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Introduction

In probability theory, the act of compounding often refers to the mixing or joining of two distributions with possible different nature, that is, (i) discrete with discrete, (ii) discrete with continuous, and (iii) continuous and continuous. From a statistical point of view, this mixing may leads to an increase flexibility in the subjacent model, which can accommodate a variety of data sets generated from simple to complex phenomenons. A complete survey addressing trends in compounding can be found in [START_REF] Tahir | Compounding of distributions: a survey and new generalized classes[END_REF]. The objective of this paper is to introduce a new promising distribution defined by mixing two useful continuous univariate distributions: the Weibull and Burr XII distributions. We thus follow the spirit of [START_REF] Cordeiro | The exponential-Weibull lifetime model[END_REF] with the exponential-Weibull (EW) distribution and [START_REF] Asgharzadeh | The Weibull-Lindley distribution[END_REF] with the Weibull-Lindley (WL) distribution, both showing remarkable properties in the modelling real life data sets of various kinds.

Let us now present the distribution of interest, with motivations. Let Y be a random variable following the Burr distribution with parameters c > 0 and k > 0, i.e. having the cumulative distribution function (cdf) given by G B (y) = 1 -(1 + y c ) -k , y > 0 (recall that the associated survival function (sf) is given by ḠB (y) = 1 -G B (y) = (1 + y c ) -k and the hazard rate function (hrf) is given by h B (y) = cky c-1 (1 + y c ) -1 ). Let Z be a random variable following the Weibull distribution with parameters a > 0 and b > 0, i.e. having the cdf given by G W (z) = 1exp(-az b ), z > 0 (recall that the associated sf is given by ḠW (z) = 1 -G W (z) = exp(-az b ) and the associated hrf is given by h W (z) = abz b-1 ). Consider that Y and Z are independent random variables. We define the minimum Weibull-Burr (minWB) distribution by the distribution of the random variable X defined by the minimum of Y and Z, i.e. X = min{Y, Z}. Hence the cdf of the minWB distribution is given by

F (x) = 1 -ḠB (x) ḠW (x) = 1 -(1 + x c ) -k exp(-ax b ), x > 0, (1.1) 
where a > 0 is the scale parameter, and b > 0, c > 0 and k > 0 are shape parameters.

The associated sf, probability density function (pdf) and hrf of the minWB distribution are respectively given by S(x) = (1 + x c ) -k exp(-ax b ),

f (x) = (1 + x c ) -k exp(-ax b ) abx b-1 + ckx c-1 (1 + x c ) -1 (1.2) and h(x) = abx b-1 + ckx c-1 (1 + x c ) -1 . (1.3) 
Henceforth, a random variable X with pdf (1.2) is denoted by X ∼ minW B(a, b, c, k). Some special distributions of the minWB distribution are: (i) Weibull when k = 0, (ii) Burr when a = 0, (iii) Weibull-log-logistic (WLL) when k = 1, (iv) Rayleigh-Burr (RB) when b = 2, (v) exponential-Burr (EB) when b = 1, and (vi) Weibull-Lomax (WLx) when c = 1.

The major motivations for the new distribution are fivefold: (i) the cdf of the minWB distribution is quite simple, giving simple expressions for the pdf, sf and hrf; (ii) the new distribution is very flexible with respect to the pdf and hrf shapes. In particular, the possible pdf shapes are decreasing, unimodal (right-skewed or symmetrical) and bimodal. This means that the minWB model can show suitable fit to those data sets, whose histograms are similar to the minWB pdf shapes. Furthermore, the minWB distribution exhibits monotone [increasing (IFR) and decreasing (DFR)], non-monotone [bathtub (BT) and upside-down bathtub (UBT)] and decreasing-increasing-decreasing (DID) failure rate shapes to cope with all types of lifetime data sets; (iii) the WLL, WLx, RB, EB, Weibull and Burr distributions are special cases of the proposed distribution; (iv) the minWB pdf shows bimodal feature as well; (v) suppose a system has two sub-systems functioning in series independently at a given time, so that the system will fail when the first sub-system fails. Consider that the failure times of the sub-systems follow the Weibull and Burr distributions. Then, the time-to-failure of the system has cdf (1.1).

The paper is unfolded as follows. In Section 2, we derive some mathematical properties of minWB distribution including shapes of pdf and hrf, quantiles, moments, mean deviations, generating function, stress-strength reliability parameter and stochastic ordering. In Section 3, the model parameters are estimated by maximum likelihood and a simulation study is performed. In Section 4, we formulate the Poisson-Weibull-Burr regression model with cure fraction by defining the pdf, cdf and hrf. In Section 5, the usefulness of the new distribution is illustrated by means of four real data sets, where we prove empirically that our proposed model outperforms some well-known lifetime distributions. Finally, Section 6 offers some concluding remarks.

Properties of the minWB distribution

Hereafter, X denotes a random variable such that X ∼ minW B(a, b, c, k), F (x) is the cdf of X given by (1.1), f (x) is the pdf of X given by (1.2) and h(x) is the hrf of X given by (1.3).

Quantile

For p ∈ (0, 1), the pth quantile of X, say x p , is defined by F (x p ) = p. It is then the root of

x p = (1 -p) exp(ax b p ) -1/k -1 1/c . (2.1)
For a given p, it can be computed numerically. This is the case for the median of X defined by

M = x 1/2 .

Asymptotics

The asymptotics of the cdf, pdf and hrf of X when x → 0 are given below.

• F (x) ∼ ax b . • For f (x), we must distinguish the cases b > c, b = c and c > b. If b > c then f (x) ∼ ckx c-1 (note that it tends to +∞ if c ∈ (0, 1), k if c = 1 and 0 if c > 1). Moreover, if c > b then f (x) ∼ abx b-1 , if b = c then f (x) ∼ (ab + ck)x c-1 .
• For h(x), we have h(x) ∼ f (x), and the results aboves are still valid.

The asymptotics of the cdf, pdf and hrf of X when x → +∞ are given below.

• 1 -F (x) ∼ x -kc exp(-ax b ).

• f (x) ∼ abx -kc+b-1 exp(-ax b ) (note that it tends to 0 in all case).

• h(x) ∼ abx b-1 (note that it tends to 0 if b ∈ (0, 1), a if b = 1 and +∞ if b > 1).

These results show the effects of the parameters on the tails of the minWB distribution.

Shapes of the pdf

The critical points of the minWB pdf are the roots of the equation df (x)/dx = 0, i.e., after calculus,

a 2 b 2 x 2b (x c + 1) 2 -abx b (x c + 1) [x c (b -2ck -1) + b -1] + ckx c [c(kx c -1) + x c + 1] = 0. (2.2)
By using any numerical software, we can examine Equation (2.2) to determine the local maximum and minimum and inflexion points. Figures 1 and2 display some plots of the minWB pdf for selected values of a, b, c and k (some of them are fixed, the others differ). The plots in Figures 1 and2 reveal that the shapes of the minWB pdf are decreasing, unimodal (right-skewed or symmetric) and bimodal.

Shapes of the hrf

The critical points of the minWB hrf are obtained from the equation dh(x)/dx = 0, i.e., after calculus,

a(b -1)bx b-2 (x c + 1) 2 -ck (x c + 1)x c-2 + c(x 2c-2 -(x c + 1)x c-2 ) = 0.
(2.3) By using any numerical software, we can examine Equation (2.3) to determine the local maximum and minimum and inflexion points. 

Moments and generating function

First, we obtain general expressions for the following two integrals, which are used to determine some structural properties of the minWB distribution. There are no closed-form expressions for the integrals and then they can be computed numerically.

Integral 1: We define the integral J 1 (p, c, k, a, b) by Let us now determine a series expansions for this integral. Using the generalized binomial expansion, we have

J 1 (p, c, k, a, b) = +∞ 0 x p (1 + x c ) -k exp(-ax b )dx.
(1 + x c ) -k = +∞ i=0 -k i x ic 1 (0,1) (x) + 2 -k 1 {1} (x) + +∞ i=0 -k i x -c(i+k) 1 (1+∞) (x),
where 1 A (x) denotes the indicator function over a given set of real numbers A, i.e. 1 A (x) = 1 if x ∈ A and 1 A (x) = 0 elsewhere, and -k i is the (generalized) binomial coefficient defined by

-k i = (-k)(-k -1) . . . (-k -i + 1
)/i! and -k 0 = 1. By the change of variable y = ax b , we can write

J 1 (p, c, k, a, b) = +∞ i=0 α i γ p + ic + 1 b , a + +∞ i=0 α * i Γ p -c(i + k) + 1 b , a , (2.4) 
where γ(m, x) =

x 0 t m-1 e -t dt, Γ(m, x) = +∞ x t m-1 e -t dt, m > 0, α i = b -1 -k i a -(p+ic+1)/b and α * i = b -1 -k i a -(p-c(i+k)+1)/b .
Integral 2: Let y > 0. We define the integral function J 2 (y; p, c, k, a, b) (function according to y) by

J 2 (y; p, c, k, a, b) = y 0 x p (1 + x c ) -k exp(-ax b )dx.
By using algebraic developments similar to those used for the previous integral, we can write

J 2 (y; p, c, k, a, b) =              +∞ i=0 α i γ p + ic + 1 b , ay b 1 (0,1) (y) +∞ i=0 α i γ p + ic + 1 b , a + +∞ i=0 α * i Γ p -c(i + k) + 1 b , ay b 1 (1,+∞) (y).
(2.5) Equations (2.4) and (2.5) are the main tools to obtain some mathematical properties of the minWB distribution such as the ordinary and incomplete moments, mean deviations and moment generating function.

The nth ordinary moment of X can be determined from Equations (1.2) and (2.4) as

µ n = +∞ 0 x n f (x)dx = abJ 1 n + b -1, c, k, a, b + ckJ 1 n + c -1, c, k + 1, a, b . (2.6)
Hence, the mean of X is given by µ 1 and the variance of X is given by V = µ 2 -(µ 1 ) 2 . The central moments of X can follow from Equation (2.6). Indeed, we have

µ s = p k=0 s k (-1) k µ s 1 µ s-k .
Similarly, the cumulants of X are given by the recursive equation:

κ s = µ s -s-1 k=1 s-1 k-1 κ k µ s-k , with as initial value: κ 1 = µ 1 .
The skewness and kurtosis of X can be calculated from the third and fourth standardized cumulants. Indeed, they are respectively given by

γ 1 = κ 3 κ 3/2 2 , γ 2 = κ 4 κ 2 2 .
The rth incomplete moment of X can be determined from Equations (1.2) and (2.5) as

m r (y) = y 0 x r f (x)dx = abJ 2 y; r + b -1, c, k, a, b + ckJ 2 y; r + c -1, c, k + 1, a, b . (2.7)
The Bonferroni and Lorenz curves, useful in several fields, involve the first incomplete moment. For a given π ∈ (0, 1), they are given by B(π) = m 1 (q)/(πµ 1 ) and L(π) = m 1 (q)/µ 1 , respectively, where m 1 (q) comes from Equation (2.7) with r = 1 and q = Q(π) follows from Equation (2.1).

The amount of scatter in a population is measured to some extent by the totality of deviations from the mean and median defined by

δ 1 = +∞ 0 |x-µ 1 |f (x)dx and δ 2 (x) = +∞ 0 |x-M |f (x)dx,
respectively. These measures can be expressed as

δ 1 = 2µ 1 F (µ 1 ) -2m 1 (µ 1 ) and δ 2 = µ 1 - 2m 1 (M ), where F (µ 1 ) is given by Equation (1.1).
The moment generating function of X can be expressed as

M (t) = +∞ 0 exp(tx) exp(-ax b )(1 + x c ) -k abx b-1 + ckx c-1 (1 + x c ) -1 dx, t < 0.
By expanding exp(-ax b ) in power series and using Equation (2.5), we obtain

M (t) = +∞ i=0 (-a) i i! abJ 1 b(i + 1) -1, c, k, -t, 1 + ckJ 1 bi + c -1, c, k + 1, -t, 1 .
Table 1 provides the values of the mean, median, variance, skewness and kurtosis of X for selected values of a, b, c and k. One can observe that the mean and variance of the minWB model are decreasing functions of a and b and increasing functions of c and k. Also, these values indicate that the minWB distribution can be left-skewed or right-skewed. Table 1: Mean, median, variance, skewness and kurtosis of X for some combinations. I: a, b=5.0, c=1.3, k=0.6, II: a=0.5, b, c=0.3, k=1.6, III: a=1.5, b=1.5, c, k=2.6, IV: a=2.5, b=0.5, c=2.5, k.

Varying

Mean 

µ 1 Median M Variance V Skewness γ 1 Kurtosis γ 2 Parameter ↓ I a 0.

Stress-strength reliability

The reliability parameter R is defined as R = P(X 1 > X 2 ), where X 1 and X 2 are independent random variables. An amount of applications of this parameter have been investigated in the literature (such as the area of classical stress-strength model, the breakdown of a system having two components. . . ). Let us now study it in the context of the minWD distribution. Let

X 1 ∼ minW B(a 1 , b, c, k 1 ) and X 2 ∼ minW B(a 2 , b, c, k 2 )
with cdfs denoted by F 1 (x) and F 2 (x) and pdfs f 1 (x) and f 2 (x), respectively, the reliability R is given by

R = P(X 1 > X 2 ) = +∞ 0 f 1 (x)F 2 (x)dx. (2.8)
Theorem 2.1 Suppose that X 1 and X 2 are two independent random variables as defined above with fixed parameters b and c. Then we can express R as

R = 1 -a 1 bJ 1 b -1, c, k 1 + k 2 , a 1 + a 2 , b -ck 1 J 1 c -1, c, k 1 + k 2 + 1, a 1 + a 2 , b . (2.9)
Proof of Theorem 2.1. Putting Equations (1.1) and (1.2) in Equation (2.8), we have

+∞ 0 f 1 (x)F 2 (x)dx = 1 -a 1 b +∞ 0 x b-1 (1 + x c ) -(k 1 +k 2 ) exp[-(a 1 + a 2 )x b ]dx -ck 1 +∞ 0 x c-1 (1 + x c ) -1 (1 + x c ) -(k 1 +k 2 ) exp[-(a 1 + a 2 )x b ]dx.
Equation (2.9) follows immediately after using Equation (2.4).

Stochastic ordering

Stochastic ordering has been recognized as an important tool in reliability theory and other fields to assess comparative behavior. Here we present a stochastic ordering result related to the minWD distribution. Let X 1 and X 2 be two random variables having cdfs, sfs and pdfs F 1 (x) and F 2 (x), F1 (x) = 1 -F 1 (x) and F2 (x) = 1 -F 2 (x), and f 1 (x) and f 2 (x), respectively. The random variable X 1 is said to be smaller than X 2 in the following ordering as:

1. stochastic order (denoted by

X 1 ≤ st X 2 ) if F1 (x) ≤ F2 (x) for all x;
2. likelihood ratio order (denoted by

X 1 ≤ lr X 1 ) if f 1 (x)/f 2 (x) is decreasing in x ≥ 0;
3. hazard rate order (denoted by

X 1 ≤ hr X 2 ) if F1 (x)/ F2 (x) is decreasing in x ≥ 0;
4. reversed hazard rate order (denoted by

X 1 ≤ rhr X 2 ) if F 1 (x)/F 2 (x) is decreasing in x ≥ 0.
All these four stochastic orders defined in ( 1)-( 4) are related to each other due to [START_REF] Shaked | Stochatic Orders[END_REF] and the following implications hold:

(X 1 ≤ rhr X 2 ) ⇐ (X 1 ≤ lr X 2 ) ⇒ (X 1 ≤ hr X 2 ) ⇒ (X 1 ≤ st X 2 ).
The following theorem reveals that the minWB distributions are ordered with respect to strongest likelihood ratio ordering when appropriate assumptions hold.

Theorem 2.2 Let X 1 ∼ minW B(a 1 , b, c, k 1 ) and X 2 ∼ minW B(a 2 , b, c, k 2 ). If b > c and k 1 /k 2 > a 1 /a 2 then X 1 ≤ lr X 2 .
Proof of Theorem 2.2. First, we have

f 1 (x) f 2 (x) = exp(-a 1 x b )(1 + x c ) -k 1 exp(-a 2 x b )(1 + x c ) -k 2 a 1 bx b-1 + ck 1 x c-1 (1 + x c ) -1 a 2 bx b-1 + ck 2 x c-1 (1 + x c ) -1 .
After simplification, we get

f 1 (x) f 2 (x) = exp[-(a 1 + a 2 )x b ](1 + x c ) -(k 1 +k 2 ) a 1 bx b-1 + ck 1 x c-1 (1 + x c ) -1 a 2 bx b-1 + ck 2 x c-1 (1 + x c ) -1 . Next, log f 1 (x) f 2 (x) = -(a 1 + a 2 )x b -(k 1 + k 2 ) log(1 + x c ) + log a 1 bx b-1 + ck 1 x c-1 (1 + x c ) -1 -log a 2 bx b-1 + ck 2 x c-1 (1 + x c ) -1 .
Therefore

d dx log f 1 (x) f 2 (x) = -b(a 1 + a 2 )x b-1 -c(k 1 + k 2 )x c-1 (1 + x c ) - bcx b+c-1 (bx c + b -c)(k 1 a 2 -k 2 a 1 ) [a 1 bx b (x c + 1) + ck 1 x c ] [ba 2 x b (x c + 1) + ck 2 x c ]
.

The two first terms are always negative. The denominator of the ratio in the third term is always positive and

-bcx b+c-1 (bx c + b -c)(k 1 a 2 -k 2 a 1 ) < 0 if b > c and k 1 /k 2 > a 1 /a 2 . Thus d[f 1 (x)/f 2 (x)]/dx < 0 and f 1 (x)/f 2 (x) is decreasing in x if b > c and k 1 /k 2 > a 1 /a 2 , implying that X 1 ≤ lr X 2 .
The rest of the study is devoted to the study of the minWD distribution as statistical model, with applications.

Estimation of parameters 3.1 Maximum likelihood estimation

Inference can be carried out in three different ways: point estimation, interval estimation and hypothesis tests. Several approaches for parameter point estimation were proposed in the literature but the maximum likelihood method is the most commonly employed. The maximum likelihood estimates (MLEs) enjoy desirable properties that can be used when constructing confidence intervals for the model parameters. Large sample theory for these estimates delivers simple approximations that work well in finite samples. The normal approximation for the MLEs in distribution theory is easily handled either analytically or numerically.

We consider the estimation of the unknown parameters of the new distribution by the maximum likelihood method. Let x 1 , • • • , x n be n observations from the minWB distribution given by (1.2) with parameter vector θ = (a, b, c, k) . The log-likelihood = (θ) for θ is given by

= -a n i=1 x b i -k n i=1 log(1 + x c i ) + n i=1 log abx b-1 i + ckx c-1 i (1 + x c i ) -1 . (3.1) 
Equation (3.1) can be maximized either directly by using the R (optim function), SAS (NLMixed procedure) or Ox (MaxBFGS function), or then by solving the nonlinear likelihood equations by differentiating it. The components of the score vector U (θ) are

U a = - n i=1 x b i + n i=1 A i a (A i + B i ) -1 , U b = - 1 b n i=1 (A i x i log x i ) + n i=1 A i b + A i log x i (A i + B i ) -1 , U c = -k n i=1 x c i log x i 1 + x c i + k n i=1 x c-1 i (1 + x c i + c log x i ) (1 + x c i ) 2 (A i + B i ) -1 , U k = - n i=1 log(1 + x c i ) + 1 k n i=1 B i (A i + B i ) -1 ,
where

A i = abx b-1 i and B i = ckx c-1 i (1 + x c i ) -1
. Setting these equations to zero and solving them simultaneously yields the MLEs θ of the model parameters.

Under standard regularity conditions, the multivariate normal N 4 (0, J( θ) -1 ) distribution, where J( θ) -1 is the observed information evaluated at θ, can be used to construct approximate confidence intervals for the model parameters. Further, we can compare the minWB model with any of its special models using likelihood ratio (LR) statistics.

Monte Carlo simulation study

We evaluate the performance of the MLEs of the model parameters of the minWB distribution using Monte Carlo simulations for selected parameter values varying the sample size. The 2 gives the MLEs, average biases (Biases), mean square errors (MSEs), coverage probabilities (CPs), average lower bounds (LBs), average upper bounds (UBs) for the estimates of the parameters a, b, c and k for different sample sizes. The figures in this table indicate that the biases and MSEs decrease when the sample size increases and the MLEs tend to be close to the true parameter values. The CPs of the confidence intervals are quite close to the nominal level of 95% thus indicating that the asymptotic results for the MLEs can be used for estimating and constructing confidence intervals. [START_REF] Barlow | Total time on test processes and applications to failure data analysis[END_REF] The Poisson Weibull Burr distribution with cure fraction

Motivations

We define the Poisson Weibull Burr (PWB) distribution by assuming that the latent number of failure causes has a Poisson distribution and that the time for these causes to be activated follows the minWB model. Also, we propose the inclusion of covariates in the model formulation in order to study their effects on the hrf. Inferential aspects based on the maximum likelihood method is discussed. Models for survival data with a cure fraction (also known as cure rate models or long-term survival models) play an important role in reliability and survival analysis. Cure rate models cover situations where there are sampling units not susceptible to the occurrence of the event of interest. The proportion of such units is called the cured fraction. These models have become very popular due to significant progress in treatment therapies leading to enhanced cure rates. The proportion of these "cured units" is termed the cure fraction.

The literature on the subject is by now rich and growing rapidly. The books by [START_REF] Maller | Survival analysis with long-term survivors[END_REF] and [START_REF] Ibrahim | Bayesian Survival Analysis[END_REF], as well as the review paper by [START_REF] Chen | A new Bayesian model for survival data with a surviving fraction[END_REF], [START_REF] Tsodikov | Estimating cure rates from survival data: an alternative to two-component mixture models[END_REF] and [START_REF] Cooner | Flexible cure rate modeling under latent activation schemes[END_REF], could be mentioned as key references. Alternatively, other works dealt with cure rate models. For example, [START_REF] Hashimoto | A new longterm survival model with interval-censored data[END_REF] proposed the longterm survival model with interval-censored data, [START_REF] Ortega | A power series beta Weibull regression model for predicting breast carcinoma[END_REF] introduced the power series beta-Weibull regression model for predicting breast carcinoma, [START_REF] Yiqi | On the Bayesian estimation and influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes[END_REF] investigated the Weibull-negative-binomial regression model with cure rate under latent failure causes, [START_REF] Ortega | Regression models generated by gamma random variables with long-term survivors[END_REF] studied the regression models generated by gamma random variables with long-term survivors and [START_REF] Suzuki | A general longterm aging model with different underlying activation mechanisms: Modeling, Bayesian estimation, and case influence diagnostics[END_REF] defined the general long-term aging model with different underlying activation mechanisms.

The PWB cure rate model

The PWB cure rate model is derived as follows. For an individual in the population, let N denote the unobservable number of causes of the event of interest for this individual. We assume that N has a Poisson distribution with mean τ . The time for the jth cause to produce the event of interest is denoted by Z j , j = 1, . . . , N . Further, we consider that, conditional on N , the Z j s are independent and identically random variables having cumulative function (1.1) and that Z 1 , Z 2 , . . . are independent of N . The observable time to the event of interest is defined by X = min{Z 1 , . . . , Z N }, and T = +∞ if N = 0 with P(X = +∞|N = 0) = 1.

Under this setup, the survival function for the population is given by S pop (x) = P(N = 0) + P(Z 1 > x, . . . , Z N > x|N ≥ 1)P(N ≥ 1).

Among others, [START_REF] Tsodikov | Estimating cure rates from survival data: an alternative to two-component mixture models[END_REF] and [START_REF] Rodrigues | On the unification of long-term survival models[END_REF] demonstrated that S pop (t) = A S(t) , where A(•) is the probability generating function (pgf) of the number of competing causes (N ). Then, the sf for the population reduces to

S pop (x) = exp -τ 1 -e -ax b (1 + x c ) -k (4.1)
and the cured fraction is given by S pop (∞) = π 0 = e -τ (not a proper survival function). The corresponding pdf reduces to

f pop (x) = τ e -ax b (1 + x c ) k abx b-1 + ckx c-1 (1 + x c ) exp -τ 1 -e -ax b (1 + x c ) -k . (4.2)
The hrf for the population is given by

h pop (x) = τ e -ax b (1 + x c ) k abx b-1 + ckx c-1 (1 + x c ) . (4.3) 
Equations (4.1), (4.2) and (4.3) are referred to as the PWB model with cure fraction in competitive-risk structure.

Then, the sf for the non-cured population, so-called the PWB survival function, is given by

S(x) = P (X > x|N ≥ 1) = exp -τ 1 -e -ax b (1 + x c ) -k -e -τ 1 -e -τ . (4.4) 
We note that S(0) = 1 and S(+∞) = 0, so that it is a proper survival function. Henceforth, the model (4.4) will be referred to as the PWB survival function. The new pdf for the non-cured population reduces to

f (x) = τ e -ax b (1 + x c ) k abx b-1 + ckx c-1 (1 + x c ) exp -τ 1 -e -ax b (1 + x c ) -k 1 -e -τ . (4.5) 
In Equation (4.5), the parameter a ≥ 0 controls the scale of the distribution while the parameters b > 0, c > 0, k > 0 and τ > 0 control its shape. 

Inference

Consider the situation where the time to the event is not completely observed and is subjected to right censoring. Let D i denote the censoring time. We then observe x i = min{X i , D i } and δ i = I(X i ≤ D i ), where δ i = 1 if X i is the observed time to the event defined before and δ i = 0 if it is right censored (for i = 1, . . . , n).

In many medical problems, the lifetimes are affected by explanatory variables such as the cholesterol level, blood pressure, weight and many others. Parametric models to estimate univariate survival functions for censored data regression problems are widely used. The parameter τ in (4.1) is now linked to a vector v i of explanatory variables by τ i = exp(v T i β), for i = 1, . . . , n, where β = (β 1 , . . . , β p ) T denotes the vector of regression coefficients. The vector of model parameters is denoted by θ = (a, b, c, k, β T ) T .

We have the following special PWM regression models obtained from Equation Let θ denote the parameter vector of the distribution function F (x) of the time-to-event.

From n triples of times and censoring indicators (x 1 , δ 1 , v i ), . . . , (x n , δ n , v n ), the observed full log-likelihood function under non-informative censoring is given by

l(θ) = n i=1 δ i (v T i β -ax b i ) + k n i=1 δ i log(1 + x c i ) + n i=1 δ i log abx b-1 i + ckx c-1 i 1 + x c i - n i=1 exp(v T i β) 1 -exp(-ax b i )(1 + x c i ) -k .
The MLE θ of θ is obtained by solving the nonlinear equations U a (θ) = 0, U b (θ) = 0, U c (θ) = 0, U k (θ) = 0 and U β j (θ) = 0, j = 1, . . . , p. These equations cannot be solved analytically and statistical software can be used to solve them numerically. We can use iterative techniques such as Newton-Raphson type algorithms to calculate the estimate θ. We use the software SAS (NLMixed procedure) to evaluate the MLE θ.

The inference procedures for θ = (a, b, c, k, β T ) T can be based on the multivariate normal approximation (â, b, ĉ, k, β

T ) T ∼ N p+4 (a, b, c, k, β T ) T , -L-1 ( θ) ,
where -L(θ) = ∂ 2 l(θ) ∂θθ T , the (p + 4) × (p + 4) observed information matrix, can be calculated numerically.

Besides estimation of the model parameters, hypothesis tests can be taken into account. Let θ 1 and θ 2 be proper disjoint subsets of θ. Consider the test of H 0 : θ 1 = θ 01 against H 1 : θ 1 = θ 01 , where θ 2 is an unspecified vector. Let θ 0 maximize the the log-likelihood l(θ) constrained to H 0 and define the likelihood ratio (LR) statistic by w = 2[l( θ) -l( θ 0 )]. Under H 0 and some regularity conditions, the statistic w converges in distribution to a chi-square distribution with dim(θ 1 ) degrees of freedom.

Applications of the minWB distribution and PWB models

In this section, we provide some applications of the minWB and PWB models.

Application 1: WB distribution

Here, we compare the fits of the minWB, WL, EW and OWB (see [START_REF] Afify | The fourparameter Burr XII distribution: Properties, regression model and applications[END_REF]) distributions by means of four real data sets to illustrate the potentiality of the minWB model. The densities of the competitive models are, respectively, given by

f EW (x) = (λ + abx b-1 ) exp[-(λx + ax b )], x, a, b, λ > 0, f W L (x) = 1 1 + λ exp[-(λ + ax b )] (1 + λ + λx)(λ + abx b-1 ) -λ , x, a, b, λ > 0, f OW B (x) = abckx c-1 (1 + x c ) bk-1 1 -(1 + x c ) -k b-1 exp -a[(1 + x c ) k -1] b ,
x, a, b, c, k > 0.

We estimate the unknown parameters of the distributions by maximum likelihood. We compute the log-likelihood function evaluated at the MLEs ( ˆ ) using a limited-memory quasi-Newton code for bound-constrained optimization (L-BFGS-B). For model comparison, we consider five well-known statistics: the maximized log-likelihood ( ˆ ), Akaike information criterion (AIC), Anderson-Darling (A * ), Cramér-von Mises (W * ) and Kolmogorov-Smirnov (K-S) measures, where lower values of these statistics and higher p-values of K-S indicate good fits. The required computations are carried out using the R script AdequacyModel which is freely available from http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf.

The following data sets are considered for analysis: Data set 1: Drilling Machine data. The first data set refers to the 50 observations with hole and sheet thickness of 12 mm and 3.15 mm (see [START_REF] Dasgupta | On the distribution of Burr with applications[END_REF]): 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

Data set 2: Guinea Pigs data. The second data set represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli (see [START_REF] Bjerkedal | Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli[END_REF]). Guinea pigs are known to have high susceptibility of human tuberculosis, which is one of the reasons for choosing this species. The survival times of the Guinea pigs in days are: 0. Data set 3: Stress Level data. The third data set (see [START_REF] Cooray | A generalization of the half-normal distribution with applications to lifetime data[END_REF]) represents the failure times of Kevlar 49/epoxy strands when the pressure is at 90% stress level: 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

Data set 4: Failure Times data. The fourth data set (see [START_REF] Murthy | Weibull Models[END_REF]) represents the failures times of 50 items: 0.032, 0.035, 0.104, 0.169, 0.196, 0.260, 0.326, 0.445, 0.449, 0.496, 0.543, 0.544, 0.577, 0.648, 0.666, 0.742, 0.757, 0.808, 0.857, 0.858, 0.882, 1.138 The numerical measures of some statistics for the data sets 1-4 and for the fitted minWB model to these data are given in Tables 3 and4, respectively.

We also analyzed the hazard rates of these four data sets. In order to identify the shapes of data, we consider the graphical method based on total time on test (TTT) transformed pioneered by [START_REF] Barlow | Total time on test processes and applications to failure data analysis[END_REF]. The empirical illustration of the TTT-transform is given by [START_REF] Aarset | How to identify bathtub hazard rate[END_REF]. The TTT plot is obtained by plotting G(r/n) = r i=1 T i:n + (n -r)T r:n / n i=1 T i:n versus r/n(r = 1, 2, . . . , n), where the observed variables T i:n (for i = 1, 2, . . . , n) are the order statistics of the sample.

The TTT plots for four data sets are given in Figures 5 and6. The TTT-plots for the data sets 1 and 2 in Figure 5(a) and 5(b) reveal that the hrf is concave giving an indication of an increasing hazard rate. The TTT-plot for the data set 3 in Figure 6(a) shows that the hrf is first convex, then concave and lastly convex giving an indication of decreasing-increasing-decreasing (DID) shape. The TTT-plot in Figure 6(b) for the data set 4 shows that the hrf is first concave then convex giving an indication of increasing-decreasing (UBT) shape. Hence, the minWB model could be in principle an appropriate model for fitting these data sets.

In Figures 7 and8, we consider kernel density estimation (a non-parametric approach) with Gaussian Filter. The kernel density estimator of f (x) is given by fh

(x) = 1 nh n i=1 K x -x i h ,
where K(x) is the kernel function usually symmetric, +∞ -∞ K(x)dx = 1 and h > 0 is a smoothing parameter. Here we use a Gaussian kernel and the so called rule-of-thumb for the choice of h (see [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF]). Table 6 lists the MLEs and their corresponding standard errors (in parentheses) of the model parameters for the fitted models to data sets 1-4. The results in Table 5 indicate that the minWB model provides the best fit as compared to the other models. 

Application 2: PWB model with cure fraction: Gastric cancer data

The data set refers to n = 201 patients observed with gastric adenocarcinoma. Gastric (stomach) cancer is a disease in which malignant (cancer) cells form in the lining of the stomach. Almost all gastric cancers are adenocarcinomas (cancers that begin in cells that make and release mucus and other fluids). Other types of gastric cancer are gastrointestinal carcinoid tumors, gastrointestinal stromal tumors and lymphomas. These data sets have been analyzed by [START_REF] Martinez | Mixture and nonmixture cure fraction models based on the generalized modified Weibull distribution with an application to gastric cancer data[END_REF] and [START_REF] Ortega | Regression models generated by gamma random variables with long-term survivors[END_REF]. The response variable is the time x i in months after surgery until death. The patients who die from other causes and the patients that are still alive at the end of the study are censored observations (53%). The only covariate is the type of therapy: v i1 (0=adjuvant chemoradiotherapy, n = 125; 1=surgery alone, n = 76). We are interested in the effect of the explanatory variable on the cure fraction.

For the PWB regression model with cure fraction, we consider (i = 1, . . . , 201):

τ i = exp(β 0 + β 1 v i1 ).
Recently, [START_REF] Ortega | Regression models generated by gamma random variables with long-term survivors[END_REF] analyze these data using the family called the Poisson-gamma-G (PG-G) model with cure fraction in competitive-risk structure. The authors estimate of the parameters of the the following models: Poisson-gamma Weibull (PGW), Poisson-gamma log-logistic (PGLL), Poisson-gamma Birnbaum-Saunders (PGBS) and Poisson-gamma generalized half-normal (PG-GHN) regression model with cure fraction. In this application, we compare all these regression models with the PWB regression model with cure fraction. In Table 7, we list the values of the AIC, Consistent Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC) for all models discussed in Section 4. So, we will have more evidence to be able to discriminate and choose the most suitable model. The lowest values of these information criteria correspond to the PWLx regression model with cure fraction, which provides the best fit to the current data among these models.

Table 8 gives the MLEs for the fitted PWLx regression model with cure fraction. At a 5% significance level, the regression coefficient is significant for the type of therapy (v 1 ).

Goodness-of-fit. We adopt a regression structure for the cure probability in long-term survivor models (see Section 4). We now estimate the cure rate (π 0 ). Note that In order to assess if the model is appropriate, Figure 13a displays the empirical survival function and the estimated marginal survival functions given by Equation (4.1) from the fitted PWLx model with long-term survivors.

The estimates of the cure rate for patients stratified by type of therapy (v 1 ) are:

• For Chemoradiotherapy (v 1 = 0) τ0 = exp(-0.6282) and the cured fraction is π00 = e -τ0 = 0.5865.

• For Surgery alone (v 1 = 1) τ1 = exp(-0.6282 + 0.4539) and the cured fraction is π01 = e -τ1 = 0.4317. 
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 431 Figures 3 and 4 display some plots of the minWB hrf for different values of a, b, c and k (some of them are fixed, the others differ). These plots indicate that the hazard rate shapes of the minWB model are IFR, DFR, BT, UBT and DID. (a) (b) (c)
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 33334 Figure 3: Plots of the minWB hrf for some parameter values.

simulation is repeated 3 ,

 3 000 times each for sample size n= 50, 100, 200, 300, 500. The parametric values are I: a = 0.5, b = 3, c = 1.5, k = 1.8 and II: a = 1.0, b = 3, c = 1.5, k = 2. The MLEs are evaluated by maximizing Equation (3.1) using the optim routine in the R software. Table

  Some news special cases of Equation (4.5) are: (i) The Poisson Weibull (PW) model when k = 0, (ii) The Poisson Burr (PB) model when a = 0, (iii) The Poisson Weibull-log-logistic (PWLL) model when k = 1, (iv) The Poisson Rayleigh Burr (PRB) model when b = 2, (v) The Poisson exponential-Burr (PEB) model when b = 1, and (vi) The Poisson Weibull-Lomax (PWLx) model when c = 1.

  (4.1): (i) The PW regression model when k = 0, (ii) The PB regression model when a = 0, (iii) The PWLL regression model when k = 1, (iv) The PRB regression model when b = 2, (v) The PEB regression model when b = 1, and (vi) The PWLx regression model when c = 1.
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 567 Figure 5: TTT plots for (a) Data set 1 (b) Data set 2.
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 8 Figure 8: Gaussian kernel density estimation for data sets (a) Data set 3 (b) Data set 4.
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 9 Figure 9: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 1.
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 10 Figure 10: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 2.

  (-0.6282 + 0.4539v i1 ), and then π0 = e -τ = 0.4847.
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 1213 Figure 12: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 4.

  1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, .08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

  , 1.163, 1.256, 1.283, 1.484, 1.897, 1.944, 2.201, 2.365, 2.531, 2.994, 3.118, 3.424, 4.097, 4.100, 4.744, 5.346, 5.479, 5.716, 5.825, 5.847, 6.084, 6.127, 7.241, 7.560, 8.901, 9.000, 10.482, 11.133.

Empirical and theoretical dens.

  

											Q-Q plot
	Density	0.0 0.2 0.4					empirical theoretical	Empirical quantiles	0 2 4 6 8			
		0	2	4	6	8	10 12		0	2	4	6	8	10
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Table 2 :

 2 Monte Carlo simulation results: MLEs, Biases, MSEs, CPs, LBs and UBs.

	n	Parameter MLE	Bias	MSE	CP	LB	UB
				I			
	50	a	0.4482 0.0598 0.2501 0.9403 0.3097 0.5868
		b	4.8071 1.8071 8.9206 0.8358 4.1446 5.4696
		c	1.5154 0.0154 0.1432 0.9552 1.4100 1.6207
		k	1.9229 0.1229 0.5944 0.8806 1.7109 2.1350
	100	a	0.4943 0.0557 0.2848 0.9437 0.3892 0.5994
		b	4.1836 1.1836 4.1348 0.8451 3.8579 4.5093
		c	1.5172 0.0172 0.0994 0.9718 1.4552 1.5792
		k	1.8253 0.0253 0.5617 0.8998 1.6777 1.9729
	200	a	0.5562 0.0562 0.2382 0.9787 0.4887 0.6237
		b	3.7267 0.7267 2.6368 0.8553 3.5244 3.9290
		c	1.4830 0.0170 0.0589 0.9574 1.4493 1.5167
		k	1.7619 0.0381 0.4219 0.7447 1.6716 1.8523
	300	a	0.5397 0.0397 0.1978 0.9895 0.4893 0.5901
		b	3.5230 0.5230 1.6379 0.8610 3.3901 3.6558
		c	1.4924 0.0076 0.0480 0.9579 1.4675 1.5173
		k	1.7245 0.0255 0.3598 0.8737 1.6568 1.7922
	500	a	0.5059 0.0159 0.1323 0.9501 0.5445 0.6072
		b	3.2088 0.2088 0.8549 0.9498 3.1295 3.2882
		c	1.4695 -0.0305 0.0296 0.9500 1.4546 1.4844
		k	1.7997 0.0103 0.2433 0.9400 1.6572 1.7423
				II			
	50	a	0.8610 0.1390 0.7500 0.9125 0.6229 1.0991
		b	6.3291 3.3291 6.6283 0.8000 5.2307 7.4274
		c	1.5619 0.0619 0.8992 0.9167 1.4388 1.6851
		k	2.2878 0.4878 1.6848 0.7500 1.9527 2.6229
	100	a	0.9934 0.0266 0.6577 0.8675 0.8337 1.1531
		b	4.4732 1.4732 5.7956 0.8747 3.9661 4.9802
		c	1.5075 0.0075 0.1388 0.9518 1.4342 1.5809
		k	2.0309 0.0309 1.1146 0.8554 1.8230 2.2388
	200	a	1.0195 0.0195 0.4561 0.9565 0.9255 1.1136
		b	4.0912 1.0912 4.0493 0.9065 3.7841 4.3982
		c	1.4922 0.0058 0.0697 0.9348 1.4555 1.5290
		k	1.9767 0.0233 0.7875 0.8478 1.8532 2.1003
	300	a	0.9893 0.0107 0.4083 0.8969 0.9166 1.0619
		b	3.7425 0.7425 3.4347 0.9113 3.5494 3.9356
		c	1.4831 0.0039 0.0474 0.9054 1.4495 1.5166
		k	1.9639 0.0161 0.7634 0.8823 1.8646 2.0632
	500	a	1.0094 0.0094 0.1971 0.9489 0.9703 1.0485
		b	3.1607 0.3607 0.8446 0.9502 3.2863 3.4352
		c	1.4942 -0.0018 0.0366 0.9501 1.4575 1.4909
		k	2.0007 0.0007 0.3833 0.9568 1.9461 2.0552

Table 3 :

 3 Summary statistics for the data sets 1-4.

	Data	n	Mean Median Var. Skewness Kurtosis Min	Max
	Set 1: 50 0.163	0.160	0.007	0.072	2.216	0.02	0.32
	Set 2: 72 1.837	1.560	1.478	1.755	7.152	0.08	7.0
	Set 3: 101 1.025	0.800	1.253	3.002	16.70	0.01	7.89
	Set 4: 50 2.897	1.383	9.047	1.118	3.240	0.032 11.133

Table 4 :

 4 Summary statistics for the minWB distribution fitted to data sets 1-4.

	Data	Mean Median	Var.	S. D. Skewness Kurtosis
	Set 1: 0.1633 0.1605 0.0065 0.0804	0.0413	2.5005
	Set 2: 1.8380 1.4866 1.5402 1.2410	1.9570	8.8400
	Set 3: 1.0216 0.8186 1.1759 1.0844	3.6427	34.6871
	Set 4: 2.8910 1.3886 8.5375 2.9219	1.2355	3.8592

Table 5 :

 5 The statistics ˆ , AIC,A * , W * , K-S and P-value for the data sets 1-4.

	Distribution	ˆ	AIC	A *	W *	K-S	P-value
	Data set 1						
	minWB	-57.2249 -107.8497 0.4436 0.0730 0.0889 0.8239
	WL	-56.7418 -107.4836 0.4763 0.0788 0.0976 0.7275
	EW	-56.7323 -107.4646 0.4821 0.0802 0.1002 0.6971
	OWB	-55.8928 -103.7855 0.6430 0.1051 0.1091 0.5916
	Data set 2						
	minWB	97.2426	202.4853 0.1536 0.0232 0.0514 0.9913
	WL	108.6217 223.2434 0.8644 0.1380 0.2168 0.0023
	EW	104.0168 214.0336 0.9758 0.1603 0.1135 0.3121
	OWB	104.0160 216.0320 0.9757 0.1602 0.1128 0.3190
	Data set 3						
	minWB	98.2315	204.4629 0.2816 0.0347 0.0523	0.945
	WL	103.6844 213.3688 0.8413 0.1373 0.1069	0.198
	EW	102.9160 211.8320 1.0448 0.1841 0.0886	0.406
	OWB	102.9772 213.9544 1.1118 0.1988 0.0902	0.384
	Data set 4						
	minWB	99.6313	207.2626 0.2519 0.0437 0.0866	0.816
	WL	105.2206 216.4412 0.7036 0.1320 0.2248	0.011
	EW	102.5311 211.0622 0.5493 0.0971 0.1109	0.533
	OWB	102.5315 213.0631 0.5477 0.0967 0.1116	0.526

Table 6 :

 6 MLEs and their standard errors (in parentheses) for the data sets 1-4.

	Distribution	a	b	c	k	λ
	Data set 1					
	minWB	3.4425	115.7659	7.0668	1.4788	-
		(0.9872)	(114.3137) (9.8228)	(0.5072)	-
	WL	3.2015	4.4621	-	-	2.6462
		(0.9125)	(0.4891)	-	-	(1.2208)
	EW	109.0637	3.1182	-	-	1.8680
		(114.3953)	(0.8582)	-	-	(1.13877)
	OWB	0.0260	1.0340	0.8446	80.5528	-
		(0.0784)	(0.1803)	(7.2285) (248.5867)	-
	Data set 2					
	minWB	27.1932	0.0355	0.17694	1.4943	-
		(19.9536)	(0.0300)	(0.0526)	(0.2236)	-
	WL	0.1427	80.3697	-	-	0.8345
		(0.0018)	(85.0955)	-	-	(0.0738)
	EW	0.3117	1.6173	-	-	0.0000
		(0.1470)	(0.2256)	-	-	(0.1436)
	OWB	0.0189	0.9721	9.0398	86.2455	-
		(0.0211)	(0.0234)	(30.2416) (96.2013)	-
	Data set 3					
	minWB	5.4645	0.2652	0.7096	0.7029	-
		(1.0051)	(0.1505)	(0.1152)	(0.1001)	-
	WL	61.4381	0.1263	-	-	1.3775
		(72.3178)	(0.0025)	-	-	(0.1066)
	EW	0.2788	0.7413	-	-	0.7237
		(0.5996)	(0.4483)	-	-	(0.5755)
	OWB	0.0109	0.9807	10.0264	85.2866	-
		(0.0079)	(0.0239)	(38.5478) (62.1627)	-
	Data set 4					
	minWB	1.1152	0.6451	0.0027	2.8371	-
		(0.1854)	(0.1250)	(0.0019)	(0.3356)	-
	WL	56.0004	0.0900	-	-	0.5572
		(133.3242)	(0.0026)	-	-	(0.0589)
	EW	0.3763	0.8690	-	-	0.0366
		(1.2059)	(0.4681)	-	-	(1.1929)
	OWB	0.0105	0.9731	10.0811	84.8302	-
		(0.0153)	(0.0288)	(41.7357) (124.2766)	-

Table 7 :

 7 Some statistics from the fitted regression models with cure fraction to the gastric cancer data.

			Statistics	
	Model proposed	AIC	CAIC BIC
	PWB	886.4	886.8	906.2
	PW	898.2	898.4	911.4
	PB	944.3	944.5	957.5
	PWLL	1011.3 1011.6 1027.8
	PRB	887.6	887.9	904.1
	PEB	899.2	899.5	915.7
	PWLx	884.4 884.7 900.9
	Model proposed by		Statistics	
	[16]	AIC	CAIC BIC
	PGW	900.3	900.6	916.8
	PGLL	900.1	900.4	916.7
	PGBS	893.9	894.2	910.4
	PGGHN	892.9	893.2	909.4

Table 8 :

 8 MLEs for the full PWLx regression model with cure rate fraction fitted to the gastric cancer data.

	Parameter Estimate Standard Error	95% C.L.	p-value
	a	0.0003	0.00004	(0.0002, 0.0004)	-
	b	2.6880	0.3940	(1.9111, 3.4649)	-
	k	0.0957	0.02442	(0.0475, 0.1438)	-
	β 0	-0.6282	0.1805	(-0.9842, -0.2722) 0.0006
	β 1	0.4539	0.2179	(0.0241, 0.8837)	0.0385

Also, the estimated survival function and cure fraction stratified by v 1 are displayed in Figure 13b, from which a significant fraction of survivors can be observed. Note that the proportion of cured is greater for patients receiving chemoradiotherapy.

Concluding remarks

We propose and study the minimun Weibull-Burr (minWB) model and obtain some mathematical properties such as quantile function, ordinary and incomplete moments, mean deviations, generating function, stress-strength reliability and stochastic ordering. The model parameters are estimated by the method of maximum likelihood. Some simulations are performed to check the asymptotic properties of the estimates. We define the Poisson-Weibull-Burr regression model with cure fraction as a competitor to other existing regression models. Some applications to real data set are presented to illustrate the potentiality of the proposed models. We expect the utility of the proposed models in different fields especially in lifetime and reliability.