spaces
In this section and in the following, we will make an extensive use of the notation introduced in Sections 2
and 3. We let k ě 1 be a given integer, that will stand for the order of the method. Doing so, we adopt
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the classical VE notation. HHO methods of the same order are classically defined using k1 “ k´ 1 ě 0. Let
T P Th be a given cell.

4.1 Conforming case
For any ν P VT (respectively ν P VF , for F P FT ), we let ινT (respectively ινF ) denote the linear form
on C0pBT q (respectively C0pBF q) so that, for all v P C0pBT q (respectively v P C0pBF q), ινT pvq “ vpxνq
(respectively ινF pvq “ vpxνq).

4.1.1 Preliminary results

Let d “ 2, and consider a face F P FT such that F :“ rxν1 ,xν2s. Then, we have the following classical
result.

Proposition 4.1. The triple pF,Pk1pF q,Σk1,F q, where the collection Σk1,F splits into Σk,B1,F :“ tινF uνPVF and
Σk,o1,F :“

 

πk´2,j
F

(

jPt1,...,Nk´2
1 u

, is a finite element in the sense of Ciarlet.

To alleviate the notation, we have kept in the collection Σk,o1,F the symbol πk´2,j
F to actually denote πk´2,j

F |Pk1 pF q
.

This slight abuse in notation will henceforth be adopted. Letting nk1,F :“ dimpPk1pF qq, we introduce the
operator rk1,F : Rn

k
1,F Ñ Pk1pF q such that, for any

vF :“
`

pvB,νF qνPVF , pv
o,j
F qjPt1,...,Nk´2

1 u

˘ᵀ
P Rn

k
1,F ,

rk1,FvF P Pk1pF q solves the well-posed problem
$

’

&

’

%

ż

F

prk1,FvF q
1w1 “ ´

ż

F

vo
F w

2 ` rvB,ν2F w1pxν2q ´ vB,ν1F w1pxν1qs @w P Pk1pF q,

rk1,FvF pxν1q “ vB,ν1F ,

(22)

where we have introduced the notation vo
F :“

řNk´2
1

j“1 vo,j
F ψk´2

F,j P Pk´2
1 pF q. Remark that we also have

rk1,FvF pxν2q “ vB,ν2F (it suffices to test (22) against any w P P1
1pF q).

Proposition 4.2. The operator rk1,F defined by (22) coincides with the (canonical) reconstruction operator
pΣk1,F q

´1.

Proof. Let Rn
k
1,F Q vF :“ Σk1,F pvq for some v P Pk1pF q. Plugging vF into (22), we obtain by integration by

parts (remark that vo
F “ πk´2

F v)
ż

F

prk1,FvF q
1w1 “

ż

F

v1 w1 @w P Pk1pF q,

which, combined to the condition rk1,FvF pxν1q “ vB,ν1F “ vpxν1q, yields that rk1,FvF “ rk1,F pΣ
k
1,F pvqq “ v.

This is true for any v P Pk1pF q, hence rk1,F “ pΣ
k
1,F q

´1.

The collection Σk1,F of linear forms on Pk1pF q can patently be extended to a collection Σ
k

1,F of linear
forms on C0pF q. We can hence define the interpolation operator Ik1,F : C0pF q Ñ Pk1pF q such that Ik1,F :“

rk1,F ˝ Σ
k

1,F .

Lemma 4.3 (Stability of Ik1,F ). For all v P C0pF q, there holds
›

›Ik1,F v
›

›

8,F
À }v}8,F .

Proof. To prove the result, we rewrite Ik1,F v as

Ik1,F v “ vpxν1qϕ
B
F,ν1 ` vpxν2qϕ

B
F,ν2 `

Nk´2
1
ÿ

j“1

πk´2,j
F pvqϕo

F,j ,

where the functions ϕBF,ν1 , ϕ
B
F,ν2

, ϕo
F,j P Pk1pF q are the shape functions of pF,Pk1pF q,Σk1,F q. The conclusion

immediately follows, remarking that |πk´2,j
F pvq| À h

´1{2

F

›

›πk´2
F v

›

›

0,F
À h

´1{2

F }v}0,F À }v}8,F .
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Remark 4.4. One can equivalently choose, to define the finite element pF,Pk1pF q,Σk1,F q, to consider Σk,o1,F :“
tινF uνPVo

F
, where Vo

F is a set of k ´ 1 internal points of F chosen such that the matrix defined by M :“
`

ψkF,jpxνq
˘

jPt1,...,Nk1u, νPVFYVo
F

is invertible. The operator rk1,F is then given by rk1,FvF :“
řNk1
j“1

`

M´1vF
˘

j
ψkF,j,

and one can easily prove L8-stability for Ik1,F .

4.1.2 The case d “ 2

If d “ 2, we let our conforming local virtual space on T be defined by

V k2 pT q :“
!

v P H1pT q | 4v P Pk´1
2 pT q, v|BT P Pk,c1 pFT q

)

, (23)

where Pk,c1 pFT q :“ Pk1pFT q X C0pBT q. One can show (cf., e.g., [13, Remark 2.3]) that functions in V k2 pT q
belong to C0pT q. Besides, Pk2pT q Ă V k2 pT q. The following result is standard.

Proposition 4.5. The triple pT, V k2 pT q,Σk2,T q, where V
k
2 pT q is given by (23) and the collection Σk2,T splits

into
Σk,B2,T :“ tινT uνPVT Y

 

πk´2,j
F p¨|F q

(FPFT
jPt1,...,Nk´2

1 u
and Σk,o2,T :“

 

πk´1,i
T

(

iPt1,...,Nk´1
2 u

,

is a finite element in the sense of Ciarlet.

Letting nk2,T :“ dimpV k2 pT qq, for any

vT :“
`

pvB,νT qνPVT , pv
B,j
T,F q

FPFT
jPt1,...,Nk´2

1 u
, pvo,i

T qiPt1,...,Nk´1
2 u

˘ᵀ
P Rn

k
2,T ,

we have vBT “
`

pvB,νT qνPVT , pv
B,j
T,F q

FPFT
jPt1,...,Nk´2

1 u

˘ᵀ
P Rn

k,B
2,T , vBT,F “

`

pvB,νT qνPVF , pv
B,j
T,F qjPt1,...,Nk´2

1 u

˘ᵀ
P Rn

k
1,F for

any F P FT , and we let vo
T :“

řNk´1
2

i“1 vo,i
T ψk´1

T,i P Pk´1
2 pT q. Defining rk1,BT : Rn

k,B
2,T Ñ Pk,c1 pFT q so that, for

any vBT P Rn
k,B
2,T , rk1,BTvBT |F :“ rk1,FvBT,F for all F P FT where rk1,F is defined by (22), we are now in position

to introduce the operator rk2,T : Rn
k
2,T Ñ V k2 pT q such that, for any vT P Rn

k
2,T , rk2,TvT P V

k
2 pT q solves the

well-posed problem
$

’

’

&

’

’

%

ż

T

∇rk2,TvT ¨∇w “ ´

ż

T

vo
T 4w `

@

∇w|BT ¨nT , r
k
1,BTvBT

D

´ 1
2 ,BT

@w P V k2 pT q,

ż

T

rk2,TvT “

ż

T

vo
T .

(24)

Proposition 4.6. The operator rk2,T defined by (24) coincides with the (canonical) reconstruction operator
pΣk2,T q

´1.

Proof. Let Rn
k
2,T Q vT :“ Σk2,T pvq for some v P V k2 pT q. Plugging vT into (24), we infer by integration by

parts (remark that vo
T “ πk´1

T v)

ż

T

∇rk2,TvT ¨∇w “ ´

ż

T

πk´1
T v4w `

A

∇w|BT ¨nT , r
k
1,BT

`

Σk,B2,T pvq
˘

E

´ 1
2 ,BT

“

ż

T

∇v¨∇w @w P V k2 pT q,

where we have used that 4w P Pk´1
2 pT q and that, for all F P FT , rk1,BT

`

Σk,B2,T pvq
˘

|F
“ rk1,F

`

Σk,B2,T,F pvq
˘

“

rk1,F
`

Σk1,F pv|F q
˘

“ v|F (cf. Proposition 4.2). Since
ş

T
rk2,TvT “

ş

T
πk´1
T v “

ş

T
v, we finally infer that

rk2,TvT “ rk2,T
`

Σk2,T pvq
˘

“ v. This is true for any v P V k2 pT q, hence rk2,T “ pΣ
k
2,T q

´1.

Let us introduce the operator Ik1,BT : C0pBT q Ñ Pk,c1 pFT q so that, for any v P C0pBT q, Ik1,BT v|F :“

Ik1,F pv|F q for all F P FT . It is clear that the collection Σk2,T of linear forms on V k2 pT q can be extended to a

collection Σ
k

2,T of linear forms on
H1,cpT q :“ H1pT q X C0pT q.

We can hence define the interpolation operator Ik2,T : H1,cpT q Ñ V k2 pT q such that Ik2,T :“ rk2,T ˝ Σ
k

2,T .

Besides, we remark that, for all v P H1,cpT q, rk1,BT
`

Σ
k,B

2,T pvq
˘

“ Ik1,BT pv|BT q. We have the following stability
result for Ik2,T .
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Lemma 4.7 (Stability of Ik2,T ). Under Assumption 1.1, for all v P H2pT q, there holds

‚
ˇ

ˇIk2,T v
ˇ

ˇ

1,T
À |v|1,T ` hT |v|2,T ;

‚
›

›Ik2,T v
›

›

0,T
À }v}0,T ` hT |v|1,T ` h

2
T |v|2,T .

Proof. First, remark that if v P H2pT q, v P C0pT q and hence v P H1,cpT q; consequently, Ik2,T v has a sense.

Let us test (24) with vT :“ Σ
k

2,T pvq. There holds
ż

T

∇Ik2,T v¨∇w “ ´

ż

T

v4w `
@

∇w|BT ¨nT , Ik1,BT pv|BT q
D

´ 1
2 ,BT

@w P V k2 pT q,

where we have used that 4w P Pk´1
2 pT q and that rk1,BT

`

Σ
k,B

2,T pvq
˘

“ Ik1,BT pv|BT q. We equivalently rewrite the
equality above as

ż

T

∇Ik2,T v¨∇w “ ´

ż

T

pv ´ π0
T vq4w `

@

∇w|BT ¨nT , Ik1,BT pv|BT ´ π0
T vq

D

´ 1
2 ,BT

@w P V k2 pT q

and, by Cauchy–Schwarz inequality we infer, for any w P V k2 pT q,
ˇ

ˇ

ˇ

ˇ

ż

T

∇Ik2,T v¨∇w

ˇ

ˇ

ˇ

ˇ

ď
›

›v ´ π0
T v

›

›

0,T
}4w}0,T `

´

h
´ 1

2

T

›

›Ik1,BT pv|BT ´ π0
T vq

›

›

0,BT

`h
1
2

T

ˇ

ˇIk1,BT pv|BT ´ π0
T vq

ˇ

ˇ

1,BT

¯

sup
zPPk,c1 pFT qzt0u

x∇w|BT ¨ nT , zy´ 1
2 ,BT

h
´1{2

T }z}0,BT ` h
1{2

T |z|1,BT
“: T1 ` T2.

To estimate T1, we apply (8) to w P V k2 pT q, and the Poincaré inequality (7) to pv ´ π0
T vq. We get

T1 À |v|1,T |w|1,T .

To estimate the second factor in T2, we make use of the estimate (11) with TpBT q “ Pk,c1 pFT q Ă H1pBT q.
This yields, using again (8),

sup
zPPk,c1 pFT qzt0u

x∇w|BT ¨ nT , zy´ 1
2 ,BT

h
´1{2

T }z}0,BT ` h
1{2

T |z|1,BT
À |w|1,T .

To estimate the first factor in T2, we first use an inverse inequality (cf., e.g., [39, Lemma 1.138]) for
Ik1,F

`

v|F ´ π
0
T v

˘

P Pk1pF q on the 1-simplex F for all F P FT , to infer

h
´ 1

2

T

›

›Ik1,BT pv|BT ´ π0
T vq

›

›

0,BT
` h

1
2

T

ˇ

ˇIk1,BT pv|BT ´ π0
T vq

ˇ

ˇ

1,BT

À h
´ 1

2

T

›

›Ik1,BT
`

v|BT ´ π
0
T v

˘
›

›

0,BT
À
›

›Ik1,BT
`

v|BT ´ π
0
T v

˘
›

›

8,BT
.

Then, applying Lemma 4.3, and since v P C0pT q, there holds

h
´ 1

2

T

›

›Ik1,BT pv|BT ´ π0
T vq

›

›

0,BT
` h

1
2

T

ˇ

ˇIk1,BT pv|BT ´ π0
T vq

ˇ

ˇ

1,BT
À
›

›v|BT ´ π
0
T v

›

›

8,BT
À
›

›v ´ π0
T v

›

›

8,T
,

which, by application of the Sobolev inequality (10), and of the Poincaré inequality (7), yields

h
´ 1

2

T

›

›Ik1,BT pv|BT ´ π0
T vq

›

›

0,BT
` h

1
2

T

ˇ

ˇIk1,BT pv|BT ´ π0
T vq

ˇ

ˇ

1,BT
À |v|1,T ` hT |v|2,T .

Finally, we get
T2 À

`

|v|1,T ` hT |v|2,T
˘

|w|1,T .

In conclusion, there holds, for any w P V k2 pT q,
ˇ

ˇ

ˇ

ˇ

ż

T

∇Ik2,T v¨∇w

ˇ

ˇ

ˇ

ˇ

À
`

|v|1,T ` hT |v|2,T
˘

|w|1,T .

Taking w “ Ik2,T v P V k2 pT q provides the expected estimate in the H1pT q-seminorm. To obtain the estimate
in the L2pT q-norm, it suffices to remark that

ş

T
Ik2,T v “

ş

T
πk´1
T v “

ş

T
v. Hence, by the triangle inequality

and the Poincaré inequality (7), we infer
›

›Ik2,T v
›

›

0,T
ď }v}0,T `

›

›v ´ Ik2,T v
›

›

0,T
À }v}0,T ` hT

`

|v|1,T `
ˇ

ˇIk2,T v
ˇ

ˇ

1,T

˘

.

The conclusion then follows from the estimate in the H1pT q-seminorm.
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Remark 4.8. We note that the only moment in the proof of Lemma 4.7 where Assumption 1.1 is needed
is when it comes to use (11). The result (11) provides an estimate on a dual norm of the boundary normal
flux of virtual functions, which is actually what we need. Indeed, owing to the lack of a priori regularity of
virtual functions (H3{2´εpT q for any ε ą 0; cf. [13, Remark 2.3]), one cannot expect to control a L2-norm of
their boundary normal flux. The proof of (11) requires the result (2) to hold. This latter states the existence
of a lifting operator with optimal scaling for traces of virtual functions (against which we test). Since we
are not aware of a proof of (2) that is valid under our mesh assumptions (we recall that our cells may not
be star-shaped), we keep (2) as an assumption.

With a view towards the case d “ 3, we state a sharper stability estimate for the interpolation operator.

Lemma 4.9 (Sharper stability estimate for Ik2,T ). Under Assumption 1.1, for all v P H3{2pT q, there holds
›

›Ik2,T v
›

›

0,T
` hT

ˇ

ˇIk2,T v
ˇ

ˇ

1,T
À }v}0,T ` hT |v|1,T ` h

3{2

T |v| 32 ,T
.

Proof. The proof exactly follows the one of Lemma 4.7, with a slight variation when it comes to apply the
Sobolev inequality (10). We make use of the following sharper estimate (cf., e.g., [15, Eq. (2.4)]): for all
z P H3{2pT q,

}z}8,T À h´1
T }z}0,T ` |z|1,T ` h

1{2

T |z| 32 ,T
.

We thus obtain
T2 À

`

|v|1,T ` h
1{2

T |v| 32 ,T
˘

|w|1,T ,

which finally yields the desired estimate.

4.1.3 The case d “ 3

If d “ 3, we let our conforming local virtual space on T be defined by

V k3 pT q :“
!

v P H1pT q | 4v P Pk´1
3 pT q, v|BT P V

k,c
2 pFT q

)

, (25)

where V k,c2 pFT q :“ V k2 pFT q X C0pBT q with broken space

V k2 pFT q :“ tv P L2pBT q | v|F P V
k
2 pF q @F P FT u,

where V k2 pF q is given by (23) with T Ð F (recall that FF “ EF ). One can show (cf., e.g., [15, Remark 5.1])
that functions in V k3 pT q belong to C0pT q. Besides, Pk3pT q Ă V k3 pT q. The following result is standard.

Proposition 4.10. The triple pT, V k3 pT q,Σk3,T q, where V
k
3 pT q is given by (25) and the collection Σk3,T splits

into

‚ Σk,B3,T :“ tινT uνPVT Y
 

πk´2,m
e p¨|eq

(ePET
mPt1,...,Nk´2

1 u
Y
 

πk´1,j
F p¨|F q

(FPFT
jPt1,...,Nk´1

2 u
and

‚ Σk,o3,T :“
 

πk´1,i
T

(

iPt1,...,Nk´1
3 u

,

is a finite element in the sense of Ciarlet.

Letting nk3,T :“ dimpV k3 pT qq, for any

vT :“
`

pvB,νT qνPVT , pv
B,m
T,e q

ePET
mPt1,...,Nk´2

1 u
, pvB,jT,F q

FPFT
jPt1,...,Nk´1

2 u
, pvo,i

T qiPt1,...,Nk´1
3 u

˘ᵀ
P Rn

k
3,T ,

we have vBT “
`

pvB,νT qνPVT , pv
B,m
T,e q

ePET
mPt1,...,Nk´2

1 u
, pvB,jT,F q

FPFT
jPt1,...,Nk´1

2 u

˘ᵀ
P Rn

k,B
3,T ,

vBT,F “
`

pvB,νT qνPVF , pv
B,m
T,e q

ePEF
mPt1,...,Nk´2

1 u
, pvB,jT,F qjPt1,...,Nk´1

2 u

˘ᵀ
P Rn

k
2,F for any F P FT ,

and we let vo
T :“

řNk´1
3

i“1 vo,i
T ψk´1

T,i P Pk´1
3 pT q and, for further use, vBT P Pk´1

2 pFT q so that vBT |F :“
řNk´1

2
j“1 vB,jT,Fψ

k´1
F,j P Pk´1

2 pF q for all F P FT . Defining rk2,BT : Rn
k,B
3,T Ñ V k,c2 pFT q so that, for any vBT P Rn

k,B
3,T ,

rk2,BTvBT |F :“ rk2,FvBT,F for all F P FT with rk2,F given by (24) with T Ð F , we can now introduce the

operator rk3,T : Rn
k
3,T Ñ V k3 pT q such that, for any vT P Rn

k
3,T , rk3,TvT P V

k
3 pT q solves the well-posed problem

$

’

’

&

’

’

%

ż

T

∇rk3,TvT ¨∇w “ ´

ż

T

vo
T 4w `

@

∇w|BT ¨nT , r
k
2,BTvBT

D

´ 1
2 ,BT

@w P V k3 pT q,

ż

T

rk3,TvT “

ż

T

vo
T .

(26)
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Proposition 4.11. The operator rk3,T defined by (26) coincides with the (canonical) reconstruction operator
pΣk3,T q

´1.

Proof. Let Rn
k
3,T Q vT :“ Σk3,T pvq for some v P V k3 pT q. Plugging vT into (26), we infer by integration by

parts (remark that vo
T “ πk´1

T v)

ż

T

∇rk3,TvT ¨∇w “ ´

ż

T

πk´1
T v4w `

A

∇w|BT ¨nT , r
k
2,BT

`

Σk,B3,T pvq
˘

E

´ 1
2 ,BT

“

ż

T

∇v¨∇w @w P V k3 pT q,

where we have used that 4w P Pk´1
3 pT q and that, for all F P FT , rk2,BT

`

Σk,B3,T pvq
˘

|F
“ rk2,F

`

Σk,B3,T,F pvq
˘

“

rk2,F
`

Σk2,F pv|F q
˘

“ v|F (cf. Proposition 4.6 with T Ð F ). Since
ş

T
rk3,TvT “

ş

T
πk´1
T v “

ş

T
v, we finally infer

that rk3,TvT “ rk3,T
`

Σk3,T pvq
˘

“ v. This is valid for any v P V k3 pT q, hence rk3,T “ pΣ
k
3,T q

´1.

Let us introduce the operator Ik2,BT : C0pBT q Ñ V k,c2 pFT q so that, for any v P C0pBT q, Ik2,BT v|F :“

Ik2,F pv|F q for all F P FT with Ik2,F being Ik2,T defined in Section 4.1.2 with T Ð F . The collection Σk3,T of

linear forms on V k3 pT q can clearly be extended to a collection Σ
k

3,T of linear forms on H1,cpT q. Thus, we can

define the interpolation operator Ik3,T : H1,cpT q Ñ V k3 pT q such that Ik3,T :“ rk3,T ˝ Σ
k

3,T . We remark that,

for all v P H1,cpT q, rk2,BT
`

Σ
k,B

3,T pvq
˘

“ Ik2,BT pv|BT q. We have the following stability result for Ik3,T .

Lemma 4.12 (Stability of Ik3,T ). Assume that the assumptions of Lemma 4.9 where T Ð F are met for all
F P FT . Then, under Assumption 1.1, for all v P H2pT q, one has

‚
ˇ

ˇIk3,T v
ˇ

ˇ

1,T
À |v|1,T ` hT |v|2,T ;

‚
›

›Ik3,T v
›

›

0,T
À }v}0,T ` hT |v|1,T ` h

2
T |v|2,T .

Proof. First, remark that if v P H2pT q, v P C0pT q also in that case and hence v P H1,cpT q; consequently,
Ik3,T v has a sense. Let us test (26) with vT :“ Σ

k

3,T pvq. There holds
ż

T

∇Ik3,T v¨∇w “ ´

ż

T

v4w `
@

∇w|BT ¨nT , Ik2,BT pv|BT q
D

´ 1
2 ,BT

@w P V k3 pT q.

We equivalently rewrite the equality above as
ż

T

∇Ik3,T v¨∇w “ ´

ż

T

pv ´ π0
T vq4w `

@

∇w|BT ¨nT , Ik2,BT pv|BT ´ π0
T vq

D

´ 1
2 ,BT

@w P V k3 pT q,

and, by Cauchy–Schwarz inequality, we infer, for any w P V k3 pT q,

ˇ

ˇ

ˇ

ˇ

ż

T

∇Ik3,T v¨∇w

ˇ

ˇ

ˇ

ˇ

ď
›

›v ´ π0
T v

›

›

0,T
}4w}0,T `

´

h
´ 1

2

T

›

›Ik2,BT pv|BT ´ π0
T vq

›

›

0,BT

`h
1
2

T

ˇ

ˇIk2,BT pv|BT ´ π0
T vq

ˇ

ˇ

1,BT

¯

sup
zPV k,c2 pFT qzt0u

x∇w|BT ¨ nT , zy´ 1
2 ,BT

h
´1{2

T }z}0,BT ` h
1{2

T |z|1,BT
“: T1 ` T2.

The term T1 and the second factor in T2 can be handled as in the proof of Lemma 4.7 (here, TpBT q “
V k,c2 pFT q Ă H1pBT q). To estimate the first factor in T2, we remark that for all F P FT ,

`

v|F ´ π0
T v

˘

P

H3{2pF q. We can hence apply Lemma 4.9 where T Ð F to infer

h
´1{2

F

›

›Ik2,F pv|F ´ π0
T vq

›

›

0,F
` h

1{2

F

ˇ

ˇIk2,F pv|F ´ π0
T vq

ˇ

ˇ

1,F

À h
´1{2

F

›

›v|F ´ π
0
T v

›

›

0,F
` h

1{2

F

ˇ

ˇv|F
ˇ

ˇ

1,F
` hF

ˇ

ˇv|F
ˇ

ˇ

3
2 ,F

.

By (a sharper version of) the continuous trace inequality (5), and the Poincaré inequality (7), we obtain,
summing over F P FT ,

h
´ 1

2

T

›

›Ik2,BT pv|BT ´ π0
T vq

›

›

0,BT
` h

1{2

T

ˇ

ˇIk2,BT pv|BT ´ π0
T vq

ˇ

ˇ

1,BT
À |v|1,T ` hT |v|2,T .
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Hence, there holds, for any w P V k3 pT q,
ˇ

ˇ

ˇ

ˇ

ż

T

∇Ik3,T v¨∇w

ˇ

ˇ

ˇ

ˇ

À
`

|v|1,T ` hT |v|2,T
˘

|w|1,T .

Taking w “ Ik3,T v P V k3 pT q provides the expected estimate in the H1pT q-seminorm. To obtain the estimate
in the L2pT q-norm, we follow the same reasoning as in the proof of Lemma 4.7.

4.1.4 Approximation properties

Theorem 4.13 (Approximation properties for Ikd,T , conforming case). Assume that the assumptions of
Lemma 4.7 (when d “ 2) or 4.12 (when d “ 3) are met. Let v P HspT q, for s P t2, . . . , k ` 1u. Then, there
holds

›

›v ´ Ikd,T v
›

›

0,T
` hT

ˇ

ˇv ´ Ikd,T v
ˇ

ˇ

1,T
À hsT |v|s,T , (27)

and, for any F P FT ,
›

›

›

`

v ´ Ikd,T v
˘

|F

›

›

›

0,F
À h

s´1{2

T |v|s,T . (28)

Proof. We follow the ideas of [14, Chapter 4] and [38, Section 7] (cf. also [13, Section 4]). Under our mesh
assumptions, T is indeed a finite union of star-shaped subcells. We proceed by density of C8pT q in HspT q.
The function v P C8pT q admits the following Sobolev representation:

v “ QsT v `R
s
T v,

where QsT v P Ps´1
d pT q Ď PkdpT q is an averaged Taylor polynomial, and the remainder RsT v satisfies, for

r P t0, . . . , su, the Bramble–Hilbert lemma:

|RsT v|r,T À hs´rT |v|s,T . (29)

One can easily see that, since QsT v P PkdpT q and Ikd,T v “ v for all v P PkdpT q Ă V kd pT q, there holds
v ´ Ikd,T v “ RsT v ´ Ikd,T pRsT vq. Thus, for m P t0, 1u,

ˇ

ˇv ´ Ikd,T v
ˇ

ˇ

m,T
ď |RsT v|m,T `

ˇ

ˇIkd,T pRsT vq
ˇ

ˇ

m,T
.

By the stability result of Lemma 4.7 or 4.12, we infer

ˇ

ˇv ´ Ikd,T v
ˇ

ˇ

m,T
À |RsT v|m,T `

2
ÿ

α“m

hα´mT |RsT v|α,T .

Applying the Bramble–Hilbert lemma (29) for r P tm, . . . , 2u, we finally obtain (27). For F P FT now, the
continuous trace inequality (5) yields

›

›

›

`

v ´ Ikd,T v
˘

|F

›

›

›

0,F
À h

´1{2

T

›

›v ´ Ikd,T v
›

›

0,T
` h

1{2

T

ˇ

ˇv ´ Ikd,T v
ˇ

ˇ

1,T
.

The conclusion then follows from (27).

Remark 4.14. Note that general Hm approximation properties for Ikd,T cannot be obtained easily because
of the fact that we do not know if inverse inequalities hold for the derivatives of virtual functions (as opposed
to polynomials, derivatives of virtual functions may not be virtual functions). This remark remains valid in
the nonconforming case.

4.2 Nonconforming case
We let our nonconforming local virtual space on T in dimension d be defined by

V kd pT q :“
 

v P H1pT q | 4v P Pk´1
d pT q, ∇v|BT ¨nT P Pk´1

d´1pFT q
(

. (30)

As opposed to the conforming case, the definition of the nonconforming local virtual space does not depend
on the ambient dimension. We have PkdpT q Ă V kd pT q. The following result is standard.
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Proposition 4.15. The triple pT, V kd pT q,Σ
k
d,T q, where V

k
d pT q is given by (30) and the collection Σkd,T splits

into
Σk,Bd,T :“

 

πk´1,j
F p¨|F q

(FPFT
jPt1,...,Nk´1

d´1u
and Σk,od,T :“

 

πk´1,i
T

(

iPt1,...,Nk´1
d u

,

is a finite element in the sense of Ciarlet.

Letting nkd,T :“ dimpV kd pT qq, for any

vT :“
`

pvB,jT,F q
FPFT
jPt1,...,Nk´1

d´1u
, pvo,i

T qiPt1,...,Nk´1
d u

˘ᵀ
P Rn

k
d,T ,

we let vo
T :“

řNk´1
d

i“1 vo,i
T ψk´1

T,i P Pk´1
d pT q and vBT P Pk´1

d´1pFT q so that vBT |F :“
řNk´1

d´1

j“1 vB,jT,Fψ
k´1
F,j P Pk´1

d´1pF q

for all F P FT . We can now introduce the operator rkd,T : Rn
k
d,T Ñ V kd pT q such that, for any vT P Rn

k
d,T ,

rkd,TvT P V
k
d pT q solves the well-posed problem

$

’

’

&

’

’

%

ż

T

∇rkd,TvT ¨∇w “ ´

ż

T

vo
T 4w `

ż

BT

vBT ∇w|BT ¨nT @w P V kd pT q,

ż

T

rkd,TvT “

ż

T

vo
T .

(31)

Proposition 4.16. The operator rkd,T defined by (31) coincides with the (canonical) reconstruction operator
pΣkd,T q

´1.

Proof. Let Rn
k
d,T Q vT :“ Σkd,T pvq for some v P V kd pT q. Plugging vT into (31), we infer by integration by

parts (remark that vo
T “ πk´1

T v and vBT “ πk´1
BT pv|BT q)

ż

T

∇rkd,TvT ¨∇w “ ´

ż

T

πk´1
T v4w `

ż

BT

πk´1
BT pv|BT q∇w|BT ¨nT “

ż

T

∇v¨∇w @w P V kd pT q,

where we have used that 4w P Pk´1
d pT q and that, for all F P FT , ∇w|F ¨nT,F P Pk´1

d´1pF q. Since
ş

T
rkd,TvT “

ş

T
πk´1
T v “

ş

T
v, we finally deduce that rkd,TvT “ rkd,T

`

Σkd,T pvq
˘

“ v. This is valid for any v P V kd pT q, hence
rkd,T “ pΣ

k
d,T q

´1.

The collection Σkd,T of linear forms on V kd pT q can be patently extended to a collection Σ
k

d,T of linear
forms on H1pT q. Thus, we can define the interpolation operator Ikd,T : H1pT q Ñ V kd pT q such that Ikd,T :“

rkd,T ˝ Σ
k

d,T . We have the following stability result for Ikd,T .

Lemma 4.17 (Stability of Ikd,T ). For all v P H1pT q, there holds

‚

ˇ

ˇ

ˇ
Ikd,T v

ˇ

ˇ

ˇ

1,T
ď |v|1,T ;

‚

›

›

›
Ikd,T v

›

›

›

0,T
ď }v}0,T ` 2cP hT |v|1,T .

Proof. We test (31) with vT :“ Σ
k

d,T pvq, for some v P H1pT q. By integration by parts, there holds
ż

T

∇Ikd,T v¨∇w “

ż

T

∇v¨∇w for all w P V kd pT q. (32)

Testing with w “ Ikd,T v P V kd pT q, we immediately obtain the estimate in the H1pT q-seminorm. Then, since
ş

T
Ikd,T v “

ş

T
πk´1
T v “

ş

T
v, by the triangle and Poincaré (7) inequalities, there holds

›

›Ikd,T v
›

›

0,T
ď }v}0,T `

›

›v ´ Ikd,T v
›

›

0,T
ď }v}0,T ` cP hT

`

|v|1,T `
ˇ

ˇIkd,T v
ˇ

ˇ

1,T

˘

,

which enables to conclude.

The equation (32) shows that, in the nonconforming case, the local (canonical) interpolator Ikd,T is actually
the elliptic projector onto the local virtual space. This is not true in the conforming case.
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Remark 4.18. In the proof of Lemma 4.17, and as opposed to the proofs of Lemmas 4.7 and 4.12, no
estimate on a dual norm of the boundary normal flux is needed for virtual functions. As a consequence, one
does not need Assumption 1.1. The difference results from the fact that, in the nonconforming case, virtual
functions have L2 boundary normal flux. In that case, one can actually prove an approximation result on
the boundary normal flux (see (34)).

Theorem 4.19 (Approximation properties for Ikd,T , nonconforming case). Let v P HspT q, for s P t1, . . . , k`
1u. Then, the following holds:

›

›v ´ Ikd,T v
›

›

0,T
` hT

ˇ

ˇv ´ Ikd,T v
ˇ

ˇ

1,T
À hsT |v|s,T , (33)

and, for any F P FT ,
›

›

›

`

v ´ Ikd,T v
˘

|F

›

›

›

0,F
` δsą1hT

›

›

›
∇
`

v ´ Ikd,T v
˘

|F
¨nT,F

›

›

›

0,F
À h

s´1{2

T |v|s,T . (34)

Proof. From (32), the fact that
ş

T
Ikd,T v “

ş

T
v combined with Poincaré inequality (7), and the fact that

PkdpT q Ă V kd pT q, we infer
›

›v ´ Ikd,T v
›

›

0,T
` hT

ˇ

ˇv ´ Ikd,T v
ˇ

ˇ

1,T
ď pcP ` 1qhT min

wPV kd pT q
|v ´ w|1,T ď pcP ` 1qhT min

wPPkdpT q
|v ´ w|1,T .

The derivation of (33) is then straightforward using the approximation properties of standard polynomial
projectors (cf. Proposition 2.4). Concerning (34), the first trace estimate can be easily proven as in Theo-
rem 4.13, whereas the proof of the second is based on (9). We write, when s ą 1,

›

›

›
∇
`

v ´ Ikd,T v
˘

|F
¨nT,F

›

›

›

0,F
ď

›

›

›
∇
`

v ´ πkT v
˘

|F
¨nT,F

›

›

›

0,F
`

›

›

›
∇
`

πkT v ´ Ikd,T v
˘

|F
¨nT,F

›

›

›

0,F
.

Since PkdpT q Ă V kd pT q, one has pπkT v ´ Ikd,T vq P V kd pT q and can apply (9) to infer
›

›

›
∇
`

πkT v ´ Ikd,T v
˘

|F
¨nT,F

›

›

›

0,F
À h

´1{2

T

ˇ

ˇπkT v ´ Ikd,T v
ˇ

ˇ

1,T
.

Adding/subtracting v, and using the result in the H1pT q-seminorm and the approximation results on the
L2-orthogonal projector of Proposition 2.4, yields the conclusion.

5 Bridging the Hybrid High-Order and Virtual Element methods
In this section, we formulate and analyse the VE/HHO methods within a unified algebraic framework
inspired from HHO methods.

5.1 Local polynomial projector
Let T P Th be a given cell. In this section, we introduce the local polynomial projector pkd,T in terms of
which the local VE/HHO discrete bilinear form is defined.

Let l be an integer such that l “ k in the conforming case with d “ 2, and l “ k ´ 1 in the conforming
case with d “ 3 and in the nonconforming case. Recall that nkd,T denotes the dimension of V kd pT q. For any

vBT P Rn
k,B
d,T , we define tBTvBT P Pld´1pFT q such that

‚ tBTvBT :“ rk1,BTvBT P Pk,c1 pFT q in the conforming case with d “ 2;

‚ tBTvBT :“ vBT P Pk´1
d´1pFT q in the conforming case with d “ 3 and in the nonconforming case.

We introduce the operator pkd,T : Rn
k
d,T Ñ PkdpT q such that, for any vT P Rn

k
d,T , pkd,TvT P PkdpT q solves the

well-posed problem
$

’

’

&

’

’

%

ż

T

∇pkd,TvT ¨∇w “ ´

ż

T

vo
T 4w `

ż

BT

tBTvBT ∇w|BT ¨nT @w P PkdpT q,
ż

T

pkd,TvT “

ż

T

vo
T .

(35)
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We note that, in each case, the definition of pkd,T is the same as the definition of rkd,T (see Section 4), up
to the fact of testing against a strict subspace of V kd pT q, that is PkdpT q (in the conforming case with d “ 3,
remark that vBT is equal to πk´1

BT prk2,BTvBT q). It is an easy matter to see that actually pkd,T “ Πk
T ˝ r

k
d,T , with

Πk
T defined by (12).

Remark 5.1. As opposed to rkd,T whose computation necessitates the knowledge of a basis for V kd pT q (and
even for V kd´1pFT q in the conforming case with d “ 3), the operator pkd,T is entirely computable. It depends on
the DoF through vo

T P Pk´1
d pT q and tBTvBT P Pld´1pFT q. In the conforming case with d “ 2, tBTvBT P Pk,c1 pFT q

depends on pvB,νT qνPVT and pvB,jT,F q
FPFT
jPt1,...,Nk´2

1 u
through (22). In the conforming case with d “ 3 and in the

nonconforming case, Pk´1
d´1pFT q Q tBTvBT “ vBT .

Let us set W k
d pT q :“ H1,cpT q in the conforming case and W k

d pT q :“ H1pT q in the nonconforming
case. We can now define the operator Pkd,T : W k

d pT q Ñ PkdpT q such that Pkd,T :“ pkd,T ˝ Σ
k

d,T . We have
Pkd,T “ Πk

T ˝ Ikd,T . Since PkdpT q Ă W k
d pT q and Pkd,T v “ v for all v P PkdpT q, the operator Pkd pT q is a

(polynomial) projector. It satisfies the following properties:

‚ Pkd,T v “ Πk
T v for all v P V kd pT q;

‚ in the nonconforming case, since Ikd,T is the elliptic projector onto V kd pT q and PkdpT q Ă V kd pT q, Pkd,T “
Πk
T (this has already been pointed out in [30, Remark 25]).

Remark 5.2. With the specific choice of virtual space we have made in the conforming case with d “ 3, we
actually also have in that case Pk3,T “ Πk

T |H1,cpT q. Yet, in that case, Ik3,T is not the elliptic projector onto
the local virtual space.

Let s be an integer such that s “ 2 in the conforming case and s “ 1 in the nonconforming case.

Lemma 5.3 (Stability of Pkd,T ). For all v P HspT q, there holds
›

›Pkd,T v
›

›

0,T
À }v}0,T ` hT |v|1,T ` δc,d“2 h

2
T |v|2,T . (36)

Proof. In the nonconforming case and in the conforming case with d “ 3 (cf. Remark 5.2), the result is a
direct consequence of Proposition 2.4. In the conforming case with d “ 2, Pk2,T v satisfies, for all w P Pk2pT q,

ż

T

∇Pk2,T v¨∇w “ ´

ż

T

πk´1
T v4w `

ż

BT

Ik1,BT pv|BT q∇w|BT ¨nT

“ ´

ż

T

v4w `
ż

BT

Ik1,BT pv|BT q∇w|BT ¨nT ,

where we have used that 4w P Pk´2
2 pT q. We equivalently rewrite the equality above as

ż

T

∇Pk2,T v¨∇w “ ´

ż

T

pv ´ π0
T vq4w `

ż

BT

Ik1,BT pv|BT ´ π0
T vq∇w|BT ¨nT ,

and, by Cauchy–Schwarz inequality we infer, for any w P Pk2pT q,
ˇ

ˇ

ˇ

ˇ

ż

T

∇Pk2,T v¨∇w

ˇ

ˇ

ˇ

ˇ

ď
›

›v ´ π0
T v

›

›

0,T
}4w}0,T `

›

›Ik1,BT pv|BT ´ π0
T vq

›

›

0,BT

›

›∇w|BT ¨nT
›

›

0,BT
.

By the Poincaré inequality (7) and the inverse inequality (4) for the first term of the right-hand side, and by
the stability result of Lemma 4.3 and the discrete trace inequality (6) for the second, we infer the estimate

ˇ

ˇ

ˇ

ˇ

ż

T

∇Pk2,T v¨∇w

ˇ

ˇ

ˇ

ˇ

À |v|1,T |w|1,T `
›

›v|BT ´ π
0
T v

›

›

8,BT
|w|1,T .

The Sobolev inequality (10) combined to the Poincaré inequality (7) then yields
ˇ

ˇ

ˇ

ˇ

ż

T

∇Pk2,T v¨∇w

ˇ

ˇ

ˇ

ˇ

À
`

|v|1,T ` hT |v|2,T
˘

|w|1,T .

Taking w “ Pk2,T v P Pk2pT q, we infer
ˇ

ˇPk2,T v
ˇ

ˇ

1,T
À |v|1,T ` hT |v|2,T .

The triangle inequality, the Poincaré inequality (7), and the fact that
ş

T
Pk2,T v “

ş

T
v finally proves the

result in the L2pT q-norm.
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Theorem 5.4 (Hm approximation properties for Pkd,T ). Let v P HspT q, for s P ts, . . . , k ` 1u. Then, the
following holds:

ˇ

ˇv ´ Pkd,T v
ˇ

ˇ

m,T
À hs´mT |v|s,T for m P t0, . . . , su, (37)

and, for any F P FT , and any pζ1, . . . , ζdq P Nd such that
řd
i“1 ζi “ m,

›

›

›

“

Bζ1x1
. . . Bζdxd

`

v ´ Pkd,T v
˘‰

|F

›

›

›

0,F
À h

s´m´1{2

T |v|s,T for m P t0, . . . , s´ 1u. (38)

Proof. In the nonconforming case and in the conforming case with d “ 3 (cf. Remark 5.2), the result directly
follows from (13) and (14) of Proposition 2.4. To prove the result in the conforming case with d “ 2, we
follow the ideas of [14, Chapter 4] and [38, Section 7] (cf. also [13, Section 4]). Under our mesh assumptions,
T is indeed a finite union of star-shaped subcells. We proceed by density of C8pT q in HspT q. The function
v P C8pT q admits the following Sobolev representation:

v “ QsT v `R
s
T v,

where QsT v P Ps´1
2 pT q Ď Pk2pT q is an averaged Taylor polynomial, and the remainder RsT v satisfies, for

r P t0, . . . , su, the Bramble–Hilbert lemma (29). One can easily see that, since QsT v P Pk2pT q and Pk2,T v “ v

for all v P Pk2pT q, there holds v ´ Pk2,T v “ RsT v ´ Pk2,T pRsT vq. Thus,
ˇ

ˇv ´ Pk2,T v
ˇ

ˇ

m,T
ď |RsT v|m,T `

ˇ

ˇPk2,T pRsT vq
ˇ

ˇ

m,T
.

Applying m times the inverse inequality (4) to Pk2,T pRsT vq P Pk2pT q, and then the stability result (36) for
Pk2,T in the L2pT q-norm, we infer

ˇ

ˇv ´ Pk2,T v
ˇ

ˇ

m,T
À |RsT v|m,T ` h

´m
T

›

›Pk2,T pRsT vq
›

›

0,T
À |RsT v|m,T `

2
ÿ

α“0

hα´mT |RsT v|α,T .

By the Bramble–Hilbert lemma (29) for r “ m and r “ α P t0, . . . , 2u, we finally obtain (37). For F P FT
now, the continuous trace inequality (5) yields

›

›

›

“

Bζ1x1
. . . Bζdxd

`

v ´ Pk2,T v
˘‰

|F

›

›

›

0,F
À h

´1{2

T

ˇ

ˇv ´ Pk2,T v
ˇ

ˇ

m,T
` h

1{2

T

ˇ

ˇv ´ Pk2,T v
ˇ

ˇ

m`1,T
.

The conclusion then follows from (37) (remark that, for m P t0, . . . , s´ 1u, m` 1 P t1, . . . , su).

Remark 5.5. Note that the proofs of Lemma 5.3 and Theorem 5.4 do not rely, even in the conforming case
and as opposed to those of Section 4.1, on the use of the result (11). We hence do not need Assumption 1.1.

5.2 Discrete problem

Let us define, for any T P Th, the following seminorm on Rn
k
d,T : for all vT P Rn

k
d,T ,

‚ |vT |
2
T :“ }∇vo

T }
2
0,T `

›

›

›
h
´1{2

BT

`

vo
T |BT ´ tBTvBT

˘

›

›

›

2

0,BT
in the conforming case with d “ 2 and in the non-

conforming case;

‚ |vT |
2
T :“ }∇vo

T }
2
0,T `

›

›

›
h
´1{2

BT

`

vo
T |BT ´ vBT

˘

›

›

›

2

0,BT
`
ř

FPFT

›

›

›
vo
T |BF ´ r

k
1,BFvB,BT,F

›

›

›

2

0,BF
in the conforming case

with d “ 3, where rk1,BF is rk1,BT defined in Section 4.1.2 where T Ð F .

Letting |vh|
2
h :“

ř

TPTh |vT |
2
T for any vh P Rn

k
d,h , one can easily see that |¨|h defines a norm on Vkd,h,0 defined

by (19).
Let us write down the discrete problem. We consider Problem (20), where the local linear form is given

by

lT pvT q :“

ż

T

f|Tvo
T ,

and the (symmetric) local bilinear form, based on the local polynomial projector of Section 5.1, by

aT pwT , vT q :“

ż

T

∇pkd,TwT ¨∇pkd,TvT ` sT pwT , vT q,

with (symmetric positive semidefinite) stabilisation
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‚ sT pwT , vT q :“
ş

BT
h´1
BT π

l
BT

`

δkd,TwT |BT ´ tBTwBT
˘

πlBT
`

δkd,TvT |BT ´ tBTvBT
˘

in the conforming case with
d “ 2 and in the nonconforming case,

‚ sT pwT , vT q :“
ş

BT
h´1
BT π

k´1
BT

`

δk3,TwT |BT ´ wBT
˘

πk´1
BT

`

δk3,TvT |BT ´ vBT
˘

`
ř

FPFT

ş

BF

`

δk3,TwT |BF ´ r
k
1,BFwB,BT,F

˘`

δk3,TvT |BF ´ r
k
1,BFvB,BT,F

˘

in the conforming case with d “ 3,

where PkdpT q Q δ
k
d,TvT :“ pkd,TvT ` π

k´1
T

`

vo
T ´ p

k
d,TvT

˘

. Note that the stabilisation bilinear form is entirely
computable in terms of the DoF. Other choices of stabilisation are possible (cf., e.g., [10]). Basically, any
stabilisation satisfying the assumptions of [36, Assumption 4.1] is admissible. Here, we build upon the
standard HHO choice of stabilisation (see [33, 34]). To the best of our knowledge, in the conforming case,
the stabilisation we propose is new (it is a close variant of existing ones).

Remark 5.6. As expected, one can verify that our stabilisation bilinear form vanishes when one of its
arguments is the reduction of a polynomial in PkdpT q. Furthermore, if all the occurrences of pkd,T in the
expression of aT were replaced by rkd,T (assuming that it is computable), then the stabilisation bilinear form
would be identically zero, and one would recover a standard FE method (up to the treatment of the right-hand
side) on the space Vkd,h,0.

Remark 5.7 (Equivalent functional viewpoint). Letting w, v P V kd pT q such that w :“ rkd,TwT and v :“

rkd,TvT , and since pkd,T “ Πk
T ˝ r

k
d,T , one can equivalently consider Problem (17), with local (bi)linear forms

lT pvq “

ż

T

f|Tπ
k´1
T v, aT pw, vq “

ż

T

∇Πk
Tw¨∇Πk

T v ` sT pw, vq,

with stabilisation
sT pw, vq “

ż

BT

h´1
BT π

l
BT

`

r∆k
d,Tw ´ ws|BT

˘

πlBT
`

r∆k
d,T v ´ vs|BT

˘

in the conforming case with d “ 2 and in the nonconforming case, and stabilisation supplemented with the
term

ÿ

FPFT

ż

BF

`

∆k
3,Tw ´ w

˘

|BF

`

∆k
3,T v ´ v

˘

|BF

in the conforming case with d “ 3, where ∆k
d,T v :“ Πk

T v ` π
k´1
T

`

v ´Πk
T v

˘

.

We now prove well-posedness for Problem (20).

Lemma 5.8 (Local coercivity and boundedness). For all T P Th, and all vT P Rn
k
d,T , the following holds:

|vT |
2
T À aT pvT , vT q À |vT |

2
T .

Proof. Let us show local coercivity. Testing (35) with w “ vo
T P Pk´1

d pT q Ă PkdpT q, we infer

´

ż

T

vo
T4vo

T “

ż

T

∇pkd,TvT ¨∇vo
T ´

ż

BT

tBTvBT ∇vo
T |BT ¨nT .

Integrating by parts the left-hand side, there holds

}∇vo
T }

2
0,T “

ż

T

∇pkd,TvT ¨∇vo
T `

ż

BT

`

vo
T |BT ´ tBTvBT

˘

∇vo
T |BT ¨nT ,

which yields, by Cauchy–Schwarz inequality, and the discrete trace inequality (6),

}∇vo
T }0,T À

›

›∇pkd,TvT
›

›

0,T
`

›

›

›
h
´1{2

BT

`

vo
T |BT ´ tBTvBT

˘

›

›

›

0,BT
. (39)

Now, adding/subtracting πlBT
`

δkd,TvT |BT
˘

, by stability of πlF in the L2pF q-norm for all F P FT , we infer

›

›

›
h
´1{2

BT

`

vo
T |BT ´ tBTvBT

˘

›

›

›

0,BT
ď

›

›

›
h
´1{2

BT

`

pkd,TvT ´ π
k´1
T ppkd,TvT q

˘

|BT

›

›

›

0,BT

`

›

›

›
h
´1{2

BT πlBT
`

δkd,TvT |BT ´ tBTvBT
˘

›

›

›

0,BT
.
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By the discrete trace inequality (6), and an application of (13) with s “ 1 and m “ 0, we infer
›

›

›
h
´1{2

BT

`

vo
T |BT ´ tBTvBT

˘

›

›

›

0,BT
À
›

›∇pkd,TvT
›

›

0,T
`

›

›

›
h
´1{2

BT πlBT
`

δkd,TvT |BT ´ tBTvBT
˘

›

›

›

0,BT
. (40)

In the conforming case with d “ 2 and in the nonconforming case, we infer local coercivity as a direct
consequence of (39) and (40). In the conforming case with d “ 3, one has to estimate two terms in the
stabilisation part of the seminorm. The first one is handled as above (l “ k´1). It then remains to estimate
the term

›

›

›
vo
T |BF ´ r

k
1,BFvB,BT,F

›

›

›

0,BF
for all F P FT . Adding/subtracting δk3,TvT |BF , we have for any F P FT ,

›

›

›
vo
T |BF ´ r

k
1,BFvB,BT,F

›

›

›

0,BF
ď

›

›

›

`

pk3,TvT ´ π
k´1
T ppk3,TvT q

˘

|BF

›

›

›

0,BF
`

›

›

›
δk3,TvT |BF ´ r

k
1,BFvB,BT,F

›

›

›

0,BF
.

Since
`

pk3,TvT ´ π
k´1
T ppk3,TvT q

˘

|F
P Pk2pF q, we can apply a first time the discrete trace inequality (6) (with

T Ð F ) to obtain
›

›

›

`

pk3,TvT ´ π
k´1
T ppk3,TvT q

˘

|BF

›

›

›

0,BF
À h

´1{2

F

›

›

›

`

pk3,TvT ´ π
k´1
T ppk3,TvT q

˘

|F

›

›

›

0,F
,

and a second time (as it is) to obtain
›

›

›

`

pk3,TvT ´ π
k´1
T ppk3,TvT q

˘

|BF

›

›

›

0,BF
À h´1

T

›

›pk3,TvT ´ π
k´1
T ppk3,TvT q

›

›

0,T
.

An application of (13) with s “ 1 and m “ 0 finally yields
›

›

›
vo
T |BF ´ r

k
1,BFvB,BT,F

›

›

›

0,BF
À
›

›∇pk3,TvT
›

›

0,T
`

›

›

›
δk3,TvT |BF ´ r

k
1,BFvB,BT,F

›

›

›

0,BF
,

which concludes the proof of local coercivity in the conforming case with d “ 3. We omit the proof of local
boundedness, which relies on the same kind of arguments.

Well-posedness follows as an immediate consequence of Lemma 5.8, and of the fact that |¨|h defines a norm
on Vkd,h,0.

Corollary 5.9 (Well-posedness). For all vh P Rn
k
d,h , there holds

|vh|
2
h À ahpvh, vhq.

As a consequence, Problem (20) is well-posed.

Before proceeding with the convergence analysis, let us investigate the consistency of our stabilisation.

Lemma 5.10 (Consistency of the stabilisation). Let v P HspT q, for s P ts, . . . , k ` 1u. Then, letting
vT “ Σ

k

d,T pvq, the following holds:
sT pvT , vT q

1{2 À hs´1
T |v|s,T . (41)

Proof. In the conforming case with d “ 3 and in the nonconforming case, we have to estimate the quantity
›

›

›
h
´1{2

BT πk´1
BT

`

δkd,TvT |BT ´ vBT
˘

›

›

›

0,BT
. We have vBT “ πk´1

BT

`

v|BT
˘

and vo
T “ πk´1

T v, hence, by stability of πk´1
BT ,

there holds
›

›

›
h
´1{2

BT πk´1
BT

`

δkd,TvT |BT ´ vBT
˘

›

›

›

0,BT
ď

›

›

›
h
´1{2

BT

`

Pkd,T v ´ v
˘

|BT

›

›

›

0,BT

`

›

›

›
h
´1{2

BT πk´1
T

`

v ´ Pkd,T v
˘

|BT

›

›

›

0,BT
.

To estimate the first term in the right-hand side, we directly apply the result (38) form “ 0. To estimate the
second term, we successively use the discrete trace inequality (6), the stability of πk´1

T in the L2pT q-norm,
and the result (37) for m “ 0. The conclusion easily follows. In the conforming case with d “ 2, we have to
estimate the quantity

›

›

›
h
´1{2

BT πkBT
`

δk2,TvT |BT ´ r
k
1,BTvBT

˘

›

›

›

0,BT
“

›

›

›
h
´1{2

BT

`

δk2,TvT |BT ´ r
k
1,BTvBT

˘

›

›

›

0,BT
.
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Since rk1,BTvBT “ Ik1,BT pv|BT q, there holds

›

›

›
h
´1{2

BT πkBT
`

δk2,TvT |BT ´ r
k
1,BTvBT

˘

›

›

›

0,BT
ď

›

›

›
h
´1{2

BT

`

Pk2,T v|BT ´ Ik1,BT pv|BT q
˘

›

›

›

0,BT

`

›

›

›
h
´1{2

BT πk´1
T

`

v ´ Pk2,T v
˘

|BT

›

›

›

0,BT
.

The second term in the right-hand side can be estimated as previously. The first one is handled remarking
that Pk2,T v|BT ´ Ik1,BT pv|BT q “ Ik1,BT

`

rPk2,T v ´ vs|BT
˘

. Applying Lemma 4.3, we thus have
›

›

›
h
´1{2

BT

`

Pk2,T v|BT ´ Ik1,BT pv|BT q
˘

›

›

›

0,BT
À
›

›pv ´ Pk2,T vq|BT
›

›

8,BT
À
›

›v ´ Pk2,T v
›

›

8,T
.

By the Sobolev inequality (10) for d “ 2, combined to (37) with m “ α P t0, . . . , 2u, we finally infer

›

›

›
h
´1{2

BT

`

Pk2,T v|BT ´ Ik1,BT pv|BT q
˘

›

›

›

0,BT
À

2
ÿ

α“0

hα´1
T

ˇ

ˇv ´ Pk2,T v
ˇ

ˇ

α,T
À hs´1

T |v|s,T .

We are left with estimating, in the conforming case with d “ 3,
›

›

›
δk3,TvT |BF ´ r

k
1,BFvB,BT,F

›

›

›

0,BF
for all F P FT .

We follow the same path as previously, and end up having to estimate
›

›

›
Ik1,BF

`

rPk3,T v ´ vs|BF
˘

›

›

›

0,BF
. By

Lemma 4.3 and (10) for d “ 3, we infer
›

›Ik1,BF
`

rPk3,T v ´ vs|BF
˘
›

›

0,BF
À h

1{2

F

´

h
´ 3

2

T

›

›v ´ Pk3,T v
›

›

0,T
` h

´ 1
2

T

ˇ

ˇv ´ Pk3,T v
ˇ

ˇ

1,T
` h

1
2

T

ˇ

ˇv ´ Pk3,T v
ˇ

ˇ

2,T

¯

.

The conclusion then follows from (37) with m P t0, . . . , 2u.

5.3 Convergence analysis
Let us begin this section with the following remark.

Remark 5.11 (Regularity of the solution to (1)). Since the boundary of the domain Ω is assumed to be
composed of a finite union of portions of affine hyperplanes, one has (see, e.g., [41, Theorem 4.4.3.7]) the
following elliptic regularity result: there is ε P p0, 1{2s so that u P H

3
2`εpΩq and

}u} 3
2`ε,Ω

À }f}0,Ω.

If Ω is in addition convex, one can actually prove full elliptic regularity, i.e. u P H2pΩq and

}u}2,Ω À }f}0,Ω. (42)

In any case, and since divp∇uq “ ´f P L2pΩq, there holds: for all F P F i
h, J∇uKF ¨nF “ 0 a.e. on F .

Let |¨|2e,h :“ ahp¨, ¨q. According to Corollary 5.9, |¨|e,h defines a norm on Vkd,h,0. For β :“ pβT q
ᵀ
TPTh P

t2, . . . , k ` 1ucardpThq, we define

HβpThq :“
 

vh P L
2pΩq | vh|T P H

βT pT q @T P Th
(

.

Theorem 5.12 (Discrete energy-norm error estimate). Assume that the solution u P H1
0 pΩq to Problem (1)

further belongs to HβpThq. Then, the following estimate holds:

ˇ

ˇ

ˇ
Σ
k

d,hpuq ´ uh

ˇ

ˇ

ˇ

e,h
À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

, (43)

where Rn
k
d,h Q Σ

k

d,hpuq :“
`

Σ
k

d,T pu|T q
ᵀ
˘ᵀ

TPTh
, and uh P Vkd,h,0 is the unique solution to Problem (20).

Proof. Since u P H
3
2`εpΩq XH1

0 pΩq (cf. Remark 5.11), u P C0pΩq and u|BΩ ” 0, hence Σ
k

d,hpuq P Vkd,h,0, and

so does the difference
`

Σ
k

d,hpuq ´ uh
˘

. We can then write
ˇ

ˇ

ˇ
Σ
k

d,hpuq ´ uh

ˇ

ˇ

ˇ

e,h
“ max

vhPVkd,h,0, |vh|e,h“1
ah
`

Σ
k

d,hpuq ´ uh, vh
˘

. (44)
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Since uh solves Problem (20), we have to estimate, for any vh P Vkd,h,0 such that |vh|e,h “ 1,

Chpvhq :“
ÿ

TPTh

CT pvT q, with CT pvT q :“ aT
`

Σ
k

d,T pu|T q, vT
˘

´

ż

T

f|Tvo
T .

Using the strong form of Problem (1), and integrating by parts, we infer, for any T P Th,

CT pvT q “
ż

T

∇Pkd,T pu|T q¨∇pkd,TvT ´

ż

T

∇u¨∇vo
T `

ż

BT

vo
T |BT∇u|BT ¨nT ` sT

`

Σ
k

d,T pu|T q, vT
˘

.

Using the definition (35) of pkd,TvT (where the first term in the right-hand side is integrated by parts), and
since Pkd,T pu|T q P PkdpT q, we then have

CT pvT q “
ż

T

∇
`

Pkd,T pu|T q ´ u
˘

¨∇vo
T ´

ż

BT

`

vo
T |BT ´ tBTvBT

˘

∇Pkd,T pu|T q|BT ¨nT

`

ż

BT

vo
T |BT∇u|BT ¨nT ` sT

`

Σ
k

d,T pu|T q, vT
˘

.

Summing over T P Th, and invoking the continuity of the boundary normal flux of the exact solution along
interfaces (cf. Remark 5.11), combined to the fact that vh P Vkd,h,0, we infer

Chpvhq “
ÿ

TPTh

ˆ
ż

T

∇
`

Pkd,T pu|T q ´ u
˘

¨∇vo
T

`

ż

BT

`

vo
T |BT ´ tBTvBT

˘

∇
`

u´ Pkd,T pu|T q
˘

|BT
¨nT ` sT

`

Σ
k

d,T pu|T q, vT
˘

˙

. (45)

Applying Cauchy–Schwarz inequality, and the approximation results (37)–(38) with s P tβT uTPTh andm “ 1,
we obtain

Chpvhq À

˜

ÿ

TPTh

´

h
2pβT´1q
T |u|

2
βT ,T

` sT
`

Σ
k

d,T pu|T q,Σ
k

d,T pu|T q
˘

¯

¸1{2
´

|vh|h ` |vh|e,h

¯

.

The conclusion then follows from Lemma 5.10 with s P tβT uTPTh , Corollary 5.9, and the fact that |vh|e,h “ 1
by assumption.

Remark 5.13. In the nonconforming case, to prove that Σ
k

d,hpuq belongs to Vkd,h,0, it is sufficient to use
that u P H1

0 pΩq. Furthermore, the first term in the right-hand side of (45) is identically zero. Indeed, in
that case, for all T P Th, Pkd,T “ Πk

T (recall that vo
T P Pk´1

d pT q Ă PkdpT q). Such a property is not true in the
conforming case.

Corollary 5.14 (H1pThq-seminorm error estimate). Under the regularity assumption of Theorem 5.12, the
following estimate holds:

›

›∇h

`

u´ pkd,huh
˘
›

›

0,Ω
À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

, (46)

where pkd,h : Rn
k
d,h Ñ PkdpThq is such that, for all T P Th, pkd,hvh|T :“ pkd,TvT .

Proof. Letting Pkd,h :“ pkd,h ˝ Σ
k

d,h, by a simple triangle inequality, we infer

›

›∇h

`

u´ pkd,huh
˘
›

›

0,Ω
ď
›

›∇h

`

u´ Pkd,hu
˘
›

›

0,Ω
`

›

›

›
∇hp

k
d,h

`

Σ
k

d,hpuq ´ uh
˘

›

›

›

0,Ω
.

Using the definition of |¨|e,h, we obtain

›

›∇h

`

u´ pkd,huh
˘
›

›

0,Ω
ď

›

›∇h

`

u´ Pkd,hu
˘
›

›

0,Ω
`

ˇ

ˇ

ˇ
Σ
k

d,hpuq ´ uh

ˇ

ˇ

ˇ

e,h
. (47)

The conclusion follows from the approximation result (37) with s P tβT uTPTh and m “ 1, and from the
discrete energy-norm error estimate (43).
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The proof of Theorem 5.12–Corollary 5.14 is inspired from the one for HHO methods, but is here valid
whatever the conformity of the underlying global virtual space. The derivation of our error estimate in
H1pThq-seminorm is based on a splitting (47) of the error that follows [30, Section 2.4.1]. Basically, the error
splits into an approximation error, and the discrete energy-norm error, that is nothing but the consistency
error of the scheme (see (44)). All the analysis can be performed only resorting to the Hm approximation
properties of the polynomial projector Pkd,h. In that respect, in the conforming case, it constitutes an
alternative to standard VE analyses, where the approximation properties of the local virtual spaces are
usually explicitly used (hence under Assumption 1.1).

Remark 5.15. Assume that we want to derive a H1pThq-seminorm error estimate on the difference pu´uhq,
where uh P V kd,h,0 is such that uh|T :“ rkd,TuT for all T P Th. In view of Lemma 3.2 and Remark 3.3, it is clear

that, for vh P Rn
k
d,h , the quantity

ˆ

ř

TPTh

›

›

›
∇rkd,TvT

›

›

›

2

0,T

˙1{2

, which can be equivalently written }∇hvh}0,Ω

for vh P V kd pThq such that vh|T :“ rkd,TvT for all T P Th, defines a norm on Vkd,h,0. Furthermore, one can

easily prove (we omit the proof for brevity) that, for any vh P Rn
k
d,h ,

˜

ÿ

TPTh

›

›∇rkd,TvT
›

›

2

0,T

¸1{2

À |vh|h. (48)

To prove (48) in the conforming case, one has to use on all T P Th the same arguments as in the proof of
Lemma 4.7 (when d “ 2) or 4.12 (when d “ 3). We will hence assume, in the conforming case, that the
assumptions of the corresponding lemma are met for all T P Th. Let us apply (48) to vh “ Σ

k

d,hpuq ´ uh.
We get, by Corollary 5.9,

›

›∇h

`

Ikd,hu´ uh
˘
›

›

0,Ω
À

ˇ

ˇ

ˇ
Σ
k

d,hpuq ´ uh

ˇ

ˇ

ˇ

e,h
, (49)

where Ikd,hu P V kd,h,0 is such that Ikd,hu|T :“ Ikd,T pu|T q “ rkd,T
`

Σ
k

d,T pu|T q
˘

for all T P Th. Since, by the
triangle inequality,

›

›∇h

`

u´ uh
˘
›

›

0,Ω
ď
›

›∇h

`

u´ Ikd,hu
˘
›

›

0,Ω
`
›

›∇h

`

Ikd,hu´ uh
˘
›

›

0,Ω
,

we can prove, using (27)–(33) with s P tβT uTPTh and m “ 1 (same assumptions as above in the conforming
case) for the first term in the right-hand side, and (49) combined to (43) for the second, that under the
same regularity assumption as in Theorem 5.12, there holds

›

›∇h

`

u´ uh
˘
›

›

0,Ω
À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

. (50)

Obviously, the discrete solution uh is not computable/computed in practice, only the polynomial projection
pkd,huh “ Πk

huh is.

Let us now derive an estimate on the error between pkd,huh and u in the L2pΩq-norm. In this norm, in the
conforming case, one has to resort at some point of the analysis to the (canonical) interpolation operator,
whereas it is not needed in the nonconforming case. The reason why is because the orthogonality property
of the local polynomial projector in terms of which the local discrete bilinear form is defined plays a crucial
role in the analysis.

Theorem 5.16 (Supercloseness of bulk unknowns). Assume, in the conforming case, that the assumptions
of Lemma 4.7 (when d “ 2) or 4.12 (when d “ 3) are met for all T P Th. Assume that the solution u P H1

0 pΩq
to Problem (1) further belongs to HβpThq and that, when k “ 1, one also has f P H1pThq. Assume full
elliptic regularity for Problem (1) (cf. Remark 5.11). Then, there holds

›

›πk´1
h u´ uo

h

›

›

0,Ω
À h

˜

ÿ

TPTh

h
2pβT´1q
T

`

|u|
2
βT ,T

` δk“1|f |
2
1,T

˘

¸1{2

, (51)

where uo
h P Pk´1

d pThq is such that uo
h|T

:“ uo
T for all T P Th.
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Proof. We follow the standard Aubin–Nitsche argument. Setting g :“ pπk´1
h u ´ uo

hq P L
2pΩq, we let z P

H1
0 pΩq be the unique solution in H1pΩq to ´4z “ g in Ω, with z “ 0 on BΩ. By (full) elliptic regularity,

z P H2pΩq and, in view of (42), there holds

}z}2,Ω À
›

›πk´1
h u´ uo

h

›

›

0,Ω
. (52)

We dissociate between the conforming and nonconforming cases. In the conforming case, owing to the fact
that pu´ uhq P H1

0 pΩq and that
`

πk´1
h u´ uo

h

˘

“ πk´1
h

`

u´ uh
˘

, we have

›

›πk´1
h u´ uo

h

›

›

2

0,Ω
“

ż

Ω

∇
`

u´ uh
˘

¨∇z.

Adding/subtracting the term
ş

Ω
∇h

`

u´ uh
˘

¨∇hPkd,hz, we obtain

›

›πk´1
h u´ uo

h

›

›

2

0,Ω
“

ż

Ω

∇h

`

u´ uh
˘

¨∇h

`

z ´ Pkd,hz
˘

`

ż

Ω

`

∇hΠk
hu¨∇hIkd,hz ´∇hΠk

huh¨∇hPkd,hz
˘

,

which, in turn, rewrites

›

›πk´1
h u´ uo

h

›

›

2

0,Ω
“

ż

Ω

∇h

`

u´ uh
˘

¨∇h

`

z ´ Pkd,hz
˘

`

ˆ
ż

Ω

∇hΠk
hu¨∇hIkd,hz ´ ah

`

uh,Σ
k

d,hpzq
˘

˙

`
ÿ

TPTh

sT
`

uT ,Σ
k

d,T pz|T q
˘

“: Tc1 ` Tc2 ` Tc3. (53)

In the nonconforming case now, writing

›

›πk´1
h u´ uo

h

›

›

2

0,Ω
“ ´

ÿ

TPTh

ż

T

`

πk´1
T pu|T q ´ uo

T

˘

4z,

and integrating by parts, we infer, since z P H2pΩq (hence J∇zKF ¨nF “ 0 almost everywhere on interfaces
F P F i

h), and u P H
1
0 pΩq XH

2pΩq as well as uh P Vkd,h,0,

›

›πk´1
h u´ uo

h

›

›

2

0,Ω
“

ÿ

TPTh

ˆ
ż

T

∇
`

πk´1
T pu|T q ´ uo

T

˘

¨∇z

´

ż

BT

”

`

πk´1
T pu|T q ´ uo

T

˘

|BT
´

´

tBT
`

Σ
k,B

d,T pu|T q
˘

´ tBTuBT

¯ı

∇z|BT ¨nT

˙

.

Adding/subtracting the term
ÿ

TPTh

ż

T

∇pkd,T
`

Σ
k

d,T pu|T q ´ uT
˘

¨∇Pkd,T pz|T q, and using the definition (35)

(where the first term in the right-hand side is integrated by parts), we infer that

›

›πk´1
h u´ uo

h

›

›

2

0,Ω
“ Tnc1 `

ˆ
ż

Ω

∇hPkd,hu¨∇hPkd,hz ´ ah
`

uh,Σ
k

d,hpzq
˘

˙

`
ÿ

TPTh

sT
`

uT ,Σ
k

d,T pz|T q
˘

“: Tnc1 ` Tnc2 ` Tnc3 , (54)

where

Tnc1 :“
ÿ

TPTh

ˆ
ż

T

∇
`

πk´1
T pu|T q ´ uo

T

˘

¨∇
`

z ´ Pkd,T pz|T q
˘

´

ż

BT

”

`

πk´1
T pu|T q ´ uo

T

˘

|BT
´

´

tBT
`

Σ
k,B

d,T pu|T q
˘

´ tBTuBT

¯ı

∇
`

z ´ Pkd,T pz|T q
˘

|BT
¨nT

˙

.

We now have to estimate the different terms in the right-hand sides of (53) and (54). To estimate Tc1, we
apply successively the Cauchy–Schwarz inequality, (50) (we have all the assumptions to do so), and (37)
with s “ 2 and m “ 1. We get

Tc1 À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

h |z|2,Ω,
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wich, in turn, by (52), gives

Tc1 À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

h
›

›πk´1
h u´ uo

h

›

›

0,Ω
. (55)

To estimate Tnc1 , we apply successively the Cauchy–Schwarz inequality, (37)–(38) with s “ 2 and m “ 1,
and Corollary 5.9. We get

Tnc1 À

ˇ

ˇ

ˇ
Σ
k

d,hpuq ´ uh

ˇ

ˇ

ˇ

e,h
h |z|2,Ω,

which, in turn, by (43) and (52), gives as well

Tnc1 À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

h
›

›πk´1
h u´ uo

h

›

›

0,Ω
. (56)

To estimate Tc3 and Tnc3 , we use the fact that
ÿ

TPTh

sT
`

uT ,Σ
k

d,T pz|T q
˘

“
ÿ

TPTh

sT
`

Σ
k

d,T pu|T q,Σ
k

d,T pz|T q
˘

´
ÿ

TPTh

sT
`

Σ
k

d,T pu|T q ´ uT ,Σ
k

d,T pz|T q
˘

to infer, using successively the Cauchy–Schwarz inequality, (41) with s P tβT uTPTh for u|T , (43), (41) with
s “ 2 for z|T , and (52),

Tc3, T
nc
3 À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

h
›

›πk´1
h u´ uo

h

›

›

0,Ω
. (57)

We are left with estimating Tc2 and Tnc2 . Recall that ah
`

uh,Σ
k

d,hpzq
˘

“
ş

Ω
fπk´1

h z since uh P Vkd,h,0 solves

Problem (20). Adding/subtracting to Tc2 the term
ż

Ω

∇u¨∇Ikd,hz “
ż

Ω

f Ikd,hz (remark that Ikd,hz P H1
0 pΩq

in the conforming case), and to Tnc2 the term
ż

Ω

∇u¨∇z “

ż

Ω

f z, there holds

Tc2 “

ż

Ω

∇h

`

Πk
hu´ u

˘

¨∇h

`

Ikd,hz ´ Pkd,hz
˘

`
ÿ

TPTh

ż

T

f|T
`

Ikd,T pz|T q ´ πk´1
T pz|T q

˘

, (58)

and (recall that Pkd,T “ Πk
T in the nonconforming case)

Tnc2 “

ż

Ω

∇h

`

Πk
hu´ u

˘

¨∇h

`

z ´Πk
hz
˘

`
ÿ

TPTh

ż

T

f|T
`

z ´ πk´1
T pz|T q

˘

.

To estimate the first term of Tc2, we remark that Ikd,hz ´ Pkd,hz “ Ikd,h
`

z ´ Pkd,hz
˘

. Then, by means of (i)
Cauchy–Schwarz inequality, (ii) (13) with s P tβT uTPTh and m “ 1, (iii) Lemma 4.7 or 4.12 combined to (37)
with s “ 2 and m P t1, 2u, and (iv) (52), we infer the expected bound. The first term of Tnc2 is estimated
using (i) the Cauchy–Schwarz inequality, (ii) (13) with m “ 1, and (iii) (52). It remains to estimate the
second terms of Tc2 and Tnc2 . Let us focus on Tc2. When k “ 1, there holds

ÿ

TPTh

ż

T

f|T
`

I1
d,T pz|T q ´ π

0
T pz|T q

˘

“
ÿ

TPTh

ż

T

`

f|T ´ π
0
T pf|T q

˘

I1
d,T

`

z|T ´ π
0
T pz|T q

˘

.

By Cauchy–Schwarz inequality, Lemma 4.7 or 4.12, and (13), we infer

ÿ

TPTh

ż

T

f|T
`

I1
d,T pz|T q ´ π

0
T pz|T q

˘

À

˜

ÿ

TPTh

h2
T |f |

2
1,T

¸1{2

h
`

|z|1,Ω ` h|z|2,Ω
˘

. (59)

When k ě 2 now, there holds

ÿ

TPTh

ż

T

f|T
`

Ikd,T pz|T q ´ πk´1
T pz|T q

˘

“
ÿ

TPTh

ż

T

´

f|T ´ π
βT´3
T pf|T q

¯

Ikd,T
`

z|T ´ π
k´1
T pz|T q

˘

.
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By the same kind of arguments as in the case k “ 1, we infer

ÿ

TPTh

ż

T

f|T
`

Ikd,T pz|T q ´ πk´1
T pz|T q

˘

À

˜

ÿ

TPTh

h
2pβT´1q
T |u|

2
βT ,T

¸1{2

h |z|2,Ω. (60)

Collecting (58), (59)–(60), and using (52), we obtain

Tc2 À

˜

ÿ

TPTh

h
2pβT´1q
T

`

|u|
2
βT ,T

` δk“1|f |
2
1,T

˘

¸1{2

h
›

›πk´1
h u´ uo

h

›

›

0,Ω
. (61)

The second term in Tnc2 can be estimated in a similar way, up to the fact that the stability properties of the
interpolation operator are not needed in that case. We end up with the same kind of estimate on Tnc2 than
on Tc2. Collecting (53)–(54), (55)–(56), (61), and (57), we conclude the proof.

Corollary 5.17 (L2pΩq-norm error estimate). Under the assumptions of Theorem 5.16, the following esti-
mate holds:

›

›u´ pkd,huh
›

›

0,Ω
À h

˜

ÿ

TPTh

h
2pβT´1q
T

`

|u|
2
βT ,T

` δk“1|f |
2
1,T

˘

¸1{2

. (62)

Proof. By the triangle inequality, and by stability of π0
h in the L2pΩq-norm, we infer

›

›u´ pkd,huh
›

›

0,Ω
ď
›

›πk´1
h u´ uo

h

›

›

0,Ω
`
›

›

`

u´ pkd,huh
˘

´ π0
h

`

πk´1
h u´ uo

h

˘
›

›

0,Ω
.

We then remark that
ş

T

`

u ´ pkd,TuT
˘

“
ş

T
π0
T

`

πk´1
T pu|T q ´ uo

T

˘

for all T P Th. Hence, by the Poincaré
inequality (7), there holds

›

›u´ pkd,huh
›

›

0,Ω
À
›

›πk´1
h u´ uo

h

›

›

0,Ω
` h

›

›∇h

`

u´ pkd,huh
˘
›

›

0,Ω
.

The conclusion then follows from (51) and (46).

Remark 5.18. Recall that with the specific choice of virtual space we have made in the conforming case with
d “ 3, we actually have Pk3,T “ Πk

T |H1,cpT q (cf. Remark 5.2). Hence, the analysis in the L2pΩq-norm in that
case can actually be performed (exactly as in the nonconforming case) without resorting to the interpolation
operator (and so, without Assumption 1.1).

Remark 5.19. Assume that we want to derive a L2pΩq-norm error estimate on pu ´ uhq. Noticing that
π0
hpu´ uhq “ π0

h

`

πk´1
h pu´ uhq

˘

“ π0
h

`

πk´1
h u´ uo

h

˘

, we can write, by stability of π0
h in the L2pΩq-norm,

}u´ uh}0,Ω ď
›

›πk´1
h u´ uo

h

›

›

0,Ω
`
›

›pu´ uhq ´ π
0
hpu´ uhq

›

›

0,Ω
.

Then, the Poincaré inequality (7) yields

}u´ uh}0,Ω À
›

›πk´1
h u´ uo

h

›

›

0,Ω
` h

›

›∇h

`

u´ uh
˘
›

›

0,Ω
.

From (51) and (50), we finally infer, under the assumptions of Theorem 5.16, that

}u´ uh}0,Ω À h

˜

ÿ

TPTh

h
2pβT´1q
T

`

|u|
2
βT ,T

` δk“1|f |
2
1,T

˘

¸1{2

.

5.4 General workflow
As for any Galerkin method, the general workflow for solving Problem (20) with the VE/HHO methods
splits into (i) an offline stage, that is independent of the source term and of the boundary conditions, and
which aims at performing the assembly of the general problem matrix, and (ii) an online stage, that consists,
for given source term and boundary conditions, in solving the resulting global system. A change in the data
only affects the online stage (cf. Remark 5.20). The precomputations that are performed in the offline stage
are all local; hence, this stage can naturally benefit from parallel architectures.

Let us describe, in details, these two stages for Problem (20), beginning with the offline stage.
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1. In the conforming case with d “ 2 (respectively, d “ 3), one first computes the operator rk1,F defined
by (22) for all F P Fh (respectively, rk1,e for all e P Eh). This requires to solve a SPD system of size
k ` 1 (cf. Remark 2.6), for k ` 1 right-hand sides. In both the conforming and nonconforming cases
now, locally to any T P Th, one computes the operator pkd,T defined by (35). Its computation requires
to solve a SPD system of size Nk

d (cf. also Remark 2.6), for a number of right-hand sides that is (i)
Nk´1

2 ` cardpFT qˆ pk´ 1q` cardpVT q in the conforming case with d “ 2, (ii) Nk´1
3 ` cardpFT qˆNk´1

2

in the conforming case with d “ 3, and (iii) Nk´1
d ` cardpFT q ˆ Nk´1

d´1 in the nonconforming case
(cf. Remark 5.1). Once the operator pkd,T has been computed, one computes, still locally to any
T P Th, the bilinear form, that writes in terms of the DoF and of the different already computed
quantities.

2. As common to any skeletal method (cf. Section 3), bulk DoF are locally eliminated by static conden-
sation in terms of the local skeletal DoF. Locally to each T P Th, one has to solve a SPD system of
size Nk´1

d for a number of right-hand sides that is the number of local skeletal DoF.

Let us now describe the online stage, for a given source term f P L2pΩq.

3. One computes the right-hand side, which requires, locally to any T P Th, to integrate f|T against
polynomials in Pk´1

d pT q, and to perform its static condensation. Then, one eliminates the boundary
(Dirichlet) DoF from the global system.

4. One solves the resulting SPD global system, that is of size

cardpF i
hq ˆ pk ´ 1q ` cardpV i

hq

in the conforming case with d “ 2,

cardpF i
hq ˆNk´1

2 ` cardpE i
hq ˆ pk ´ 1q ` cardpV i

hq

in the conforming case with d “ 3 (cf. Remark 5.22), and cardpF i
hqˆNk´1

d´1 in the nonconforming case.

For an example of implementation of the method using generic programming, we refer to [21].

Remark 5.20. Except point 3, the description above of the general workflow of the method applies verbatim
to the case of a Problem (1) featuring nonhomogeneous mixed Dirichlet–Neumann boundary conditions.

Remark 5.21. In a multi-query context in which the datum is the diffusion coefficient, part of the offline
stage becomes online (in particular, the static condensation part). Depending on how are defined the poly-
nomial projectors (if their definition includes or not the diffusion coefficient), the part of the offline stage
becoming online may be more or less important. In that case, one would better consider reduced basis like
techniques.

Remark 5.22. In the conforming case with d “ 3, one can reduce the size of the global system by using
enhanced virtual spaces [1] or Serendipity spaces [9] on the faces F P FT of the cells T P Th, instead of
V k2 pF q. Typically, with enhancement, one reduces the number of face DoF to cardpF i

hq ˆ Nk´2
2 instead of

cardpF i
hq ˆ Nk´1

2 . The inclusion of enhanced virtual spaces into our general framework will be the topic of
a forthcoming work.
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A Proofs of (11) and Lemma 3.2

A.1 Proof of (11)
By Assumption 1.1, for any z P TpBT q Ă H1pBT q, there exists z P H1pT q such that z|BT “ z and

h´1
T }z}0,T ` |z|1,T À h

´1{2

T }z}0,BT ` h
1{2

T |z|1,BT . (63)
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Now, since v P H1pT q is such that 4v P L2pT q, by the divergence formula there holds

x∇v|BT ¨ nT , zy´ 1
2 ,BT

“

ż

T

∇v¨∇z `

ż

T

4v z,

and hence, by Cauchy–Schwarz inequality,

x∇v|BT ¨ nT , zy´ 1
2 ,BT

ď |v|1,T |z|1,T ` hT }4v}0,Th
´1
T }z}0,T .

The estimate (63) enables to conclude.

A.2 Proof of Lemma 3.2
Assume that, for vh P Vh,0, }∇hvh}0,Ω “ 0. Then, for all T P Th, ∇pvh|T q “ 0 and there is cT P R such that
vh|T “ cT . Since tπ̌0

F uFPFh Ď ΣBh, then for all F P F i
h,

ş

F
JvhKF “ 0 and there exists c P R such that cT “ c

for all T P Th. The fact that
ş

F
vh|F “ 0 for some (here, all) F P Fb

h finally yields that vh ” 0 on Ω. To
prove (18), we start from the following discrete Poincaré inequality on H1pThq (cf., e.g., [12]):

@vh P H
1pThq, }vh}

2
0,Ω À }∇hvh}

2
0,Ω `

ÿ

FPFh

h´1
F }JvhKF }

2
0,F ,

and we show that
ř

FPFh h
´1
F }JvhKF }

2
0,F À }∇hvh}

2
0,Ω for all vh P Vh,0. To prove so, since for vh P Vh,0,

ş

F
JvhKF “ 0 for all F P Fh, there holds

}JvhKF }
2
0,F “

ż

F

Jvh ´ π0
hvhKF JvhKF ď

›

›Jvh ´ π0
hvhKF

›

›

0,F
}JvhKF }0,F ,

and we can use the continuous trace inequality (5) and the Poincaré inequality (7) to infer

h
´ 1

2

F }JvhKF }0,F À h
´ 1

2

F

ÿ

TPTF

`

h
´ 1

2

T

›

›vh|T ´ π
0
T pvh|T q

›

›

0,T
` h

1
2

T

›

›∇pvh|T q
›

›

0,T

˘

À h
´ 1

2

F

ÿ

TPTF

h
1
2

T

›

›∇pvh|T q
›

›

0,T
.

Finally, since hF is comparable to hT for T P TF , and cardpFT q À 1 for all T P Th (cf. Section 2.2), the
conclusion follows.
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