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On the Root solution to the Skorokhod embedding problem

given full marginals ∗

Alexandre Richard † Xiaolu Tan ‡ Nizar Touzi �

October 23, 2018

Abstract

This paper examines the Root solution of the Skorohod embedding problem given full
marginals on some compact time interval. Our results are obtained by limiting arguments
based on �nitely-many marginals Root solution of Cox, Obªój, and Touzi [9]. Our main
result provides a characterization of the corresponding potential function by means of a
convenient parabolic PDE.

1 Introduction

The Skorokhod embedding problem, initially suggested by Skorokhod [30], consists in �nding
a stopping time τ together with a Brownian motion B such that Bτ ∼ µ for a given marginal
distribution µ on R. The existing literature contains various solutions suggested in di�erent
contexts. Some of them satisfy an optimality property among all possible solutions, e.g. the
Root solution [28], the Rost solution [29], the Azéma-Yor solution [1], the Vallois solution
[31], the Perkins solution [27], etc. This problem has been extensively revived in the recent
literature due to the important connexion with the problem of robust hedging in �nancial
mathematics. We refer to Obªój [25] and Hobson [19] for a survey on di�erent solutions and
the applications in �nance.

Our interest in this paper is on the Root solution of the Skorohod embedding problem,
which is characterized as a hitting time of the Brownian motion B of some time-space domain
R unlimited to the right, that is, τR := inf{t ≥ 0 : (t, Bt) ∈ R}. This solution was shown by
Rost [29] to have the minimal variance among all solutions to the embedding problem. As an
application in �nance, it can be used to deduce robust no-arbitrage price bounds for a class of
variance options (see e.g. Hobson [19]). To �nd the barrier R in the description of the Root
solution, Cox and Wang [8] provided a construction by solving a variational inequality. This
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approach is then explored in Gassiat, Oberhauser, and dos Reis [13] and Gassiat, Mijatovi¢,
and Oberhauser [12] to construct R under more general conditions. We also refer to the
remarkable work of Beiglböck, Cox, and Huesmann [4] which derives the Root embedding,
among other solutions, as a natural consequence of the monotonicity principle in optimal
transport.

It is also natural to extend the Skorohod embedding problem to the multiple marginals case.
Let (µk)0≤k≤n be a family of marginal distributions, nondecreasing in the convex order, i.e.
µk−1(φ) ≤ µk(φ), k = 1, . . . , n, for all convex functions φ : R → R. The multiple-marginals
Skorohod embdding problem is to �nd a Brownian motion B, together with an increasing
sequence of stopping times (τk)1≤k≤n, such that Bτk ∼ µk for each k = 1, · · · , n. Madan
and Yor [23] provided a su�cient condition on the marginals, under which the Azéma-Yor
embedding stopping times corresponding to each marginal are automatically ordered, so that
the iteration of Azéma-Yor solutions provides a solution to the multiple marginals Skorokhod
embedding problem. In general, the Azéma-Yor embedding stopping times may not be ordered.
An extension of the Azéma-Yor embedding was obtained by Brown, Hobson, and Rogers [6]
in the two-marginals case, and later by Obªój and Spoida [26] for an arbitrary �nite number
of marginals. Moreover, the corresponding embeddings enjoys the similar optimality property
as in the one marginal case. In Claisse, Guo, and Henry-Labordère [7], an extension of the
Vallois solution to the two-marginals case is obtained for a speci�c class of marginals. We
also refer to Beiglböck, Cox, and Huesmann [5] for a geometric representation of the optimal
Skorokhod embedding solutions given multiple marginals.

The Root solution of the Skorohod embedding problem was recently extended by Cox,
Obªój, and Touzi [9] to the multiple marginals case. Our objective in this paper is to char-
acterize the limit case with a family of full marginals µ = (µt)t∈[0,1]. Let us assume that
each µt has �nite �rst moment and t 7→ µt is right continuous and increasing in convex order.
Such a family is called a peacock (or PCOC �Processus Croissant pour l'Ordre Convexe� in
French) by Hirsch, Profeta, Roynette, and Yor [18]. Then Kellerer's Theorem [22] ensures
the existence of a right-continuous martingale M = (Mt)0≤t≤1 such that Mt ∼ µt for each
t ∈ [0, 1]. Further, by Monroe's result [24], one can �nd an increasing sequence of stopping
times (τt)0≤t≤1 together with a Brownian motion B = (Bs)s≥0 such that Bτt ∼ µt for each
t ∈ [0, 1]. This consists in an embedding for the full marginals µ. We refer to [18] for di�erent
explicit constructions of the martingales or embeddings �tting the peacock marginals. Among
all martingales or µ-embeddings, it is interesting to �nd solutions enjoying some optimality
properties. In the context of Madan and Yor [23], the Azéma-Yor embedding τAYt of the one
marginal problem with µt is ordered w.r.t. t, and thus (τAYt )0≤t≤1 is the embedding max-
imizing the expected maximum among all embedding solutions. This optimality is further
extended by Källblad, Tan, and Touzi [21] allowing for non-ordered barriers. Hobson [20] gave
a construction of a martingale with minimal expected total variation among all martingales
�tting the marginals. Henry-Labordère, Tan, and Touzi [17] provided a local Lévy martingale,
as limit of the left-monotone martingales introduced by Beiglböck and Juillet [3] (see also
Henry-Labordère and Touzi [16]), which inherits its optimality property. For general existence
of the optimal solution and the associated duality result, one needs a tightness argument,
which is studied in Guo, Tan, and Touzi [15] by using the S-topology on the Skorokhod space,
and in Källblad, Tan, and Touzi [21] by using the Skorokhod embedding approach.

The aim of this paper is to study the full marginals limit of the multiple-marginals Root
embedding as derived in [9]. This leads to a natural extension of the Root solution for the
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embedding problem given full marginals. Using the tightness result in [21], we can easily obtain
the existence of such limit as well as its optimality. We then provide some characterization of
the limit Root solution as well as that of the associated optimal stopping problem, which is
used in the �nitely many marginals case to describe the barriers.

In the rest of the paper, we will �rst formulate our main results in Section 2. Then in
Section 3, we recall some details on the Root solution given �nitely many marginals in [9]
and the limit argument of [21], which induces the existence of the limit Root solution for the
embedding problem given full marginals. We then provide the proofs of our main results on
some characterization of the limit Root solution in Section 4. Some further discussions are
�nally provided in Section 5.

2 Problem formulation and main results

We are given a family of probability measures µ = (µs)s∈[0,1] on R, such that µs is centred with
�nite �rst moment for all s ∈ [0, 1], s 7→ µs is càdlàg under the weak convergence topology,
and the family µ is non-decreasing in convex order, i.e. for any convex function φ : R→ R,∫

R
φ(x)µs(dx) ≤

∫
R
φ(x)µt(dx) for all s ≤ t.

De�nition 2.1. (i) A stopping rule is a term

α = (Ωα,Fα,Fα,Pα, Bα, (ταs )s∈[0,1]),

such that (Ωα,Fα,Fα,Pα) is a �ltered probability space equipped with a standard Brownian
motion Bα and a family of stopping times (ταs )s∈[0,1] such that s 7→ ταs is càdlàg and non-
decreasing. We denote

A :=
{
All stopping rules

}
, and At :=

{
α ∈ A : τα1 ≤ t

}
, for all t ≥ 0.

(ii) A stopping rule α ∈ A is called a µ-embedding if (Bα
t∧τα1

)t≥0 is uniformly integrable and

Bα
ταs
∼ µs for all s ∈ [0, 1]. We denote by A(µ) the collection of all µ-embeddings.

(iii) Let πn = {0 = s0 < s1 < · · · < sn = 1} be a partition of [0, 1]. A stopping rule α ∈ A
is called a (µ, πn)-embedding if (Bα

t∧τα1
)t≥0 is uniformly integrable and Bα

ταsk
∼ µsk for all

k = 1, · · · , n. We denote by A(µ, πn) the collection of all (µ, πn)-embeddings.

Our aim is to study the Root solution of the Skorohod embedding problem (SEP, hereafter)
given full marginals (µs)s∈[0,1]. To this end, we �rst recall the Root solution of the SEP given
�nitely many marginals, constructed in [9]. Let (πn)n≥1 be a sequence of partitions of [0, 1],
where πn = {0 = sn0 < sn1 < · · · < snn = 1} and |πn| := maxnk=1 |snk − snk−1| → 0 as n → ∞.
Then for every �xed n, one obtains n marginal distributions (µsnk )1≤k≤n and has the following
Root solution to the corresponding SEP.

Theorem (Cox, Obªój and Touzi, 2018). For any n ≥ 1, there exists a (µ, πn)-embedding α∗n
called Root embedding, where σnk := τ

α∗n
snk

is de�ned by

σn0 := 0 and σnk := inf{t ≥ σnk−1 : (t, B
α∗n
t ) ∈ Rnk},
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for some family of barriers (Rnk)1≤k≤n in R+ × R. Moreover, for any non-decreasing and
non-negative function f : R+ → R+, one has

EPα
∗
n
[ ∫ τ

α∗n
1

0
f(t)dt

]
= inf

α∈A(µ,πn)
EPα

[ ∫ τα1

0
f(t)dt

]
.

The barriers (Rnk)1≤k≤n are given explicitly in [9] by solving an optimal stopping problem,
see Section 3.1 below.

Let us denote by A([0, 1],R+) the space of all càdlàg non-decreasing functions a : [0, 1]→
R+, which is a Polish space under the Lévy metric. Notice also that the Lévy metric metricizes
the weak convergence topology on A([0, 1],R+) seen as a space of �nite measures. Denote also
by C(R+,R) the space of all continuous paths ω : R+ → R with ω0 = 0, which is a Polish space
under the compact convergence topology. Then for a given embedding α, one can see (Bα

· , τ
α
· )

as a random element taking values in C(R+,R) × A([0, 1],R+), which allows to de�ne their
weak convergence. Our �rst main result ensures that the (µ, πn)-Root embedding has a limit
in sense of the weak convergence, which enjoys the same optimality property, and thus can
be considered as the full marginals Root solution of the SEP. Our proof requires the following
technical condition.

Assumption 2.2. Let U : [0, 1]× R→ R be the potential function of µ de�ned by

U(s, x) := −
∫
R
|x− y|µs(dy). (2.1)

Assume that U is C1 in s, with partial derivative ∂sU such that x 7→ sups∈[0,1] ∂sU(s, ·) has
polynomial growth.

Theorem 1. (i) Let (πn)n≥1 be a sequence of partitions of [0, 1] such that |πn| → 0 as n→∞.
Denote by α∗n the corresponding (µ, πn)-Root embedding solution. Then there exists α∗ ∈ A(µ)

such that the sequence (B
α∗n· , τ

α∗n· )n≥1 weakly converges to (Bα∗
· , τ

α∗
· ). Moreover, for all non-

decreasing and non-negative functions f : R+ → R+, one has

EPα∗
[ ∫ τα

∗
1

0
f(t)dt

]
= inf

α∈A(µ)
EPα

[ ∫ τα1

0
f(t)dt

]
.

(ii) Under Assumption 2.2, for all �xed (s, t) ∈ [0, 1] × R+, the law of Bα∗

τα∗s ∧t
is independent

of the sequence of partitions (πn)n≥1 and of the limit α∗.

We next provide some characterization of the full marginals Root solution of the SEP α∗

given in Theorem 1. Let

u(s, t, x) := −EPα∗ [|Bα∗

t∧τα∗s
− x|

]
, (s, t, x) ∈ Z := [0, 1]× R+ × R. (2.2)

Our next main result, Theorem 2 below, provides a unique characterization of u which is
independent of the nature of the limit α∗, thus justifying Claim (ii) of Theorem 1. Moreover,
it follows by direct computation that one has

−|x| −
√
tE|B1| ≤ UN(0,t)(x) ≤ u(1, t, x) ≤ u(s, t, x) ≤ U(0, x),
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for all (s, t, x) ∈ [0, 1] × R+ × R, where we denoted by UN(0,t) the potential function of the
N(0, t) distribution (see (2.1) for the de�nition of the potential function).

In the �nitely many marginals case in [9], the function u is obtained from an optimal stop-
ping problem and is then used to de�ne the barriers in the construction of the Root solution.
Similar to equations (2.10) and (3.1) in [9], we can characterize u as value function of an
optimal stopping problem, and then as unique viscosity solution of the variational inequality:{

min
{
∂tu− 1

2∂
2
xxu, ∂s(u− U)

}
= 0, on int(Z),

u
∣∣
t=0

= U and u
∣∣
s=0

= U(0, .).
(2.3)

Let Du and D2u denote the gradient and Hessian of u w.r.t. z = (s, t, x), and set:

F (Du,D2u) := min
{
∂tu−

1

2
∂2
xxu, ∂s(u− U)

}
. (2.4)

De�nition 2.3. (i) An upper semicontinuous function v : Z→ R is a viscosity subsolution of
(2.3) if v|s=0 ≤ U(0, ·), v|t=0 ≤ U and F (Dϕ,D2ϕ)(z0) ≤ 0 for all (z0, ϕ) ∈ int(Z) × C2(Z)
satisfying (v − ϕ)(z0) = maxz∈Z(v − ϕ)(z).

(ii) A lower semicontinuous function w : [0, 1] × R+ × R → R is a viscosity supersolution of
(2.3) if w|s=0 ≥ U(0, ·), w|t=0 ≥ U and F (Dϕ,D2ϕ)(z0) ≥ 0 for all (z0, ϕ) ∈ int(Z)× C2(Z)
satisfying (w − ϕ)(z0) = minz∈Z(w − ϕ)(z).

(iii) A continuous function v is a viscosity solution of (2.3) if it is both viscosity subsolution
and supersolution.

Theorem 2. Let Assumption 2.2 hold true.
(i) The function u can be expressed as value function of an optimal stopping problem,

u(s, t, x) = sup
α∈At

EPα
[
U(0, x+Bα

ταs
) +

∫ s

0
∂sU(s− k, x+Bα

ταk
)1{ταk <t}dk

]
. (2.5)

(ii) The function u(s, t, x) is decreasing and locally Lipschitz in s, uniformly Lipschitz in x
and uniformly 1

2 -Hölder in t. Moreover, u is a viscosity solution of equation (2.3).

(iii) Moreover, u is the unique viscosity solution of (2.3) satisfying

|u(s, t, x)| ≤ C(1 + t+ |x|), (s, t, x) ∈ Z, for some constant C > 0.

3 Multiple marginals Root solution of the SEP and its limit

The main objective of this section is to recall the construction of the Root solution to the
SEP given multiple marginals from [9]. As an extension to the one marginal Root solution
studied in [8] and [12], the solution to the multiple marginals' case enjoys some optimality
property among all embeddings. We then also recall the limit argument in [21] to show how
the optimality property is preserved in the limit case.
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3.1 The Root solution of the SEP given multiple marginals

Let n ∈ N and πn be a partition of [0, 1], with πn = {0 = sn0 < sn1 < · · · < snn = 1}, we
then obtain n marginal distributions µn := {µsnj }j=1,··· ,n and recall the Root solution to the
corresponding embedding problem.

Let Ω = C(R+,R) denote the canonical space of all continuous paths ω : R+ −→ R with
ω0 = 0, B be the canonical process, Bx := x + B, F = (Ft)t≥0 be the canonical �ltration,
F := F∞, and P0 the Wiener measure under which B is a standard Brownian motion. For
each t ≥ 0, let T0,t denote the collection of all F-stopping times taking values in [0, t]. Denote

δnU(snj , x) := U(snj , x)− U(snj−1, x), x ∈ R,

which is non-positive since {µs}s∈[0,1] is non-decreasing in convex ordering. We then de�ne
the function un(·) by a sequence of optimal stopping problems:

un
∣∣
s=0

:= U(sn0 , .), and u
n(snj , t, x) := sup

θ∈T0,t
E
[
un(snj−1, t− θ,Bx

θ ) + δnU(snj , B
x
θ )1{θ<t}

]
.

(3.1)
Denoting similarly δnu(snj , t, x) = un(snj , t, x) − un(snj−1, t, x), we de�ne the corresponding
stopping regions

Rnj :=
{

(t, x) ∈ [0,∞]× [−∞,∞] : δnu(snj , t, x) = δnU(snj , x)
}
, j = 1, . . . , n. (3.2)

Given the above, the Root solution on the Brownian motion B in the space (Ω,F ,P0), is
given by the family σn = (σn1 , . . . , σ

n
n) of stopping times

σn0 := 0, and σnj := inf
{
t ≥ σnj−1 : (t, Bt) ∈ Rnj

}
, ∀j ∈ {1, . . . , n}. (3.3)

The stopping times σn induce a stopping rule α∗n in the sense of De�nition 2.1:

α∗n =
(
Ωα∗n ,Fα∗n ,Fα∗n ,Pα∗n , Bα∗n , τα

∗
n
)

:=
(
Ω,F ,F,P0, B, τ

α∗n
)
, (3.4)

with τ
α∗n
s := σnj for s ∈ [snj , s

n
j+1).

Theorem (Cox, Obªój, and Touzi [9]). The stopping rule α∗n is a (µ, πn)-embedding, with

un(snj , t, x) = −E|Bt∧σnj − x|. (3.5)

Moreover, for all non-decreasing and non-negative f : R+ → R+, we have

EP0

[ ∫ σnn

0
f(t)dt

]
= EP0

[ ∫ τ
α∗n
1

0
f(t)dt

]
= inf

α∈A(µ,πn)
EPα

[ ∫ τα1

0
f(t)dt

]
.

Using a dynamic programming argument, one can also reformulate the de�nition of un

in (3.1) by induction as a global multiple optimal stopping problem. Let us denote by T n0,t
the collection of all terms (τ1, · · · , τn), where each τj , j = 1, · · · , n, is a F-stopping time on
(Ω,F ,P0) satisfying 0 ≤ τ1 ≤ . . . ≤ τn ≤ t.

Proposition 3.1. For all j = 1, · · · , n, we have

un(snj , t, x) = sup
(τ1,...,τn)∈T n0,t

E
[
U(0, x+Bτj ) +

j∑
k=1

δnU(snk , x+Bτj−k+1
)1{τj−k+1<t}

]
. (3.6)
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Proof. We will use a backward induction argument. First, let us denote by Tr,t the collection
of all F-stopping times taking values in [r, t], and by Br,x

s := x+Bs −Br for all s ≥ r. Then
it follows from the expression (3.1) that

un(snj−1, t− r, x) = sup
τ∈Tr,t

E
[
un(snj−2, t− τ,Br,x

τ ) + δnU(snj−1, B
r,x
τ )1{τ<t}

]
.

Using the dynamic programming principle, one has

un(snj , t, x) = sup
τ1∈T0,t

E
[
un(snj−1, t− τ1, B

0,x
τ1 ) + δnU(snj , B

0,x
τ1 )1{τ1<t}

]
= sup

τ1∈T0,t
E
[
ess sup

τ2∈Tτ1,t
E
[
un(snj−2, t− τ2, B

τ1,B
0,x
τ1

τ2 ) + δnU(snj−1, B
τ1,B

0,x
τ1

τ2 )1{τ1<t}

∣∣∣Fτ1]
+ δnU(snj , B

0,x
τ1 )1{τ1<t}

]
= sup

(τ1,τ2)∈T 2
0,t

E
[
un(snj−2, t− τ2, B

0,x
τ2 ) +

j∑
k=j−1

δnU(snk , B
0,x
τj−k+1

)1{τj−k+1<t}

]
.

To conclude, it is enough to apply the same argument to iterate and to use the fact that
un(0, t, x) = U(0, x) for any t and x.

Remark 3.2. For later uses, we also observe that it is not necessary to restrict the stopping
times w.r.t. the Brownian �ltration, in the optimal stopping problem (3.6). In fact, one can
consider a larger �ltration with respect to which B is still a Brownian motion.

More precisely, let Ant denote the collection of all stopping rules

α = (Ωα,Fα,Fα,Pα, Bα, ταj , j = 1, · · ·n)

such that (Ωα,Fα,Fα,Pα) is a �ltered probability space equipped with a standard Brownian
motion Bα and (ταj )j=1,··· ,n is a sequence of stopping times satisfying 0 ≤ τα1 ≤ . . . ≤ ταn ≤ t.
Then one has

un(snj , t, x) = sup
α∈Ant

EPα
[
U(0, x+Bα

ταj
) +

j∑
k=1

δnU(snk , x+Bα
ταj−k+1

)1{ταj−k+1<t}

]
.

This equivalence is standard and very well known in case n = 1, see also Lemma 4.9 0f [14]
for the multiple stopping problem where n ≥ 1.

3.2 The Root solution given full marginals (Theorem 1.(i))

In Källblad, Tan, and Touzi [21], it is shown that the sequence of Root stopping times
(σn1 , · · · , σnn)n≥1 is tight in some sense and any limit provides an embedding solution given
full marginals.

More precisely, let (σnk )k=1,··· ,n be the Root embedding given n-marginals (µsnk )k=1,··· ,n
de�ned in (3.3), we de�ne α∗n by (3.4) as a (µ, πn)-embedding in sense of De�nition 2.1. Notice

that Pn := Pα∗n ◦ (B
α∗n· , τ

α∗n· )−1 is a probability measure on C(R+,R)×A([0, 1],R+), which is a
Polish space if C(R+,R) is equipped with the compact convergence topology and A([0, 1],R+)
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is equipped with the Lévy metric. This allows us to consider the weak convergence of the
sequence (α∗n)n≥1. Theorem 1 is then a consequence of the following convergence theorem,
which can be gathered from several results in [21]. Recall also that A(µ) and A(µ, πn) are
de�ned in De�nition 2.1.

Proposition 3.3. Let (πn)n≥1 be a sequence of partitions of [0, 1] with mesh |πn| → 0, and
let α∗n be the corresponding multiple-marginals Root embedding (3.4). Then, the sequence(
B
α∗n· , τ

α∗n·
)
is tight, and any limit α∗ is a full marginals embedding, i.e. α∗ ∈ A(µ), with

Pα
∗
nk ◦ (B

α∗nk

τ
α∗nk
s

)−1 −→ Pα
∗
◦ (Bα∗

τα∗s
)−1, for all s ∈ [0, 1] \ T,

for some countable set T ⊂ [0, 1), and some subsequence (nk)k≥1, and

EPα∗
[ ∫ τα

∗
1

0
f(t)dt

]
= inf

α∈A(µ)
EPα

[ ∫ τα1

0
f(t)dt

]
,

for any non-decreasing and non-negative function f : R+ → R+.

Proof. (i) The �rst item is a direct consequence of Lemma 4.5 of [21].

(ii) For the second item, we notice that Φ(ω·, θ·) := −
∫ θ1

0 f(t)dt is a continuous function
de�ned on C(R+,R) × A([0, 1],R+) and bounded from above. Then it is enough to apply
Theorem 2.3 and Proposition 3.6 of [21] to obtain the optimality of α∗.

4 Proof of Theorems 2 and 1.(ii)

Recall that u(s, t, ·) is de�ned in (2.2) as the potential function of Bα∗

t∧τα∗s
for an arbitrary Root

solution α∗ given full marginals. We provide an optimal stopping problem characterization
as well as a PDE characterization for the function u under Assumption 2.2, which consists
in a proof of Theorem 2. Further, the uniqueness of the solution to the PDE induces the
uniqueness result in part (ii) of Theorem 1.

4.1 Characterization of u by an optimal stopping problem (Theorem 2.(i))

By a slight abuse of notation, we can extend the de�nition of un given in (3.1) to [0, 1]×R+×R
by setting

un(s, t, x) := un(snj , t, x) whenever s ∈ (snj−1, s
n
j ].

With At in De�nition 2.1, we also de�ne ũ as a mapping from [0, 1]× R+ × R to R by

ũ(s, t, x) := sup
α∈At

EPα
[
U(0, x+Bα

ταs
) +

∫ s

0
∂sU(s− k, x+Bα

ταk
)1{ταk <t}dk

]
. (4.1)

The main objective of this section is to provide some characterisation of this limit law as well
as the limit problem of un (3.1) used in the construction of the Root solution.

Proposition 4.1. For all (s, t, x), one has un(s, t, x)→ ũ(s, t, x) as n→∞.
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Proof. We start by rewriting the representation formula of un(k, t, x) in Remark 3.2 as

un(snj , t, x) = sup
α∈Ant

EPα
[
U(0, x+Bα

ταj
) +

j∑
k=1

δnU(snj−k+1, x+Bα
ταk

)1{ταk <t}

]
.

(i) First, for a �xed n ∈ N, one can see Ant as a subset of At in the following sense. Given
α ∈ Ant , and assume that s ∈ (snj−1, s

n
j ]. Let us set τ̂αk := ταi whenever k ∈ [s−snj−i+1, s−snj−i).

Notice that U(snj , x+Bα
τα1

)− U(s, x+Bα
τα1

) ≤ 0, then it follows by direct computation that

j∑
k=1

δnU(snj−k+1, x+Bα
ταk

)1{ταk <t}

≤ U(s, x+Bα
τα1

)− U(snj−1, x+Bα
τα1

) +

j∑
k=2

δnU(snj−k+1, x+Bα
ταk

)1{ταk <t}

=

∫ s

0
∂sU(s− k, x+Bα

τ̂αk
)1{τ̂αk <t}dk

and it follows by (4.1) that un(s, t, x) = un(snj , t, x) ≤ ũ(s, t, x).

(ii) Let α ∈ At, and de�ne αn ∈ Ant by

ταnj := ταsnj , for j = 1, · · · , n.

Let jn be such that snjn converges to s as n→∞, then it follows that

Xn := U(0, x+Bα
ταnjn

) +

jn∑
k=1

δnU(snjn−k+1, x+Bα
ταnk

)1{ταnk <t}

−→
n→∞

U(0, x+Bα
ταs

) +

∫ s

0
∂sU(s− k, x+Bα

ταk
)1{ταk <t}dk, a.s.

Recall that by Assumption 2.2, there exists some C > 0 and p > 0 such that |U(0, x)| ≤ C+|x|
and sups∈[0,1] |∂sU(s, x)| ≤ C(1 + |x|p) for any x ∈ R, then (Xn)n≥1 is in fact uniformly inte-
grable. Hence for ε > 0 such that α is ε-optimal in (4.1), it follows from the previous remark
and from Fatou's lemma that lim infn→∞ E[Xn] ≥ ũ(s, t, x) − ε. Thus, limn→∞ u

n(s, t, x) ≥
ũ(s, t, x).Hence this proves that the following convergence holds: limn→∞ u

n(s, t, x) = ũ(s, t, x).

Lemma 4.2. The function ũ(s, t, x) is non-increasing and locally Lipschitz in s, and is uni-
formly Lipschitz in x and uniformly 1

2 -Hölder in t.

Proof. First, using representation formula of un in (3.5) and noticing that y 7→ |y−x| is convex,
we see that s 7→ un(s, t, x) is non-increasing. Further, using (3.1), it follows immediately that

un(snj , t, x)− un(snj−1, t, x) ≥ U(snj , x)− U(snj−1, x).

Then under Assumption 2.2, one has 0 ≥ ∂su
n(s, t, x) ≥ −C(1 + |x|p) for some constant

C > 0 and p > 0 independent of n. By the limit result un → ũ, it follows that ũ(s, t, x) is
non-increasing and locally Lipschitz in s.

Finally, using again the representation formula of un in (3.5), it is easy to deduce that
un(k, t, x) is uniformly Lipschitz in x and 1/2-Hölder in t, uniformly in n. As limit of un, it
follows that ũ is also uniformly Lipschitz in x and 1/2-Hölder in t.
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We next show that the function u de�ned by (2.2) is also the limit of un, which leads to
the equivalence of u and ũ, and then Theorem 2.(i) readily follows.

Proposition 4.3. For all (s, t, x) ∈ [0, 1]× R+ × R, one has u(s, t, x) = ũ(s, t, x).

Proof. By Theorem 3.1 of [9] together with our extended de�nition in (3.4), un(s, t, x) =

−EPα
∗
n
[∣∣∣Bα∗n

t∧τα
∗
n

s

−x
∣∣∣]. Moreover, by Proposition 3.3, there exists a countable set T ⊂ [0, 1) and

a subsequence (nk)k≥1 such that Pα
∗
nk ◦(B

α∗nk

τ
α∗nk
s

)−1 → Pα∗◦(Bα∗

τα∗s
)−1. As E[max0≤r≤t |Br−x|

]
<

∞ for a Brownian motion, it follows that EPα
∗
nk
[∣∣Bα∗nk

t∧τ
α∗nk
s

− x
∣∣] −→ EPα∗ [∣∣Bα∗

t∧τα∗s
− x
∣∣], for

all s ∈ [0, 1] \ T. Hence,

un(s, t, x) −→ u(s, t, x), for all s ∈ [0, 1] \ T.

Further, by the right-continuity of s 7→ τα
∗

s , it is easy to deduce that s 7→ u(s, t, x) :=

−EPα∗ |Bα∗

t∧τα∗s
− x| is right-continuous.

On the other hand, we know from Proposition 4.1 that un(s, t, x) → ũ(s, t, x), and from
Lemma 4.2 that ũ is a continuous function in all arguments, it follows that u(s, t, x) = ũ(s, t, x)
holds for all (s, t, x) ∈ [0, 1]× R+ × R.

Remark 4.4. Formally, we can understand the above result in the following equivalent way.
The n-marginals Root solution (σn, B) converges weakly to a full marginal Root solution (σ,B)
which then satis�es:

u(s, t, x) = −E
[∣∣Bt∧σs − x∣∣].

4.2 PDE characterization of u (Theorem 2.(ii))

Proof of Theorem 2.(ii). Step 1. We �rst notice that the continuity of u(s, t, x) in (s, t, x)
follows directly by Lemma 4.2 and Proposition 4.3.

Step 2. In a �ltered probability space (Ω,F ,F,P) equipped with a Brownian motion W , we
denote by Ut the collection of all F-predictable processes γ = (γr)r≥0 such that

∫ 1
0 γ

2
rdr ≤ t.

Given a control process γ, we de�ne two controlled processes Xγ and Y γ by

Xγ
s := x+

∫ s

0
γrdWr, Y γ

s :=

∫ s

0
γ2
rdr.

By a time change argument, one can show that

u(s, t, x) = sup
γ∈Ut

E
[
U(0, Xγ

s ) +

∫ s

0
∂sU(s− k,Xγ

k )1{Y γk <t}
dk
]
. (4.2)

Indeed, given γ ∈ Ut, one obtains a square integrable martingale Xγ which has the representa-
tion Xγ

s = WY γs
, where W is a Brownian motion and Y γ

s are all stopping times, and it induces
a stopping rule in At. By (4.1) and Proposition 4.3, it follows that in (4.2), the left-hand side
is larger than the right-hand side. On the other hand, given an increasing sequence of stopping

times (τ1, · · · , τn) ∈ T n0,t, we de�ne Γs := τj ∨
s−snj
snj+1−s

∧ τj+1 for all s ∈ [snj , s
n
j+1). Notice that
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s 7→ Γs is absolutely continuous and Γsnj = τj for all j = 1, · · · , n. Then one can construct a
predictable process γ such that

P0 ◦
(∫ ·

0
γrdBr,

∫ ·
0
γ2
rdt
)−1

= P0 ◦
(
BΓ· ,Γ·

)−1
.

Using the de�nition of un in (3.6) and its convergence in Proposition 4.1, one obtains that in
(4.2), the right-hand side is larger than the left-hand side.

The above optimal control problem satis�es the dynamic programming principle (see e.g.
[11]): for a family of stopping times (τγ)γ∈Ut dominated by s, one has

u(s, t, x) = sup
γ∈Ut

E
[
u
(
s− τγ , t− Y γ

τγ , X
γ
τγ
)

+

∫ τγ

0
∂sU(s− k,Xγ

τγ
)
1{Y γk <t}

dk
]
. (4.3)

Step 3 (supersolution). Let z = (s, t, x) ∈ int(Z) be �xed, and ϕ ∈ C2(Z) be such that
0 = (u − ϕ)(z) = minz′∈Z(u − ϕ). By a slight abuse of notation, denote by ∂sU(z′) the
quantity ∂sU(s′, x′) for any z′ = (s′, t′, x′). Then by (4.3), for any family of stopping times
(τγ)γ∈Ut dominated by s, one has,

sup
γ∈Ut

E
[ ∫ τγ

0

(
− ∂sϕ(Zk) + ∂sU(Zk)1{Y γk <t}

)
dk +

∫ τγ

0
γ2
k

(
− ∂tϕ+

1

2
∂2
xxϕ)(Zk)dk

]
≤ 0,

where Zk := (s− k, t−Y γ
k , X

γ
k ) and Xγ

0 = x. Choosing γ· ≡ 0 and τγ ≡ h for h small enough,
we get (

− ∂sϕ+ ∂sU
)
(z) ≤ 0.

On the other hand, choosing γ· ≡ γ0 for some constant γ0 and τγ := inf{k ≥ 0 : |Xγ
k − x|+

|Y γ
k | ≥ h}, then by letting γ0 be large enough and h be small enough, one can deduce that(

− ∂tϕ+
1

2
∂2
xxϕ
)
(s, t, x) ≤ 0.

Step 4 (subsolution). Assume that u is not a viscosity sub-solution, then there exists z =
(s, t, x) ∈ int(Z) and ϕ ∈ C2(Z), such that 0 = (u− ϕ)(z) = maxz′∈Z(u− ϕ)(z′), and

min
{
∂tϕ−

1

2
∂2
xxϕ, ∂s(ϕ− U)

}
(s, t, x) > 0.

By continuity of u and ϕ, we may �nd R > 0 such that

min
{
∂tϕ−

1

2
∂2
xxϕ, ∂s(ϕ− U)

}
≥ 0, on BR(z), (4.4)

where BR(z) is the open ball with radius R and center z. Let τγ := inf{k : Zγk /∈
BR(z) or Y γ

k ≥ t}, and notice that max∂BR(s,t,x)(u − ϕ) = −η < 0, by the strict maximality
property. Then it follows from (4.3) that

0 = sup
γ

E
[
u
(
s− τγ , t− Y γ

τγ , X
γ
τγ
)
− u(s, t, x) +

∫ τγ

0
∂sU(s− k,Xγ

τγ
)
1{Y γk <t}

dk
]

≤ −η + sup
γ

E
[ ∫ τγ

0

(
− ∂s(ϕ− U1{Y γk <t}

)− (∂tϕ−
1

2
∂2
xxϕ)γ2

k

)
(Zk)dk

]
≤ −η,

where the last inequality follows by (4.4). This is the required contradiction.
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4.3 The comparison principle of the PDE (Theorems 2.(iii) and 1.(ii))

Recall that the operator F is de�ned in (2.4) and we will study the PDE (2.3). For any η ≥ 0,
a lower semicontinuous function w : Z→ R is called an η-strict viscosity supersolution of (2.3)
if w|s=0 ≥ η+U(0, ·), w|t=0 ≥ η+U and F (Dϕ,D2ϕ)(z0) ≥ η for all (z0, ϕ) ∈ int(Z)×C2(Z)
satisfying (w − ϕ)(z0) = minz∈Z(w − ϕ)(z).

Proposition 4.5 (Comparison). Let v (resp. w) be an upper (resp. lower) semicontinuous
viscosity subsolution (resp. supersolution) of the equation (2.3) satisfying

v(z) ≤ C(1 + t+ |x|) and w(z) ≥ −C(1 + t+ |x|), z ∈ Z, for some constant C > 0.

Then v ≤ w on Z.

Proof. We proceed in three steps.

(i) In this step, we prove the result under the assumption that the comparison result holds
true if the supersolution is η−strict for some η > 0. First, direct veri�cation reveals that the
function:

w1(s, t, x) := U(s, x) + η(1 + s+ t), (s, t, x) ∈ Z,

is an η−strict supersolution. For all µ ∈ (0, 1), we claim that the function wµ := (1−µ)w+µw1

is a µη−strict viscosity supersolution. Indeed, this follows from the proof of Lemma A.3 (p.52)
of Barles and Jakobsen [2], which shows that wµ is a viscosity supersolution of both linear
equations:

∂tw
µ − 1

2
∂2
xxw

µ ≥ µη and ∂sw
µ − ∂sU ≥ µη.

Assume that the comparison principle holds true if the supersolution is strict, then it follows
that v ≤ wµ on Z. Let µ↘ 0, we obtain v ≤ w on Z.

(ii) In view of the previous step, we may assume without loss of generality that w is an
η−strict supersolution. In order to prove the comparison result in this setting, we assume to
the contrary that

δ := (v − w)(ẑ) > 0, for some ẑ ∈ Z, (4.5)

and we work toward a contradiction. Following the standard doubling variables technique, we
introduce for arbitrary α, ε > 0:

Φα,ε(z, z′) :=
α

2

∣∣z − z′∣∣2 + ε
(
ϕ(z) + ϕ(z′)

)
, with ϕ(z) := ln (1− s) +

1

2

(
t2 + x2

)
, z, z′ ∈ Z,

and the corresponding maximum

Mα,ε := sup
(z,z′)∈Z×Z

{
v(z)− w(z′)− Φα,ε(z, z′)

}
≥ δ − 2εϕ(ẑ) > 0, (4.6)

by (4.5), for su�ciently small ε > 0. Also, recalling that both potential functions U and
UN(0, 1) have linear growth in x, it follows from the bounds on v and w that the above
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supremum may be con�ned to a compact subset of Z× Z. Then the upper semicontinuity of
the objective function implies the existence of a minimizer (zα,ε, z′α,ε) ∈ Z× Z, i.e.

Mα,ε = v
(
zα,ε

)
− w

(
z′
α,ε)− α

2

∣∣zα,ε − z′α,ε∣∣2 − ε(ϕ(zα,ε) + ϕ(z′
α,ε

)
)
,

and there exists a converging subsequence
(
zεn, z

′ε
n

)
:=
(
zεαn , z

′ε
αn

)
−→ (zε, z′ε) ∈ Z × Z, for

some (αn)n converging to ∞. Moreover, denoting by z∗ any minimizer of v − w − 2εϕ, we
obtain from the inequality (v − w − 2εϕ)(z∗) ≤Mαn,ε that

` := lim sup
n→∞

α

2

∣∣zεn − z′εn∣∣2 ≤ lim sup
n→∞

v(zεn)− w(z′
ε
n)− ε

(
ϕ(zεn)− ϕ(z′

ε
n)
)
− (v − w − 2εϕ)(z∗)

≤ v(zε)− w(z′
ε
)− ε

(
ϕ(zε)− ϕ(z′

ε
)
)
− (v − w − 2εϕ)(z∗) < ∞.

Then zε = z′ε, and 0 ≤ ` ≤ (v−w− 2εϕ)(zε)− (v−w− 2εϕ)(z∗) ≤ 0 by the de�nition of z∗.
Consequently:

zε = z′
ε
, αn

∣∣zεn − z′εn∣∣2 −→ 0, and Mαn −→ sup
Z

(u− v)− 2εϕ, as n→∞. (4.7)

Finally, our de�nition of ϕ implies that sε < 1. Moreover, as v is a subsolution and w a super-
solution, we see that if ẑ lies in the remaining part of ∂Z, we would have lim supn→∞Mαn ≤
−2εϕ

(
zε
)
≤ 0, which is in contradiction with the positive lower bound in (4.6). Consequently

zε is an interior point of Z, and therefore both zεn and z
′ε
n are interior points of Z for su�ciently

large n.

(iii) We now use the viscosity properties of v and w at the interior points zεn and z′εn, for large
n. By the Crandall-Ishii Lemma, see e.g. Crandall, Ishii, and Lions [10], we may �nd for each
such n two pairs (pεn, A

ε
n) and (qεn, B

ε
n) in R3 × S3, such that(

pεn +DΦα,ε(zεn), Aεn +D2Φα,ε(zεn)
)
∈ Jw(zεn),(

qεn −DΦα,ε(z′
ε
n), Bε

n −D2Φα,ε(z′
ε
n)
)
∈ Jv(z′

ε
n),

pεn = qεn = αn(zεn − z′
ε
n) and Aεn ≤ Bε

n,

where J and J denote the second order super and subjets, see [10]. Then, it follows from the
subsolution property of v and the η−strict supersolution of w that

min
{
αn(tεn − t′

ε
n) + εtεn −

1

2
(Aε3,3,n + ε), αn(sεn − s′

ε
n) +

ε

1− sεn
− ∂sU(sεn, x

ε
n)
}

≤ 0 ≤ −η + min
{
αn(tεn − t′

ε
n)− εt′εn −

1

2
(Bε

3,3,n − ε), αn(sεn − s′
ε
n)− ε

1− s′εn
− ∂sU(s′

ε
n, x
′ε
n)
}

≤ −η + min
{
αn(tεn − t′

ε
n)− εt′εn −

1

2
(Aε3,3,n − ε), αn(sεn − s′

ε
n)− ε

1− s′εn
− ∂sU(s′

ε
n, x
′ε
n)
}
,

by the inequality Aεn ≤ Bε
n. This implies that

0 ≤ −η − ε(tεn + t′
ε
n) + 2ε− ε

1− sεn
− ε

1− s′εn
+
∣∣∂sU(s′

ε
n, x
′ε
n)− ∂sU(s′

ε
n, x
′ε
n)
∣∣

≤ −η + 2ε+
∣∣∂sU(sεn, x

ε
n)− ∂sU(s′

ε
n, x
′ε
n)
∣∣ −→ −η + 2ε, as n→∞,

which provides the required contradiction for su�ciently small ε > 0.
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Remark 4.6. To conclude the proofs of Theorem 2 (iii) as well as Theorem 1 (ii), we notice
that the comparison result in Proposition 4.5 induces immediately the uniqueness of the PDE
(2.3) in part (iii) of Theorem 2. Further, this implies also the uniqueness of the potential
functions of Bα∗

τα∗s ∧t
for all s ∈ [0, 1] and t ≥ 0, and hence the uniqueness of law of Bα∗

τα∗s ∧t
in

part (ii) of Theorem 1.

5 More discussions

Recall that in the case with �nitely many marginals (µsnj )j=1,··· ,n, the Root stopping times

{σnj }j=1..n are de�ned successively as hitting times of barriers, that is

σnj := inf
{
t ≥ σnj−1 : (t, Bt) ∈ Rnj

}
,

with barriers Rnj de�ned by

Rnj = {(t, x) : δnun(snj , t, x) = δnU(snj , x)}.

In consequence, one has for any n ≥ 1,

δnun(snj , σ
n
j , Bσnj ) = δnU(snj , Bσnj ), ∀j = 1, . . . , n.

Denote for simplicity a Root solution of the SEP given full marginals by (σ∞s )s∈[0,1]. As-
sume that the partial derivative ∂su(s, t, x) exists and is continuous, then one may naturally
expect to have ∫ t

0
∂su(s, σ∞s , Bσ∞s )ds =

∫ t

0
∂sU(s,Bσ∞s )ds, for all t ∈ [0, 1].

Nevertheless, it is not easy to formulate a su�cient condition on U to ensure that ∂su(s, t, x)
is well-de�ned, as u is only the value function of an optimal stopping problem.

We could also expect to de�ne the limit Root solution σ∞s as a hitting time such that

σ∞s = inf {t ≥ σs− : (t,Wt) ∈ Rs} , (5.1)

for barriers R = {Rs}s∈[0,1] de�ned by

Rs := {(t, x) : ∂su(s, t, x) = ∂sU(s, x)} .

But again here, the de�nition of the partial derivative ∂su(s, t, x) is not clear. Moreover, as
the number of marginals is not countable in the full marginals case, the equation (5.1) cannot
provide a de�nition for an uncountable family of stopping times.

Finally, an optimal solution to the dual problem of the optimal SEP has been provided in
[9]. It is also interesting to look at the limit of the dual solutions. Nevertheless, as the dual
solution are only de�ned in an inductive way using the barriers (Rnk)k=1,··· ,n, it is not clear
how to �gure out the limit barriers and the limit dual solutions.
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