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October 24, 2018

Abstract

We build a bridge between the Hybrid High-Order and the Virtual Element methods on general
polytopal meshes in dimension 2 or 3, in the setting of a model Poisson problem. To do so, we reformulate
the conforming-Virtual Element method as a (newborn) conforming-Hybrid High-Order method. This
allows us to perform a unified study of conforming/nonconforming-Virtual Element/Hybrid High-Order
methods, which happens to shed new light on the analysis of Virtual Element methods.

1 Introduction

The design of arbitrary-order Galerkin methods that support meshes with general polygonal/polyhedral
cells, has been attracting the attention of the community for more than 40 years now. In practice, the
use of general meshes, when not an inherent constraint like e.g. in subsurface modeling, can bring major
advantages. In particular, it increases the flexibility in meshing complex geometries, and simplifies the re-
finement/coarsening procedures in adaptive simulations. Classical arbitrary-order polytopal discretization
approaches encompass the (polytopal) Finite Element (FE) method [36, 34|, and the (polytopal) discontin-
uous Galerkin (dG) method [1, 25, 3, 13]. The construction of FE shape functions on arbitrarily-shaped
cells that both (i) satisfy the desired conformity prescriptions, and (ii) for which closed-form expressions
can be obtained (and numerically integrated), is highly challenging. However, when the shape functions are
available, one can fully benefit from the fact that FE are a skeletal method, i.e. cell degrees of freedom can be
locally eliminated in terms of the skeletal degrees of freedom, thus reducing the number of globally coupled
unknowns. The dG method, for which stability is enforced by penalization of the discrete bilinear form, can
handle completely nonconforming discrete spaces. One hence has the opportunity to consider simple poly-
nomial local approximation spaces. The price to pay for such a flexibility is, naturally, an increased number
of globally coupled degrees of freedom, which makes of dG a computationally more expensive method than
FE on standard meshes (and this is all the more true that the order of approximation increases). When
considering meshes featuring cells with an important number of faces, things are not that clear anymore, and
dG may definitely become a competitive computational approach. Yet, in that case, (polynomial-based)
dG suffers from an important limitation. On general cells, it is not clear at all whether the polynomial
local approximation spaces are sufficiently rich to robustly approximate tricky operators like the divergence
(think, e.g., of a linear elasticity model in the quasi-incompressible limit) or curl operators.

More recently, a new paradigm has emerged. The idea is to define a finite element whose construction is
generic with respect to the shape of the element. The underlying local approximation space (i) is spanned
by functions that are implicitly defined (usually as the solutions to some PDEs posed in the cell), (ii) is
built so that the desired conformity properties can be obtained at the global level, and (iii) is constructed
so as to enjoy sufficient approximation properties (for instance, so as to contain the polynomial functions
up to a given degree). The fact that one cannot obtain a closed-form expression for the shape functions
is the reason why they are called virtual in that context. In practice, the numerical method is defined
using computable (in terms of the degrees of freedom) projections of the virtual functions, and is stabilized
through a subtle penalization, that shall also be computable. The most salient example of such an approach
is the (polynomial-based) Virtual Element (VE) method [5, 6], which has first been introduced under its
conforming version (denoted c¢-VE). Another example is the Hybrid High-Order (HHO) method [28], first
introduced/analyzed for linear elasticity [26], and then for the Poisson problem [27]. Both the VE and the
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HHO methods are skeletal methods. In [19, Section 2.4, the HHO method has been proved equivalent (up
to identical stabilization and right-hand side) to the nonconforming version of the VE method (denoted
nc-VE) introduced in [32], and posteriorly analyzed in [2]. In [19], the HHO method has also been bridged
to the so-called Hybridizable Discontinuous Galerkin (HDG) method [21, 18], in the sense that it is possible
to recast the HHO method as a HDG method, with distinctive numerical flux trace. This work has shed
light on the fact that the quite subtle choice of stabilization advocated in HHO, results in HDG formulation
in a numerical flux trace that ensures superconvergence on general polytopal meshes. Note that efforts
towards superconvergence for standard HDG methods are still being undertaken [20].

Let © be a bounded and connected open subset of R?, d € {2, 3}, whose boundary is assumed to be
composed of a finite union of portions of affine hyperplanes. We focus on the following model Poisson
problem: find u € H}(Q) solution to

a(u,v) = JQ Vu-Vou = JQ fo=:1(v) for all v e H}(Q), (1)

with source term f € L2(2). In this work, by reformulating the c-VE method as a (newborn) conforming-
HHO method, we complete the construction of the bridge between HHO and VE undertaken in [19, Sec-
tion 2.4]. Building upon existing contributions, especially [24] on the analysis of schemes in fully discrete
formulation, [14] on the unified analysis of ¢/nc-VE methods, and [33, 10, 15] (see also [8, 12] for the treat-
ment of faces of arbitrarily small measure) on the analysis of ¢-VE, we introduce a unifying framework,
taking inspiration from the HHO framework, in which we perform a common study of ¢/nc-VE/HHO meth-
ods. Doing so, we shed new light on the similarities/differences between conforming and nonconforming
VE/HHO methods, and we introduce substantial simplifications in the analysis of VE methods. For sim-
plicity of exposition, we consider throughout this paper standard VE spaces (i.e., neither enhanced VE
spaces [14], nor Serendipity VE spaces [7]), with cell degrees of freedom even in the lowest-order case, which
simplifies the treatment of the right-hand side without compromising the computational efficiency.

A crucial observation that is made clear in this article is the following. The main difference between the
conforming and nonconforming VE/HHO methods is that, in the nonconforming case, the (local) interpo-
lation operator (say, Zr) is the elliptic projector on the local virtual space. It is not true in the conforming
case. This has two important consequences.

e Letting IIr denote the elliptic projector on a polynomial subspace P(T') of the local virtual space,
II7 o Zr is actually equal to Iy in the nonconforming case, whereas this is not true in the conforming
case. Whereas the HHO error in broken H!-seminorm naturally splits along

IVh(u = pun)| < [V (w—Hpw)| + [VaIln(Zow — un)l),

where the first addend in the right-hand side is the approximation error (directly available from the
properties of II), and the second is bounded by the consistency error of the scheme, the VE error is
usually split in the literature along

th(u - Hh”h)‘

< th(u - Hhu)” + ”VhHh(u - Ihu)H + HVhH}L(Ihu - uh)“
<[ Vilu = Tpu)|| + [Vi(u = Zpw) | + [V Rk (Zru — un) |,

where the approximation properties of the local virtual spaces frankly invite themselves into the
picture. In this article, we split the error along

[Vi(u—Ipup)| < |[[Vi(u— Iy 0 Zp)w)| + | VRIl(Zew — up)

)

and we directly investigate the approximation properties of the polynomial projector Il o Z,. Since
II7 o Zr preserves the polynomials in P(T), and since the operator Il is stable, all we have to prove
are stability properties for Zy. We then follow the ideas of [11, Chapter 4] to derive the desired
approximation properties. This is the object of Sections 4.1 and 4.2 (cf. in particular Theorem 4.17).

e In the conforming case, in order to prove stability properties for Zr, one must prove the existence, on
any cell T, of a (linear) lifting operator L1 such that, for any function v on 07T that is equal to the
trace of a virtual function, one has the following scaled estimate:

hztILavlr + [V Lrvlr < e (hgPlolor + BV iolor) (2)

where V; denotes the tangential derivative, and ¢ > 0 is a constant independent of hr. When
T is star-shaped with respect to a ball of radius comparable to hr (in standard analyses of ¢-VE



methods, the latter assumption is supplemented by the fact that all the faces of T are assumed to
have diameter comparable to hr), the result above is true for any function v € H*(0T) (cf., e.g., [12,
Section 2.7]). When T is not star-shaped, it is less clear whether optimal scaling can be obtained. In
the nonconforming case, owing to the fact that the local interpolation operator is the elliptic projector
on the local virtual space, a similar estimate is not needed to prove stability for Zr, and regularity
assumptions on mesh sequences can be relaxed. All one needs to assume in that case is that the cell
T can be remeshed by a (matching, shape-regular, and with meshsize comparable to hy) simplicial
submesh (cf. Definition 2.1). These assumptions are sufficient to derive all the necessary analysis tools.
We believe that, following [10, Lemma 5.3|, it should be possible to prove a result such as (2) under
the sole assumptions of Definition 2.1. Yet, this is beyond the scope of this article. We will hence do
not pursue in that direction, and will make the further assumption, in the conforming case, that each
cell is star-shaped with respect to a ball (with radius comparable to its diameter).

The material is organized as follows. In Section 2, we introduce the notation, we detail our admissibility
assumptions on mesh sequences, and we introduce a number of analysis tools that will be useful in the
sequel. In Section 3, we undertake a general description of skeletal methods, such as the VE or HHO
methods. Finally, in Section 4, we provide the unified formulation/analysis of ¢/nc-VE/HHO methods, as
well as a description of the general workflow of the methods.

2 Notation, mesh assumptions, and basic analysis tools

We collect in this section all the conventions, mathematical tools, and results that will be useful in the
sequel.

2.1 Notation
2.1.1 Geometry

Forle{1,...,d}, welet |-|; denote the [-dimensional Hausdorfl measure. In what follows, the term polytope
refers to polygons if d = 2, and to polyhedra if d = 3. The discretization of the domain 2 is described in
the following manner.

e 7j denotes a mesh of the domain €2, i.e. a collection of disjoint open polytopes T' (the cells) such that
UTeTh T = Q). The parameter h is the meshsize, defined as h := maxre7;, hr, where hr stands for the
diameter of the cell T

e Fj denotes the collection of faces of the mesh 7;. Since the cells of T;, are polytopes, their boundary
is composed of a finite union of closed portions of affine hyperplanes, called facets. A closed subset
F of Q with |F|q_1 # 0 is a face as soon as (i) F is equal to the intersection, for Ty, T two cells
of Ty, of a facet of 77 and a facet of Ts, or (ii) F is equal to the intersection, for T cell of T, of a
facet of T and a facet of €2. In the first case, F' is termed an interface, whereas in the second, F' is
termed a boundary face. Interfaces are collected in the set ]—"}l, boundary faces in the set ]—"}l’, in such
a way that Fj, = f,ilUf};’. For a cell T € Ty, we let Fp := {F € F,, | F < 0T} be the collection
of faces composing its boundary, and np be the unit normal vector to ¢T' pointing outward 7" (that
is defined almost everywhere on 0T"). For F € Fr, we also let np g := nr|p; remark that ny g is a
constant vector on F since F is planar. Finally, for any face F' € F},, we denote hp its diameter (and,
for T' € Ty, we let hor be such that hopp := hp for all F'e Fr), and we let Tp :={T € T, | F' < 0T’}
be the collection of cells sharing F' (two cells for an interface, one for a boundary face).

e 07, denotes the (d—1)-dimensional skeleton of the mesh 7y, that is 07, = Jp 7 I

e When d = 3, &, denotes the collection of edges e (with |e|; # 0) of the mesh 7j, defined from the
collection Fy, of faces. For a cell T' € Ty, (respectively a face F' € Fy,), we let Ep :={ee€ &, | e c T}
(respectively Ep = {e € &, | e = dF}, that will also be denoted Fr with a slight abuse in notation)
be the collection of edges composing its boundary.

e V;, denotes the collection of vertices v of the mesh 7j,. For a cell T € Tj, (respectively a face F € Fy,),
we let Vr = {v e V), | v € 0T} (respectively Vr := {v € V}, | v € dF}) be the collection of its vertices.
The position of any vertex v € V, is denoted x, € ().



When d = 2, faces are sometimes called edges in the literature. Note that we will not use this vocable in this
article. The term edge will always refer to a 1-manifold in dimension d = 3. We finally introduce, for v € Vy,
the notation F, := {F € F;, | v € Vp} and, when d = 3, for e € &, the notation F, := {F € F), | e € Er}.

2.1.2 Functions spaces

For X < Q, and m > 0, we let ||, x and [,  respectively denote the seminorm and norm on the Sobolev
space H™(X) (or H™(X)?), with the convention that H°(X) = L?(X) (hence, Ilo.x = [-lo.x)- We also
define ||, x as the norm on L*(X). We finally let (:,-)_p, x be the duality pairing between "™ (X) and
its topological dual.

For ¢ € Nand [ € {1,...,d}, we let P/ be the vector space of [-variate polynomial functions of total
degree less than or equal to q. We also let

N := dim(PY) = <q ; l> :

and we adopt the conventions P; ! := {0} and N;' := 0. For T € Ty, we define P%(T) as the restriction of
PY to T. For F € Fj,, we define qul(F) as the restrlctlon of P to F. When d = 3, for e € &,, we define
P‘f(e) as the restriction of P4 to e. For T € Ty, we also define the broken space

P (Fr):={ve L*(T) | vrePi_(F)VF € Fr},

and when d = 3, for F € Fy,, we let P{(Ep) := {v e L*(0F) | v, € P{(e) Ve € Ep}. We finally introduce, for
any T € T, a set of basis functions for P3(T), that we denote {17, }icq1,.. N1y, and for any F' € Fj, a set of
basis functions for Pj_, (F), that we denote {1} ;}je1,....n 13- When d = 3, we further introduce, for any
e € &y, a set of basis functions for P{(e), denoted {ng,m}me{lm N

Given a mesh Tj, of €, we introduce the following notation for broken functions spaces on 7p:

X(Th) = {vn € L*(Q) | vpr € X(T)VT € Tp}.

We introduce on H'(7}) the so-called broken gradient operator V;, : H(T,) — L?(2) such that, for any
v, € HY(T,) and T € Ty, Vnvpr = V(vpr). For any interface F e Fi with Tp = {T1, Tz}, we define the
jump [vp]F along F' of v, € H*(Tx), s > 12, by [vn]r := (v, )|p — (Vn1 )| > and we let np := np, p. For
any F € Fp with Tp = {T}, we let [vp]r := (vp7)|r, and np := ny p. We finally introduce the operator
[-] - H5(Th) — L?*(0Tx) such that, for any vy, € H5(Ty), [vn]jr := [vn]r for all F € F,. Note that the
quantity [vs] € L?(075) may be multi-valued (whenever this has a sense) at vertices when d = 2, and on
edges/vertices when d = 3. Assume, for simplicity, that v, € H*(7y) is such that vyor € C°(oT) for all
T € Ty,. Considering a vertex v € Vy,, there are card(F, ) potentially different values for [v,] at @,, that are
the ([vn]r(®y)) per,- When d = 3, considering an edge e € &, there are, identically, card(F,) potentially

different functions [vs] on e, that are the ([[UhﬂF‘C)Fe]__ .

2.2 Mesh assumptions

We define the notion of admissible mesh family.

Definition 2.1. The mesh family (Tr)n is admissible if, for all h, T, admits a matching simplicial submesh,
denoted Sy, and there exists v > 0, called mesh regularity parameter, so that, for all h,

(i) for all S € Sy, of diameter hg and inradius rg, vhs < rg (in other words, Sy, is shape-regular);
(i) for all T € Ty, and all S€ Sy :={Se€ S, | ST}, vhr < hs.

By matching simplicial submesh, we mean that S, is a (conforming, i.e. free of hanging node) simplicial
mesh, and that, for all S € S, there exists a unique T € 7;, such that S < T, and for all Z € Z;, where
Zp, collects the faces of Sy, there exists at most one F' € Fj, such that Z < F (cf. |25, Definition 1.37]).
Henceforth, we will use the symbol < to notify that an estimate is valid up to a multiplicative constant
¢ > 0, with ¢ only depending on the dimension d, the mesh regularity parameter =y, and, if need be, the
underlying polynomial degree; in particular, the bound is uniform with respect to the meshsize.

Let us mention three important consequences of Definition 2.1: for all A, and all T € T,

(a) for all S e Sy, yhy < hg < hy, and card(Sr) < 1 (cf. [25, Lemma 1.40]);



(b) for all F € Fr, card(Zr) < 1, where Zp :={Z € 2, | Z < F} (cf. |25, Lemma 1.41]);
(c) for all F € Fr, v*hr < hp < hr, and card(Fr) < 1 (cf. [25, Lemmas 1.42 and 1.41]).

From (a) and (b), one can figure out what is the general outline to prove inverse and trace inequalities on
arbitrarily-shaped (admissible) cells. One first considers the case of a simplex satisfying (i) of Definition 2.1,
for which these inequalities are classical. Then, the passage to arbitrary geometries follows from the fact
that any admissible cell is composed of an uniformly bounded number of simplices satisfying (i) (and, an
admissible face is composed of an uniformly bounded number of subfaces belonging to simplices satisfying
(1)), and whose diameters are comparable to the diameter of the cell under consideration (cf. Section 2.3.1).
Note that the notion of admissible mesh we consider here allows for cells that are not necessarily star-
shaped. When this latter additional assumption (i.e., that each cell T is star-shaped with respect to a ball
of radius 77 = yhr) will be needed in the analysis, we will specify it. The assumptions of Definition 2.1 are
also sufficient to prove polynomial approximation properties for the L?-orthogonal and elliptic projectors
(cf. Sections 2.3.3 and 2.3.4). As far as point (c) is concerned, it is instrumental in the analysis of numerical
methods based on 7j,. It expresses the fact that the number of faces of an admissible cell is uniformly
bounded, and that the diameter of a face is comparable to the diameter of the cell(s) to which it belongs.
When d = 3, it is an easy matter to show that, under the assumptions of Definition 2.1, one also has, for
any T € Ty, F € Fr, and e € Ep, vhr < he < hp, and card(Ep) < 1.

2.3 Basic analysis tools

Henceforth, 7;, denotes a member of an admissible mesh family in the sense of Definition 2.1.

2.3.1 Useful inequalities
On any T € Ty, the following inequalities hold:

e inverse inequality:
YoePYT),  |vly g < hy'[vlor (3)

e continuous trace inequality: for any F' € Fr,
—1 1
voe HYT), vl p < by [olor + b ol i (4)
e discrete trace inequality: for any F € Fr,

Ve PYT), o]y p < he ol r- (5)

For the proofs of these different results, we refer to [25, Section 1.4.3]. Note that the discrete trace inequal-
ity (5) can be seen as a consequence of the continuous trace inequality (4) and of the inverse inequality (3).
We also state the classical Poincaré inequality:

v e H(T) such that fT v=0,  [vlor < cphrlvl o (6)

If T is convex, cp = 7~ !, independently of the ambient dimension; cf. [4]. For some insight on the value of
cp on more general element shapes, we refer to [35]. In the forthcoming analysis of conforming methods,
we will also need (i) the following alternative inverse inequality, whose proof can be found, e.g., in [17,
Lemma 4.4 (take A. = Ig)|: for all v € H'(T') such that Av € P4(T) for some ¢ € N, there holds

|80]0 7 < Azt vl i (7)

(ii) the following version of Sobolev’s inequality (cf., e.g., [11, Lemma 4.3.4]):

(2—d) (4—d)
lor +hp® olyp+he? o]y g (8)

_d
Vv e H*(T), 0] 1 < hep® v

and (iii) the following flux estimate, whose proof is postponed until Appendix A.1, that is valid for any cell
T star-shaped with respect to a ball whose radius is comparable to hr, and any function v € H(T) such
that Av e L2(T):

(Vuor -nr,2)_1 or

sup —
2eH(3T) hT1/2||zHO78T + h%mlﬂ

S |U|1,T + hTHAUH(LT' (9)



2.3.2 Finite element in the sense of Ciarlet
The following definition is directly inspired from [16, p. 94]. Let [ € {1,...,d}.
Definition 2.2. A finite element consists in a triple (X, V(X),Xx) where
e X is a bounded and connected Lipschitz subset of R such that | X|; # 0;
e V(X) is a finite-dimensional vector space of functions v: X — R;
o Yx = {0k,...,0%}, nx € N*, is a collection of linear forms o' on V(X) such that the mapping
Sy :V(X)3ve (0x(v),...,0% (v)) e R"™X
is bijective (we then have dim(V (X)) = nx ).

The operator X is the so-called (local) reduction operator, and Xy (v) is the so-called vector of (local)
degrees of freedom (DoFs). The bijectivity of Xy is in general referred to as unisolvence in the literature.
To prove unisolvence, one usually aims at proving that

dim(V (X)) = nx,
for ve V(X), (o%(v) =0Vie {1,...,nx}) = (v=0).
The following proposition is a direct consequence of the unisolvence property.

Proposition 2.3. Let (X,V(X),Xx) be a finite element. There exists a basis {¢x1,--.,Pxmx} (referred
to as canonical) of V(X) such that o’ (¢ox ;) = 6i; for alli,j € {1,....,nx}. The (vx,;) are the
so-called (local) shape functions.

€{l,....nx}

Let Rx : R"™* — V(X) be the operator such that, for any vy := (Vg()ie{l,..,,nx} € R"™, Rxvy =
S vicpx ;. One can easily remark that, for all vy € R™*, ¥ (Rxvy) = vy, hence Ry = £y' and
there holds, for any v € V(X),

Rx is the so-called (local, canonical) reconstruction operator.

Assume that there exists a normed vector space W(X) of functions w : X — R such that (i) V(X) <
W(X), and such that (ii) every linear form o% of x can be extended as a linear form &% on W(X). We
denote by Y x this new collection of extended linear forms, and by X the corresponding (local) reduction
operator. We can then introduce the operator Zx : W(X) — V(X) such that, for any w € W(X),
Ixw = Rx(Ex(w)) = 20 7% (w)px,;. With such a definition, there holds ¥y (Zxw) = Xy (w). The
operator Zx is the so-called (local) interpolation operator (in a broad sense). Of course, for all w € V(X),
Ixw = w, since Sy y(x) = Zx = Ry

2.3.3 L%-orthogonal polynomial projectors

For T € Ty, we define 7. : L?(T') — P(T) so that, for all v e L*(T),

J ﬂ'%vwzf vw  Ywe PYT).
T T
For [ € {1,...,N%}, we let 7% denote the linear form on L2(T) such that, for any v € L2(T), &' (v) € R is
the ' coordinate of m4v on the basis (VT }ieq,... gy of PR(T).
Proposition 2.4 (Properties of 7). Let T € Ty, and v e L*(T).
e preservation of polynomials: if v e P4(T), mhv = v;

o stability: |77vl, , < vl 7:

. o _.q _ : _ .
o optimality: [[v — 770y, = ze%lgl?T) v — 2oz



e approximation: forve H*(T), s€ {l,...,q+ 1}, there holds

|U—7T;I~’U|m,T < hy "ol forme{0,..., s}, (10)

and, for any F € Fr, and any ((1,...,Cq) € N? such that Z?zl G =m,
0% ... 0% (v —md)ip|y o < B ™ Plulyp  formef0,...s—1}. (11)

In Proposition 2.4, the only nontrivial result to prove is the last one. Its proof relies on (i) the ideas of [11,
Chapter 4] and [29, Section 7] (cf. also [10, Section 4]), and on (ii) two important features of ., that are
the preservation of polynomials, and its stability in the L?(T)-norm. For a detailed proof of the result, and
its extension to more general Sobolev seminorms, we refer to [22]. We also introduce 7} : L2(2) — P%(73)
such that, for any v € L*(Q), wlvjp := wf.(vjr) for all T € Tj,.

For F € F,, we define . : L*(F) — P%_ (F) so that, for all v e L*(F),

J W(}I;U’LU:J vw Ywe P (F).
F F

For le{l,...,N? |}, we let W}J;"l denote the linear form on L?(F) such that, for any v € L(F), 71'%’1(1)) eR
is the I'" coordinate of 7%v on the basis {¥F}jeqr,..xa_y of PG (F). We also define, for T' € Ty, 73 :
L?(0T) — PY_, (Fr) such that, for any v e L*(0T), ndyv)p := 7} (vp) for all F € Fr.

When d = 3, for e € &, we define 7¢ : L?(e) — P¥(e) so that, for all ve L?(e),

fﬂ‘él}ﬂ):va Vuw € P{(e).
e e

For [ € {1,...,N{}, we let 7%! denote the linear form on L?(e) such that, for any v € L%(e), 7%!(v) € R is
the I'" coordinate of mlv on the basis {{/¢ , }imeq1,... ney of P{(e).

Remark 2.5 (Computation of 7%v). It can be easily seen that, for X € {T,F,e} and v € L*(X), n%v =
ﬁ SX v with | € {d,d—1,1} respectively. To compute 7% v for ¢ = 1, it suffices to solve a symmetric positive-
definite (SPD) system of size N} x Nj. This can be done effectively via, e.g., a Cholesky factorization.

2.3.4 Elliptic polynomial projector
For T € Ty, we define T4 : HY(T) — P4 (T) so that, for all v e H(T),

f VHqT“v-Vw:f VuVuw  YwePYTHT),
T T

J H%Hv =J v.
T T

Remark that 119 = 77%‘ HY(T) which is the reason why we only consider here HqTH, q € N.

(12)

Proposition 2.6 (Properties of TI4™). Let T € Ty, and ve HY(T).
e preservation of polynomials: if v € PgH(T), ey = v;

e stability: HHQTHUH < vlor + hrlvly 75
0,T ’ ’
. . 1 .
e optimality: ‘v — et v‘ = min |(v—=z2 ;
T LT zEPngl(T) | |1,T;

e approximation: forve H*(T), s€ {l,...,q + 2}, there holds

‘U—H%Hv‘mT < hST7m|v|S_’T forme{0,... s}, (13)

)

and, for any F € Fr, and any ((1,-..,Ca) € N? such that Z?:l G =m,

[0S o —1g )] L b el Jorme {0, s — 1), (14)

|F‘O,F



As for Proposition 2.4, the only nontrivial result to prove in Proposition 2.6 is the last one. Its proof also
relies on (i) the ideas of [11, Chapter 4] and [29, Section 7| (cf. also [10, Section 4]), and on (ii) two important
features of HqTH, that are the preservation of polynomials, and its stability in the L?(T)-norm (here, by-
product of the stability in the H!(T)-seminorm, and of the fact that HqT+1 is mean-value preserving). For a
detailed proof of the result, and its extension to more general Sobolev seminorms, we refer to [23]. We also
introduce T4+ H'(T;,) — P4 (75) such that, for any v e H'(7), HZ+1’0|T = H%«+1(U|T) for all T € Tp,.

Remark 2.7 (Computation of H%«—H’U). One possibility (another one is to solve a problem posed on the
quotient space PYTH(T)/PY(T)) to compute TI& v is to consider the following coercive problem: find » €
PIYN(T) such that, for all w e PLT(T),

f VzVuw+ J Tz W = —J 78 Aw + J- i (vjor) Vwjer-nr.
T T T orT

The elliptic projection is obtained through HqTHv =z + . According to the expression above, to compute
HqTHv, it suffices to know selected moments of v e HY(T), namely mho for p = max(¢—1,0), and ng(va).
The computation of H%Hv then requires to solve a SPD system of size NZ’H X NZH, which can be done
effectively via, e.g., a Cholesky factorization. The rewriting of the right-hand side of (12) advocated above
is based on an integration by parts formula, and on the fact that Aw € Pg_l(T) and Vwjor-ny € Py_, (Fr)

for any w e PYTH(T).

3 Skeletal methods

Galerkin methods on 7y, among which ¢/nc-FE, ¢/nc-VE, or dG methods, seek for an approximation uy of
the solution u € H{ (€2) to Problem (1) in a broken space Vi, 0 € V(Tn) « H'(Tr), with V(75) such that, for
all T € Ty, V(T) is a finite-dimensional vector space of functions on which exists a collection X7 of linear
forms so that (T, V(T),Xr) is a finite element in the sense of Ciarlet. The linear forms collected in Xr are
the local DoFs of the method. For dG methods, V;, o = V(7), whereas for ¢/nc-FE/VE, V;, ¢ is a strict
subspace of V(7;,) that embeds more or less stringent conformity prescriptions (with respect to H{(€2)); for
c-FE/VE for instance, V}, o is a subspace of H}(12).

For those methods (like ¢/nc-FE/VE) based on a space V}, o embedding conformity prescriptions, locally
to any T € Ty, the collection X1 of DoFs splits into (i) linear forms on V(0T := {vjor, v € V(T)} (collected
in the set ¥9.) and, (ii) if need be, those linear forms on V(T') that cannot be written as linear forms on
V(0T) (collected in the set %3.). The linear forms in X9, are skeletal DoFs, whereas those in %5, are cell
DoFs. We let ng := card(X9.), n$ := card(X%), and nr := ng + n$ = card(Xr) = dim(V(T)). From a
global viewpoint, the collection ¥, of global DoFs of the method splits into (i) linear forms on

V(]:h) = {Uh € L2((‘}771) |Uh|F € + VT(F) VF € fh}

TeTr

with Vp(F) := {vr, v € V(T)} (collected in the set £9) and, (i) if need be, linear forms on V(7;) that
cannot be written as linear forms on V() (collected in the set X5). Whereas 35 := (Jpcr. 29, where, for
any T € Ty, X9 is the collection of the ng. linear forms ¢% on V(7y) so that 5%.(-) := 0%.(p) for 0% € X%,
the global skeletal DoFs in ¢ (that are linear forms on V(F3)) are intrinsically defined, and their local
counterparts are obtained by localization. More precisely, for any T € T, letting XA]% be the collection of
the ng. linear forms 69 on

Vi (Fr) = {vn € V(F1) | vnjor € V(OT), vpp = OVF € Fp\Fr}

so that 69.(-) := o?(-) for 0% € ¢ such that UlaVT(]:h,) # 0, and Z,(v) be the zero extension of v € V(0T) to

Vr(Fn), the linear forms o5 in X9 are obtained by

[Vo e V(0T),05(v) := ¢ (65 0 24)(v)] for 65 € 29, (15)

where c is a constant depending on the skeletal DoF under consideration, and on T', whose default value is 1
(cf. Remark 3.1). Whereas nj, := card(X}) = X rey, 77, ng := card(X9) < 2reT, ng, and nj, := nf +ny =
card(Zy) < dim(V(Tr)) =: n7,.



Remark 3.1 (Role of the constant ¢ in (15)). Functions in V(Fp) may be multi-valued (whenever this has
a sense) at vertices when d = 2, and on edges/vertices when d = 3. Yet, in the conforming case, one has
to define DoFs at vertices when d = 2, and on edges/vertices when d = 3, to prescribe conformity. Let us
then describe how multi-valuedness can be dealt with. Assume, for simplicity, that V(0T) < C°(0T) for all
T € Tp,. For avertex v € V,, the (global) skeletal DoF 0% € EZ associated to a pointwise evaluation at x,, is
defined, for any vy, € V(Fy), by o®¥ (vy,) := m Yrer, VnF(®y). With such a definition, it degenerates

. . . . v card(F,) -
towards vy (x,) whenever vy, is single-valued at x,. Besides, letting ¢4 = d(F N Fr) One obtains, as

expected, that the restriction of o to a cell T € Ty, such that v € Vr, is given, for any v € V(0T), by
U%V(v) = v(zx,). Edge DoFs when d = 3 can be handled in a similar way. For face DoF's, one can always

take ¢ = 1.

For any F' € Fj,, and vy € V(F},), welet Rp(vn) € V(Fp,) be such that Ry (vn)|r = vpp, and Rp(vp)|pr =
0 for all F’ € F»\F. The approximation space, that also takes into account the boundary conditions, writes

Vio :={vn € V(T1) | (67 o Rp)([vn]) = OVF € Fi, Yo' e 57 }, (16)
with dimension ny ¢ := dim(V}9) < n,. The conditions on the jumps of discrete functions enforce the
conformity prescriptions. The discrete problem then reads as follows: find up, € V}, o such that

ap(up,vp) == Z ar (Upr, V) = Z Ir(vpr) =t In(vn) for all vy, € Vj, 0, (17)
TeTh TeTh

where the (bi)linear forms ap : V(T,) x V(Tn) — R and I, : V(T,) — R write as the sums of local
contributions expressed by the local forms ar : V(T') x V(T') — R and Ip : V(T') — R. This special structure
of the discrete problem ensures that the potential cell DoFs of the method are not coupled between adjacent
cells and can be eliminated locally in each cell T' € Tj in terms of the local skeletal DoFs. Algebraically,
this consists in computing the Schur complement of the cell-cell block of the global system matrix, which
is quite inexpensive as this block is itself block-diagonal. After elimination, the global system to solve is
expressed in terms of the global skeletal DoFs only. This explains why methods that are based on a discrete
space like (16) and on a variational formulation like (17) are referred to as skeletal methods.

Since, for all T € Tp, (T,V(T),Xr) is a finite element in the sense of Ciarlet, any function v, € V(Tp)
can be equivalently written as a vector R®» 3 v, = (vq)7eT;,, With R"™ 3 v, = (y% € R”aT,g‘% € R"OT).
For T € T, and F € Fr, we let X%F € R"7.7 be the restriction of y% to the face F' (with possible overlaps
between faces, i.e. D pc Fr n‘} = n%) Since we are going to enforce conformity, we assume that, for all
F e Fi such that Tp = {T1, T2}, ”%,F = n%,F, and we let [v,]r = ygﬂl,F —y‘%%F; for F € FP such that
Tr = {T}, we let [v),]F := v§ . We introduce

Vh,() = {yh € R"n | [yh]p = QVF € fh}

There holds dim(Vy,0) = np,0. For vectors v;, € Vo, for every F € f}l,.we have K%,F = gaTQ’F and, for every
F € FP, we have K%F = 0. Letting n% := g, p = n‘%%F when F' € F;, or n% := n%F when F € FP, there
holds } . 7, n% > ng. Problem (17) can be equivalently rewritten: find u;, € V}, ¢ such that

an(uy,vy) i= Y, ar(up,vy) = Y, lr(vy) = lu(v,)  forall v, € Vpyg, (18)
TeTh TeTh

where the (bi)linear forms ap : R®™ x R"™ — R and 1, : R"7» — R are expressed in terms of the local
forms ap : R™ x R"" — R and lp : R — R such that ap := ap(Ry-, Rr-), and lp := lp(Ryp-), where Rp
is the (local) resconstruction operator. For all T' € 7y, there holds up = X (upr), where up € R"7 is the
restriction to T' of u,, € Vo solution to Problem (18), and uy, € V}, o is the solution to Problem (17). In the
rest of this section, we will stick to the notation used in Problem (17), but in Section 4 we will adopt the
notation used for Problem (18).

The most famous examples of skeletal methods are surely given by the ¢/nc-FE methods. In that case,
one considers, for all T € Ty,

ar(w,v) = f Vw-Vv and Ir(v) 1= J firv for all w,v e V(T),
T T
in such a way that the discrete problem writes: find uy, € Vj o such that

ah(uh,vh) = J thh-thh = J fvh = lh(vh) for all Vh € Vh,o- (19)
Q Q



Without describing too much the space V}, o, one can prove interesting properties for Problem (19). Let
us denote, for any F € Fj, by @ the linear form on V(F},) so that #%(-) := % (-|r), with the convention
(henceforth adopted) that P? is identified to R. Let us begin with the following lemma, whose proof is
postponed until Appendix A.2.

Lemma 3.2. If {#%} rer, S 24, then IV hllo.q defines anorm on Vo, and the following discrete Poincaré
inequalities hold:

YoneVio, 3 h¥lonrles < IVaunlia; (20)
TeT

and
Vop € Vi,o, Ivrllo.0 < IVhvnlg q- (21)

Proposition 3.3. If {#%}rer, S 24, Problem (19) is well-posed in the sense of Hadamard.

Proof. The proof relies on the results of Lemma 3.2. Since HV;I-H(QJ)Q = ap(-,-) defines a norm on V} o,

Problem (19) admits a unique solution for all f € L*(2). Besides, testing (19) with v, = uj, € Vi, and
combining Cauchy—Schwarz inequality with the discrete Poincaré inequality (21), yields the a priori estimate

0,0 (22)

O

IViunlo o < (/]

The conformity assumption {#%}rer, S 3¢ hence guarantees the well-posedness of Problem (19). Even
better, as soon as the space V}, o guarantees as well some approximability in H3 () (or in a dense subspace
thereof), the conformity assumption ensures that the unique solution to Problem (19) strongly converges
in H}(Q) when h goes to zero towards the solution u to Problem (1). Indeed, by discrete compactness,
the conformity assumption, through the resulting a priori estimate (22), first yields that, up to extraction,
the family (up,)s strongly converges in L?(Q) towards some w € L?(2), and the family (Vjup), weakly
converges in L2(Q)? towards some w € L?(Q)?. Then, by conformity assumption again, one can prove that,
actually, w = Vw with w € H} (). In a third time, the approximation properties of Vj o in Hg () (or in
a dense subspace thereof) enable to infer that w = wu, and the uniqueness of the solution to Problem (1)
ensures that the whole families (uy ), and (Vyup), actually converge. Finally, an energetic argument yields
the strong convergence of (up,), in Hg(Q) (cf., e.g., [25, Sections 5.1-5.2]).

Remark 3.4. Note that the condition {#%} per, S X9 in Lemma 3.2 and Proposition 3.3, that is reminiscent
of (lowest-order) nc-FE, is sufficient to prove the well-posedness of Problem (19), but is not necessary to
prove so. Note as well that, as expected, the results of Lemma 3.2 and Proposition 3.3 remain valid under
more stringent conformity prescriptions (like it is for instance the case for c-FE).

Remark 3.5. The results of Lemma 3.2 and Proposition 3.3, that do not assume that discrete functions
in Vi, o are piecewise polynomial, apply to the mized-order multiscale HHO method of [17, Section 5.1], for
which the local (oscillatory) basis functions are explicitly known on each coarse cell (in practice, they are in
fact approzimated using a fine submesh of the coarse cell).

Other, more recent, examples of skeletal methods include the ¢/nc-VE methods, as well as the HHO
method. The specificity of VE methods is to consider virtual local spaces V(T'), i.e. local spaces which are
spanned by functions that are (i) in general, not fully computable, and (ii) by definition, never computed.
The local virtual functions are usually implicitly defined as the solutions to some PDEs posed in the cell.
The VE methods are defined using computable (in terms of the DoFs) projections of the virtual functions,
and are stabilized through computable penalizations. Polynomial-based VE methods hinge on local virtual
spaces (i) spanned by the solutions to PDEs that feature polynomial data, and (ii) that contain the space
PE(T) for some k > 1. They are the VE methods that are classically encountered in the literature. As
such, we will henceforth refer to them simply as VE methods, and we will exclusively focus on them in
the sequel. An example of (nonconforming) method that hinges on a different kind of virtual spaces is
given by the equal-order multiscale HHO method of [17, Section 5.2], for which local virtual functions do
solve (oscillatory) PDEs with polynomial data, but the local virtual spaces do not contain polynomials in
general. Whereas the nc-VE method has been bridged in [19, Section 2.4] to the (nc-)HHO method, the
fact that the ¢c-VE method can be recast into a conforming-HHO method has not been demonstrated yet
in the literature. This is one object of the next section, that provides a unified formulation/analysis of
¢/nc-VE/HHO methods.
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4 Bridging Hybrid High-Order and Virtual Element methods

In this section, we reformulate and analyze, within a unified framework inspired from HHO methods, the
conforming and nonconforming versions of the (polynomial-based) VE method. By recasting the ¢-VE
method into a conforming-HHO method, we end up bridging, by the same, the two families of methods. We
let £ > 1 be a given integer, that will stand for the order of the method. Doing so, we adopt the classical
VE notation. HHO methods of the same order are classically defined using ¥’ =k —1 > 0.

4.1 Local virtual spaces
4.1.1 Conforming case

Let T € T, be star-shaped with respect to a ball whose radius is comparable to hr. For any v € Vr
(respectively v € Vg, for F € Fr), we let ¢4 (respectively (%) denote the linear form on C°(0T) (respectively
C°(0F)) so that, for all v e CY(0T) (respectively v € CO(0F)), t4(v) = v(z,) (respectively i (v) = v(z,)).

Preliminary results. Let d = 2, and consider a face F' € Fr such that F := [x,,,,,]. Then, we have
the following result.

Proposition 4.1. The triple (F,P(F),%} 1), where 3§ o := Zf;UZ’fF is the collection of Elf}’; =

{4} vev, and E’f} = {wf,‘PQ,;(F)}]e{l NE-2y is a finite element in the sense of Ciarlet.

Proof. Clearly, dim(P¥(F)) = n’f)F(: card(E’f)F)). Now, let v € P¥(F) be such that §§7F(v) = 0. An
integration by parts yields

[ @2 == [ oo+ B (@) — v (@) = - [ w2 =0,

F

where we have used that v” € P¥2(F), and that v(z,) = 0 for both v € Vi and 7 %v = 0. Hence, v is
constant on F', and since it is zero on 0F, it is identically zero. This concludes the proof. O

Let T]f’F CRME P¥(F) be the operator such that, for any
A . ke
Y= ((V?V)uevw (V%:j)je{l,...,N’f_2}) eR™r,
¥ pvp € PY(F) solves the well-posed problem

| ohrrpye = = [ vput s Wi @n) - 0] e PHE),
F F

T]f,F!F(wul) = V%Vla

(23)

kt—2
where we have introduced the notation v§ := > 11 N wk 2e PP ().

Proposition 4.2. The operator rfF defined by (23) coincides with the (canonical) reconstruction operator

R’f,F = (Zlf,F)_l'

Proof. Let RMLF 5 V= Z’ff(v) for some v € P¥(F). Plugging v into (23), we obtain by integration by
parts

f (r’f,FyF)’w’ = f v w' Yw e PY(F),
F F

which, combined to the condition r{ pvp(z,,) = vo = y(w,,), finally yields that rpvp = r]f’F(Z]iF(u)) =
v. This is true for any v € P¥(F), hence r} , = (ZLF)_1 = R} p. O

Since the operators r’f’ r and R’i r coincide, we will henceforth drop the notation R’i r and stick to the
notation r’f’F.
It is an easy matter to see that the collection E’i 1 of linear forms on P (F') can be extended to a collection

f’f’ r of linear forms on C°(F). We can hence define the interpolation operator Zf . : C°(F) — P}(F) such

<k
k. ok
that 77 p ==y p o Xy p.
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Lemma 4.3 (Stability of Z{ ). For all ve C°(F), there holds

HIﬁFUHOO Jalas Hv”oo JFe

Proof. To prove the result, we rewrite I{“’ FU as

Nk2

k— 2 o)
Il FU - U(mvl)SDF v + v(mvz)@F V2 + Z T J( )@F,j’
Jj=1

where we recall that the shape functions go‘%,yl , go%ﬁyz, ¢ ; belong to P¥(F). By stability of the L2-orthogonal
projector %2 in the L% (F)-norm (cf., e.g., [22, Lemma 3.2 with N = 1]), we infer the desired estimate. [J

The case d = 2. If d = 2, the conforming local virtual space on T is defined as

VH(T) = {ve H\(T) | B0 e PYH(T), vor € PY(Fr) | (24)
where P]f’c(]:Tl := P¥(Fr)(C°T). One can show (cf., e.g., [10, Remark 2.3]) that functions in V(T
belong to C°(T). Besides, P5(T) = VF(T).

Proposition 4.4. The triple (T, V5 (T), %5 ), where Vi (T) is given by (24), and X5 . := EQ;UZQ 7 18
the collection of

ko . k—2,7 FeFr
* Mo i= {L;|P’f’c(]—'T)}VEVT U {”F\p';’c(fﬂ(’lF)}je{l,.wN’f*z}’

. Ek:,o L {ﬂ_kfl,i
2,7 = Vr\vE(T) Sie{1,...NF1}

s a finite element in the sense of Ciarlet.

Proof. For any

) 2, 0,j \FeF 5
VY = ((VTV)VEVTv(VT,jF)j:{lT NE- 2}7(VT,L)7,€{1 .,N’;—l}) e R,
o o,v 2, ko
we have v = ((v7")vevr, (VTJF)f:{];T__ Nk,Q}) € R"21,

A

) 0,j i
vo p = (v )veve, (VT?F)]'G{I,M,NT_Q}) € R™.r for any F € Fr,

. L k,0
and v§ = (vyi) nt-1y € R™27. Let us define the operator L R VF(T) such that, for any

ie{l,...,Ng
k
vy € R"2T,
_A‘bg,TKT = vy inT, ‘I’IS,T!T‘F = r]f,FyaTyF on all F e Fr,
. . A\ . e
where we have introduced the notation v := 3,2, vor' ’:}11 e PE=1(T). Since this Dirichlet problem

is well-posed, if <I>’2" vy = 0, then necessarily v = 0 and 7“1 FXTF = 0 for all F € Fr. Owing to
Proposition 4.1, we thus have vy = 0. This means that <I>’2“,T is injéctivé, and hence that dim(VJ(T)) > ”S,T'
Now, let v € VJ(T) be such that ZIE’T(U) = 0. Owing to Proposition 4.2, for all F' € Fr, we have
vp = r’iF (Zlip(v‘p)) = r’fF(EIZC;F(v)) = 0, which yields by integration by parts

f |Vo|? :—J vAv = —J oy Av = 0.
T T T

Hence, v = 0, and ;’;T is injective. Combined to the fact that dim(Vy*(T)) = nf ;, we finally prove that

Z;T is bijective. O
k.0 o k,0

Let us introduce the operator 7 5. : R"27 — PY(Fr) so that, for any vg € R"27, ¥ aTV%F = r’f,Fy%F

for all F' € Fp. We are now in position to introduce the operator r2 T R VE#(T) so that, for any

vp € R”;T, T’;,T!T € V(T solves the well-posed problem

f V’I“IQC’TKT-VU) = —J v Aw + <Vw‘aT-nT, T’f,a:r¥%>_; o7 Yw € VQk(T),
T T 2

k _ o
f ToTN¥T —J V.
T T

(25)
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Proposition 4.5. The operator réiT defined by (25) coincides with the (canonical) reconstruction operator
E oy
Rg,T = (;2,T) L

Proof. Let R™2.7 5 Vo= ZQT(U) for some v € VF(T). Plugging v, into (25), we infer by integration by
parts

f Vr;TyTVw = —J w?‘lv Aw + <Vw‘aT'nT, T’f,aT (;’;g(v))>
T T ’

= f Vou-Vuw Yw e Vi (T),
T

where we have used that Aw € PX™1(T) and that, for all F € Fr, ¥ or (Zg:?(v))lF =rip (ZQ;F(U)) =
™ 2(Z} p(vr)) = v (cf. Proposition 4.2). Since §,. 7% ;v = §, 75 'v = {0, we finally infer that
r’iTyT = r’iT (E’;,T(v)) = v. This is true for any v € VJf(T), hence réiT = (Z;T)*l = RQT. O

As above, since the operators T]2€7T and RS,T coincide, we henceforth drop the notation R;T and stick to

k
T

Let us introduce the operator IfaT . C9(0T) — P¥°(Fr) so that, for any v € C°(T), IfaTUIF =
If r(vjp) for all Fe Fr. It is clear that the collection E’;)T of linear forms on VJf(T) can be extended to a

collection i;T of linear forms on
H"(T) :={ve H'(T) | vjor € C°(T)}.

: . <k
We can hence define the interpolation operator I . : H"*(T) — VJ§(T) such that Z} . := 155 0 Zy .

Besides, we remark that, for all v € H¢(T), TIf,(?T (Eg;(v)) = If,ET(U\aT)~ We have the following stability
result for I;T.

Lemma 4.6 (Stability of Z5 ;). For all v e H*(T), there holds
* |I§,TU‘1,T < [vlyr + hrloly r;
. HIS,T’U”O’T < [oloz + hrlvly 7 + B3 [vly o

Proof. First, remark that if v € H?(T), v e C%(T), and hence v € H*¢(T); consequently, Ig,Tv has a sense.
Let us test (25) with v := E];T(v) There holds

J VI;T’U'V’LU = —J v Aw + <Vw|aT~nT,I{“@T('L)|3T)>7l or Yw € VQk(T),
T T 2

=k,0 . .
where we have used that Aw € P~1(T") and that r’f,ET (Z570(v) = IﬁaT('[}wT). We equivalently rewrite the
equality above as

f VI;T’U'VM = —J (v— W%v) Aw + <Vw‘aT~nT,If’aT(v|5T — W%U»,; o7
T T 277
Vu e VE(T),

and, by Cauchy-Schwarz inequality, we infer, for any w e VJF(T),

_1
[ v28r090| 5 o= mbolyrlawlor + (e 2 artver = 180,

<Vw\aT -nr, Z>—%,(3T

1
+h72’|If,aT(U|6T 77T%v)|1,6’T) =% + %To.

sup —
zer 1) hy P |2llg o + P 2]y or
To estimate the first term Ty, we apply (7) to w € VJF(T), and the Poincaré inequality (6) to (v —79v). We

get
T < |U‘1,T‘w|1,T'
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To estimate the second term Ty, we make use of the estimate (9). This yields, using again (7),

(Vwpor - nr, 2)_1 o

sup  — < |wly p-
eH\@T) hy P2l o + P 2]y or

To estimate the second factor, we first use an inverse inequality (cf., e.g., [30, Lemma 1.138]) for I{“’ P (v‘ P
m3v) € PY(F) on the 1-simplex F for all F € Fr, to infer

h;% HI{C@T(UMT - F%U)Ho,aT + h%If,aT(U\aT - W%“)|170T

< hp [T ar (vor = 730) |y o7 < T o (vor = 780) |, o1

Then, applying Lemma 4.3, and since v € C°(T), there holds

W ® |2 o (o — 790) o s + BEITE o (or — 790)|, o < i — 7] oo

< o =m0 1
which, by application of the Sobolev’s inequality (8), and of the Poincaré inequality (6), yields
h;% |ZF o7 (vjor — 770) g o + hI%‘|If6T(UI5T =), op S [0ly o + hrloly e

Finally, we get
T < (|U‘1,T + hT|U‘2,T)‘w|1,T'

In conclusion, there holds, for any w e VF(T),

JT VIS,T”'VU" < (|U|1,T + hT|v|2,T)|w‘1,T'

Taking w = I§7T’U € V(T provides the expected estimate in the H!(T)-seminorm. To obtain the estimate
in the L?(T)-norm, it suffices to remark that §,Z5 ;v = §. Ty = §; v. Hence, by the triangle inequality
and the Poincaré inequality (6), we infer

HI;TUHO’T < |vllor + Jv— Ig,T”HO’T < Jvllor +hr (vl 7 + |I§,TU‘LT)~
The conclusion then follows from the estimate in the H'(T')-seminorm. O

Remark 4.7. We note that the only moment in the proof of Lemma 4.6 (the same observation applies to
the case d = 3; see Lemma 4.11) where the assumption that T is star-shaped with respect to a ball is needed
is when it comes to use (9). Hidden behind this, is the result (67) that states the existence of a lifting
operator with optimal scaling for functions in H*(0T). Besides, it is worth noticing that, in the proofs of
Lemmas 4.6 and 4.11, the liftings actually need only be constructed, respectively, for functions in P’f’c(]-'T)
and V¢ (Fr), both subspaces of H*(0T). One can hence use, instead of (67) and (9), the results of [10,
Eq. (2.48) and Lemma 5.3].

In view of the case d = 3, we state a sharper stability estimate for the interpolation operator.
Lemma 4.8 (Sharper stability estimate for Z5 ). For all v e HY*(T), there holds
k k 3
||1'27Tv||0’T + hT’IZTU‘LT < HUHO,T + hT|v|1,T + hT/2|v|%7T.
Proof. The proof exactly follows the one of Lemma 4.6, with a slight variation when it comes to apply the

Sobolev’s inequality (8). We make use of the following sharper estimate (cf., e.g., [12, Eq. (2.4)]): for all
ze H7(T),

— 1
l2loz S Rz I2lo. + |2l + B2l

We thus obtain y
T < (|U|1,T + hT2|U‘%)T)|w‘17T,

which finally yields the desired estimate. O
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The case d = 3. If d = 3, the conforming local virtual space on T is defined as
VE(T) = {ve HY(T) | B e PyTHT), vor € Vi (Fr) }, (26)

where VJ(Fp) := VF(Fr) (N C°(0T) with broken space
Vi (Fr) = {v e L*(0T) | vjp € VF(F)VF € Fr},

where Vi (F) is given by (24) with T « F. Since VJf(F) < C°(F) for all F € Fr, one has V¥(T) c H“¢(T).
Besides, P%(T) < V&(T).

Proposition 4.9. The triple (T, VE(T), ’?fT) where V¥ (T) is given by (26), and EQT = E UZkT is
the collection of

ko ._ k—2,m e
* Far T {L;WQ’“(JTT)}uevTU oo Fr >('\e)}me{1 ,,,,, NI

k—1,5 FeFr
U {T(F\Vk (Fr) |F)}je{1>.‘.,N’5‘1}’

. Zk,o o {ﬂ_k—l,i
3,7 "~ U'r|vk(T)Jie{1,... . NET1}?

s a finite element in the sense of Ciarlet.
Proof. For any

a,m

. .
Vp = ((V%V)VEVTv (V’Z':7e ) & )FEJ:T o

ee€r "‘I;T
me{l,i..,N’f*}’(VTvF je{1, N5~ 1}’<VT ie(u... Né‘l}) € R,

a,m

we have yaT = ((V%V)VEVT7 (Vf,e )eefT 0,j \FeFr

: v € R"s
7TLG{1,...,N,1€72}7 ( TvF)je{l,...,Ngfl}) ’

. 5, 2, €
Vg = ((V;V)veVF’ (VTT:):E{Fl

2,4 nf
N2y (VT7F)].€{1W.7N12«—1}) € R"™ ¥ for any F € Fr,
. k,o . k
and v§ = (v%’l)ie{1 ni-1y € R".7. We introduce the operator @k . R™.7 — VF(T) such that, for any
oo NG :
k
Vr € RnS,T7
_A‘I’Ig,T!T =vpinT, ‘I>§,TXT‘F = T’f}Fy%F on all F' € Fr,

k—1 .
where 7§ . is defined by (25) with T «— F, and where we make use of the notation v := Z?jl \C :’};1 €

P’;‘l (T'). Since this Dirichlet problem is well-posed, if @’?f’TyT = 0, then necessarily v = 0 and TS,FX%F =0
for all F' € Fr. Proposition 4.4 then implies that v, = 0, which means that <I>’§’T is injective, and that
dim(VF(T)) = n3 +- Let now v € VF(T) be such that Z;T(v) = 0. Owing to Proposition 4.5, for all F' € Fr,

we have vjp =75 (ZQ’F(U‘F)) =5 (Zg E,Z #(v)) =0, which yields by integration by parts

f |Vo|* = —J vAv = —J T Av = 0.
T T T

Hence, v = 0, and Z]?f,T is injective. Combined to the fact that dim(VF(T)) > n’?f,T, we conclude that §§7T
is bijective. O

k,0 k,0

Let us define the operator 7J2€,6T R T — VQk’C(]:T) so that, for any v9. € R"s.1, r’g’aTy%F = TIQC’FX%F
. k k

for all F € Fr. We can now introduce the operator 7§ . : R"7 — V&F(T) so that, for any v, € R™.7,

r’g’TyT € VJ(T) solves the well-posed problem

k k o k
J Vi3 vy Vw = —J vy Aw + <Vw‘3T-nT,T27aTy%>7% or Yw e V35(T),
T T '

k _ o
J r3,r¥r —J V-
T T

Proposition 4.10. The operator r’?iT defined by (27) coincides with the (canonical) reconstruction operator
E o\—
R§,T = (ZB,T) !

(27)
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Proof. Let R".T 3 Vp o= Z’;T(v) for some v € VF(T). Plugging v into (27), we infer by integration by
parts

f Vr’?f’TKT-Vw = —J T Lo Aw + <Vw‘aT nr, s aT(E’;:&F( ))>
T T

15
—35,0T

= J Vu-Vw  Ywe VET),
T

where we have used that Aw € PE™1(T) and that, for all F € Fr, r§ aT (Egg( ))IF = réF(Zg’gF(v)) =

5 2(Z5 p(vF)) = vp (cf. Proposition 4.5). Since {74 v, = ST ™o = v, we ﬁnally infer that

r§ vy =15, (;g’T(v)) = v. This is valid for any v € V(T), hence 7§ ;, = (X5 >k )t O

Since the operators r’?f,T and ng,T coincide, we henceforth drop the notation RQT and we stick to rlg’T.

We introduce the operator I;aT :C00T) — Vzk’c(]:T) so that, for any v € C°(0T), I§7aTU|F = Iip(’l)‘p)
for all F' € Fp. The collection E’§7T of linear forms on V(7)) can clearly be extended to a collection i’;T of
linear forms on H“(T). Thus, we can introduce the interpolation operator Zj ;. : H"“(T) — V(T such

that g, := 15 5 o ZI;T We remark that, for all v e HY(T), r§ 5 (Egg(v)) = T§ s (vjor). We have the
following stability result for I§7T.

Lemma 4.11 (Stability of I§T). For allve H?(T), there holds
° |I§,TU|1 TN < vl + hrlvly 7
° HILISC,TUHO o S olor + hrlvly o+ hZJv, T
Proof. First, remark that if v e H*(T), v e C°(T), and hence v € H"“(T); consequently, Z ;v has a sense.
Let us test (27) with v, := EgT(v) There holds
JT VI;TU-VU} =_ JT v Aw + <Vw|8T'nT7I§7aT(UI0T)>7%)aT Yw e VI(T),

<k,0 . .
where we have used that Aw € PY~(T') and that T8 or (237;(11)) =I5 op(vjor). We equivalently rewrite the
equality above as

f VI:’f,Tv-Vw = —f (v — 778«1}) Aw + <Vw\aT'nT71§7aT(U|?7T — w%v)>_% o7
T T ’

Yw e V(T),
and, by Cauchy-Schwarz inequality, we infer, for any w e V¥ (T),
1
UT VIQT?)-Vw’ < fv— W%”HO,THA“’HO,T + (hT2 HIf)aT(vw — 7w Ho a7
3 (Vwpor - nr,2)_1 or
+h3 |3 oz (vjor — W%U)hﬂ) sup - — Ty + T
2€HY2T) hy || 2]g o7 + hT 211 o7

To estimate the first term T1, we apply (7) to w € VJ(T), and the Poincaré inequality (6) to (v —ndv). We
get
%1 < |U‘1,T‘w|1,T'

To estimate the second term %o, we first use (9) combined to (7) to infer
<Vw|aT -nr, Z>——76T

1/2 < |w|1,T‘
|Z|1,&‘T

sup
2eH(aT) h. HzHO or T hyp

Then, to estimate the second factor, we remark that, for all F' € Fr, (U|F — W%v) e HY? (F). We can hence
apply Lemma 4.8 with T" < F'| to infer

h |5 e (v — o Mo+ + h i’ |T5 p (v — 730)], F

< h;1/2Hv|F - W%’U”OJ, + hz2|v|p|17F + hF|v‘F|%7F
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By (a sharper version of) the continuous trace inequality (4), and the Poincaré inequality (6), we finally
infer, summing over F' € Fr,

HIQ orT U\FT W%U)H(MT + h¥2|I§,8T(U\(’}T - W%UML@T < |U|1,T + hT|U|2,T-

Hence, we get
%2 < (|U‘1,T + hT|U‘2,T)‘w|1,T’

and there holds, for any w € VF#(T),

L“ VI:];,T’U'V’LU‘ < (|v|1,T + hT|v|2,T)|w\17T.

Taking w = Z§ pv € V{(T)) provides the expected estimate in the H!(T)-seminorm. To obtain the estimate

in the L?(T)-norm, we remark that . Z§ v = §, Ty = = §, v. Hence, by the triangle inequality and the
Poincaré inequality (6), we infer

HI:};,TUHO’T < HUHO,T + HU - I?iTUHO’T S H'UHO,T + hT(|U|1,T + |I§,TU‘LT)~
The conclusion then follows easily from the estimate in the H'(T)-seminorm. O

Remark 4.12. In view of Lemmas 4.6 and 4.11, the stability result on I;T in [24, Eq. (35)], that is taken
as an assumption for the subsequent analysis, seems a bit too optimistic.

4.1.2 Nonconforming case

The nonconforming local virtual space on T' € T}, in dimension d is defined as
VI(T) :={ve HY(T) | Ave PE(T), Vojornr € PA=1(Fr)}. (28)

As opposed to the conforming case, the construction of the nonconforming local virtual space does not
depend on the ambient dimension. We have PX(T) < V¥(T).

Proposition 4.13. The triple (T, VF(T), Z’;,T), where V(T is given by (28), and Z’iT = EZ;? EdT is
the collection of

)}FEJ-'T

k0
* Byr: je{1,... NET1y

= {ﬂ-F|V"(0T
ko . _ k—1,i
° Xir = {T‘—T\Vd’“(T) ie{1,...,NE=1}
is a finite element in the sense of Ciarlet.

Proof. For any

(0 \FeFr nd,r
Yr = ((VT F)Je{l LNES1p (v )ze{l N’;*l}) e R,
5 k0 . k.o .
we have v§ = (VT’JF)iE{TT Nkl € R"¢.7 and v5 = (V%l)ieg NE-1y € R"¢.7. We introduce the operator
j NG T e N g

@51 L RMAT V¥(T) such that, for any v, € RMd.T|

—A@S rvr = vy —|T|;! <JT v+ LT V%) inT,

V<I>§7TXT|0T~nT =v5 on o7,

k _ o
J Qg vy = J vV,
T T

k—1
where we have introduced the notation v := Z?I:‘il vy Tl € PE"N(T) and v§ € PE~1(Fr) is such that
k,
V%F = 1/)’“ le Pk 1( ) for all F' € Fp. Since this Neumann problem is well-posed, if <I>§,TKT =
0, then necessarlly vj =0 and v§ =0, i.e. v = 0. Thus, @ ;. is injective, and dim(V,f(T)) = nf . Let

now v € V(T be such that Z;T(U) = 0. An integration by parts formula yields
J |Vo|? = —J oy Av +f 5 (vior) Vvjarmr = 0.
T T orT
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Hence, v = 0 (since {, v = 0), and ZQT is injective. Combined to the fact that dim(V(T)) = nf ;., we have
proved that ZgT is bijective. O

Let us define the operator rdT R™6.T VF(T) so that, for any v, € R"gvT, r’j’TyT € VF(T) solves the
well-posed problem

f VTZ;,TXT'VU) = *f v Aw + J v Vwopnr Yw e Vi(T),
T T

oT (29)
[ thase [
T T

Proposition 4.14. The operator rs.T defined by (29) coincides with the (canonical) reconstruction operator
P :
RQ,T = (;d,T) L

Proof. Let R™0.7 5 vp o= Z’jj(v) for some v € VF(T). Plugging v, into (29), we infer by integration by
parts

f VrsﬁTyT-Vw = —j Ty Aw + J wlgfl(v‘aT)wa;p-nT
T T oT

= J Vu-Vw Yw e Vi(T),
T

where we have used that Aw € PX~!(T) and that, for all F e Fr, Vwpnrre PE=L(F). Since §r riTyT =
ST w4 'w = §, v, we finally deduce that r§ ;v =% (S} ;(v)) = v. This is valid for any v € V(T), hence
Td T= (Z ) RS,T- O

Since the operators rfj,T and R’;T coincide, we henceforth drop the notation R§7T to stick to the notation

o
The collection ZS’T of linear forms on V(T can be extended to a collection fs)T of linear forms on
H'(T). Thus, we can introduce the interpolation operator I} : H'(T) — Vf(T) such that T} . :=

rhopo E];T. We have the following stability result for Z} ;.

Lemma 4.15 (Stability of I(’ZT). For all ve HY(T), there holds

‘I,T <lvh g

< h .

lop = Plor + il g

Proof. We test (29) with v := EZT(’U), for some v € H*(T). By integration by parts, there holds

f VIg)Tv-Vw = J- Vou-Vw for all w e VF(T). (30)
T T

Testing with w = Ig’TU € VF(T), we immediately obtain the estimate in the H!(T)-seminorm. Then, since
§r I§7TU = {, 75 'v = §, v, by the triangle and Poincaré (6) inequalities, there holds

- IZIC,T”HO,T < ””HO,T + hT(MLT + ‘I(Iiv,TU‘LT%

HIZIC,T”HO,T S
which enables to conclude. O

Remark 4.16. In the proof of Lemma 4.15, and as opposed to the proofs of Lemmas 4.6 and 4.11, no fluzx
estimate is needed. As a consequence, there is no need to construct a lifting (with optimal scaling) for traces
of virtual functions, and T € T needs not be assumed star-shaped to lead the analysis. The difference is
related to the fact that, in the nonconforming case, the interpolation operator Iff’T is the elliptic projector
on the virtual space V.F(T) (see (30)).
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4.2 Local approximation properties

Henceforth, in the conforming case (and in the conforming case only), we will assume that any cell T € Ty,
is star-shaped with respect to a ball whose radius is comparable to Ap.

Let s be an integer such that s = 2 in the conforming case, and s = 1 in the nonconforming case. We
let WH(T) := HY(T) in the conforming case, and W}(T) := H'(T) in the nonconforming case. In view of
Lemmas 4.6, 4.11, and 4.15, the interpolation operator Ifi"’T : WE(T) — VF(T) satisfies, for all v e H(T),

S

s
k 1 k
[z o), < Z L P 2 P S S e (31)
a=1 a=0

For any v. € R™a.7 , we define t5,v3 € P%_ (Fr) so that t&,v3 = r’f opve € PYC(Fr) in the conforming
case with d = 2, taTXT = ngTl(r’2“7oTy%) € Pk 1(.7-"T) in the conforming case with d = 3, and t’gTy'% =

k

v§. € PA=1(Fr) in the nonconforming case. We define the operator Pl R"1 — PE(T) so that, for any

vy € R”’;aT, p’(},TyT € PE(T) solves the well-posed problem

f Vp§7TyT-Vw = —J- v Aw + f t’ng% Vwpnr Yw € P’j(T)7
T T oT

k o
J Pagr¥r = J A\
T T

One can introduce the interpolation operator Pé“,T : WE(T) — PX(T) such that ”PéiT = p’(}jT o ES’T. Since
P¥(T) < V(T), and since Vwjor - ny € Pk=1(Fr), by comparing (32) to (25), (27), and (29), we infer,
using the definition (12), that p’ij =1%o 7“57T. As a consequence, Pl’iT =1%o Ig,T. In particular,

(32)

. Pé“)Tv = kv for all v € VF(T);
e owing to Proposition 2.6, Pg,Tv = v for all v e PX(T);
e in the nonconforming case, owing to (30), PZZT = Ik,

Combining the stability result of Proposition 2.6 with (31) yields, for all v e H&(T),
H’P(]ZTUHQT S Z h%‘wa,T' (33)
a=0

Theorem 4.17 (Approximation properties of P&“’T). Let v e H¥(T), for s € {s,...,k + 1}. Then, the
following holds:
|U_P§7TU|mT < by "ol forme{0,...,s}, (34)

and, for any F € Fr, and any ((1, .. .,Cq) € N? such that Z?:l G =m,

)[(95611 ...8§Z(U—P§7Tv)]‘F)OF < h;_m_1/2|v‘3,T forme{0,...,s—1}. (35)

Proof. In the nonconforming case, there is nothing to prove. Since Pd o = II£., the result follows from (13)
and (14) of Prop0s1t10n 2. 6 For the conforming case, we follow the ideas of [11 Chapter 4]. We proceed by
density of C°(T)(H*(T) in H*(T ) Since in that case T is star-shaped with respect to every point of a
ball of radius th, vE C’OO Y H*(T) admits the following Sobolev representation:

v = Qv + Ry,

where Q5v € P5™H(T) < PE(T) is the averaged Taylor polynomial, and the remainder Rjwv satisfies, for
r € {0,...,s}, the Bramble-Hilbert lemma (cf., e.g., [11, Lemma 4.3.8]):

|R%’U|’I”,T S h;“_r|v|s,T' (36)

One can easily see that, since Q5v € PX(T) and P§7Tv = v for all v € P%(T), there holds v — P§7TU =
R3v — Pj p(R5w). Thus,
|’U - ,P(’iﬁ,TU‘.m’T < |R%U|m,T + |P§,T(R§“U)|m7T'
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Applying m times the inverse inequality (3) to PZRT(RSTU) € PX(T), and then the stability result (33) in the
L?(T)-norm on P§,T7 we infer

S
|v - P,Q“’Tv’mI < |R§~U|m7T + h5m“P5,T(R§“U)“o,T < \R%v|m,T + Z h§m+“|R§“’U‘a7T~
a=0

Applying the Bramble-Hilbert lemma (36) for r = m and r = « € {0,..., s}, we finally obtain (34). For
F € Fr now, the continuous trace inequality (4) yields

< h;1/2|v — P§,Tv} + h¥2|v — PZZTv|

m,T

’[agll T aﬂcv(ciz (U - Pg,TU)LF‘QF m+1,T"

The conclusion then follows from (34) (remark that, for m e {0,...,s — 1}, m+ 1€ {1,...,s}). O
Remark 4.18. For any v € WX(T), there holds

P(’ZTU - IC’ZTv = I(’ZT (PZZTv - v). (37)
Remark 4.19. The definition (32) of the operator pS)T is entirely based on some polynomial-valued linear
combinations of the DoFs, that are v € PX™N(T), and ti;v5 € P5_ (Fr). In the conforming case with
veVr’ and (V% € Pllviz(F»Fe]:T

k—1 .
case with d = 3, t5,.v5 is such that, for all F € Fr, thY%\F =vg = Z;\Ijl v%fFi/Jf{jl e PE=Y(F). In the

d=2, t’gTy?p only depends on (V%" € R) through (23). In the conforming

nonconforming case, t&.v5 = v§ € PA=1(Fp).

4.3 Discrete problem

Let us define, for any 1" € T, the following seminorm on Rm4.7: for all Vo € R"ZvT,

2
. |yT|2T = HVVOTHS,T + thTl/Q (V%WT ftlgTygﬂ)Ho oy in the conforming case with d = 2, and in the
nonconforming case,
2
2 2 -1 k-1
o vl = HVV’CZ)“HO,T + HhaT/2 (V%WT — Tor (Té,aTK%))‘)O oT

2
VIR ~ T]f*aFX%aFHo ap in the conforming case with d = 3.

+ ZFG}-T ‘

. 2 2 k .
Defining [v;, [}, == Dlrer. [Vl for any v;, € R"¢7, one can easily see that |-, defines a norm on VE L o
g 208y

Remark 4.20. In view of Lemma 3.2 and Remark 3.4, the quantity

12
2
(Z |V’“§,TVT”O,T> ;

TeTh

which can be equivalently written ||V yvp |, o for v, € Vi (Tn) such that vy := T§7TXT for all T € Ty, defines

k
a norm on Vg,h,o- Furthermore, one can easily show (we omit the proof for brevity) that, for any v, € R"* T,

1z
2
(Z |V7“§,TVT0,T> S [¥nlp-

TeTh

We henceforth consider Problem (18), with local linear form

Ir(vy) == L firvis

and (symmetric) local bilinear form

ar(Wp, vp) == J VPS,TET'VPIQ,TXT +s7(Wp, vr),
T

with stabilization, letting [ = k in the conforming case with d = 2, and | = k—1 in the other cases,
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. =11 (sk k 0\l (sk kG0 ; ; ;
o sp(Wp,vyp) 1= SaT T Tor (6d,TWT|8T — taTET)ﬂ'aT (5d,T¥T\aT - taTXT) in the conforming case with

d = 2, and in the nonconforming case,

1_k—1(sk k o\ k—1(sk k 2 k
o sp(wp,vyp) = S(?T hormar (53,TWT|0T*T2,9TWT)7T0T (53,T¥T\0T*7”2,5T¥T) +ZFEFT SaF (53,TET|6F*
2,0 k k 0,0\ - . . _
Tl,aFET,F) (537TmiF — r176F!T,F) in the conforming case with d = 3,

where 6% ;v = ph pvr + kot (rh pyr — Pl pyr) € PE(T). Other choices of stabilization are possible (cf.,

e.g., [8]). Here, we build upon the standard HHO choice of stabilization (see [26, 27]).

Remark 4.21. Letting w,v € Vf(T) such that w := vl ;wy and v = r} vy, and since P§pz = Wz for
all z € VF(T), one can equivalently consider Problem (17), with local (bi)linear forms

J f|T7TT v, ar(w,v) = J Vilhw VI + sp(w,v),
T
with stabilization
st(w,v) = LT hg%ﬂlaT ([AZ,TU) - w]|aT)7TlaT([AZ,TU - U]|6T)

in the conforming case with d = 2, and in the nonconforming case, and stabilization
sr(w,v) = LT hormor ! (185 7w — wlior)whr " ([A5 7o — vjor)
k k
+ Z J (A5 7w — w)|aF(A3,T” - U)|aF
FeFr oF

in the conforming case with d = 3, where A% v :=Tl5v + mh (v — TTkw) € PE(T).
We prove well-posedness for Problem (18).

Lemma 4.22 (Local coercivity and boundedness). For all T € Ty, and all vy € R”Z'T, the following holds:

2 2
vrlr S ar(vp,vr) S [vplp

Proof. We begin by showing local coercivity. Testing (32) with w = v$ € PS_I(T) < PK(T), we infer

k k
_J v AV = J Vparvr Vv — L thrv Vviormr.
T T

Integrating by parts the left-hand side, there holds
2 k l
IVvalor = L Vg v Ve + LT Tor (V%MT t“TVT)VVTIUT nr,

which yields, by Cauchy—Schwarz inequality, and the discrete trace inequality (5),

o —1/a
193 o < |Vohizvrly o + [ mbe (5or — i) | (38)
Now, adding/subtracting 5§,T¥T| o7, using the fact that Wé“ﬂ*l(rlj)TyT) = v%, and by stability of 7%, in the
L?(F)-norm for all F € Fr, we infer

=2 1 o k 0 —1/2 ‘
— g —
)haT Tor (Vjor taTKT)HMT ‘haT (0l oy — 75 (Pl T))| 0.7
ho 2w (6% v —th,vo H .
+ b me (Bl rvmor — i)
By the discrete trace inequality (5), and an application of (10) with s = 1 and m = 0, we infer
=12 _1 k o k =12 _1 k k 0
HhaT Tor (V0T|9T — t37¥7) Ho o7 S HVpd7TYTHO,T + HhaT mor (a,r¥rior — t37¥T) ’ 0.0 (39)

With | = k in the conforming case with d = 2, and [

= k—1 in the nonconforming case, we infer local
coercivity in those two cases as a direct consequence of (38) an

d (39). In the conforming case with d = 3,
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one has to estimate two terms in the stabilization part of the seminorm. The first one is handled as above with

I = k—1. It then remains to estimate the term HV%IGF —rk 5Fy%‘i,” R for all F € Fr. Adding/subtracting
’ “llo,oF

ok TVr|or, and since i (r% pvp) = v, we have, for any F € Fr,

o 0,(7
VTloF — 7”1 oFYT F

< H p3 TV — e 1(p'§7TKT))|aFH

‘0 oF 0,0F

k k0,0
+ H53,TXT|5F —T1,0FVT F

‘o,aF'

Since (plgvaT — wé_l(plgyTyT)) r € PX(F), we can apply a first time the discrete trace inequality (5) (with
T < F) to obtain

k— -1 k—
H(plg,T!T - Ty l(plg,TXT))‘gFH < hp > (plg,TXT — Tp l(pl?f,TXT))\FH

0,0F 0,F

and a second time (as it is) to obtain

H (pl?f,TXT - k (PsT T))‘ H ;1Hp§,TXT - W?‘_l(pg,TXT)HO,T'

00F

An application of (10) with s = 1 and m = 0 finally yields

o k 2,0 k k k 0,0
HVT|aF - T1,aF¥T,FH0 oF S “VPB,TXTHO)T + H53,TXT|5F - T1,aF¥T,FHO oF

which concludes the proof of local coercivity in the conforming case with d = 3.
Let us now show local boundedness. Testing (32) with w = p’j’TyT € P¥(T), and integrating by parts
the right-hand side, we infer

HVp];,TKTH;T = JT VV%'Vps,TKT - LT WéT (V%|6T t“TVT)Vpd V10T T

which yields, by Cauchy—Schwarz inequality, and the discrete trace inequality (5),

[V05rvrlyr < 199300+ [harvhr (Viar — thrd)] (40)
Then, writing, by the triangle inequality, and the stability of 7%, in the L?(F)-norm for all F € Fr,
thTl/QwaT (05 7Y 7ior — tE2YT) ‘ Hh(;Tl2 8a. V70 — Vo7 HO)(?T
v
we infer, since ﬂ'éi_l (TS,TXT) = vy,
)‘hngQWaT (08 7Vrior — tErve) Ho o S Hffl/2 (P v — 77 (Paryr)) \GTHQ(?T
+ ‘ ;1/27T2’T (V%WT - tSTX%)HQ,(?T'
By the discrete trace inequality (5), and (10) with s = 1 and m = 0, we finally obtain
thjl”/QWaT (5§,T¥T\0T - th!g“) Ho,aT S vag,TXTH&T + ‘hETl/ZWéT (VOT\('}T - thX%) Ho,aT’ (41)

which, combined to (40), proves local boundedness in the conforming case with d = 2 (I = k), and in the
nonconforming case (I = k—1). In the conforming case with d = 3, one has to estimate two terms in the
stabilization. The first one is handled as above with [ = k—1. We do not detail the treatment of the second,
which relies on the exact same kind of arguments. O

Well-posedness follows as an immediate consequence of Lemma 4.22, and of the fact that |-|, defines a norm
on VK, 0
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Corollary 4.23 (Well-posedness). For all v, € R"4.7h , there holds

2
Valn < an(vp, vy)-
As a consequence, Problem (18) is well-posed.
Let us now investigate the approximation capacity of the stabilization term.

Lemma 4.24 (Approximation properties of the stabilization). Let v e H*(T), for s€ {s,...,k+1}. Then,
letting v = EZT(U), the following holds:

st (v, vy) < hi ol - (42)
Proof. In the conforming case with d = 3, and in the nonconforming case, we have to estimate the
quantity HhaT 7T¢3T (6§TVT‘0T —thV% H . In both cases, we have W]f;l(tl—?TX%) = Wé}l(va), and

my H(rk pvg) = 7N (TE o) = 75 Hence by stability of 75-1, there holds

i

or Tor (5§,TXT|5T - tlgTXaT)H < H hay” (Pd TV — )|5TH

0,0T 0,0T

k—1 E
+ ”h(’T mr (v = Pirv) \aTHOﬁT'
To estimate the first term in the right-hand side, we directly apply the result (35) for m = 0. To estimate the
second term, we successively use the discrete trace inequality (5), the stability of 71'];1_1 in the L?(T)-norm,
and the result (34) for m = 0. The conclusion easily follows. In the conforming case with d = 2, we have to
estimate the quantity

—1/2

(52 TYT|]oT — T]f,aTXaT) H

0,07

=2 k k 0
HhaT Tor (52,T!T|0T - 7’1,5TKT)HO or ‘

Since 7% o, vg = 7k Vo7, and mh~1 (rk pvy) = Tk (Ié€ ) = 7Ly, there holds

—1/2 k 0 71/2 k k
HhaT 7TaT (52 TY¥T)]oT — 11 aTVT) H Hh PQ,TU - Iz,TU> |9TH0 o7

=12 _k—1 k
HhaT T (_PQ’TU)\GTHO,E)T'

The second term in the right-hand side can be estimated as previously. The first one is handled recalling
the remark (37). We indeed have

,1/2 k L —1/2 k
Hh (P2rv _IQ7T’U)|E}TH076T - Hh (v~ ,P2’T’U)|‘9THO,6T.

Applying Lemma 4.3 (recall that I§7T (v — P;Tv) or = IfaT([v — PQTU]WT)), there holds

—1
Hh /2 (P v — I3 TU)IﬁTH < (v— P§,TU)|,;TH0070T.
Since v € H*(T) < C°(T) in that case, one has
|0 =Pezv)ior],, o < v = Pizv], ;
By (8), combined to (34) with m = a € {0,...,2}, we finally infer
—1 5 —
Hh s Pg,TU *Ig,TU WTHO or ¥ Z ha~ 1 - P;T’ULT < hy 1\U|5,T
We are left with estimating, in the conforming case with d = 3, and for all F' € Frp, 53 TVT|0F — rl oFY (;i, H .
0,0F
We follow the same path as previously, and end up having to estimate ”I;T (v - P§,TU)|5 F”o . Since

I§,T (U - P§,TU)|,3F = IfaF([U - ,Piif,TU]lé’F)v
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by Lemma 4.3, the fact that v e H*(T) < C°(T) also in that case, and (8), we infer

_3 _1
Zho(v=Phrv) el S 0L (hg? o = Phgo]yp + bt o = Phgel,

‘O,QF
1
+h%|v — P§’TU|2 T) .

The conclusion then follows from (34) with m € {0,...,2}. O

4.4 Convergence analysis
Let us begin this section with the following remark.

Remark 4.25 (Regularity of the solution to (1)). Since the boundary of the domain § is assumed to be
composed of a finite union of portions of affine hyperplanes, one can prove (see, e.g., [31, Theorem 4.4.3.7])
the following elliptic reqularity result: there exists € € (0,1/2] so that u € H3te (), and

\|U\|g+s,9 S Hf”o,Q-
If Q is in addition convex, one can actually prove full elliptic regularity, in the sense that u € H?(Q), and

(43)

lullg,0 =

In any case, and since div(Vu) = Au = —f € L?(Q), there holds: for all F € F,, [Vu]rnp = 0 almost
everywhere on F'.

Let ||3h := ap(,+). According to Corollary 4.23, ||, defines a norm on thh,o. For B := (Br)rer, €
(2,..., k + 1}°24(70) we define

HP(Ty) := {vn € L*(Q) | vy € HP*(T) VT € Tp,}.

Theorem 4.26 (Energy-norm error estimate). Assume that the solution w € Hg () to Problem (1) further
belongs to HP(Ty). Then, the following estimate holds:

12
<ZhﬁT1|ﬁT,> : (44)

TeTh

=k
‘Zd,h(u) - Eh

where R™a.7 3 Zsh(u) = (EZT(u\T))TeTh’ and u,, € Vg,h,o is the unique solution to Problem (18).

Proof. Since u e H2t(Q) (" HE(Q) (cf. Remark 4.25), u € C°(Q) and u|pq = 0, hence Egh(u) € V4 1.0, and
so does the difference (Egh(u) —u;,). We can then write
<k

= max an (Zd,h(u) — W, V). (45)
eh Vhevd h,0 |Vh| =1

=k
);d,h(u) — U
Since u,, solves Problem (18), we have to estimate, for any v, € V’; no Such that |v, [, =1,

) = Z Cr(vy), with Cr(vy) —aT(EdT (wr),vr) Jf|TVT.
TeTh

Using the strong form of Problem (1), and integrating by parts, we infer, for any T € Ty,
Cr(vy) = J VPZZT(U\T)'VPZ,TXT - f Vu-Vvp
T T
=k
+ J"T V%‘aTVU‘aT"I’LT + s (Zd’T(uw),yT).
o

Using the definition (32), and since P} (ur) € P5(T), we then have

Cr(vy) = JT V(R?,T(“\T) - “)'VVOT - LT WéT (VOT\aT - thX%)VPiT(U\T)laT'nT

+ LT Thr (VOT\aT)VU\aT'"T + st (ZS,T(UlT)aXT)-
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Summing over T € T, and invoking the continuity of the flux of the exact solution along interfaces (cf. Re-
mark 4.25), combined to the fact that thy%F =0 for all F € Fr () Fy since v, € V’j’h)o, we infer

Culw) = Y (fTV<7>§,T<u.T> W)V

TeTh
o —k
+ LT WéT (VT|aT - thX%)V(U - Pclzc,T(U\T))WT'”T + ST (Zd,T(uT)va))' (46)

Applying Cauchy—Schwarz inequality, and the approximation results (34)—(35) with s € {8r}re, and m = 1,
we obtain

1/2

2(Br—1 =k =k

ch(ms(Z (3 >|u§T,T+sT(zd,T<u|T>,zd,T<uT>))> (Isnls + ¥l -
TeTh

The conclusion then follows from Lemma 4.24 with s € {87} 7eT;, , Corollary 4.23, and the fact that |v,,|
by assumption.

e,h =1

O
Remark 4.27. In the nonconforming case, to prove that Z:h(u) belongs to V’;,h,o, it is sufficient to use
that uw € HE(QY). Furthermore, the first term in the right-hand side of (46) is identically zero. Indeed, in

that case, for all T € Ty, P§,T =10k (recall that v§ € PE=1(T) < PX(T)). Such a property is not true in the
conforming case.

Corollary 4.28 (H!(T;,)-seminorm error estimate). Under the regularity assumption of Theorem /.26, the
following estimate holds:

1/2
[Vn(u=phaw) ]y q < (Z h%ﬁT‘”w@T,T) : (47)
TeTh

k
where ply , - R"7n — PE(Ty) is such that, for all T € Tp, p& vy 1= 05 pvr.

Proof. For any T € Ty, by a simple triangle inequality, we infer

[V (= phrur) |y < |V (w=Phrtwn)| p+ | Voho Corlur) —ur)|

Squaring, summing over 7" € T,, and using the definition of |-|_ ,, yields

_ 2
IV =phau)log s D 19 (0= Phrm)y , + [Shat) -, (48)

TeTh

e,h.

The conclusion then follows from the approximation result (34) with s € {8r}7re;, and m = 1, and (44). O

In view of (48) and (45), the error in H!(7j)-seminorm between the exact solution u and the com-
putable/computed solution p’j’hgh simply splits into an approximation error (directly available from the

properties of P§,T7 T € Tn), and the consistency error of the scheme, that can be estimated within a few
lines (cf. the proof of Theorem 4.26).

Remark 4.29. Letting uy € Vd}fh,o (respectively, I§7hu € de,h,O) such that upp = r§7TgT (respectively,
Ig)huu« = I;T(U‘T) = r’j,T (EST(U‘T))) for all T € Ty, we know, by Remark 4.20 and Corollary 4.23, that

[V (T = un) [ < (S () = (49)
Since, by the triangle inequality, and letting ’PC’Zh = TIF OI§,h?
th (u - uh) “0,9 S th (u - 'P(lj,hu) Ho@ + th ('Pf;,hu - Itlic,hu) Ho@
+ [ Vu (Zinu =) 00
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we can prove, using (34) with s € {Br}rer, and m = 1 for the first term in the right-hand side, the
remark (37) combined to (31) and (34) for the second, and (49) combined to (44) for the third, that, under
the same regqularity assumption as in Theorem 4.26, there holds

12
V(=) g < (2 h%ﬁT-%@T,T) | 0

TE7—}L
Let us now derive an estimate on the error between p% , u, and u in the L?(Q)-norm.

Theorem 4.30 (Potential-norm error estimate). Assume that the solution u € HI(Q) to Problem (1)
further belongs to HP(T;,) and that, when k = 1, one also has f € H'(Ty). Assume full elliptic reqularity
for Problem (1) (cf. Remark 4.25). Then, there holds

1/2

2 —1

u—uho,gsh<2 hy ™ >(|u|ZT,T+6m|f|iT)> - (51)
TeTh

Proof. Setting g := (u — up,) € L?(2), we let 2 € H}(2) be the unique solution in H(Q) to —Az = g in Q,
with z = 0 on 0. By (full) elliptic regularity, z € H?(f2) and, in view of (43), there holds

2o < 1t — unlo o (52)
Writing
i — un g = f (u—un)g = — j (u— wp) Az, (53)
Q Q

we distinguish between the conforming, and the nonconforming cases. In the conforming case, using the
fact that (u — up) € Hg(£2), we infer by integration by parts:

Hu — 'U/hHg,Q = J V(U — uh)Vz
Q
Then, we add/subtract P}, z, to obtain

fu— “hug,g = f V(u—up)Vi(z— Pg_yhz) + J (VhH’,iu-VIZth — Vhl_[l,iuh~V;173¢’Z,Lz)7
Q Q

which, in turn, rewrites

=k
[u— uhHg7Q =JQ V(u—wup)Vi(z— P,ihz) + <JQ VhH’fLu-VI;hz — ap, (uh,Edﬁ(z)))

=k
+ > sr(up, Zgr(zr)) = F5 + TS+ T5. (54)
TeTh

In the nonconforming case now, we add/subtract 75~ ' (u — uy) in (53), and we use that W?‘l(uhw) =u
for any T € Ty, to infer

Ju—unl2g = L (u—wn) = 7w wp)) Az =) L (5 () — ) Az, (55)
TeTh

i

By an integration by parts, and using the fact that [Vz]p-np = 0 almost everywhere on interfaces F' € F},
(cf. Remark 4.25), as well as the fact that w’f,fl(uw) = u%IF =0 for all F € Fr () Fp, there holds

2 f (mi () — )22 = ), ( fTV(W:’%*l(u‘T)—u%)-vz

TeTh T

- L [ ) = e = (el ) u%>]VzaT-nT) |

Adding/subtracting the term Z J Vp’d“)T (Eﬁj(uw) - QT).V’P(’ZT(Z‘T) to (55), using the definition (32),
TeT T
and letting

?,Cl = J-Q ((u - Uh) - Wzil(u o Uh)) AZ,
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as well as

o= 3 ([, VO ) )9 (e~ Phran)

TeTh
- j (757 (wr) = up)or — (x50 (war) — v8) |V (2 = Phr(2r)) aT-nT) ,
oT

we hence infer that

—k
Ju— unlZg =TI + TP + ( [ vPEeviphy - (uh,zd,h<z>))

S nc nc nc nc
+ 2 ST(QT,E¢T(Z|T)) = T79 + 375 + T + T3¢ (56)
TeTh

We now have to estimate the different terms in the right-hand sides of (54), and of (56). To estimate T,
we apply, successively, Cauchy—Schwarz inequality, (50), and (34) with s = 2 and m = 1, combined to (52).
We obtain

1/2

. 2(Br—1)| |2

¢ < ( Z hT(BT )|uﬂT7T) hllu—unly - (57)
TeTh

To estimate T79, we apply, successively, Cauchy-Schwarz inequality, (10) with s = 1 and m = 0, (50), the
fact that |Az||, o < |z|5 o, and (52). We get

1/2

nc 2 -1

A< h ( Z hT(ﬁT )|U'ZT,T) lu — uhHO,Q' (58)
TeTh

To estimate T7%, we apply, successively, the Cauchy—Schwarz inequality, (34)—(35) with s = 2 and m = 1,
and Corollary 4.23. We get

<k
15 < ‘;d,h(u) _Eh‘e hh 12120

which, in turn, by (44), and (52), gives

1/2

nc 2 —1 2

1,2s(2 haP™ >|u|BT,T> hlu—up g o (59)
TeTh

To estimate T4 and T5¢, we use the fact that

N srlun Zarzn) = ) srESar(ur) nr(xr)
TeTh TeTh

—k —k
o Z ST(Zd,T(ulT) 7ET’ZCI,T(Z|T))7
TeTh

to infer, using successively the Cauchy—Schwarz inequality, (42) with s € {87 }reT, for up, (44), (42) with
s = 2 for zp, and (52),

1/2

¢ qnc 2 —1

¢ e < (Z 20r >|u|;T7T> hlw—unlo.0 (60)
TeTh

We are left with estimating T§, and ¥5°. Since u, € V§7h70 solves Problem (18), adding/subtracting

f Vu-VIthz = f fIZth in the conforming case (remark that Iihz € H}(Q) in that case), and f VuVz =
Q Q Q

f z in the nonconforming case, there holds
Q

5= J Vi (Miu —w)- Vi (T2 — Phpz) + Z J fir (Tir(zr) — 75 (21) (61)
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and (recall that PfiT = I1% in the nonconforming case)
TH¢ = JQ Vi (Hﬁu — u)'Vh (z — Hfz) + Z J fir (z - ﬂ]:,i_l(z‘T)) . (62)
TeTh

The first term in the right-hand side of (61) is estimated by means of (i) Cauchy—Schwarz inequality, (ii) (13)
with s € {Br}rer, and m = 1, (iii) the remark (37) combined to (31), and to (34) with s = 2 and m € {1, 2},
and (iv) (52). The first term in the right-hand side of (62) is estimated using (i) the Cauchy-Schwarz
inequality, (ii) (13) with m = 1, and (iii) (52). It remains to estimate the second term in the right-hand
side of (61) (equivalent arguments apply to (62)). When k = 1, there holds

J f|T Id T(Z|T) %(Z\T)) = Z f (f\T—W(:]r(ﬂT)) Ié,T(Z\T—W%(ZW))-

TeTh TeTh T

Then, by Cauchy—Schwarz inequality, (31), and (10), we infer

1/2
f fir IdT<Z\T)_7TT z\T < (Z hT|f|1 T) h(|z|1,Q+h|Z‘2,Q)' (63)

TeTh TeTh

When k > 2 now, there holds

Z f fir (I!ic,T(Z\T) - Wg_l(ZIT)) =

TeT °T

> J fir — T (f\T)) Tir(zr — 77 (2r)-

TeT, ¥ T

By the same kind of arguments as in the case k = 1, we infer

1/
2 —
J- fir Id (7)) — W:’} (Z‘T < < Z hT(ﬂT 1)|“|?3T,T> h |Z|2Q (64)
TeTh TeTh
Collecting (61), (63)—(64), and using (52), we obtain
1/2
c qnc 2 -1 2 2
27‘32 < ( Z hT(ﬁT )(|U|BT7T + 51kf|1,T)> h Hu - uh“o,Q- (65)
TeTh

Collecting (54), (56), (57), (58), (59), (65), and (60), we conclude the proof. O

Corollary 4.31 (L?(Q)-norm error estimate). Under the assumptions of Theorem 4.30, the following esti-
mate holds:

1a
Hu — D4 huh”o o < ( Z h;(ﬁT—l) (‘U|ZT;T + 51k|fiT)> . (66)

TeTh
Proof. By the triangle inequality, and since pfl’ Ry, = Hﬁuh, we infer
[u = pinunly o < o= Tufg g + 107 (w = un) o o
By the stability property of IT% for any T € T;, (cf. Proposition 2.6), there holds
Ju = phpn o < = TW5ul o + = unlog + MIVaG = un) 0
The conclusion then follows from (13) with s € {8r}rer;, and m = 0, (51), and (50). O

Remark 4.32 (Supercloseness of cell unknowns). Noticing that ' ([u—up]ir) = 75 ' (ujr) —u$ for any

T € Ty, there holds, by stability of 7r§”l_1 in the L?(T)-norm, by (51), and under the same assumptions as in
Theorem 4.30,

/o
wzwﬂmwsh<2h%T%m;rwmﬁﬂ>,

TeTh

where uj, € ngl(ﬁ) 1s such that qulT i=ug for all T € T},. Hence, the cell unknowns are superclose to the
projections of degree k—1 of u.
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4.5 General workflow

As for any Galerkin method, the general workflow for solving Problem (18) with the ¢/nc-VE/HHO methods
splits into (i) an offline stage, that is independent of the source term, and which aims at performing the
assembly of the problem matrix, and (ii) an online stage, that consists, for a given source term, in solving
the resulting global system. A change in the data only affects the online stage (cf. Remark 4.33). The
precomputations that are performed in the offline stage are all local; hence, the offline stage can naturally
benefit from parallel architectures.

Let us describe, in details, these two stages, beginning with the offline stage.

1. In the conforming case with d = 2 (respectively, d = 3), one first computes the operator r{“’ r defined
by (23) for all F' € F}, (respectively, rfe for all e € £,). This requires to solve a SPD system of size

N¥ (cf. Remark 2.7), with N’f_Q + 2 right-hand sides. In both the conforming and nonconforming
cases, locally to any T € T, one computes the operator pZ’T defined by (32). Its computation requires

to solve a SPD system of size N% (cf. also Remark 2.7), for a number of right-hand sides that is (i)
NA=Y 4 card(Fr) x N¥=2 4 card(Vr) in the conforming case with d = 2, (ii) N§~! + card(Fr) x NE~1
in the conforming case with d = 3, and (iii) N*™! + card(Fr) x N =1 in the nonconforming case
(cf. Remark 4.19). Once the operator p’;T has been computed, one computes, still locally to any
T € T, the stabilization form(s), that express(es) in terms of the DoFs and of the different already
computed quantities.

2. As common to any skeletal method, cell DoFs are locally eliminated by static condensation in terms
of the local skeletal DoFs. Locally to each T € T, one has to invert a SPD matrix of size N’;_l.

Let us now describe the online stage, for a given source term f € L?((2).

3. One computes the right-hand side. This requires to integrate, locally to any T' € Ty, fir against
polynomials in P5~(T).

4. One solves the resulting SPD global system, that is of size
card(Fy) x N2 4 card(V),)
in the conforming case with d = 2,
card(Fy) x N&=1 4 card(E,) x N¥=2 4 card(Vy)
in the conforming case with d = 3 (cf. Remark 4.34), and
card(F) x Nh—1
in the nonconforming case.

Remark 4.33. Fxcept point 3, the description above of the general workflow of the method applies verbatim
to the case of a Problem (1) featuring a source term f € H=Y(Q) (assuming that a decomposition f = fo +
divf with fo € L*(Q) and f € L*(Q)? is known), or nonhomogeneous mized Dirichlet-Neumann boundary
conditions. Indeed, assuming that the lines/colums of the problem matriz corresponding to Dirichlet skeletal
DoFs are diagonalized, such changes only affect the right-hand side of the discrete variational formulation.

Remark 4.34. In the conforming case with d = 3, one can reduce the size of the global system by using
enhanced virtual spaces [14], or Serendipity spaces [7], on the faces F € Fr of the cells T € Ty, instead of
VS(F).

A Proofs of (9) and Lemma 3.2

A.1 Proof of (9)

To prove (9), we first recall (cf., e.g., [12, Section 2.7]) that, since T is star-shaped with respect to a ball
whose radius is comparable to hr, for any z € H'(0T), there exists z € H*(T) such that Zjp7 = 2, and

— — 7 —1 1
hllZ oz + 12l g < g 12lg or + hi 2l or- (67)
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Now, by integration by parts, there holds, for any z € H*(0T) < H"?(T),

<VU|aT "'”LT7Z>_%75T = J Vv-VzZ +J AVZ,
T T

which yields, by Cauchy-Schwarz inequality,

(Vvar -nr,2)_1 or < |y 7|2l 7 + hr|Av] o,Th%lel

0,T"

The estimate (67) enables to conclude.

A.2 Proof of Lemma 3.2

Assume that, for vy € Vj, , thvhHQQ = 0. Then, for all T'€ T, V(vs7) = 0 and there is ¢z € R such that
vy = cr. Since {7} per, S Zz, then for all F € Fj, SF [vr]F = 0 and there exists ¢ € R such that ¢ = ¢
for all T' € Tp,. The fact that SF vpp = 0 for some (here, all) F' € ]-','f finally yields that v, = 0 on Q. To
prove (20), we start from the following discrete Poincaré inequality on H'(73) (cf., e.g., [9]):

_ 2 2 _ 2
Vop, € H1(771), Z hTQHUh\T”QT < HVhUhHO,Q + Z hFlH[[UhﬂFHo,P
TeTh FeFp

and we show that ZFG]_-h h}l | [[Uh]]FHg,F < HVhUhHaQ for all v, € Vi, 0. To prove so, since for v, € V0,
§plvn]r = 0 for all F € Fy, there holds

0,F"

2
ve]Flly r = L [on, — mhonl plonl e < |lvn — mhonlr g g [vn] F]

and we can use the continuous trace inequality (4) and the Poincaré inequality (6) to infer

_1 1 _1 1
hp?| [”h]]FHO,F < hp® Z (hT2 H”h\T - Wg(vh\T)”o,T + hIZ“HV(”h\T)Ho,T)
TeTr

< hp? Z h%HV(UhIT)”o,T'
TeTr

Finally, since hp is comparable to hr for T € Tr, and card(Fr) < 1 for all T € T;, (cf. Section 2.2), the
conclusion follows. To obtain (21), it suffices to remark that, for all T € Ty, hr < h < diam(€2).
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