
HAL Id: hal-01902847
https://hal.science/hal-01902847v1

Preprint submitted on 23 Oct 2018 (v1), last revised 8 Mar 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A new compounded four-parameter lifetime model:
Properties, cure rate model and applications

Arslan Nasir, Farrukh Jamal, Akbar Ali Sha

To cite this version:
Arslan Nasir, Farrukh Jamal, Akbar Ali Sha. A new compounded four-parameter lifetime model:
Properties, cure rate model and applications. 2018. �hal-01902847v1�

https://hal.science/hal-01902847v1
https://hal.archives-ouvertes.fr


A new compounded four-parameter lifetime model:

Properties, cure rate model and applications

Arslan Nasir1, Farrukh Jamal2and Akbar Ali Sha3

1Department of Statistics,Govt. S.E College, Bahawalpur, pakistan.
2Department of Statistics,Govt. S.A P/G College, Dera Nawab Sahib, pakistan.

3Department of Statistics, The Islamia University Bahawalpur, Pakistan.
1arslannasir147@gmail.com 2drfarrukh1982@gmail.com

3akbar.ali@iub.edu.pk

September 21, 2018

Abstract

We propose a new four-parameter lifetime distribution by compounding the Weibull and
Burr XII models so-called the minimum Weibull-Burr (minWB) distribution, which is quite
flexible with respect to the density and hazard rate shapes. The density can exhibit uni-
modal (symmetrical and right-skewed), bimodal and decreasing shapes, and the hazard rate
can accommodate increasing, decreasing, bathtub, upside-down bathtub and decreasing-
increasing-decreasing shapes. Some mathematical properties of the new distribution are
obtained such as the quantile function, moments, generating function, stress-strength relia-
bility parameter and stochastic ordering. The maximum likelihood estimation is employed
to estimate the model parameters. A Monte Carlo simulation study is carried out to assess
the performance of the maximum likelihood estimates. We also propose a flexible cure rate
survival model by assuming that the number of competing causes of the event of interest has
the Poisson distribution and the time for the event follows the minWB distribution. Four
empirical illustrations of the new distribution are presented to real-life data sets and the
results of the proposed model are better as compared to those of the exponential-Weibull,
odd Weibull-Burr and Weibull-Lindley models.

Keywords— Burr distribution; compounding; cure rate model; hazard rate; lifetime distri-
bution; maximum likelihood method; Poisson distribution; Weibull distribution
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1 Introduction

Compounding is the mixing or joining of two distributions, that is, (i) discrete with discrete,
(ii) discrete with continuous, and (iii) continuous and continuous. This mixing may leads to
the flexibility in the model which can accommodate a variety of data sets generated from simple
to complex phenomenons. A survey addressing trends in compounding is discussed by Tahir
and Cordeiro [1]. The objective of our paper is to introduce a new compounded model by
mixing two continuous univariate models. In literature, two such models are proposed, namely:
Cordeiro and Lemonte [2] defined the exponential-Weibull (EW) model and Asgharzadeh et al.
[3] introduced the Weibull-Lindley (WL) distribution.

Let Y follow the Burr random variable (rv) with parameters c > 0 and k > 0 having
cumulative distribution function (cdf) GB(y) = 1− (1+ yc)−k (for y > 0), survival function (sf)
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ḠB(y) = 1 − GB(y) = (1 + yc)−k, and hazard rate function (hrf) hB(y) = c k yc−1 (1 + yc)−1.
Let Z denote a Weibull rv with parameters a > 0 and b > 0 having cdf GW (z) = 1− exp(−a zb)
(for z > 0), sf ḠW (z) = 1−GW (z) = exp(−a zb) and hrf hW (z) = a b xb−1. Consider that Y and
Z are independent rvs. We define the minimum Weibull-Burr (minWB) rv by X = min{Y, Z}.

The cdf, sf, probability density function (pdf) and hrf of the minWB model are given by

F (x) = 1− (1 + xc)−k exp(−a xb), x > 0, (1.1)

S(x) = (1 + xc)−k exp(−a xb),

f(x) = (1 + xc)−k exp(−a xb)
[
a b xb−1 + c k xc−1 (1 + xc)−1

]
(1.2)

and
h(x) = a b xb−1 + c k xc−1 (1 + xc)−1 ,

respectively, where a > 0 is the scale parameter, and b > 0, c > 0 and k > 0 are shape
parameters. Henceforth, a rv with density (1.2) is denoted by X ∼ minWB(a, b, c, k).

Some special models of the minWB distribution are: (i) Weibull when k = 0, (ii) Burr when
a = 0, (iii) Weibull-log-logistic (WLL) when k = 1, (iv) Rayleigh-Burr (RB) when b = 2, (v)
exponential-Burr (EB) when b = 1, and (vi) Weibull-Lomax (WLx) when c = 1.

The motivations for the new model are: (i) the cdf of the minWB model is quite simple, which
implies simple expressions for the pdf, sf and hrf; (ii) the new model is very flexible with respect to
the density and hazard rate shapes. The possible density shapes are decreasing, unimodal (right-
skewed or symmetrical) and bimodal. This means that the minWB density can show suitable
fit to those data sets, whose histograms are similar to the minWB density shapes. Further, the
minWB distribution exhibits monotone [increasing (IFR) and decreasing (DFR)], non-monotone
[bathtub (BT) and upside-down bathtub (UBT)] and decreasing-increasing-decreasing (DID)
failure rate shapes to cope with all types of lifetime data sets; (iii) the WLL, WLx, RB, EB,
Weibull and Burr models are special cases of the proposed model; (iv) the minWB density
shows bimodal feature as well; (v) suppose a system has two sub-systems functioning in series
independently at a given time, so that the system will fail when the first sub-system fails.
Consider that the failure times of the sub-systems follow the Weibull and Burr distributions.
Then, the time-to-failure of the system has cdf (1).

The paper is unfolded as follows. In Section 2, we obtain some mathematical properties of
minWB distribution including shapes of the density and hazard rate, quantile function, moments,
mean deviations, generating function, stress-strength reliability parameter and stochastic order-
ing. In Section 3, the model parameters are estimated by maximum likelihood and a simulation
study is performed. In Section 4, we formulate the Poisson-Weibull-Burr regression model with
cure fraction by defining the density, cumulative distribution and hrf. In Section 5, the usefulness
of the new distribution is illustrated by means of four real data sets, where we prove empirically
that our proposed model outperforms some well-known lifetime distributions. Finally, Section
6 offers some concluding remarks.

2 Properties of the minWB distribution

2.1 Quantile

For 0 < p < 1, the pth quantile of the minWB model, say xp, is defined by F (xp) = p. It is then
the root of

xp =
{[

(1− p) exp(a xb
p)

]−1/k
− 1

}1/c

. (2.1)
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2.2 Asymptotics

The asymptotics of the cdf, pdf and hrf of X when x → 0 are given by

F (x) ∼ a xb,

f(x) ∼ a b xb−1,

h(x) ∼ a b xb−1.

The asymptotics of the cdf, pdf and hrf of X when x →∞ are given by

1− F (x) ∼ x−k c exp(−a xb),

f(x) ∼ a b xb−k c−1 exp(−a xb),

h(x) ∼ a b xb−1.

These equations can show the effects of the parameters on the tails of minWB distribution.

2.3 Shapes of the density

The critical points of the minWB density are the roots of the equation

A(x) +
B(x)

x
− (b− 1)A(x)

x
+ B(x)

(
c− 1

x
− B

k x

) [
A(x) + B(x)

]−1
= 0, (2.2)

where A(x) = a b xb−1 and B(x) = c k xc−1 (1 + xc)−1. By using any numerical software, we can
examine Equation (2.2) to determine the local maximum and minimum and inflexion points.

Figures 1 and 2 display some plots of the minWB density for selected values of a, b, c and
k. The plots in Figures 1 and 2 reveal that the shapes of the minWB density are decreasing,
unimodal (right-skewed or symmetric) and bimodal.

The density behaviors of the minWB model are:

(i) Decreasing when b ≤ 1 or c ≤ 1 or b = c ≤ 1 or for any value of k,

(ii) Unimodal when b > 1 but < 4 or c > 1 but < 4, or 1 < b = c < 4,

(iii) Bimodal when b > 4 or c > 4 or b = c < 4.

2.4 Shapes of the hazard rate

The critical points of the minWB hrf are obtained from the equation:

b + c− 2
x

− B(x)
k

= 0, (2.3)

where B(x) = c k xc−1 (1 + xc)−1 . By using any numerical software, we can examine Equation
(2.3) to determine the local maximum and minimum and inflexion points.

Figures 3 and 4 display some plots of the minWB hrf for different values of a, b, c and k.
These plots indicate that the hazard rate shapes of the minWB model are IFR, DFR, BT, UBT
and DID.

The failure rate behaviors of the minWB model are:

(i) DFR when b ≤ 1 or c ≤ 1 or b = c ≤ 1,

(ii) IFR when 1 < b < 4 or 1 < c < 4, or 1 < b = c < 4,

(iii) BT when b < 1 but c > 4 or b > 4 but c < 1,

(iv) UBT when b = 1.5 and c = 1.5 for any value of k,

(v) DID when b < 1 and c ≥ 5.5.
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Figure 1: Plots of the minWB density for some parameter values.
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Figure 2: Plots of the minWB density for some parameter values.
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Figure 3: Plots of the minWB hazard rate for some parameter values.

2.5 Moments and generating function

First, we obtain general expressions for the following three integrals, which are used to determine
some structural properties of the minWB distribution. There are no closed-form expressions for
the integrals and then they can be computed numerically in platforms such as MAPLE, MATH-

EMATICA, Ox and R.

Integral 1: J1(p, c, k, a, b) =
∫∞
0 xp (1 + xc)−k exp(−a xb) dx.
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Figure 4: Plots of the minWB hazard rate for some parameter values.

Using the generalized binomial expansion, we have

(1 + xc)−k =
∞∑

i=0

(−k)(i) xic,

where (a)(i) = a(a+1) . . . (a+ i−1) = Γ(a+ i)/Γ(a) is the rising factorial related to the gamma
function Γ(a) =

∫∞
0 ta−1 e−t dt.

Setting y = xb, we can write

J1(p, c, k, a, b) =
∞∑

i=0

ai Γ
(p + ic + 1

b

)
, (2.4)

where ai = b−1 (−k)(i) a−
(p+ic+1)

b .

Integral 2: J2(p, c, k, a, b) =
∫ x
0 xp (1 + xc)−k exp(−a xb) dx.

By using the previous algebraic developments, we can write

J2(p, c, k, a, b) =
∞∑

i=0

ai γ
(p + ic + 1

b
,
xb

a

)
, (2.5)

where γ(m,x) =
∫ x
0 tm−1 e−t dt is incomplete (lower) gamma function.

Integral 3: J3(p, c, k, a) =
∫∞
0 xp (1 + xc)−k exp(−a x) dx.

By using the gamma function, we have

J3(p, c, k, a) =
∞∑

i=0

bi Γ(p + ic + 1), (2.6)

where bi = (−k)(i) a−(p+ic+1).

Equations (2.4)–(2.6) are the main results to obtain some mathematical properties of the
minWB distribution such as the ordinary and incomplete moments, mean deviations and gener-
ating function.

The nth ordinary moment of X can be determined from Equations (1.2) and (2.4) as

µ′n =
∫ ∞

0
xn f(x) dx = a b J1

(
n + b− 1, c, k, a, b

)
+ c k J1

(
n + c− 1, c, k + 1, a, b

)
. (2.7)
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The central moments (µs) and cumulants (κs) of X can follow from Equation (2.7) as µs =∑p
k=0

(
s
k

)
(−1)k µ′s1 µ′s−k and κs = µ′s −

∑s−1
k=1

(
s−1
k−1

)
κk µ′s−k, respectively, where κ1 = µ′1. The

skewness γ1 = κ3/κ
3/2
2 and kurtosis γ2 = κ4/κ2

2 can be calculated from the third and fourth
standardized cumulants.

The rth incomplete moment of X can be determined from Equations (1.2) and (2.5) as

mr(y) =
∫ y

0
xr f(x) dx = a b J2

(
r + b− 1, c, k, a, b

)
+ c k J2

(
r + c− 1, c, k + 1, a, b

)
. (2.8)

An important application of the first incomplete moment m1(·) refers to the Bonferroni
and Lorenz curves, which are very useful in several fields. For a given probability π, they are
given by B(π) = m1(q)/(π µ′1) and L(π) = m1(q)/µ′1, respectively, where m1(q) comes from
Equation (2.8) with r = 1 and q = Q(π) follows from Equation (2.1).

The amount of scatter in a population is measured to some extent by the totality of deviations
from the mean and median defined by δ1 =

∫∞
0 |x − µ|f(x)dx and δ2(x) =

∫∞
0 |x −M |f(x)dx,

respectively, where µ′1 = E(X) is the mean and M = Q(0.5) is the median. These measures
can be expressed as δ1 = 2µ′1 F (µ′1)− 2m1(µ′1) and δ2 = µ′1 − 2m1(M), where F (µ′1) is given by
Equation (1).

The moment generating function (mgf) of X can be expressed as

M(t) =
∫ ∞

0
exp(tx) exp(−a xb) (1 + xc)−k

[
a b xb−1 + c k xc−1 (1 + xc)−1

]
dx.

By expanding exp(−a xb) in power series and using Equation (2.6), we obtain

M(t) =
∞∑

i=0

(−a)i

i!

[
a b J3

(
b(i + 1)− 1, c, k,−t

)
+ c k J3

(
bi + c− 1, c, k,−t

)]
.

Table 1 provides the mean, median, variance, skewness and kurtosis of X for selected values
of a, b, c and k. The figures in this table indicate that the mean and variance of the minWB

model are decreasing functions of a and b and increasing functions of c and k. Also, they indicate
that the minWB distribution can be left-skewed or right-skewed.

2.6 Stress-strength reliability

The reliability parameter R is defined as R = P(X1 > X2), where X1 and X2 are independent rvs.
Numerous applications of the reliability parameter have appeared in the literature such as the
area of classical stress-strength model and the breakdown of a system having two components. If
X1 ∼ minWB(a1, b, c, k1) and X2 ∼ minWB(a2, b, c, k2) are two continuous rvs with cdfs F1(x)
and F2(x) and pdfs f1(x) and f2(x), respectively, the reliability R is given by

R = P(X1 > X2) =
∫ ∞

0
f1(x) F2(x) dx. (2.9)

Theorem 2.1 Suppose that X1 and X2 are two independent rvs as defined before with fixed
parameters b and c. Then,

R = 1− a1 b J1
(
b− 1, c, k1 + k2, a1 + a2, b

)

− c k1 J1
(
c− 1, c, k1 + k2 + 1, a1 + a2, b

)
. (2.10)
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Table 1: Mean, median, variance, skewness and kurtosis of X for some combinations. I: a, b=5.0,
c=1.3, k=0.6, II: a=0.5, b, c=0.3, k=1.6, III: a=1.5, b=1.5, c, k=2.6, IV: a=2.5, b=0.5, c=2.5,
k.

Varying Mean Median Variance Skewness Kurtosis
Parameter ↓

I a

0.5 0.8505 0.9104 0.1361 -0.4228 2.3799
1.5 0.7123 0.7580 0.0806 -0.5181 2.6236
5.0 0.5819 0.6143 0.0451 -0.5965 2.8988
25.0 0.4390 0.4586 0.0208 -0.6539 3.2271

II b

0.5 1.5241 0.0595 38.3800 13.6801 39.1397
1.5 0.5237 0.1158 0.6336 2.0954 8.0115
5.0 0.4274 0.1299 0.2392 0.6878 1.9001
25.0 0.4137 0.1387 0.2041 0.4431 1.3432

III c

0.5 0.3201 0.3008 0.0999 2.3395 9.9112
1.5 0.3805 0.3165 0.0792 1.4144 5.9816
5.0 0.5306 0.5301 0.0702 0.0341 2.4914
25.0 0.5903 0.5977 0.0892 -0.1702 1.7217

IV k

0.5 0.2528 0.0766 0.2033 4.6483 48.6909
1.5 0.2059 0.0763 0.0910 2.7029 15.1240
5.0 0.1593 0.0751 0.0384 1.6819 6.0251
25.0 0.1086 0.0700 0.0126 1.1186 3.3692

Proof 2.1 Using Equations (1) and (1.2) in Equation (2.9), we have
∫ ∞

0
f1(x) F2(x) dx = 1− a1 b

∫ ∞

0
xb−1 (1 + xc)−(k1+k2) exp[−(a1 + a2) xb] dx

− c k1

∫ ∞

0
xc−1 (1 + xc)−1 (1 + xc)−(k1+k2) exp[−(a1 + a2)xb] dx.

Equation (2.10) follows immediately after using Equation (2.4).

2.7 Stochastic ordering

Stochastic ordering has been recognized as an important tool in reliability theory and other
fields to assess comparative behavior. Let X and Y be two rvs having cdfs, sfs and pdfs F1(x)
and F2(x), F̄1(x) = 1− F1(x) and F̄2(x) = 1− F2(x), and f1(x) and f2(x), respectively. The rv
X1 is said to be smaller than X2 in the following ordering as:

1. stochastic order (denoted by X1 ≤st X2) if F̄1(x) ≤ F̄2(x) for all x;

2. likelihood ratio order (denoted by X1 ≤lr X1) if f1(x)/f2(x) is decreasing in x ≥ 0;

3. hazard rate order (denoted by X1 ≤hr X2) if F̄1(x)/F̄2(x) is decreasing in x ≥ 0;

7



4. reversed hazard rate order (denoted by X1 ≤rhr X2) if F1(x)/F2(x) is decreasing in x ≥ 0.

All these four stochastic orders defined in (1)–(4) are related to each other due to Shaked
and Shanthikumar [5] and the following implications hold:

(X1 ≤rhr X2) ⇐ (X1 ≤lr X2) ⇒ (X1 ≤hr X2) ⇒ (X1 ≤st X2).

The following theorem reveals that the minWB distributions are ordered with respect to strongest
likelihood ratio ordering when appropriate assumptions hold.

Theorem 2.2 Let X1 ∼ minWB(a1, b, c, k1) and X2 ∼ minWB(a2, b, c, k2). If a1 < a2 and
k1 < k2, then X1 ≤lr X2.

Proof 2.2 First, we have

f1(x)
f2(x)

=
(

exp(−a1 xb)(1 + xc)−k1

exp(−a2 xb)(1 + xc)−k2

) [
a1 b xb−1 + c k1 xc−1 (1 + xc)−1

a2 b xb−1 + c k2 xc−1 (1 + xc)−1

]
.

After simplification

f1(x)
f2(x)

= exp[−(a1 + a2)xb] (1 + xc)−(k1+k2)

[
a1 b xb−1 + c k1 xc−1 (1 + xc)−1

a2 b xb−1 + c k2 xc−1 (1 + xc)−1

]
.

Next,

log
[
f1(x)
f2(x)

]
= −(a1 + a2) xb − (k1 + k2) log (1 + xc)

+ log
[
a1 b xb−1 + c k1 xc−1 (1 + xc)−1

]

− log
[
a2 b xb−1 + c k2 xc−1 (1 + xc)−1

]
.

If a1 < a2 and k1 < k2, we obtain

d

dx
log

[
f1(x)
f2(x)

]
= −b(a1 + a2) xb−1 − c(k1 + k2) xc−1 (1 + xc)

+a1 b(b− 1)xb−2 + c(c− 1) k1 xc−2 (1 + xc)−1 − c2 k1 x2c−2 (1 + xc)−2

−a2 b(b− 1)xb−2 + c(c− 1) k2 xc−2 (1 + xc)−1 + c2 k2 x2c−2 (1 + xc)−2

< 0.

Thus f1(x)/f2(x) is decreasing in x and hence X1 ≤lr X2.

3 Estimation of parameters

Inference can be carried out in three different ways: point estimation, interval estimation and
hypothesis tests. Several approaches for parameter point estimation were proposed in the lit-
erature but the maximum likelihood method is the most commonly employed. The maximum
likelihood estimates (MLEs) enjoy desirable properties that can be used when constructing con-
fidence intervals for the model parameters. Large sample theory for these estimates delivers
simple approximations that work well in finite samples. The normal approximation for the
MLEs in distribution theory is easily handled either analytically or numerically.

We consider the estimation of the unknown parameters of the new distribution by the max-
imum likelihood method. Let x1, · · · , xn be n observations from the minWB distribution given
by (1.2) with parameter vector θ = (a, b, c, k)>. The log-likelihood ` = `(θ) for θ is given by

` = −a
n∑

i=1

xb
i − k

n∑

i=1

log (1 + xc
i ) +

n∑

i=1

log
[
a b xb−1

i + c k xc−1
i (1 + xc

i )
−1

]
. (3.1)
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Equation (3.1) can be maximized either directly by using the R (optim function), SAS (NLMixed
procedure) or Ox (MaxBFGS function), or then by solving the nonlinear likelihood equations by
differentiating it. The components of the score vector U(θ) are

Ua = −
n∑

i=1

xb
i +

n∑

i=1

Ai

b
(Ai + Bi)

−1 ,

Ub = −1
b

n∑

i=1

(Ai xi log xi) +
n∑

i=1

(
Ai

b
+ Bi log xi

)
(Ai + Bi)

−1 ,

Uc = −k
n∑

i=1

xc
i log xi

1 + xc
i

+ k
n∑

i=1

xc−1
i (1 + xc

i + c log xi)
(1 + xc

i )2
(Ai + Bi)

−1 ,

Uk = −
n∑

i=1

log (1 + xc
i ) +

1
k

n∑

i=1

Bi (Ai + Bi)
−1 ,

where Ai = a b xb−1
i and Bi = c k xc−1

i (1 + xc
i )
−1.

Setting these equations to zero and solving them simultaneously yields the MLEs θ̂ of the
model parameters.

Under standard regularity conditions, the multivariate normal N4(0, J(θ̂)−1) distribution,
where J(θ̂)−1 is the observed information evaluated at θ̂, can be used to construct approximate
confidence intervals for the model parameters. Further, we can compare the minWB model with
any of its special models using likelihood ratio (LR) statistics.

3.1 Monte Carlo simulation study

We evaluate the performance of the MLEs of the model parameters of the minWB distribution
using Monte Carlo simulations for selected parameter values varying the sample size. The
simulation is repeated 3, 000 times each for sample size n= 50, 100, 200, 300, 500. The parametric
values are I: a = 0.5, b = 3, c = 1.5, k = 1.8 and II: a = 1.0, b = 3, c = 1.5, k = 2. The MLEs are
evaluated by maximizing Equation (3.1) using the optim routine in the R software. Table 2 gives
the MLEs, average biases (Biases), mean square errors (MSEs), coverage probabilities (CPs),
average lower bounds (LBs), average upper bounds (UBs) for the estimates of the parameters a,
b, c and k for different sample sizes. The figures in this table indicate that the biases and MSEs
decrease when the sample size increases and the MLEs tend to be close to the true parameter
values. The CPs of the confidence intervals are quite close to the nominal level of 95% thus
indicating that the asymptotic results for the MLEs can be used for estimating and constructing
confidence intervals.

4 The Poisson Weibull Burr distribution with cure fraction

We define the Poisson Weibull Burr (PWB) distribution by assuming that the latent number of
failure causes has a Poisson distribution and that the time for these causes to be activated follows
the minWB model. Also, we propose the inclusion of covariates in the model formulation in order
to study their effects on the hrf. Inferential aspects based on the maximum likelihood method
is discussed. Models for survival data with a cure fraction (also known as cure rate models or
long-term survival models) play an important role in reliability and survival analysis. Cure rate
models cover situations where there are sampling units not susceptible to the occurrence of the
event of interest. The proportion of such units is called the cured fraction. These models have
become very popular due to significant progress in treatment therapies leading to enhanced cure
rates. The proportion of these “cured units” is termed the cure fraction.
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Table 2: Monte Carlo simulation results: MLEs, Biases, MSEs, CPs, LBs and UBs.

n Parameter MLE Bias MSE CP LB UB

I

50 a 0.4482 0.0598 0.2501 0.9403 0.3097 0.5868
b 4.8071 1.8071 8.9206 0.8358 4.1446 5.4696
c 1.5154 0.0154 0.1432 0.9552 1.4100 1.6207
k 1.9229 0.1229 0.5944 0.8806 1.7109 2.1350

100 a 0.4943 0.0557 0.2848 0.9437 0.3892 0.5994
b 4.1836 1.1836 4.1348 0.8451 3.8579 4.5093
c 1.5172 0.0172 0.0994 0.9718 1.4552 1.5792
k 1.8253 0.0253 0.5617 0.8998 1.6777 1.9729

200 a 0.5562 0.0562 0.2382 0.9787 0.4887 0.6237
b 3.7267 0.7267 2.6368 0.8553 3.5244 3.9290
c 1.4830 0.0170 0.0589 0.9574 1.4493 1.5167
k 1.7619 0.0381 0.4219 0.7447 1.6716 1.8523

300 a 0.5397 0.0397 0.1978 0.9895 0.4893 0.5901
b 3.5230 0.5230 1.6379 0.8610 3.3901 3.6558
c 1.4924 0.0076 0.0480 0.9579 1.4675 1.5173
k 1.7245 0.0255 0.3598 0.8737 1.6568 1.7922

500 a 0.5059 0.0159 0.1323 0.9501 0.5445 0.6072
b 3.2088 0.2088 0.8549 0.9498 3.1295 3.2882
c 1.4695 -0.0305 0.0296 0.9500 1.4546 1.4844
k 1.7997 0.0103 0.2433 0.9400 1.6572 1.7423

II

50 a 0.8610 0.1390 0.7500 0.9125 0.6229 1.0991
b 6.3291 3.3291 6.6283 0.8000 5.2307 7.4274
c 1.5619 0.0619 0.8992 0.9167 1.4388 1.6851
k 2.2878 0.4878 1.6848 0.7500 1.9527 2.6229

100 a 0.9934 0.0266 0.6577 0.8675 0.8337 1.1531
b 4.4732 1.4732 5.7956 0.8747 3.9661 4.9802
c 1.5075 0.0075 0.1388 0.9518 1.4342 1.5809
k 2.0309 0.0309 1.1146 0.8554 1.8230 2.2388

200 a 1.0195 0.0195 0.4561 0.9565 0.9255 1.1136
b 4.0912 1.0912 4.0493 0.9065 3.7841 4.3982
c 1.4922 0.0058 0.0697 0.9348 1.4555 1.5290
k 1.9767 0.0233 0.7875 0.8478 1.8532 2.1003

300 a 0.9893 0.0107 0.4083 0.8969 0.9166 1.0619
b 3.7425 0.7425 3.4347 0.9113 3.5494 3.9356
c 1.4831 0.0039 0.0474 0.9054 1.4495 1.5166
k 1.9639 0.0161 0.7634 0.8823 1.8646 2.0632

500 a 1.0094 0.0094 0.1971 0.9489 0.9703 1.0485
b 3.1607 0.3607 0.8446 0.9502 3.2863 3.4352
c 1.4942 -0.0018 0.0366 0.9501 1.4575 1.4909
k 2.0007 0.0007 0.3833 0.9568 1.9461 2.0552

10



The literature on the subject is by now rich and growing rapidly. The books by Maller and
Zhou [7] and Ibrahim et al. [8], as well as the review paper by Chen et al. [9], Tsodikov et al.
[10] and Cooner et al. [11], could be mentioned as key references. Alternatively, other works
dealt with cure rate models. For example, Hashimoto et al. [12] proposed the long-term survival
model with interval-censored data, Ortega et al. [13] introduced the power series beta-Weibull
regression model for predicting breast carcinoma, Yiqi et al. [14] investigated the Weibull-
negative-binomial regression model with cure rate under latent failure causes, Ortega et al. [15]
studied the regression models generated by gamma random variables with long-term survivors
and Suzuki et al. [16] defined the general long-term aging model with different underlying
activation mechanisms.

The PWB cure rate model is derived as follows. For an individual in the population, let
N denote the unobservable number of causes of the event of interest for this individual. We
assume that N has a Poisson distribution with mean τ . The time for the jth cause to produce
the event of interest is denoted by Zj , j = 1, . . . , N . Further, we consider that, conditional
on N , the Z ′js are independent and identically rvs having cumulative function (1) and that
Z1, Z2, . . . are independent of N . The observable time to the event of interest is defined by
X = min{Z1, . . . , ZN}, and T = ∞ if N = 0 with P(X = ∞|N = 0) = 1.

Under this setup, the survival function for the population is given by

Spop(x) = P(N = 0) + P(Z1 > x, . . . , ZN > x|N ≥ 1)P(N ≥ 1).

Tsodikov et al. [10] and Rodrigues et al. [17], among others, demonstrated that Spop(t) =
A

[
S(t)

]
, where A(·) is the probability generating function (pgf) of the number of competing

causes (N). Then, the sf for the population reduces to

Spop(x) = exp
{
−τ

[
1− e−axb

(1 + xc)−k
]}

(4.1)

and the cured fraction is given by Spop(∞) = π0 = e−τ (not a proper survival function). The
corresponding pdf reduces to

fpop(x) =
τe−axb

(1 + xc)k

[
a b xb−1 +

c k xc−1

(1 + xc)

]
exp

{
−τ

[
1− e−a xb

(1 + xc)−k
]}

. (4.2)

The hrf for the population is given by

hpop(x) =
τ e−a xb

(1 + xc)k

[
a b xb−1 +

c k xc−1

(1 + xc)

]
. (4.3)

Equations (4.1), (4.2) and (4.3) are referred to as the PWB model with cure fraction in
competitive-risk structure.

Then, the sf for the non-cured population, so-called the PWB survival function, is given by

S(x) = P (X > x|N ≥ 1) =
exp

{
−τ

[
1− e−a xb

(1 + xc)−k
]}
− e−τ

1− e−τ
. (4.4)

We note that S(0) = 1 and S(∞) = 0, so that it is a proper survival function. Henceforth, the
model (4.4) will be referred to as the PWB survival function. The new density function for the
non-cured population reduces to

f(x) =
τ e−axb

(1 + xc)k

[
a b xb−1 +

c k xc−1

(1 + xc)

] exp
{
−τ

[
1− e−a xb

(1 + xc)−k
]}

1− e−τ
. (4.5)
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In Equation (4.5), the parameter a ≥ 0 controls the scale of the distribution while the parameters
b > 0, c > 0, k > 0 and τ > 0 control its shape.

Some news special cases of Equation (4.5) are: (i) The Poisson Weibull (PW) model when
k = 0, (ii) The Poisson Burr (PB) model when a = 0, (iii) The Poisson Weibull-log-logistic
(PWLL) model when k = 1, (iv) The Poisson Rayleigh Burr (PRB) model when b = 2, (v)
The Poisson exponential-Burr (PEB) model when b = 1, and (vi) The Poisson Weibull-Lomax
(PWLx) model when c = 1.

4.1 Inference

Consider the situation where the time to the event is not completely observed and is subjected
to right censoring. Let Di denote the censoring time. We then observe xi = min{Xi, Di} and
δi = I(Xi ≤ Di), where δi = 1 if Xi is the observed time to the event defined before and δi = 0
if it is right censored (for i = 1, . . . , n).

In many medical problems, the lifetimes are affected by explanatory variables such as the
cholesterol level, blood pressure, weight and many others. Parametric models to estimate uni-
variate survival functions for censored data regression problems are widely used. The parameter
τ in (4.1) is now linked to a vector vi of explanatory variables by τi = exp(vT

i β), for i = 1, . . . , n,
where β = (β1, . . . , βp)T denotes the vector of regression coefficients. The vector of model pa-
rameters is denoted by θ = (a, b, c, k,βT )T .

We have the following special PWM regression models obtained from Equation (4.1): (i)
The PW regression model when k = 0, (ii) The PB regression model when a = 0, (iii) The
PWLL regression model when k = 1, (iv) The PRB regression model when b = 2, (v) The PEB
regression model when b = 1, and (vi) The PWLx regression model when c = 1.

Let θ denote the parameter vector of the distribution function F (x) of the time-to-event.
From n triples of times and censoring indicators (x1, δ1,vi), . . . , (xn, δn,vn), the observed full
log-likelihood function under non-informative censoring is given by

l(θ) =
n∑

i=1

δi(vT
i β − a xb

i) + k

n∑

i=1

δi log(1 + xc
i ) +

n∑

i=1

δi log
(

a b xb−1
i +

c k xc−1
i

1 + xc
i

)

−
n∑

i=1

exp(vT
i β)

[
1− exp(−axb

i)(1 + xc
i )
−k

]
.

The MLE θ̂ of θ is obtained by solving the nonlinear equations Ua(θ) = 0, Ub(θ) = 0,
Uc(θ) = 0, Uk(θ) = 0 and Uβj

(θ) = 0, j = 1, . . . , p. These equations cannot be solved
analytically and statistical software can be used to solve them numerically. We can use iterative
techniques such as Newton-Raphson type algorithms to calculate the estimate θ̂. We use the
software SAS (NLMixed procedure) to evaluate the MLE θ̂.

The inference procedures for θ = (a, b, c, k,βT )T can be based on the multivariate normal
approximation

(â, b̂, ĉ, k̂, β̂
T
)T ∼ Np+4

{
(a, b, c, k,βT )T ,−L̈−1(θ̂)

}
,

where −L̈(θ) =
{

∂2l(�)
∂��T

}
, the (p + 4)× (p + 4) observed information matrix, can be calculated

numerically.

Besides estimation of the model parameters, hypothesis tests can be taken into account.
Let θ1 and θ2 be proper disjoint subsets of θ. Consider the test of H0 : θ1 = θ01 against
H1 : θ1 6= θ01, where θ2 is an unspecified vector. Let θ̂0 maximize the the log-likelihood l(θ)
constrained to H0 and define the likelihood ratio (LR) statistic by w = 2[l(θ̂) − l(θ̂0)]. Under
H0 and some regularity conditions, the statistic w converges in distribution to a chi-square
distribution with dim(θ1) degrees of freedom.
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5 Applications of the minWB distribution and PWB models

In this section, we provide some applications of the minWB and PWB models.

5.1 Application 1: WB distribution

Here, we compare the fits of the minWB, WL, EW and OWB (Afify et al. [18]) distributions by
means of four real data sets to illustrate the potentiality of the minWB model. The densities of
the competitive models are, respectively, given by

fEW (x) = (λ + a b xb−1) exp[−(λx + a xb)], x, a, b, λ > 0,

fWL(x) = 1
1+λ exp[−(λ + a xb)]

[
(1 + λ + λx)(λ + a b xb−1)− λ

]
, x, a, b, λ > 0,

fOWB(x) = a b c k xc−1(1 + xc)bk−1
[
1− (1 + xc)−k

]b−1 exp
{−a[(1 + xc)k − 1]b

}
,

x, a, b, c, k > 0.

We estimate the unknown parameters of the distributions by maximum likelihood. We compute
the log-likelihood function evaluated at the MLEs (ˆ̀) using a limited-memory quasi-Newton
code for bound-constrained optimization (L-BFGS-B). For model comparison, we consider five
well-known statistics: the maximized log-likelihood (ˆ̀), Akaike information criterion (AIC),
Anderson-Darling (A∗), Cramér–von Mises (W ∗) and Kolmogorov-Smirnov (K-S) measures,
where lower values of these statistics and higher p-values of K-S indicate good fits. The required
computations are carried out using the R script AdequacyModel which is freely available from
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf.

The following data sets are considered for analysis:

Data set 1: Drilling Machine data. The first data set refers to the 50 observations with
hole and sheet thickness of 12 mm and 3.15 mm (DasGupta [19]): 0.04, 0.02, 0.06, 0.12, 0.14,
0.08, 0.22, 0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16, 0.24, 0.22,
0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24,
0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16.

Data set 2: Guinea Pigs data. The second data set represents the survival times (in days)
of 72 guinea pigs infected with virulent tubercle bacilli (Bjerkedal [20]). Guinea pigs are known
to have high susceptibility of human tuberculosis, which is one of the reasons for choosing this
species. The survival times of the Guinea pigs in days are: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74,
0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, .08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2,
1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72,
1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54,
2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

Data set 3: Stress Level data. The third data set (Cooray and Ananda [21]) represents the
failure times of Kevlar 49/epoxy strands when the pressure is at 90% stress level: 0.01, 0.01,
0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11,
0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52,
0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83,
0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29,
1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64,
1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.
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Data set 4: Failure Times data. The fourth data set (Murthy et al. [22]) represents the
failures times of 50 items: 0.032, 0.035, 0.104, 0.169, 0.196, 0.260, 0.326, 0.445, 0.449, 0.496,
0.543, 0.544, 0.577, 0.648, 0.666, 0.742, 0.757, 0.808, 0.857, 0.858, 0.882, 1.138, 1.163, 1.256,
1.283, 1.484, 1.897, 1.944, 2.201, 2.365, 2.531, 2.994, 3.118, 3.424, 4.097, 4.100, 4.744, 5.346,
5.479, 5.716, 5.825, 5.847, 6.084, 6.127, 7.241, 7.560, 8.901, 9.000, 10.482, 11.133.

The numerical measures of some statistics for the data sets 1–4 and for the fitted minWB

model to these data are given in Tables 3 and 4, respectively.

Table 3: Summary statistics for the data sets 1–4.

Data n Mean Median Var. Skewness Kurtosis Min Max

Set 1: 50 0.163 0.160 0.007 0.072 2.216 0.02 0.32

Set 2: 72 1.837 1.560 1.478 1.755 7.152 0.08 7.0

Set 3: 101 1.025 0.800 1.253 3.002 16.70 0.01 7.89

Set 4: 50 2.897 1.383 9.047 1.118 3.240 0.032 11.133

Table 4: Summary statistics for the minWB distribution fitted to data sets 1–4.

Data Mean Median Var. S. D. Skewness Kurtosis

Set 1: 0.1633 0.1605 0.0065 0.0804 0.0413 2.5005

Set 2: 1.8380 1.4866 1.5402 1.2410 1.9570 8.8400

Set 3: 1.0216 0.8186 1.1759 1.0844 3.6427 34.6871

Set 4: 2.8910 1.3886 8.5375 2.9219 1.2355 3.8592

We also analyzed the hazard rates of these four data sets. In order to identify the shapes of
data, we consider the graphical method based on total time on test (TTT) transformed pioneered
by Barlow and Campo [23]. The empirical illustration of the TTT-transform is given by Aarset
[24]. The TTT plot is obtained by plotting G(r/n) =

[ ∑r
i=1 Ti:n + (n − r) Tr:n

]
/
[ ∑n

i=1 Ti:n

]
versus r/n (r = 1, 2, . . . , n), where the observed variables Ti:n (for i = 1, 2, . . . , n) are the order
statistics of the sample.

The TTT plots for four data sets are given in Figures 5 and 6. The TTT-plots for the data
sets 1 and 2 in Figure 5(a) and 5(b) reveal that the hrf is concave giving an indication of an
increasing hazard rate. The TTT-plot for the data set 3 in Figure 6(a) shows that the hrf is first
convex, then concave and lastly convex giving an indication of decreasing-increasing-decreasing
(DID) shape. The TTT-plot in Figure 6(b) for the data set 4 shows that the hrf is first concave
then convex giving an indication of increasing-decreasing (UBT) shape. Hence, the minWB

model could be in principle an appropriate model for fitting these data sets.

In Figures 7 and 8, we consider kernel density estimation (a non-parametric approach) with
Gaussian Filter. Let X1, . . . , Xn be independently identically distributed random variables fol-
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lowing an unknown distribution F . The kernel density estimator is given by

f̂h(x) =
1
n

n∑

i=1

Kh(x− xi) =
1

nh

n∑

i=1

K
(x− xi

h

)
,

where K(·) is the kernel function usually symmetric,
∫∞
−∞ K(x) dx = 1 and h > 0 is a smoothing

parameter (also known as bandwidth).
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Figure 5: TTT plots for (a) Data set 1 (b) Data set 2.
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Figure 6: TTT plots for (a) Data set 3 (b) Data set 4.
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Figure 7: Gaussian kernel density estimation for data sets. (a) Data set 1 (b) Data set 2.

Table 6 lists the MLEs and their corresponding standard errors (in parentheses) of the model
parameters for the fitted models to data sets 1–4. The results in Table 5 indicate that the minWB

model provides the best fit as compared to the other models.
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Figure 8: Gaussian kernel density estimation for data sets (a) Data set 3 (b) Data set 4.

Table 5: The statistics ˆ̀, AIC,A∗, W ∗, K-S and P-value for the data sets 1–4.

Distribution ˆ̀ AIC A∗ W ∗ K-S P-value

Data set 1

minWB -57.2249 -107.8497 0.4436 0.0730 0.0889 0.8239
WL -56.7418 -107.4836 0.4763 0.0788 0.0976 0.7275
EW -56.7323 -107.4646 0.4821 0.0802 0.1002 0.6971
OWB -55.8928 -103.7855 0.6430 0.1051 0.1091 0.5916

Data set 2

minWB 97.2426 202.4853 0.1536 0.0232 0.0514 0.9913
WL 108.6217 223.2434 0.8644 0.1380 0.2168 0.0023
EW 104.0168 214.0336 0.9758 0.1603 0.1135 0.3121
OWB 104.0160 216.0320 0.9757 0.1602 0.1128 0.3190

Data set 3

minWB 98.2315 204.4629 0.2816 0.0347 0.0523 0.945
WL 103.6844 213.3688 0.8413 0.1373 0.1069 0.198
EW 102.9160 211.8320 1.0448 0.1841 0.0886 0.406
OWB 102.9772 213.9544 1.1118 0.1988 0.0902 0.384

Data set 4

minWB 99.6313 207.2626 0.2519 0.0437 0.0866 0.816
WL 105.2206 216.4412 0.7036 0.1320 0.2248 0.011
EW 102.5311 211.0622 0.5493 0.0971 0.1109 0.533
OWB 102.5315 213.0631 0.5477 0.0967 0.1116 0.526

5.2 Application 2: PWB model with cure fraction: Gastric cancer data

The data set refers to n = 201 patients observed with gastric adenocarcinoma. Gastric (stomach)
cancer is a disease in which malignant (cancer) cells form in the lining of the stomach. Almost all
gastric cancers are adenocarcinomas (cancers that begin in cells that make and release mucus and
other fluids). Other types of gastric cancer are gastrointestinal carcinoid tumors, gastrointestinal
stromal tumors and lymphomas. These data sets have been analyzed by Martinez et al. [25] and
Ortega et al. [15]. The response variable is the time xi in months after surgery until death. The
patients who die from other causes and the patients that are still alive at the end of the study
are censored observations (53%). The only covariate is the type of therapy: vi1 (0=adjuvant
chemoradiotherapy, n = 125; 1=surgery alone, n = 76). We are interested in the effect of the
explanatory variable on the cure fraction.
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Table 6: MLEs and their standard errors (in parentheses) for the data sets 1–4.

Distribution a b c k λ

Data set 1

minWB 3.4425 115.7659 7.0668 1.4788 -
(0.9872) (114.3137) (9.8228) (0.5072) -

WL 3.2015 4.4621 - - 2.6462
(0.9125) (0.4891) - - (1.2208)

EW 109.0637 3.1182 - - 1.8680
(114.3953) (0.8582) - - (1.13877)

OWB 0.0260 1.0340 0.8446 80.5528 -
(0.0784) (0.1803) (7.2285) (248.5867) -

Data set 2

minWB 27.1932 0.0355 0.17694 1.4943 -
(19.9536) (0.0300) (0.0526) (0.2236) -

WL 0.1427 80.3697 - - 0.8345
(0.0018) (85.0955) - - (0.0738)

EW 0.3117 1.6173 - - 0.0000
(0.1470) (0.2256) - - (0.1436)

OWB 0.0189 0.9721 9.0398 86.2455 -
(0.0211) (0.0234) (30.2416) (96.2013) -

Data set 3

minWB 5.4645 0.2652 0.7096 0.7029 -
(1.0051) (0.1505) (0.1152) (0.1001) -

WL 61.4381 0.1263 - - 1.3775
(72.3178) (0.0025) - - (0.1066)

EW 0.2788 0.7413 - - 0.7237
(0.5996) (0.4483) - - (0.5755)

OWB 0.0109 0.9807 10.0264 85.2866 -
(0.0079) (0.0239) (38.5478) (62.1627) -

Data set 4

minWB 1.1152 0.6451 0.0027 2.8371 -
(0.1854) (0.1250) (0.0019) (0.3356) -

WL 56.0004 0.0900 - - 0.5572
(133.3242) (0.0026) - - (0.0589)

EW 0.3763 0.8690 - - 0.0366
(1.2059) (0.4681) - - (1.1929)

OWB 0.0105 0.9731 10.0811 84.8302 -
(0.0153) (0.0288) (41.7357) (124.2766) -

For the PWB regression model with cure fraction, we consider (i = 1, . . . , 201):

τi = exp(β0 + β1 vi1).

Recently, Ortega et al. [15] analyze these data using the family called the Poisson-gamma-G
(PG-G) model with cure fraction in competitive-risk structure. The authors estimate of the
parameters of the the following models: Poisson-gamma Weibull (PGW), Poisson-gamma log-
logistic (PGLL), Poisson-gamma Birnbaum-Saunders (PGBS) and Poisson-gamma generalized
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Figure 9: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 1.
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Figure 10: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 2.

half-normal (PGGHN) regression model with cure fraction. In this application, we compare all
these regression models with the PWB regression model with cure fraction.

In Table 7, we list the values of the AIC, Consistent Akaike Information Criterion (CAIC)
and Bayesian Information Criterion (BIC) for all models discussed in Section 4. So, we will have
more evidence to be able to discriminate and choose the most suitable model. The lowest values
of these information criteria correspond to the PWLx regression model with cure fraction, which
provides the best fit to the current data among these models.

Table 8 gives the MLEs for the fitted PWLx regression model with cure fraction. At a 5%
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Figure 11: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 3.
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Figure 12: PP, QQ, epdf and ecdf plots of the minWB distribution for data set 4.

significance level, the regression coefficient is significant for the type of therapy (v1).

Goodness-of-fit. We adopt a regression structure for the cure probability in long-term survivor
models (see Section 4). We now estimate the cure rate (π0). Note that

τ̂ =
1

201

201∑

i=1

τ̂i = 0.7242,

where
τ̂i = exp(−0.6282 + 0.4539vi1),
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Table 7: Some statistics from the fitted regression models with cure fraction to the gastric cancer
data.

Statistics
Model proposed AIC CAIC BIC

PWB 886.4 886.8 906.2
PW 898.2 898.4 911.4
PB 944.3 944.5 957.5
PWLL 1011.3 1011.6 1027.8
PRB 887.6 887.9 904.1
PEB 899.2 899.5 915.7
PWLx 884.4 884.7 900.9
Model proposed by Statistics
Ortega et al. [15] AIC CAIC BIC

PGW 900.3 900.6 916.8
PGLL 900.1 900.4 916.7
PGBS 893.9 894.2 910.4
PGGHN 892.9 893.2 909.4

Table 8: MLEs for the full PWLx regression model with cure rate fraction fitted to the gastric
cancer data.

Parameter Estimate Standard Error 95% C.L. p-value
a 0.0003 0.00004 (0.0002, 0.0004) –
b 2.6880 0.3940 (1.9111, 3.4649) –
k 0.0957 0.02442 (0.0475, 0.1438) –
β0 -0.6282 0.1805 (-0.9842, -0.2722) 0.0006
β1 0.4539 0.2179 (0.0241, 0.8837) 0.0385

and then
π̂0 = e−τ̂ = 0.4847.

In order to assess if the model is appropriate, Figure 13a displays the empirical survival
function and the estimated marginal survival functions given by Equation (4.1) from the fitted
PWLx model with long-term survivors.

The estimates of the cure rate for patients stratified by type of therapy (v1) are:

• For Chemoradiotherapy (v1 = 0)

τ̂0 = exp(−0.6282) and the cured fraction is π̂00 = e−τ̂0 = 0.5865.

• For Surgery alone (v1 = 1)

τ̂1 = exp(−0.6282 + 0.4539) and the cured fraction is π̂01 = e−τ̂1 = 0.4317.

Also, the estimated survival function and cure fraction stratified by v1 are displayed in Figure
13b, from which a significant fraction of survivors can be observed. Note that the proportion of
cured is greater for patients receiving chemoradiotherapy.
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Figure 13: (a) Kaplan-Meier curves (solid lines), the estimated PWLx survival function and the
estimated cure fraction for the gastric cancer data. (b) Estimates of the survival function and
cure fraction of model stratified by type of therapy for the gastric cancer data.

6 Concluding remarks

We propose and study the minimun Weibull-Burr (minWB) model and obtain some mathemat-
ical properties such as quantile function, ordinary and incomplete moments, mean deviations,
generating function, stress-strength reliability and stochastic ordering. The model parameters
are estimated by the method of maximum likelihood. Some simulations are performed to check
the asymptotic properties of the estimates. We define the Poisson-Weibull-Burr regression
model with cure fraction as a competitor to other existing regression models. Some applications
to real data set are presented to illustrate the potentiality of the proposed models. We expect
the utility of the proposed models in different fields especially in lifetime and reliability.
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