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ABSTRACT

Answers to the metal production of the Universe can be found in galaxy clusters, notably within their intra-cluster medium (ICM).
The X-ray Integral Field Unit (X-IFU) on board the next-generation European X-ray observatory Athena (2030s) will provide the nec-
essary leap forward in spatially-resolved spectroscopy required to disentangle the intricate mechanisms responsible for this chemical
enrichment. In this paper, we investigate the future capabilities of the X-IFU in probing the hot gas within galaxy clusters. From a test
sample of four clusters extracted from cosmological hydrodynamical simulations, we present comprehensive synthetic observations
of these clusters at different redshifts (up to z ≤ 2) and within the scaled radius R500 performed using the instrument simulator SIXTE.
Through 100 ks exposures, we demonstrate that the X-IFU will provide spatially resolved mapping of the ICM physical properties
with little to no biases (/5%) and well within statistical uncertainties. The detailed study of abundance profiles and abundance ratios
within R500 also highlights the power of the X-IFU in providing constraints on the various enrichment models. From synthetic obser-
vations out to z = 2, we have also quantified its ability to track the chemical elements across cosmic time with excellent accuracy, and
thereby to investigate the evolution of metal production mechanisms as well as the link to the stellar initial mass-function. Our study
demonstrates the unprecedented capabilities of the X-IFU of unveiling the properties of the ICM but also stresses the data analysis
challenges faced by future high-resolution X-ray missions such as Athena.

Key words. galaxies: clusters: intracluster medium – galaxies: abundances – galaxies: fundamental parameters –
techniques: imaging spectroscopy – methods: numerical – X-rays: galaxies: clusters

1. Introduction

Metals and other heavy elements in the intra-cluster medium
(ICM) represent a fossil record of the chemical evolution of the
Universe. Trapped in the dark matter (DM) potential of galaxy
clusters (White et al. 1993), they remain unaltered within the
optically-thin, collisionless thermal plasma. Elements originate
within stars or through supernovæ (SN), before being spread
by stellar winds or by the SN explosions. Hence, the chemical
enrichment of a given cluster relates to the integrated star forma-
tion history of the cluster, as well as to the overall stellar initial
mass function (IMF). The abundances and spatial distribution of
metals in the ICM can also be connected to its dynamical history
and to the mechanical action of active galactic nuclei (AGNs)
outflows or jets (e.g. Gaspari et al. 2011).
? Einstein and Spitzer Fellow.

Most of the low-mass elements (C, O, Mg, Si, and S) are pro-
duced by end-of-life massive stars (≥10 M�) undergoing core-
collapse supernovæ (SNcc; see Nomoto et al. 2013, for a review).
The evolution of SNcc-related enrichment through time is dic-
tated by the initial mass and metallicity of the progenitor star.
High-mass elements, from Si-like elements (Al, Si, S, Ca, and
Ar) to Fe and Ni, are on the other hand the result of thermonu-
clear reactions occurring during the explosion of white dwarfs
(type Ia supernovæ – SNIa; Hillebrandt et al. 2013). Although
the mechanisms of these explosions – either via accretion of
a companion star onto the white dwarf (Whelan & Iben 1973)
or via mergers of binary systems (Webbink 1984) – is still
poorly understood (see Maoz et al. 2014), the timescale of these
events, related to longer-living low-mass stars, suggests a later
enrichment across cosmic time. Traces of other elements
(C, N, Ne, and Na) can also be produced when low- and
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intermediate-mass stars (typically ≤6 M�) enter their asymp-
totic giant branch (AGB) phase (Iben & Renzini 1983). The
individual study of these phenomena based on detailed obser-
vations of nearby SN is difficult as they are very rare. Rather
than a direct study on stellar populations, the detailed spec-
troscopic study of the ICM is an interesting alternative probe
to test metal production models up to the early periods of the
Universe.

Beyond the first steps in high-resolution X-ray spec-
troscopy (Canizares et al. 1979, 1982) and despite the lack
of spatial resolution (Peterson & Fabian 2006), the advent of
high-resolution grating instruments such as XMM-Newton/RGS
(den Herder et al. 2001) and Chandra/HETG (Canizares et al.
2005) drastically changed our view of the ICM enrichment, by
giving access for the very first time to a large number of atomic
lines (de Plaa et al. 2007; de Plaa 2013; Molendi et al. 2016;
Werner et al. 2007). Clusters have, therefore, become excellent
laboratories in which to test plasma physics and the chemical
enrichment models up to the present epoch (see Werner et al.
2008, for a review). Despite limited spectral resolutions, instru-
ments based on charged coupled devices (CCDs) have also been
pushed to the maximum of their abilities to benefit of their spa-
tial resolution in investigating the spatial distribution of chemical
elements in the ICM (de Grandi & Molendi 2009; Mernier et al.
2016a,b, 2017).

The perspective of micro-calorimeter-based imaging spec-
trometers, such as the soft X-ray spectrometer (SXS) on
board Hitomi (Takahashi et al. 2016), has opened new pos-
sibilities in studying the ICM: from the spatial scales of
the enrichment (sources of production, processes of mixing
and dispersion) to the kinematics of the hot gas (turbulence,
shocks Hitomi Collaboration 2016, 2018a,b,c), which comple-
ment the indirect estimates via surface brightness and warm
gas tracers (e.g. Churazov et al. 2012; Gaspari & Churazov 2013;
Hofmann et al. 2016; Gaspari et al. 2018). Unfortunately, the
short lifetime of the SXS gave only a glimpse of its potential.
These renewed capabilities in galaxy-cluster observation now rely
on future missions, such as the X-ray Recovery Imaging and Spec-
troscopy Mission (XRISM; Ishisaki et al. 2018) or the Advanced
Telescope for High-ENergy Astrophysics (Athena; Nandra et al.
2013). Namely, the X-ray Integral Field Unit (X-IFU) on board the
future European X-ray observatory (Barret et al. 2016; Pajot et al.
2018), will provide narrow-field observations (5′ in equivalent
field-of-view diameter) over the 0.2–12 keV bandpass, with a
required 5′′ spatial resolution and an unprecedented spectral res-
olution of 2.5 eV (required up to 7 keV).

Investigating the chemical enrichment of the Universe is
one of Athena’s prime science objectives (Ettori et al. 2013;
Pointecouteau et al. 2013) which drives top-level performances
of the telescope . In addition to the spectral resolution of the
X-IFU, which will allow to resolve faint atomic lines of less
abundant elements, this science objective drives the need for a
high effective area of the telescope along with a well-calibrated
low energy band, required to accurately resolve lines of light
elements such as C (≥0.2 keV). Number of breakthroughs on
the study of chemical species and their evolution should in
fact come from measurement in the low-energy band, where
the effective area is the highest. The fine spectroscopic capa-
bilities of the X-IFU in this energy band will probe the pro-
duction and circulation of metals within galaxy clusters across
cosmic time, up to a redshift of z ≤ 2 and a distance of
R500

1 from the cluster’s centre. By accurately measuring the

1 R500 is the radius including a density contrast of 500 times the critical
density of the Universe, ρc = 3H(z)2/8πG, at the given redshift z.

abundances of the most common elements (e.g. O, Si, S, and
Fe), the X-IFU will be capable of constraining the number of
time-integrated SNIa and SNcc products. For the first time, the
spatially-resolved measurements of less abundant elements (e.g.
C, Al, S, and Ca) as well as rare elements (e.g. Mn, Cr, and
Ti) will provide insights on the initial metallicity of the SNIa
progenitors, and therefore on their formation mechanisms. The
science of the chemical enrichment is a driver of the perfor-
mance of the instrument, which needs to be assessed before
launch.

In this paper, we investigate the feasibility of recovering the
physical parameters of the ICM through X-IFU observations.
Careful attention is given to the different enrichment mech-
anisms and their evolution over time. We used a sample of
four simulated galaxy clusters with different masses studied at
different redshifts, obtained via hydrodynamical cosmological
simulations (Rasia et al. 2015; Biffi et al. 2017). These objects
are passed as input to a dedicated end-to-end (E2E) simula-
tion pipeline of the X-IFU instrument, based on the simulator
SIXTE (Wilms et al. 2014). In Sect. 2, we present the proper-
ties of the sample of simulated clusters. This is followed by a
detailed description of our simulation pipeline (Sect. 3). The data
analysis, post-processing procedures and results validation are
in turn described (Sect. 4). The outputs of our synthetic obser-
vations obtained through the pipeline for the four local clusters
are then used (Sect. 5) to infer the main properties of the sam-
ple and study its enrichment. This investigation is also extended
to higher redshift values (Sect. 6) to look into the X-IFU abil-
ities to capture the evolution of abundances through cosmic
time. Finally, results and outcomes of our study are discussed
(Sect. 7).

2. Generation of the cluster sample

The sample of four clusters of galaxies analysed in this study
is taken from Biffi et al. (2018) and includes two massive and
two smaller systems, to bracket a broad mass range across the
considered redshift values (Table 1). In both mass bins, we
choose a cool-core (CC) and a non-cool-core cluster (NCC),
defined based on their pseudo-entropy profiles as described in
Leccardi et al. (2010). This small sample gives a view of part
of the expected cluster population planned to be investigated by
the X-IFU. The objects are part of a larger set of 29 Lagrangian
regions extracted from a parent cosmological DM-only simu-
lation and re-simulated at higher resolution including baryons
(see Bonafede et al. 2011). The parent cosmological volume is
1 h−1 Gpc per side and adopts a Λ-CDM cosmological model
with ΩM = 0.24, Ωb = 0.04, H0 = 72 km s−1 Mpc−1 (i.e.
H0 = h × H100, where h = 0.72 and H100 = 100 km s−1 Mpc−1),
σ8 = 0.8 and ns = 0.96, consistent with WMAP-7 constraints
given in Komatsu et al. (2011).

The magnification simulations were performed with a ver-
sion of the tree-PM smoothed particle hydrodynamics (SPH)
code GADGET-3 (Springel 2005), including an improved hydro-
dynamical scheme (Beck et al. 2016) and a variety of physi-
cal processes describing the evolution of the baryonic compo-
nent (see Rasia et al. 2015, for more details). Briefly, these com-
prise metallicity-dependent radiative cooling (Wiersma et al.
2009), star formation and stellar feedback (thermal super-
nova feedback and galactic winds, see Springel & Hernquist
2003), cold and hot gas accretion onto super-massive black
holes powering AGN thermal feedback (Steinborn et al. 2015;
modelling the action of cold accretion Gaspari & Sdowski
2017), and metal enrichment (Tornatore et al. 2004, 2007)
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Table 1. Properties of the simulated clusters at different redshift values in their evolution.

Name C1 C2 C3 C4
Type CC NCC CC NCC

z = 0.105 R500 (kpc h−1) 723 799 1027 1009
M500 (M� h−1) 2.39 × 1014 3.22 × 1014 6.86 × 1014 6.51 × 1014

T500 (keV) 3.22 4.20 6.47 6.36
z = 0.5 R500 (kpc h−1) 552 676 694 715

M500 (M� h−1) 1.55 × 1014 2.84 × 1014 3.08 × 1014 3.38 × 1014

T500 (keV) 2.88 4.06 4.58 4.84
z = 1.0 R500 (kpc h−1) 389 396 446 570

M500 (M� h−1) 0.92 × 1014 0.97 × 1014 1.38 × 1014 2.89 × 1014

T500 (keV) 2.41 2.47 3.12 4.41
z = 1.48 R500 (kpc h−1) 269 289 345 351

M500 (M� h−1) 0.50 × 1014 0.62 × 1014 1.07 × 1014 1.12 × 1014

T500 (keV) 1.76 2.10 3.07 3.08
z = 2.0 R500 (kpc h−1) 174 181 220 215

M500 (M� h−1) 0.23 × 1014 0.25 × 1014 0.45 × 1014 0.42 × 1014

T500 (keV) 1.19 1.55 2.24 1.86

from SNIa, SNcc, and AGB stars. Specifically, we assumed
the IMF by Chabrier (2003), the mass-dependent life-
times by Padovani & Matteucci (1993) and stellar yields by
Thielemann et al. (2003) for SNIa, Woosley & Weaver (1995)
and Romano et al. (2010) for SNcc, and Karakas (2010) for AGB
stars.

In our model of chemical enrichment, we follow the pro-
duction and evolution of 15 chemical species: H, He, C, Ca, O,
N, Ne, Mg, S, Si, Fe, Na, Al, Ar, and Ni. These elements are
the individual species traced in the simulations. Although these
do not cover the full spectrum of interest (lacking e.g. Mn or
Cr, which are important tracers of the enrichment as recently
shown in Hitomi Collaboration 2017; Simionescu et al. 2018),
the variety of abundances provides a good starting point for
a meaningful study on the ICM and the demonstration of the
X-IFU capabilities in this view. For every gas particle in the
simulation, we traced the chemical composition and the frac-
tion of each metal that is produced by the three enrichment
sources (i.e. SNIa, SNcc, AGB; see Biffi et al. 2017, 2018, for
further detail). Each object is analysed at different redshifts,
z = 0.105, 0.5, 1, 1.48, and 2, to assess the enrichment through
time. Table 1 provides the characteristic radius, R500, along
with the mass, M500, and the mass-weighted temperature, T500,
of the associated sphere of radius R500 for the entire cluster
sample.

For each SPH particle, the output quantities provided by
GADGET-3 are used as input for our simulation. These include
the position of the particle, x, its 3D velocity in the observer’s
frame, v, its mass density, ρ, its mass, m, its temperature, T , and
the individual masses of the 15 individual chemical species X,
µX, tracked in the simulations. The gas density n of each SPH
particle is obtained by dividing ρ by m. The mass of each ele-
ment of atomic mass number AX is converted into abundances
ZX, expressed in solar metallicity units assuming the solar frac-
tions Z�,X from Anders & Grevesse (1989). Abundances can be
therefore written as

ZX =
1

Z�,X
×

µX

µH × AX
, (1)

with µH the hydrogen mass of the particle.

3. End-to-end simulations

In this section, we describe in detail the set-up of the pipeline
used for the synthetic X-IFU observations, as well as the physi-
cal assumptions made in the simulations.

3.1. Synthetic X-IFU observations

Simulations of the cluster data set are carried out using the
X-IFU end-to-end (E2E) simulator SIXTE2 (Wilms et al. 2014),
which creates realistic X-IFU observations. SIXTE uses as an
input a specific SIMPUT file (Schmid et al. 2013) containing
either all the emission spectra of the particles or directly a
photon list, with the time, coordinates on the sky and energy
of the emitted photons. This second approach is preferred for
our simulations, as it exerts a lower computational demand,
induced in the former by the unparallelised random generation
of photons currently implemented in SIXTE (an example of the
first approach is given in Roncarelli et al. 2018). SIXTE outputs
are generated not only considering the instrumental spatial and
spectral responses, but also incorporate other features from the
detectors such as their geometry, vignetting and internal particle
background.

3.1.1. Photon list generation

Each simulated cluster comes as a list of SPH particles,
which may emit X-ray photons. To generate the photon list
used in the E2E simulation, the particle emission is modelled
by a collisional diffuse thermal plasma using the APEC code
(Smith et al. 2001). More specifically, the vvapec model on
XSPEC (Arnaud 1996) is adopted, as it can be parametrised
according to the particles physical properties listed above,
notably the individual abundances of each element. The cor-
responding atomic database used for the emission model is
derived from ATOMDB v3.0.9. For the galactic absorption, the
wabs model (Morrison & McCammon 1983) is preferred for
computational speed, although more accurate absorption mod-
els do exist (e.g. TBabs, Wilms et al. 2000). For all four clusters

2 http://www.sternwarte.uni-erlangen.de/research/
sixte/
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we fixed the column density to nH = 0.03 × 1022 cm−3, which
is a representative value for the latitudes at which most clus-
ters shall be observed with X-IFU (Kalberla et al. 2005). Abun-
dances are set to solar as per Anders & Grevesse (1989) and
atomic cross-sections are taken as per Verner et al. (1996). The
overall flux, F (in counts s−1 cm−2), of each particle is computed
using the vvapec normalisationN (emission-measure-weighted
by the distance in units of cm−5):

N =
10−14

4π[DA(1 + z)]2

∫
nenpdV, (2)

where DA is the angular distance of the particle computed from
its redshift z (derived from the speed of the particle and the
cluster mean redshift), and V the particle volume. We consid-
ered a full ionisation of the intra-cluster gas with ne = 1.2np
(ne and np being the densities of electrons and protons, respec-
tively). These emission spectra are considered as probability
density distribution function and normalised accordingly over
the instrumental energy bandpass (i.e. 0.2–12 keV). For a fixed
exposure time ∆t, photons are drawn from the afferent probabil-
ity distribution following a Poisson statistic of parameter F∆tA,
where A is the total mirror area (taken at 1.4 m2 at 1 keV, energy
dependence of the effective area is included later on in SIXTE
via the ancillary response function – ARF as explained below).
Each newly created photon is added to the photon list with
the sky coordinates of its parent particle (right ascension and
declination).

The output product of this stage is a “complete” photon list
(with their true energy and position) at the entrance of the tele-
scope. This list is computed once for each cluster, and contains
a large number of simulated photons (≥1 Ms). It is then sam-
pled randomly by SIXTE to achieve smaller lists for more typi-
cal exposure times (e.g. 100 ks).

3.1.2. Observational setup

For each simulation, we consider an exposure time ∆t = 100 ks
over the entire X-IFU field-of-view. The complete photon list is
used as input for the xifupipeline function of SIXTE, which
samples the photon list accounting for the energy-dependence
of the effective area to create the event list seen by the
X-IFU detector over ∆t. The pipeline accounts for the most
up-to-date responses of the current baseline of the telescope
(i.e. 15-row mirror modules corresponding to a mirror effec-
tive area of 1.4 m2 at 1 keV3) and for a hexagonal detector array
of 3832 micro-calorimeter pixels, more specifically Large Pixel
Array 2 (LPA2) pixel configuration, developed for the X-IFU
and described in Smith et al. (2016). Pile-up, telescope point
spread function, vignetting and detector geometry effects are
also included as function of the pixels corresponding off-axis
angles. Finally, we verified that given the low count rates of our
clusters (≤1 cts s−1 pix−1), pile-up and cross-talk over the obser-
vation can be neglected (see den Hartog et al. 2018; Peille et al.
2018).

For each cluster, we simulated enough pointings to map the
cluster spatially up to at least R500 (as required in the current
science objectives for the X-IFU). This translates, for local clus-
ters, into at least seven pointings. The corresponding event lists
are then merged during post-processing to obtain a single event
file.

3 RMF: athena_xifu_rmf_v20171107.rmf | ARF: athena_xifu_
15row_onaxis_pitch249um_v20171107.arf

Table 2. Parametrisation of the galactic foreground model used in the
simulation with a apec + phabs*apec model.

Model Parameter Unit Value

apec T keV 0.099
apec Z 1
apec z 0
apec Norm cts s−1 amin−2 1.7 × 10−6

phabs nH 1022 cm−3 0.018
apec T keV 0.225
apec Z 1
apec z 0
apec Norm cts s−1 amin−2 7.3 × 10−7

3.2. Foreground and background components

In addition, we accounted for the contribution of different fore-
ground and background sources to ensure more representative
observations.

3.2.1. Astrophysical foreground

The foreground emission is caused by the X-ray emission of
the local bubble in which the solar system is embedded and
by the Milky Way hot gaseous content. This component can be
modelled by the sum of a non-absorbed and absorbed thermal
plasma emission as specified in McCammon et al. (2002) and
parametrised as per (Lotti et al. 2014, see Table 2). An additional
normalisation constant over the entire model is used for versa-
tility purposes, resulting in a total foreground model reading as
constant*(apec + phabs*apec) in XSPEC. This component
is folded into SIXTE using a SIMPUT file.

3.2.2. Cosmic X-ray Background

The cosmic X-ray background (CXB) component is due to
the contributions of AGNs, star forming galaxies and active
stars along the line-of-sight (Lehmer et al. 2012). A fraction
of these sources will be resolved by the instrument as a func-
tion of its spatial resolution, and will be excised from the
observations. Given the requirement on the spatial resolution
for Athena/X-IFU (5′′), 80% of the total flux of these point
sources in terms of the integral of their log(N)/log(S) distribu-
tion should be resolved by the instrument (Moretti et al. 2003).
For 100 ks exposure times, this translates into limiting fluxes
of ∼3 × 10−16 ergs s−1 cm−2 for the X-IFU. As the number of
star forming sources is at least an order of magnitude lower
at this flux, we only considered the AGN contribution in this
study. The unresolved fraction of these point sources results
in a diffuse background component, which we classically fit-
ted using an absorbed power-law model during post-processing
(McCammon et al. 2002).

We did not include AGN point sources in the inputs derived
from the hydrodynamical simulations. Instead, to generate real-
istic CXB data, we drew a list of AGN sources with asso-
ciated X-ray spectra by sampling the luminosity function of
Hasinger et al. (2005) in the luminosity-redshift space, given the
boundary conditions LX ≥ 1042 erg s−1 unabsorbed 0.5–2 keV
rest-frame luminosity, 0 < z < 5 and the size of the cosmo-
logical volume encompassed within a field-of-view. Each source
is associated with a spectral energy distribution following tem-
plates described in Gilli et al. (2007), according to a distribution
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of power-law indexes and intrinsic absorption column densi-
ties related to various levels of obscuration, as described in
Gilli et al. (1999, 2007). Spatial distributions are fully random
in the sky plane (no clustering). Further details about the proce-
dure can be found in Clerc et al. (2018). This component is also
included in the simulations using a SIMPUT file.

3.2.3. Instrumental background

The instrumental particle background is caused by interac-
tions of high-energy cosmic rays and protons with the instru-
ment structure, which create secondary particles in the soft
X-ray band. Both primary and secondary particles can hit
the detectors and be recorded as regular events. The X-IFU
design includes an onboard cryogenic anti-coincidence detec-
tor (Macculi et al. 2016), which will ensure the required level of
5 × 10−3 counts s−1 keV−1 cm−2 over the 2–10 keV energy band
(Lotti et al. 2017). The generation of this component is directly
implemented within SIXTE.

For each of these three background components, we asso-
ciate a flag on the photons in the event file. Thus, these specific
events can be respectively masked to study background effects
on the observations (notably of the internal particle background)
or selected exclusively to generate background maps. Through-
out this study, we assume that these background components
have no systematic uncertainty. Systematic effects of the back-
ground knowledge on the observations are discussed Sect. 7 and
are considered in more ample detail elsewhere (Cucchetti et al.
2018).

4. Data processing

In this section we describe the post-processing approach used in
our simulations and its validation.

4.1. Source contamination

From the event list output of SIXTE, a first selection is made on
the grading of the events, which is conditioned by the frequency
of detection in a given pixel and defines the spectral resolution of
the event. In practice, the grading procedure will occur in-flight
using the onboard event processor depending on the time sepa-
ration between events in the same pixel (Peille et al. 2018), sim-
ilarly to the strategy implemented on the SXS (Seta et al. 2012).
In this case, grading occurs automatically within the simulator
and is available in the event list. Only high-resolution events
corresponding to ∆E = 2.5 eV, the required spectral resolution
for X-IFU, were used. As the count rates of the clusters are
low over the entire field-of-view (≤1 count s−1 pix−1), almost all
events (throughput ≥99%) are high-resolution photons. Events
with lower grading values are discarded in the rest of the
study.

Using the selected events, we reconstructed raw brightness
maps in counts as presented in Fig. 1. Beside the ICM, emis-
sion from other sources either present in the hydrodynamical
simulations (i.e. strongly-emitting particles or clumps) or in the
CXB can be observed. For the CXB, following the assump-
tion by Moretti et al. (2003), we start by selecting the brightest
simulated sources (with fluxes above ∼3 × 10−16 ergs s−1 cm2,
see Sect. 3.2.2). After simulating CXB-only pointings to find
their coordinates on the detector, these sources were excised
automatically from the brightness maps by finding all the cor-
responding pixels above a 2σ threshold in counts with respect
to the average count in neighbouring pixels in the event list.

This way, the diffuse emission of the cluster is accounted for
when masking a pixel. The average cut-off flux of the sources
will be higher than ∼3 × 10−16 over the full map. The lower the
emission (e.g. in the outskirts), the closer the limiting flux of
the excised point-sources will be to the threshold flux. Although
this process would not be possible for real event files, we
adopted this strategy to avoid potential biases related to spe-
cific point-source detection algorithms. Once these sources are
removed, a final visual inspection was performed to remove
any residual unexcised AGNs as well as any remaining visible
point-like source which may be related to the hydrodynamical
simulations.

4.2. Spatial binning

For the considered exposure time of 100 ks, single pixels do not
always capture enough photons to allow the measurement of
chemical abundances. We therefore grouped them into regions
to increase the signal-to-noise ratio (S/N) adequately.

Two methods were considered to spatially bin the pixels:
the contbin tool developed by Sanders (2006) and an adapted
2D Voronoï tessellation method by Cappellari & Copin (2003).
Both methods were tested and a comparison showed no visi-
ble difference in accuracy of the pipeline (see also Appendix A
or Sanders 2006 for a more detailed comparison). Unlike the
Voronoï tessellation, contour binning offers better results in
describing the radial-like shape of the cluster emission, and
was therefore retained for this study. The contbin binning
scheme can be directly applied to our cluster count maps to
compute regions of equal S/N. The real exposure map (con-
stant here) and the spatial mask of excised sources are also
used as inputs of the algorithm. In addition, we chose to fix the
aspect-ratio of the binning regions (so-called constrain filling-
factor) to two, to avoid long radial filamentary regions, which
could artificially mix spatially-uncorrelated structures (espe-
cially in low count rates areas such as the outskirts of the
cluster).

The binning procedure operates on the count maps, which
are dominated by the ICM bremsstrahlung emission, that is,
the continuum of the spectral energy distribution. We further
optimised our pixel binning in view of our scientific objective
of measuring chemical abundances and to account for smaller
local surface brightness variations atop the bulk of the clus-
ter emission due to for example, clumps or bubbles. To do so,
we first divided the surface brightness map into annuli centred
on the brightest part of the cluster and containing roughly the
same number of counts (∼300 000). For each of these annu-
lar regions, the total spectrum of the annulus is fitted over the
entire bandpass (0.2–12 keV) with a continuum-only vvapec
model (metal abundances set to zero) to estimate the number
of counts in the continuum for a given annulus Ccontinuum only.
Although slightly overestimating counts (due to the presence
of lines), this simple approach converges quickly. When abun-
dances are left free then set to zero after the fit, strong lines
are sometimes spaced by values of the order of the energy res-
olution of the instrument (due to strong bulk motion or clump-
ing within the cluster), causing fits to converge on local min-
ima or not at all. Even after convergence, differences from
the previous method do not exceed ≤3%. The total number
of counts on a pixel i (Ci) in the annulus is then re-scaled as
follows:

C̄i =

(
1 −

Ccontinuum only

Ctotal annulus

)
Ci (3)
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Fig. 1. Maps in number of counts per X-IFU pixel (249 µm pitch) for our clusters 1 to 4 (see Table 1) at redshift z = 0.1. Each mosaic is made of
7 X-IFU pointings of 100 ks each.

Fig. 2. Example of a continuum subtracted count map for cluster C2
used for spatial binning. Each of the ∼27 000 pixels was re-scaled as
explained in Sect. 4.2 to enhance density contrasts in the cluster.

The resulting template image for cluster C2 can be seen Fig. 2.
This approach allows to define regions over a continuum sub-
tracted image, enhancing the brightness fluctuations with respect
to the azimuthal continuum model due to chemical elements emis-
sion and other local density contrasts. This template image is used
exclusively for spatial binning. Accounting for its statistics, we
requested a S/N level of 30 (900 counts in regions) to contbin.
The resulting spatial regions are used over the full count maps to
compute the corresponding spectra. Given a count ratio of ∼100
between the template map and the full surface brightness map, we
ensure that each spectrum has a high statistical significance, that
is, S/N ∼ 300. This represents a total of at least 90 000 counts per
region, in other words three counts in each instrumental channel,
allowing high significance regions for the fits.

This binning approach has been used throughout this paper
when statistics allows it, that is, in the case of local clusters
(z ≤ 0.5). For high-redshift clusters, count rates are often insuf-
ficient to ensure statistically independent regions with a high-
enough S/N. In this case, we followed the formulation of the
Athena science objectives on chemical evolution of the Universe
(specified in the introduction) and considered two radial annular
regions, over 0–0.3 R500 and over 0.3–1 R500.
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4.3. Accounting for vignetting effects

Despite the narrow field-of-view of the X-IFU, the Athena tele-
scope will introduce a slight vignetting effect in the observations
(between 4 and 8% of the counts over the energy bandpass).
Vignetting is simulated within SIXTE using tabulated values
derived from ray-tracing simulations of the mirror assemblies
(Willingale et al. 2014) and needs to be accounted for before
attempting a spectral fit. To do so, for each binned region, the
baseline X-IFU effective area of every single pixel is multiplied
over the energy bandpass by the same vignetting function imple-
mented in SIXTE accounting for the off-axis position of the
pixel. The specific response function of the entire region is then
obtained by averaging, in each energy channel, the response of
each of pixels weighted by their respective number of counts.

4.4. Temperature and metal maps

The resulting unbinned spectra were fitted within XSPEC, using
a log-normal likelihood minimisation (i.e. C-statistics adapted
from Cash 1979), which is well adapted for Poissonian data sets
(i.e. channels with low number of counts). An absorbed single-
temperature thermal plasma model (i.e. wabs*vvapec) was fit-
ted to the spectrum accumulated in each region. The column
density nH is fixed to its input value, while temperature, abun-
dances of metals traced in the input numerical simulations, (see
Sect. 2), redshift and normalisation are left free. As a first
approach, all parameters (metallicity for each of the 12 chem-
ical elements ZX, temperature, redshift and normalisation) are
fit simultaneously over the 0.2–12 keV energy band (broad-band
fit). The background components are accounted as an addi-
tional model, as described in Sect. 3.2. Their spectral shapes is
assumed to be perfectly known whilst the normalisation of each
three component is set free (either the model norm for the CXB
and instrumental background, or the multiplicative constant fac-
tor for the foreground, see Sect. 3.2.1). Using the best fit results
provided by XSPEC, we were able to construct spatial maps for
each physical parameter over each full synthetic observation.

4.5. Input parameter maps

To estimate the goodness of the fit, the output maps were com-
pared to weighted input maps, reconstructed from the input
numerical simulations using the same spatial binning regions,
j, than the outputs. The adopted weighting scheme depends
on the considered parameters. For instance, emission-measure-
weighted quantities are expected to be more representative
than mass-weighted schemes (Biffi et al. 2013), especially for
abundances. The value of the input emission-measure-weighted
parameter P in the region j therefore reads as

P j =
Σi PiNi

ΣiNi
, (4)

whereNi is given by Eq. (2) for each SPH particle i contributing
to the spatial region j.

For the temperature, it has been long known that emission-
measure- or mass-weighted schemes do not match fitted quan-
tities (Gardini et al. 2004; Rasia et al. 2006, 2008). A known
method to account for this bias is to use the so-called spec-
troscopic temperature weighting, introduced by Mazzotta et al.
(2004), which translates here into

T j =
ΣiNi T +0.25

i

ΣiNi T−0.75
i

· (5)

Notably, we verified that the use of spectroscopic temperature
input maps indeed reduced the biases of the fitted temperature
with respect to the emission-measure-weighted input maps (see
also Appendix B). We note that this method is particularly suited
to high-temperature regions (≥3 keV), well represented in the
central parts of our clusters (see also Fig. 3, upper central panel),
but may be limited towards the cluster outskirts or in the case
of cooler systems. Although the low-temperature regions could
be processed more accurately with the extended method pre-
sented in Vikhlinin et al. (2006), since our outer regions are very
large (small number of counts per pixel) and relative differences
remain within statistical error bars of the XSPEC fit, we use
the implementation of the spectroscopic temperature presented
in Mazzotta et al. (2004) for all our regions.

4.6. Assessment of systematics

For a physical parameter P, the goodness of the reconstruction
is evaluated using two methods. First, the deviation of the fitted
value is evaluated in terms of its relative error distribution with
respect to the weighted input value (i.e. ∆P j = (P j − Pin, j)/Pin, j)
over the various spatial regions j. A priori, if no systematic effect is
present in the pipeline, the relative error distribution for P should
be Gaussian (if the number of regions is sufficiently high) and cen-
tred, with a standard deviation σ∆P of the same order as the aver-
aged normalised value of the statistical error, µfit, derived from
the XSPEC fits (see Appendix B for a more generic estimation
for non-Gaussian cases). This approach is mainly used to deter-
mine the presence of biases in the reconstruction by fitting the rel-
ative error distribution using a Gaussian, accounting for the corre-
sponding errorsσ j derived from XSPEC. For this fit, clear outliers
with relative errors above 100% (one or two regions overall) are
removed for consistency. As a second test, we compute in each
region j the value χ j = (P j − Pin, j)/σ j, which shows the good-
ness of the fits in terms of the fitting errors and should follow a χ
distribution. By computing the reduced value of the distribution,
χ2

red, we can estimate the overall goodness of the fit with respect
to the statistical errors derived from XSPEC.

Using the first test, we noticed that the broad-band fit ini-
tially used introduced biases on the temperature and the abun-
dances recovered for local clusters (∼10%), when compared
to emission-measure-weighted quantities. The use of spectro-
scopic temperatures (Eq. (5)) decreases the biases on tem-
peratures. However, biases on abundances are not accurately
corrected by this new approach, underlining a bias in the overall
fitting procedure. For our data analysis therefore, we switched
to a multi-band fit of the spectrum (following Rasia et al.
2008) including a velocity broadening component to the lines
to account for variability and mixing along the line-of-sight
(bvvapec model on XSPEC). The fit is performed as follows
for each region:

– As a first step, since the cluster sample is relatively hot
(≥4 keV in the centre) the temperature is recovered from the
high energy band (3.5–12 keV), then fixed.

– Iron metallicity, ZFe, is recovered by a subsequent broad-
band fit (i.e. 0.2–12 keV) to estimate the contribution from
both the K and L complex, then fixed.

– Metallicities of other elements are then computed by fitting
specific energy bands (for redshift z ≤ 0.1):

– Abundances for C, N, O, Ne and Na are fitted over the
0.2–1.2 keV bandpass.

– Abundances for Mg, Si, Ar and Ca are fitted over the
1.2–3.5 keV bandpass.
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Fig. 3. Left: reconstructed ICM parameters maps for C2 at z ∼ 0.1 using the multi-band fit presented in Sect. 4.6 with S/N ∼ 300 (∼90 000 counts
per spatial bin). Middle: distribution within the regions j of (P j − Pin,j)/σ j indicating the goodness of the fit for each region in terms of σ j (see
Sect. 4.6). Right: relative error distribution across all spectral regions (green histogram). The red solid line pictures the Gaussian best fit. The
vertical blue dashed lines are set at the mean value of the fit errors (see Sect. 4.6). From top to bottom: spectroscopic temperature Tsl (in keV),
emission-measure-weighted abundances of oxygen (O), silicon (Si) and iron (Fe) (with respect to solar).

– Abundance of Ni is finally fitted over the 0.2–12 keV
bandpass.

– With all other parameters fixed, redshift, velocity broadening
and normalisation are recovered with a broad-band fit.

This multi-band post-processing approach is retained in the rest
of the paper for local clusters (notably to create Figs. 3 and 4),

along with the comparison of the fitted output temperature with
spectroscopic input temperature maps. This technique is used
under the caveat that despite some fitted parameters are fixed,
errors are propagated correctly throughout the fit. Although not
perfectly true, this effect remains very limited with respect to
the total systematics and to our level of statistics, ensuring a safe
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Fig. 4. As Fig. 3, from top to bottom: Magnesium, sulphur, calcium, and nickel abundances (with respect to solar).

application of this method. For all the fitted parameters, we com-
puted the mean, µ∆P, and standard deviation, σ∆P, of the relative
errors between the output and input values to the mean of the
XSPEC fit errors, µfit (see right panels of Figs. 3 and 4 for an
illustration in the case of cluster C2) and by computing χ2

red for
each parameter. Results of this comparison for the main param-
eters are given in Table 3. In all cases, the mean fit error is con-
sistent with the standard deviation of the error distribution σ∆P,
thus excluding large systematic effects. However, despite these

changes, small biases of the order of a few percent (/5%) are
still visible. This is particularly true for the normalisation and
the abundances of low mass elements (e.g. O, Si), in which an
underestimate of the normalisation directly results in an overes-
timate of these abundances (see also in Fig. 3). All these sys-
tematics are however well inside the statistical deviations. Using
the second test, we notice that some of the χ2

red are not consis-
tently recovered, especially for the normalisation. This can be
partially explained by the presence of some outlier regions in the
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Table 3. Values of the mean µ∆P and standard deviation σ∆P of the best
fit of the relative error distributions for the main physical parameters in
cluster C2, over 80 spatial regions, with the average XSPEC error of the
fits µfit.

µ∆P (%) σ∆P (%) µfit (%) χ2
red χ̃2

red Nbad

Tsl −0.71 2.60 1.64 3.93 1.38 4
z 0.00 0.04 0.05 1.54 1.09 3
O 4.23 16.0 13.4 1.50 1.50 2

Mg 5.22 20.7 18.4 2.84 1.01 1
Si 3.22 11.4 10.6 1.78 1.37 3
S 4.48 16.3 14.6 1.52 1.41 1

Ca −1.42 8.27 8.62 2.69 1.06 3
Fe 0.94 5.73 5.22 2.71 1.49 2
Ni 0.39 25.3 26.6 0.99 0.92 1
N −6.5 3.68 3.74 4.11 2.83 7

Notes. The corresponding values of χ2
red and the corrected χ̃2

red are also
given, along with the number of outliers regions Nbad removed to com-
pute χ̃2

red.

fit, which strongly affect this computation. When the Nbad out-
liers regions for which the parameter is outside a 3σfit level, are
removed, the new reduced chi-squared, χ̃2

red, shows more consis-
tency (Table 3), indicating a good agreement between the fitted
maps and the input distributions.

Small errors remaining after post-processing can be
attributed to some degeneracy between fitted parameters (≥15
here) and the spatial binning, which regroups in a relatively
large region (a few arcmin2 in the outskirts) many different
physical structures (see also the discussion in Appendix B).
The choice of a single temperature model could also introduce
some bias accounting for the complex structure over the line-
of-sight. Two- or multi-temperature models could bring slight
improvements, especially towards the centre of the object. Such
schemes were investigated over single regions but showed no
significant improvement over the entire pointings. The assess-
ment of the improvements introduced by a multi-temperature
scheme over the entire temperature distribution as well as the
use of line-ratio techniques (Hitomi Collaboration 2018c) will
be the object of future improvements of our pipeline, and shall
be addressed in future studies. Finally, we also found that
small effects related to statistics, to the XSPEC fitting proce-
dure, and to the weighting schemes of the input maps par-
tially explain these residual deviations (refer to Appendix B
for a more ample and detailed discussion on the pipeline
validation).

5. Properties of the ICM of local clusters

In this section we present the results on the ICM properties recov-
ered by the X-IFU, starting from the interpretation of the raw out-
put maps to larger studies involving the entire cluster sample.

5.1. Physical parameters maps

We show in Fig. 3 the reconstructed maps for cluster C2 at
z ∼ 0.1 for the spectroscopic temperature Tsl and the abundances
of Fe, Si, and O. Those for Mg, S, Ca, and Ni are shown in
Fig. 4. Similar maps for the other three clusters are provided
in Appendix C. Beyond the recovery of abundances, the phys-
ical parameter maps and their combination provide a wealth of
information on the dynamics of the cluster. For instance, we see
from the temperature map of cluster C2 the presence of a hot

bubble on the western part of the cluster and a cold arc in the
south-eastern region. Interestingly, we also notice the correla-
tion between the presence of low-mass elements (e.g. O, Si) and
the temperature of the ICM. Several clumps and small groups
are also visible on some of the clusters and cluster C3 exhibits a
merging activity with a very bright central object. After post-
processing, the redshift of each region is also recovered with
excellent accuracy from the fit over a large number of lines and
spectral features. The redshift map, once converted into veloci-
ties using the mean redshift of the cluster, provides a projected
map of the bulk motions within the ICM. Likewise, the veloc-
ity broadening of the lines is recovered in the fit. Measuring
both bulk motion and turbulent velocities through line shifts and
line broadening respectively, is another main scientific objec-
tive for X-IFU. This, however, goes beyond the scope of this
paper and we redirect the reader to Roncarelli et al. (2018) for an
illustration.

5.2. Metallicity profiles of the ICM

The hierarchical formation of galaxy clusters along with pro-
cesses of production and dispersion of chemical elements within
stars and galaxies should lead to self-similar global abundance
profiles. The value of the metallicity in the outskirts will depend
notably on the enrichment of the intergalactic medium prior to
the halo formation (see, e.g. Biffi et al. 2017).

To investigate the capabilities of the X-IFU in determining
abundance profiles over the cluster data set, we computed the
radial profiles at z ∼ 0.1 for some of the main chemical ele-
ments: O, Mg, Si, and Fe (Fig. 5). We find that the values of
abundance profiles are consistent across the sample, showing a
peak near the centre (i.e. up to 0.1 R500) and a decrease towards
a constant value between ∼0.1/0.2 Z� out to R500. Cluster C3
shows however values of metallicities systematically higher than
the others, which could be caused by the ongoing merging activ-
ity visible in Fig. 1 (Bottom left) and possibly due to AGN feed-
back. This dynamic activity also creates a more difficult line-
of-sight distribution of the parameters, making the XSPEC fit
less accurate. This is particularly the case near the outskirts,
where background contributions become relevant and regions
are large, thus increasing the deviations from the input maps
(especially for iron). These measured profiles, and notably their
constant metallicity value in the outskirts, suggest as discussed
in Biffi et al. (2017), Truong et al. (2018), that the enrichment of
the cluster in the hydrodynamical simulations pre-dates the large
infall towards the central object and is mainly determined by the
early enrichment mechanisms of the Universe. Other indepen-
dent hydrodynamical simulations (Vogelsberger et al. 2018) and
recent observational results (e.g. Ezer et al. 2017; Mernier et al.
2017; Simionescu et al. 2017) also argue in favour of this
paradigm.

Overall, the recovered metallicities are consistent with the
input metallicity profiles within 3σ (most well within 1σ),
showing the power of the X-IFU in recovering the properties
of the ICM even for typical 100 ks exposures. This analysis
can be compared to a similar study performed by simulating
200 ks cluster observations with XMM-Newton/EPIC MOS1 and
MOS2 for the same chemical species (see Rasia et al. 2008 for
more details, notably Fig. 4) or to current observational data
using the CHEERS catalogue (Mernier et al. 2017). For typi-
cal exposure times, the X-IFU will provide accurate measure-
ments of the main metallic content of the ICM, enough to reduce
the uncertainties on current observations, even for less abun-
dant elements. In addition to the individual profiles, the overall
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Fig. 5. Best-fit values of the metallicity as a function of radius, up to R500 (0.1 R500 bins) for the entire sample (C1 – purple dots, C2 – orange
squares, C3 – green diamonds, C4 – red triangles). From top left to bottom right: oxygen, magnesium, silicon and iron abundances with respect to
solar. The dashed lines represent instead the profile of the emission-measure-weighted input abundances using the same colours. The cyan shaded
envelope represents the ±1σ dispersion of the recovered output metallicity for the entire sample. Points are slightly shifted for clarity.

dispersion across the sample (Fig. 5) is consistent with the aver-
age emission-measure-weighted input distribution. However, the
sample considered here is relatively small, and the scatter of
our results remains significant. Namely, we see that the dynamic
behaviour of clusters C3 affects the overall scatter of the sample,
otherwise similar for the other three objects (C1, C2, and C4).
The values of iron abundance in the outskirts found in this study
(between 0.1/0.2 Z�) are somewhat lower than measured iron
abundances in the outskirts, which range typically around 0.2 Z�
(Werner et al. 2013; Mantz et al. 2017; Urban et al. 2017).
Values remain however consistent with the hydrodynamical
inputs, demonstrating that the X-IFU is able to recover the intrin-
sic physical parameters used for the clusters. The projection
scheme adopted here also provides lower results than for exam-
ple, emission-weighted schemes, in which the strongest emission
regions (hotter and/or with more metal) will enhance the overall
contribution.

Once in orbit, the X-IFU will probe a much larger number
of galaxy clusters (≥10 per mass and redshift bins), therefore

reducing the sample variance of these profiles even further,
especially near the outskirts of the clusters. A more accu-
rately constrained scatter will provide important information
on the metallicity distribution of the ICM and firm observa-
tional confirmation of the nature of the enrichment scenario
during the early phases of the Universe. These results high-
light the sensitivity of the X-IFU to constrain with high accu-
racy the chemical enrichment pattern in cluster outskirts, and,
therefore, to fully exploit its potential as a fossil record of
the star formation history and feedback in the proto-cluster
ecosystem.

5.3. Constraints on the chemical enrichment model

As chemical elements are trapped within the ICM, they repre-
sent a fossil record of the integrated history of chemical enrich-
ment of the cluster. Strong constraints on the relative contribu-
tion of the various enrichment mechanisms (notably SNcc and
SNIa) could be given by accurate measurements of abundance
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Fig. 6. Average abundance ratio with respect to iron within R500 at z ∼ 0.1 over the cluster sample for z = 0.1 (left) and z = 1 (right) recovered
using 100 ks observations. The input abundance ratio are shown as histogram bars filled with the respective contributions of SNIa (blue), SNcc
(magenta) and AGB stars (yellow), computed from the outputs of the hydrodynamical simulation presented in Sect. 2. For z = 1, carbon (C) and
nitrogen (N) are not shown as the lines are outside the energy bandpass of the instrument (not fitted).

Table 4. Mean abundance ratio with respect to iron within R500 at
z ∼ 0.1 for each cluster in the sample.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

C/Fe 0.48± 0.34 0.35± 0.24 0.43± 0.28 0.48± 0.31
N/Fe 0.32± 0.12 0.40± 0.15 0.52± 0.30 0.57± 0.20
O/Fe 0.73± 0.04 0.68± 0.04 0.67± 0.06 0.69± 0.06
Ne/Fe 0.10± 0.03 0.12± 0.04 0.14± 0.06 0.20± 0.06
Na/Fe 0.17± 0.12 0.34± 0.24 0.20± 0.13 0.21± 0.17
Mg/Fe 0.63± 0.05 0.58± 0.06 0.59± 0.08 0.53± 0.08
Al/Fe 0.16± 0.08 0.18± 0.10 0.21± 0.18 0.20± 0.13
Si/Fe 1.24± 0.06 1.18± 0.05 1.27± 0.08 1.27± 0.09
S/Fe 1.33± 0.08 1.30± 0.08 1.26± 0.12 1.18± 0.12
Ar/Fe 0.19± 0.09 0.22± 0.11 0.20± 0.15 0.30± 0.17
Ca/Fe 0.94± 0.20 0.71± 0.16 0.71± 0.24 0.99± 0.25
Ni/Fe 2.12± 0.20 1.91± 0.21 2.11± 0.29 2.12± 0.32

ratios of elements within clusters. Using the small sample at our
disposal, we estimated the capabilities of the X-IFU in recov-
ering this information in the input hydrodynamical simulations
within a radius of R500. A first noticeable result is that for the
entire cluster sample, recovered abundance ratios are consis-
tent for all the elements (see Table 4). Using the average abun-
dance ratio profile and the corresponding production yields of
each element in the input hydrodynamical simulations, we com-
puted the input fraction of each of the enrichment mechanisms
(SNcc, SNIa, or AGB) and compared it to the overall output
abundance ratio given by our E2E simulations (Fig. 6, left). For
this study a small fraction of the outlier regions (.5%) was
excluded, as results clearly showed incompatible values with
respect to emission-measure-weighted inputs for rare elements
(N, Na, and Al). All of the elements present in the simula-
tions are comparable to the inputs within their statistical error
bars. Most of all, the ratios of the main elements of the ICM
(e.g. O/Fe, Mg/Fe, and Si/Fe) are very accurately recovered
with a significance of the detection ≥10 (i.e. the ratio between
the value and the error). Rarer elements (typically Ne, Ar, S,
Ca) are also very consistent with the hydrodynamical simula-

tions. Less abundant elements (Na and Al) have looser con-
straints in the fitted regions due to the considered exposure time
(low S/N of the lines) and seem slightly overestimated in their
reconstruction.

With the small sample used here, we have demonstrated that
the X-IFU is able to provide robust estimations of the abundance
ratios. Given the low errors on the measurements, these results
can be used to distinguish the contributions of the various mech-
anisms at play in the cosmological simulations, by comparing
them to metal production theoretical models. Notably, using ele-
ments produced by single mechanisms (e.g. Ne, Na for AGB,
or Ar, Ni for SNIa), accurate measurements of abundance ratios
will provide strong constraints to the IMF and the contribution of
each mechanism at local redshift. The ability to recover the cor-
responding supernovæ yield and to distinguish between multiple
other models shall be addressed in a forthcoming study. The cur-
rent observational strategy of the X-IFU plans to use at least 40
clusters of galaxies to investigate the chemical enrichment of the
Universe. With such a large sample and by giving unprecedented
information on other rare elements (e.g. Mn, Co, that could
not be tested here since these metals are not separately traced
in the hydrodynamical simulations), the X-IFU will undoubt-
edly provide new constraints to the global chemical enrichment
models.

6. Chemical enrichment through cosmic time

Element abundances in local clusters embed the integrated
chemical enrichment of the Universe up to this day. However, to
understand how and when the ICM was enriched, the evolution
of production sources with time and how the overall enrichment
processes relate (e.g. the star formation history and the initial
mass function) must be assessed. To do so, we analysed syn-
thetic observations of the same four clusters taken at different
stages of their evolution, hence considering five redshift values
up to z = 2. We chose to keep a realistic exposure time fixed to
100 ks, regardless of the redshift. This exercise tested the capa-
bilities of the X-IFU in a regime of low statistics, thus preventing
the full spatial analysis presented above. For the highest redshift
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Fig. 7. From top left to bottom right: maps in number of counts per X-IFU pixel (249 µm pitch) for cluster C2 (see Table 1) simulated with the
end-to-end simulator SIXTE for redshift z ∼ 0.5 (top left), 1 (top right), 1.5 (bottom left) and 2 (bottom right), for an exposure time of 100 ks.

clusters we complied strictly to the definition of the Athena sci-
ence case on chemical abundances and performed measurement
in two different annuli from the cluster centre between 0–0.3 R500
and 0.3–1 R500.

Figure 7 shows the mock surface brightness maps for C2 at
the various redshift snapshots and illustrates the assembly his-
tory of halos through, for example, merging events. Figure 8
shows the evolution of the mean cluster abundance over our
whole sample as a function of the redshift in the two afore-
mentioned annular regions for O, Mg, Si, and Fe. Despite the
lower source-to-background level of some objects, input metal-
licity values are recovered accurately within the statistical uncer-
tainties of the measurements even for high-redshift clusters,
although for z ≥ 1, error bars start to be significant for elements
such as O and Mg. In the case of low-mass elements, abundances
are not measurable up to a redshift of z = 2, as lines are red-
shifted outside the instrument energy band (e.g. O and Mg for
z ≥ 1.5) or are too weak to be disentangled from the foreground
and the background (e.g. Si at z = 2). As expected, measure-
ments in the central parts of the cluster are more accurate, due
to the higher level of background in the outskirts with respect to
the cluster emission, especially for z ≥ 1.5.

Through these measurements, we find that in the central
parts of the cluster, metallicity hardly changes across time,
even at a redshift of z = 2, once again consistently with the
analysis by Biffi et al. (2017). This indicates that most of the
enrichment occurs in the early days of the cluster. Interestingly,
we notice that the iron abundance in the centre of the cluster
slightly decreases with redshift, which could be explained for
instance by an increase in time of iron production mechanisms
(e.g. SNIa) or by the time delay with which long-lived SNIa
release Fe. Abundances in the outskirts show a similar trend,
with near-constant values up to local redshift values. Similar
observational evidences, as for example, reported in Ettori et al.
(2015) for iron abundance are consistent with these conclusions.
The dynamic history of the clusters (mergers, shocks) is visible
over time (data points are taken from the same cluster at different
time steps), displaying local peaks of abundance, for example,
C3 at z = 1 or C4 at z = 0.5. Given the sparse number of redshift
points, turbulence or mixing within the cluster (whose eddy turn
over timescale is of the order of a few Gyr over scales of ∼1 Mpc
for typical ∼500 km s−1 velocities) create a more homogeneous
distribution of metals in the structure, returning abundances to
typical values after mergers.
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Fig. 8. Evolution of the average abundance of the cluster sample (C1 – purple dots, C2 – orange squares, C3 – green diamonds, C4 – red triangles)
recovered via XSPEC as a function of the redshift between 0–0.3 R500 (left) and 0.3–1 R500 (right). From top to bottom: oxygen, magnesium,
silicon and iron abundances with respect to solar. The dashed lines represent the profile of the emission-measure-weighted input abundances using
the same colours. The cyan (resp. magenta) shaded envelope represents the ±1σ dispersion of the output metallicity over the sample. Points are
slightly shifted for clarity.

Using the accuracy of the X-IFU abundance measurements
for high-redshift objects, we can also analyse changes in the
metal enrichment mechanisms by performing a similar study as
the one presented in Sect. 5.3. In the case of redshift z = 1 (see
Fig. 6, right) for 100 ks observations, we find that the X-IFU will

still be capable of accurately recovering abundance ratios within
R500 with excellent accuracy. Most of the main elements have in
fact no significant changes between both redshift values, consis-
tently with our previous conclusions. In the case of high-redshift
objects however, low-mass elements such as carbon and nitrogen
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can no longer be detected (lines outside the energy bandpass) and
rarer elements (e.g. Ne, Na, and Al) have large uncertainties due
to the low S/N of the observations. Ni also tends to be under-
estimated (mostly in the outskirts) likely due to the low S/N of
the line with respect to the high-energy background. This calls
for better-adapted exposure strategies to optimise the results for
distant objects and further investigate the chemical enrichment
across cosmic time.

7. Summary and discussion

In this paper, we have addressed the feasibility of constraining the
chemical enrichment of the Universe, which will be one of the key
science objectives and a main driver of the performances of the
future mission Athena. Notably, we investigated and quantified
the capabilities of the X-IFU in accurately recovering metal abun-
dances of the ICM across cosmic time. To this end, we developed
a full end-to-end pipeline, which creates synthetic X-IFU obser-
vations using the instrument simulator SIXTE. We used as input
of this pipeline a sample of four clusters generated using state-of-
the-art cosmological simulations presented in Rasia et al. (2015)
and Biffi et al. (2017) to create realistic event lists. All the rele-
vant instrumental effects such as the convolution of spectra with
the instrument spatial and spectral responses, realistic sources
of foreground and background, and detector geometry were also
included to obtain observations as realistic as possible.

The sample of four clusters was simulated at five different
redshift values, for a fixed exposure time of 100 ks in order to
achieve abundance measurements out to R500. The accuracy of
the pipeline was quantified by comparing our synthetic obser-
vations to weighted inputs quantities (e.g. spectroscopic temper-
ature, emission-measure-weighted abundances). We find that a
straightforward approach of a broad-band fit created systematic
biases above 10% in a number of physical parameters. Rather
a multi-band energy fitting procedure ensured more accurate
recovery by optimising the extraction of the several chemical
abundances and other physical parameters of interest (notably
temperature). After post-processing, distributions are accurately
recovered (almost always within the 3σ of the measurement
error) with little to no systematic biases (of the order of a 5%,
see Sect. 4.6) found mainly between the low-mass element abun-
dances (e.g. O, Si) and the normalisation. The comparison of the
relative distribution between outputs and inputs with respect to
the XSPEC statistical error also showed reduced chi-squared val-
ues χ̃2

red close to 1 when a small fraction of outlier regions (≤5%)
is removed indicating a good accuracy in the fits. Remaining
errors and biases can be linked to correlation between parameters
(notably the normalisation), to the choice of the input weight-
ing scheme, and to mixing effects along the line-of-sight in view
of the single plasma temperature model used here. We also find
that most of these errors decrease when statistics are strongly
increased (biases below 2% at 1 Ms for the same spatial regions),
suggesting that these effects may simply be related to statistics
(see Appendix B). Studies conducted by decreasing the statistics
of the runs (typically by decreasing the S/N of the regions to 50
or 100) provided equally encouraging results. Despite larger sta-
tistical errors (up to 10% higher), the main parameters (tempera-
ture, redshift, O, Si, or Fe abundance) were accurately recovered.
Some fainter lines (e.g. Na, N, or Al) become however very dif-
ficult to constrain in this case.

For local clusters (z ∼ 0.1), we demonstrate the power of
the X-IFU in accurately recovering spatially resolved parameter
maps, along with abundance profiles (Sect. 5.2) and abundance
ratios (Sect. 5.3). The study was then extended at different red-

shift values, up to z ∼ 2. By probing the chemical enrichment for
very distant clusters and despite the lack of an optimised obser-
vation strategy (i.e. non-optimised exposure time), we also show
the power of the X-IFU in investigating the ICM properties and
the chemical enrichment of the distant Universe.

The binning and fitting procedures used here comprise “clas-
sical” approaches to X-ray data analysis, using S/N binning and
fits through instrumental response matrices in XSPEC. Despite
our efforts, the fitting procedures remain slightly biased (≤5%)
and small changes in the fitting approach can impact the over-
all results of the simulation (of the order of a few %). More
accurate results may be achieved using, for example, Monte-
Carlo (MC) fitting approaches, but unfortunately remain com-
putationally cumbersome to be used on our large set of spa-
tial regions. More optimised binning techniques could also be
investigated for future applications (Kaastra & Bleeker 2016).
The access to high-resolution spectra will provide new prox-
ies to estimate quantities such as the temperature by using for
example, line-ratio techniques. Eventually, hyper-spectral meth-
ods (e.g. blind source separation algorithms) or machine-learning-
based fitting techniques (see, e.g. Ichinohe et al. 2018) could open
new perspectives for the post-processing of high-resolution X-ray
spectra. We would like to emphasise that, even though not appli-
cable in our simulation case, the expected level of spectral
resolutionoftheX-IFUwillchallengeourcurrentknowledgeaccu-
racy of the spectral lines (centroid energies and intrinsic widths).
This is critical to allow a meaningful interpretation of the results
(as demonstrated in Hitomi Collaboration 2018d, for line ratios)
andtodisentanglefinespectroscopiceffects (suchasresonantscat-
tering, Hitomi Collaboration 2018b). This emphasises the need
for dedicated tools able to process and analyse future X-IFU
high-resolution spectroscopy data-cube. In this regard, the Athena
mission will certainly benefit from the advances expected in pro-
cessingtools,fittingmethodsandatomicdatabases,fromthefuture
XRISM mission (Ishisaki et al. 2018).

Not only do these E2E simulations allow us to explore the
capabilities of the future X-IFU instrument, but they also give cru-
cial information on the effect of instrumental parameters in sci-
ence observations. In this study for instance, the spectral shape
of all the foreground and background components were assumed
to be perfectly known. For the more local and massive clusters
however, the field-of-view of the X-IFU will easily be encom-
passed within the angular extension of R500. Cluster emission-free
regions might thus be unavailable for local background calibra-
tion. The spectral resolution of the X-IFU will help mitigate this
effect, by allowing us to disentangle various components through
the characteristics of their spectral energy distribution. The instru-
ment background may also contaminate the observation of faint
sources, as the level of precision to which X-IFU is expected
to perform requires its accurate and reproducible knowledge in
flight. This may be achieved through, for example, in-flight cross-
correlation with the WFI or the X-IFU cryogenic anti-coincidence
detector (Cucchetti et al. 2018). Future developments could take
advantage of this simulation pipeline to test other realistic instru-
mental effects (e.g. stray-light for galaxy cluster outskirts obser-
vations). More detailed studies of the abundance ratios recovered
here will also be at the centre of a forthcoming study to high-
light the capabilities of the X-IFU in constraining the ICM chem-
ical enrichment, and notably to disentangle between the contribu-
tions of the various mechanisms of chemical enrichment (e.g. SN,
AGB) throughout cosmic time.

Our study underlines the revolutionary capabilities brought
by the X-IFU in future X-ray spectroscopy. With typical
routine observations, the X-IFU will drastically change our
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understanding of ICM mechanisms and provide a quantum leap
forward in X-ray astronomy.
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Appendix A: Spatial binning algorithm comparison

Spatial binning of the data is used to increase the S/N of the
considered regions, to have higher significance spectra. This is of
particular interest whenever fine structures (e.g. line ratios, line
doublets, absorption features) need to be observed in a spectrum.
Multiple methods can be used to bin spatially, in this study two
of them were considered:

– contbin tool developed by J. Sanders (Sanders 2006).
The contbin scheme was run for a constrain fill value of
two, which represents the maximum ratio length/width of a
region.

– Voronoï tessellation, as defined by (Cappellari & Copin
2003)

Both these methods were tested on the same surface brightness
map to estimate their performances. Various criteria were com-
pared, such as their ability to reproduce spatial features of the
cluster or the mean S/N ratio of the regions created. Figure A.1
shows a comparison of the cluster 2 regions at z = 0.105 without
any foreground/background component (to investigate purely the
binning effects) computed using either of these methods. Visu-
ally, we notice that contbin provides very similar results to
Voronoï whenever the aspect ratio of the region is constrained
to Cfill = 1 (Fig. A.1, right). When a slightly higher value of
the aspect ratio is allowed (Fig. A.1, bottom left), we notice that
contbin is able to reproduce more accurately the radial con-
tours of the cluster, notably the cold arc visible in the south-east
corner of input data or the hot bubble rising west of the cluster
(Fig. A.1, top left). Further, no difference is found on the aver-
age S/N of the regions, which is always above the required level.
Finally, the methods give very close results in terms of num-
ber of regions (85 for Voronoï vs 87 for contbin for a S/N of
300), thus being equivalent computationally. For our purposes,
contbin tool provides a more suitable binning algorithm than
Voronoï. More ample tests also show no significant difference
in the recovery of the physical parameters between both tech-
niques.

Appendix B: Validation of the simulation pipeline

Test hypothesis

The accuracy of the simulation pipeline needs to be verified
using the cluster inputs provided. These inputs are 3D cubes
of data, which needs to be projected along the line-of-sight of
the instrument to be compared to the outputs of the end-to-end
simulations. Ideally, this projection should be deterministic and
give an unequivocal results. However, since the parameter dis-
tribution along the line-of-sight cannot be perfectly integrated
(we only measure discrete number of counts, affected by statis-
tics and background sources), multiple schemes exist to compare
inputs and outputs depending on the physical quantity we wish
to compare. Among those, the most widely used include:

– Emission-weighted projection, using the product ρ2
√

T of
each element along the line-of-sight.

– Mass-weighted projection, using the mass of each element
– Emission-measure-weighted projection, using the emission-

measure of a given line derived from Eq. (2)
– Spectroscopic schemes, as defined in (Mazzotta et al. 2004)

The accuracy of the simulated measurements was first tested
by taking as estimator the relative error distribution of the out-
put map, using emission-weighted-input maps as proxy for the
input parameters. Being each region much larger than the tele-
scope PSF they are considered independent on a strict statis-
tical term. The relative error is assumed to follow a Gaussian

Fig. A.1. Spatial binning scheme comparison for cluster 4 spectroscopic
temperature map (keV) without background, at redshift z = 0.105.
Top left: unbinned raw input map from the hydrodynamical simulation.
Top right: voronoi tessellation map using the algorithms described in
(Cappellari & Copin 2003). Bottom left: contour map using contbin
tool (Sanders 2006) with an aspect ratio constraint, Cfill = 2. Bottom
right: same as bottom left, with Cfill = 1.
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Fig. B.1. Comparison between the relative error distribution of the
parameters (red) and the fitting error distribution (green – symmetric
but not shown here for clarity). Ideally, if no biases are present rela-
tive error distribution should be centred and its standard deviation σ∆P
should be very close to the mean value of the fitting error distribution
µfit.

distribution given the sufficiently high number of regions consid-
ered (≥80), with a mean µ∆P = 0 (if no biases are present) and a
standard deviation of σ∆P, which indicates the total error on the
parameter. The fitting error returned by XSPEC should also be
Gaussian, and centred on given a value µfit which depends on the
exposure time and the emission model parameters. For an accu-
rate measurement, the value of µfit should be comparable to σ∆P
do all parameter (Fig. B.1). A second test can also be performed
using as estimator the ratio between the relative difference and
the XSPEC error σfit for each region, i.e. χ j = (Pfit, j−Pin, j)/σfit, j
and the corresponding reduced chi-square. Using the emission-
measure-weighted input and the output distributions, let us take
as null hypothesis (H0): “The measurements obtained with the
pipeline are consistent with the statistical errors for a given expo-
sure time” and (H1): “The measurements are biased” with a
threshold pα = 5% (i.e. 97.5% of the Gaussian distribution, or
∼2.5σ).
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Fig. B.2. Gaussian best fits of the normalised relative error distribution
on the measured temperature for different input map weighting scheme
for cluster C4. The red solid curve indicates the emission-weighted best
fit of the distribution (µ∆T = −8.0%, σ∆T = 3.4%). The blue dash-dotted
line indicates the spectroscopic temperature best fit (µ∆T = −1.2%,
σ∆T = 2.2%), while the dotted violet line indicates the best fit for a
mass-weighted input (µ∆T = −5.2%, σ∆T = 7.2%).

H0: (H0) can be rejected if the value of σ∆P is outside
µfit ± 2.5σfit for all the parameters. This can also be seen on
the χ j maps, if the number of regions with |χ j| ≥ 2.5 is
high. For all runs, the value of the error dispersion is always
within this threshold and the number of outliers regions is
small (see also Appendix C and Table 3), indicating that the
(H0) is valid and errors are consistent with the corresponding
statistics.

H1: (H1) can be rejected if µ∆P ∼ 0, within ∼2.5 times
the mean standard error of the distribution (due to the finite
size of the sample). The samples are generally composed of
Nreg ∼ 80 regions and the standard error on µ∆P is given by
σ∆P/

√
Nreg. Under these assumptions, clear biases are visible

in the reconstructed emission-weighted and mass-weighted
temperature maps, which presented a systematic underestima-
tion of ∼5–10% (Fig. B.2). This bias is explained by mixing
effects along the line-of-sight and complexity to disentangle
multi-temperature plasma with a single plasma model
(Mazzotta et al. 2004). It can be reduced using spectro-
scopic temperature maps (Fig. B.2). The use of the broad-band
fit induced in fact many other visible biases, notably between
abundances (O, Si, and Fe) and temperature (Fig. B.3, upper
panel). The use of multi-band fitting (detailed in Sect. 4.6)
significantly reduces these biases (Fig. B.3, lower panel) within
the statistical variations of the parameters. Despite this improve-
ment, small correlations are visible between abundances and
temperature (∼1%) and between the normalisation and all other
parameters (∼5%). Efforts to reduce this bias were conducted by
fixing or releasing various fitting parameters, without significant
success. A clear rejection of the null hypothesis (H1) cannot be
performed, although results suggest that small residual biases
and correlations remain in the current fitting procedure, mainly
on normalisation.

Influence of the projection scheme

Depending on the weighting schemes (mass-weighted or
emission-measure-weighted) different error distributions of the
same quantities can be obtained. These discrepancies add a fur-
ther complexity to evaluate any potential bias in the pipeline
(Fig. B.2).

Fig. B.3. Corner plots of the relative error on parame-
ter (Xfit − Xinp)/Xinp = ∆X/Xinp as function of parameter
(Yfit − Yinp)/Yinp = ∆Y/Yinp, for the spectroscopic temperature,
Tsl, oxygen, silicon, and iron abundance, redshift, z, and the normal-
isation N , for cluster C4. The diagonal panels are the corresponding
relative error distribution, where the red solid line indicates the
Gaussian best fit of the distribution (parameters µ∆P, σ∆P given above)
and the dotted line is the value of µ∆P ±µfit. Top Broad-band fit. Bottom:
multi-band fit (Sect. 4.6) considering a spectroscopic temperature.

Accuracy in terms of probability distributions

The previous test is only valid whenever the error distribu-
tions are assumed to be Gaussian, which is unfortunately not
always the case (slight deviations from Gaussian behaviour are
observed). If so, the accuracy of our method needs to be tested in
the sense of the statistical distributions performing for instance a
Kolmogorov–Smirnov (KS) test over the output and input distri-
butions. The KS test compares the probability pKS for two ran-
dom variables to be drawn from the same data set (i.e., same

A173, page 18 of 22

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833927&pdf_id=11
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833927&pdf_id=12


E. Cucchetti et al.: Athena X-IFU synthetic observations of galaxy clusters to probe the chemical enrichment of the Universe

probability density). Using both the input and output distribu-
tion, this test showed high pKS values (between 0.6 and 1 for the
different parameters), which gives strong hints that the output
distribution indeed matches the input. Statistically speaking, no
real conclusion can be achieved with a single realization of
the observation. To fully validate the pipeline, a large num-
ber of observations of the same cluster (either along the same
line-of-sight or by taking multiple lines-of-sight) would be
needed to perform a meaningful comparison using a KS method.

Unfortunately, the duration of one full simulation of a cluster
is of the order of a day, making it computationally cumber-
some to carry out this test. For simplicity, a very high expo-
sure time simulation of these extended sources were carried out
instead. Although beyond the scope of this paper, such observa-
tions (≥1 Ms) with the same binning regions decrease most of
the biases below 2% and create distributions which much more
alike (pKS ≈ 0.8/1), suggesting that the residual errors are in
part related to statistics and to the fitting scheme.
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Appendix C: Further results of the simulations

We show here the reconstructed maps of the main physical parameters (spectroscopic temperature, oxygen, silicon and iron) for
clusters C1, C3, and C4.
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Fig. C.1. As Fig. 3 for cluster C1.
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Fig. C.2. As Fig. 3 for cluster C3.
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Fig. C.3. As Fig. 3 for cluster C4.
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