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ABSTRACT
Convolutional Neural Networks (CNNs) are computationally in-
tensive algorithms that currently require dedicated hardware to be
executed. In the case of FPGA-Based accelerators, we point-out in
this work the challenge of Multi-Operand Adders (MOAs) and their
high resource utilization in an FPGA implementation of a CNN.
To address this challenge, two optimization strategies, that rely on
time-multiplexing and approximate computing, are investigated.
At first glance, the two strategies looked promising to reduce the
footprint of a given architectural mapping, but when synthesized
on the device, none of them gave the expected results. Experimental
sections analyze the reasons of these unexpected results.
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1 INTRODUCTION
Since their breakthrough in 2012, Deep Convolutional Neural Net-
works (CNNs) [6] have become the de-facto standard used to solve
an ever greater number of computer-vision tasks that range from
image classification to semantic segmentation and scene recogni-
tion [3, 7, 13]. However, CNN-based algorithms are computationally
intensive and their execution in real-time remains a challenging
task, especially in embedded devices.

To address this challenge, a variety of dedicated accelerators,
built around Field Programmable Gate Arrays (FPGAs) and Graph-
ics Processing Units (GPUs), have been proposed. A key advantage
of the former solution is its superior power efficiency when com-
pared to the latter [10]. Moreover, CNNworkloads have a streaming
nature that is well suited to reconfigurable hardware architectures
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such as FPGAs, which motivated numerous research efforts to opti-
mize FPGA implementation for CNNs [8, 11, 16]. Among the pro-
posed methods, one possibility is to directly map a CNN graph
on the FPGA resources, allocating each processing actor its own
hardware instance, and each edge of the graph its own First-In
First-Out (FIFO) channel [1].

In this paper, we point-out to a key feature of this Direct Hard-
ware Mapping (DHM), which is the high hardware cost of Multi-
Operand-Adders. More particularly, we found that 69% of the logic
used to map the CNN graph on an FPGA is allocated to logic imple-
menting aggregated adders which have the particularity to receive
operands per thousands. To reduce these footprint of adders, we
investigate in this work two strategies based on time-multiplexed se-
rialization and approximate computing. Each method is promising
on paper, but result in unexpectedly bad results when synthesized
on FPGAs. Our experiments are reproducible and available on-line1.

2 MULTI-OPERAND-ADDERS IN CNNS
A CNN graph takes the form of a succession of layers that hi-
erarchically extract features from raw inputs. Most computation
occurs in the convolution layers which rely on a learned set of N
three-dimensional convolution filters of size C × J × K to output
a 3D feature map of size N × V × U . Thus, each filter involves a
dot-product of C × J × K elements as shown in equation 1.

∀ {n,u,v} ∈ [1,N ] × [1,V ] × [1,U ]

Y [n,v,u] =
C∑
c=1

J∑
j=1

K∑
k=1

X [c,v + j,u + k].Θ[n, c, j,k] (1)

A method to accelerate the execution of these layers is to fully
unroll the parallel computations involved in dot-products, and to
map each multiplication to a dedicated hardware instance, as illus-
trated in Figure 1. In FPGAs, the advantage of this DHM strategy
is to tile the circuitry of the multiplier according to the value of the
multiplicand (i.e convolution filter) by applying Single Constant
Multiplication (SCM) optimization techniques[14] where, for in-
stance, multiplications by zero are removed and multiplications by
a power of two are implemented by shift registers. As an example,
a DHM-based implementation of the LeNet5 network requires ×8.6
less logic elements with this SCM optimization than without it, as
detailed in [1].

A drawback of the DHM solution is that each layer requires
N Multiple Operand Adders (MOAs) with C × J × K inputs in
order to accumulate the partial products. By default, synthesis tools

1https://github.com/KamelAbdelouahab/Multi-Operand-Adder
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Figure 1: Direct Hardware Mapping of Dot Products in
convolution layers: A Binary Adder tree sums the partial-
products

instantiate deep binary adder trees2 to implement MOAs, which
requireC JK − 1 binary adders. However, for state-of-the-art CNNs,
C,J,K can be large, leading to adders with up to 1774 operands (cf
table 1.) As a result, most of the logic required to map a CNN layer
is dedicated to the MOAs part, which corresponds, for instance, to
69% of the resources in the first layer of an AlexNet.

Table 1: Number of MOAs and number of mean non-null in-
puts per Adder in AlexNet layers

Layer conv1 conv2 conv3 conv4 conv5
N 96 256 384 384 256

nopd 325 957 1774 1398 1420

3 EXPLORED SOLUTIONS
In order to reduce the hardware resources instantiated during the
mapping of a given convolutional layer, we investigate two strate-
gies that are commonly used to reduce the footprint of MOAs. The
first method iterates the accumulation of partial-sums through mul-
tiple clock cycles, leading to serialized adders. The second method
relies on approximate computing techniques.

3.1 Serializing a cluster of adders
FPGA devices –and more particularly the Digital Signal Processing
(DSP) blocks they embed– can run at a peak frequency that is much
higher than the rate at which data and feature maps are acquired
by a given CNN layer (∼ 200 MHz for a DSP Block versus about
27.6 MHz for a 720p video stream). Given this, one can replace
a cluster of binary adder trees by a serial accumulator that runs
in a different, higher clock domain. In other words, we trade a
clusters of nc binary adders that previously operated at a frequency
f0 for a single accumulator that operates at a frequency fc . In this
context, fc = nc f0 where 0 ≤ nc ≤ nopd and nopd is the number of
adder operands. In return, a parallel-to-serial register (serializer) is
required to input the accumulator, as shown in Figure 2. In recent
FPGA devices, this method can replace an nc ≈ 6-input MOA by a
single accumulator and a pair of serializers, which may reduce the
2Binary adders refer to adders with TWO operands and NOT adders with a 1-bit
operand

footprint of the MOA by a factor of nc −1 ≈ 5 under the hypothesis
that serializers have a simpler circuitry when compared to MOAs.

Figure 2: Architecture of a serial MOA. Each Serializer Ac-
cumulator Pair replaces a cluster of adders in the MOA of
Figure 1

3.2 Approximate Adders
Deep CNNs are over-parametrized networks that tolerate by nature
a degree of approximate computing. Approximations especially
make sense during the inference phase because there is no error ac-
cumulation. Multiple state-of-the-art publications demonstrate the
resiliency of CNNs towards compact bit-width arithmetic[2, 15] and
even binarization[4, 12], which hints that CNNsmay support others
types of approximate computing techniques such as approximate
adders. These adders, which use is limited to fault-tolerant applica-
tions, are known to deliver higher speed and power efficiency than
exact operators [5].

In order to solve the challenge of MOA footprint reduction for
CNNs, we leverage on the low resource utilization of the Lower-
part-Or (LOA) approximate adders [9]. An LOA divides ab-bit adder
into two sub-adders. The first one is an approximate l-bit sub-adder
that computes the sum of least-significant bits by using a bit-wise
OR operation. The second is an exact (b − l)-bit sub-adder that
processes the most-significant bits using full adders. An extra AND
gate is used to generate the carry-in signal for the exact adder part,
as illustrated in Figure 3.

As pointed-out in the study of [5], LOA is the slowest but the
most area efficient approximate adder, making it the best candi-
date for our study. In the Multi-Operand case, area saving may
be achieved by replacing the exact binary adders in the tree with
approximate adders such the LOAs.

4 EXPERIMENTS AND NEGATIVE RESULTS
4.1 Serialization
In order to study the impact of serialization on an MOA, we design3
and synthesize the Serializer/accumulator pair of Figure 2. Figure 4
reports the logic utilization (in terms of Adaptive Logic Modules
(ALMs)) of both the serializer, the accumulator and the serial adder
for variable cluster sizes. These results are compared to the logic
3Circuits are described in VHDL and synthesized on an Intel Stratix V 5SGXEA7 FPGA
using Quartus 16.0. The bit-width of operands is 8 bits
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Figure 3: Hardware structure of a Lower-part OR approxi-
mate adder (LOA). Approximate parts in the red box. Each
LOA Replaces a Binary Adder in the Tree of figure 1

utilization of the standard binary adder tree implementation of a
MOA (in dashed line).

This figure shows a very unexpected result. The resources uti-
lization of the serializer/accumulator pair exceeds the resources
used by a fully pipelined implementation of an MOA (i.e a binary
adder trees). This is the result of the costly logic fabric required
by the serializer part, displayed in Figure 4, which grows linearly
with the number of parallel inputs (i.e operands). The overhead of
serializers thus invalidate the approach.

Figure 4: Comparison of the Logic resources used by a seri-
alized and fully pipelined implementation of a MOA: The
serializer results in a large resource overhead

4.2 Approximate Adders
In order to study the approximate LOA adder, we observe the impact
of the approximation ratio on both the accuracy and hardware
utilization of a binary adder. The approximation ratio is defined as
the number of approximated bits per total bit-width l/b. A ratio
of 0% corresponds to an exact adder while a ratio of 50% means
that half of the bits of a given addition have been approximatively
processed using OR gates.

To evaluate the accuracy of the method, the Mean Relative Error
Distance (MRED) metric is used. Let s = x + y be the result of
an exact addition of x and y, and ŝ the result of an approximate
addition with same operands. The error distance is defined as:

MRED(s, ŝ) =mean

(
|ŝ − s |
s

)
. (2)

Figure 5: Error Rates and logic utilization of LOAs for vari-
able bit-widths and approximation ratios.

The evolution of the MRED metric when varying bit-widths
and approximation ratios is illustrated in Figure 5, as well as their
corresponding logic utilization.

In terms of accuracy, using lower-part OR Adders results in a
relatively small error (< 10% MRED for 8bits adders), which sug-
gests that they might be exploited to derive energy-efficient CNN
accelerators. However, in terms of hardware utilization, our experi-
ments show that no area saving can be achieved on an FPGA when
using LOAs. Indeed, the number of ALMs remains surprisingly
constant, independently from the number of bits processed by an
OR gate. This is explained by the fact that modern FPGA devices
embed complex logical modules (ALM at Intel, Logical Blocks at
Xilinx) that already contain a hard-wired full adder. This logical
module either implements a full adder in the case of exact adders,
or implements an OR gate in the case of approximate LOA adder.
As a consequence, current FPGA and related hardware synthesiz-
ers do not benefit from approximate computing when targeting
MOA adders and these results have been observed on both Intel
and Xilinx FPGAs.

5 CONCLUSION
This paper has introduced the challenge of multi-operand adder
footprint reduction when implementing a Convolutional Neural
Network with direct hardware mapping on an FPGA. Two poten-
tial solutions have been studied, relying on serialization of adders
and approximate computing. Though originally promising, these
solutions have proven ineffective with current FPGA architectures
that do not lend themselves well to adder approximation and seri-
alization. The serialization of a cluster of adders does not reduce
the footprint since the serializers require too many logic elements.
The approximated adder is also ineffective, due to the structure of
the logic blocks.

These conclusions motivate for introducing new specialized DSP
blocks in FPGAs, implementing large adders fully in hardware.
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