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Automatic Multiorgan Segmentation

via Multiscale Registration and Graph Cut

Razmig Kéchichian*, Sébastien Valette, and Michel Desvignes

Abstract—We propose an automatic multiorgan segmentation
method for 3D radiological images of different anatomical content
and modality. The approach is based on a simultaneous multilabel
Graph Cut optimization of location, appearance and spatial con-
figuration criteria of target structures. Organ location is defined
by target-specific probabilistic atlases (PA) constructed from a
training dataset using a fast (2+1)D SURF-based multiscale reg-
istration method involving a simple 4-parameter transformation.
PAs are also used to derive target-specific organ appearance
models represented as intensity histograms. The spatial config-
uration prior is derived from shortest-path constraints defined
on the adjacency graph of structures. Thorough evaluations on
Visceral project benchmarks and training dataset, as well as
comparisons with the state of the art confirm that our approach
is comparable to and often outperforms similar approaches in
multiorgan segmentation, thus proving that the combination of
multiple suboptimal but complementary information sources can
yield very good performance.

Index Terms—Segmentation, Registration, Atlases, Abdomen,
Magnetic resonance imaging (MRI), X-ray imaging and com-
puted tomography, thorax, keypoints, spatial prior, graph cut

I. INTRODUCTION AND RELATED WORK

C
LINICAL practice and medical research today generate

vast numbers of images of high dimensions, especially in

whole-body CT and MR imaging. This is due to the increasing

need for more accurate and less invasive procedures, made

possible by ongoing advances in acquisition and storage tech-

nologies. The increasing number and complexity of images

increases the workload of radiologists. It also makes tasks of

data access, analysis and visualization challenging, especially

in distributed environments involving web terminals for remote

access and visualization [1]. Automatic image analysis meth-

ods, such as detection, segmentation and registration, have

become part of radiological practice, underpinning algorithms

that make computer-aided diagnosis and treatment possible.

The majority of medical image analysis methods, and

those of segmentation in particular, target a single anatomical

structure or pathology [2], [3]. The reason is that many such

methods do not scale up to higher numbers of structures, or

may be bound to the specificities of a certain modality or
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anatomy. Single-organ methods leave the potential of organ co-

segmentation in large field-of-view (FOV) images unexplored.

Multiorgan segmentation is necessary in several situations.

Some clinical procedures, such as radiotherapy [4] and detec-

tion of metastasis [5] require a simultaneous scrutiny of several

anatomies. Other applications include the creation of patient-

specific models and the semantic navigation of anatomy [6].

Speaking of methods, multiorgan segmentation expressed as

a sequence of single-organ segmentations is prone to the

propagation of errors between different stages. This is usually

alleviated by post-segmentation correction, which is difficult to

generalize [7]. Intrinsically multiorgan methods raise questions

neither on segmentation sequence nor on error propagation.

We thus focus on anatomy-independent multiorgan methods

that can be applied to a wide range of medical images.

A. Multiorgan segmentation methods

The basic procedure that underlies multiatlas segmentation

(MAS) methods [8]–[19] is the following: a number of images

are selected from a dataset and registered onto the target struc-

ture, then corresponding annotations are transfered to the target

and merged to localize and segment it. An atlas designates

the pair of the intensity image and its annotation. A recent

survey [2] shows that MAS methods are applied to brain MRI

more often than to thoracic-abdominal CT images. The reason

is that the relatively low inter-subject variation in overall

brain shape and structure locations allows good alignment. In

contrast, abdominal structures exhibit high location and shape

variability and are challenging for registration [20].

A related family of methods are those that rely on statistical

shape models (SSM) [21]–[23]. In a nutshell, SSM methods

create a statistical model for a structure describing its mean

shape or appearance and its variabilities. The model is then

matched to a target in order to localize and segment it. Note

that such mean models represent variation in the particular

dataset they are created from. Therefore, when a target signif-

icantly differs from the mean, specificity can be low. Moreover,

due to wide inter-subject differences, the mean shape of some

structures may have no anatomical meaning. We refer the

reader to the following review for further details [24].

The shortcomings of SSM are addressed in some atlas-based

methods, e.g. [13], [18], by the creation of subject-specific

shape models, called probabilistic atlases (PA), constructed

by merging registered annotations into a spatial probability

of organ location, used subsequently as a prior to segment

the target. The construction of such target-specific PAs can

however be costly since several atlases are required to build a

PA for a specific target that cannot be used to segment another.
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Patch-based segmentation methods [25], [26] avoid the

computationally expensive step of, often non-rigid, atlas reg-

istration in MAS methods. Instead of registering organ-level

atlases, the latter are split into a large number of patches, and

patch selection is done according to a similarity metric in local

neighborhoods around the voxels of the target.

Machine learning has had important contributions to multi-

organ segmentation. Since classifiers, when applied as they are,

label image elements (voxels, superpixels, etc.) independently,

researchers have taken local context into account by using

long-range spatial features [27], [28], by introducing location

variables into the classifier’s objective [29] or by using random

fields in conjunction with classifiers [30]. With the emergence

of deep learning, neural networks have regained ground in

medical image analysis [3]. Deep neural networks of fully

convolutional [31]–[33] and especially of the U-net variant

[34], [35] have achieved very good results in multiorgan

segmentation. The effectiveness of these methods depends

on the availability of large annotated datasets and GPU-

based computing to optimize empirically defined network

architectures that can have millions of parameters [35].

Regularization techniques are widely resorted to in multior-

gan segmentation to favor the spatial consistency of labels

assigned to individual image elements by a voting or a

probability maximization mechanism. Level-set [35], [36] and

random walk methods [28] have been used to regularize initial

segmentations produced by classifiers. The use of Graph Cut

regularization is arguably the most common. It is employed

by many methods such as [10]–[13], [18], [23], [25], [26].

Graph Cut optimization has the advantage of theoretical and

empirical optimality [37]. For a particular class of objective

functions frequently arising in segmentation, Graph Cut algo-

rithms produce global optima in single-object and provably-

good approximate solutions in multiobject segmentation [38].

B. Keypoint-based registration and segmentation

Widely used by the computer vision community [39],

keypoint-based image description and matching methods, such

as SIFT [40] and SURF [41], have found relatively few

applications in medical image analysis. These methods first

detect a number of interest points (edges, ridges, blobs etc.)

in the image, then compute feature vectors describing local

neighborhoods around these points and use them as content de-

scriptors. In medical imaging, 3D versions of SIFT have been

used for brain MR image matching [42], linear registration

of radiation therapy data [43] and deformable registration of

thoracic CT [44]. A review of keypoint-based medical image

registration can be found in [45]. Taking an approach close to

ours, PAs used as priors in Graph Cut segmentation are created

in [18] by registering atlases to the target via SIFT keypoints

extracted from the target and atlases and used to estimate an

affine transformation. A final step of deformable registration is

applied on images prior to merging registered atlases to create

PAs. Significant speedups in MAS have been achieved in [46]

by eliminating dense image registration between target and

atlases. Organ labels are transfered to the target image based

on sparse correspondences between keypoints identified in the

latter and those detected in atlas images that carry labels.

II. METHODS

We propose an automatic multiorgan segmentation method

for 3D images of different anatomical content and modal-

ity. It follows a Bayesian approach and uses location and

intensity likelihoods of structures and a prior distribution of

their spatial configuration. Location likelihoods are defined by

target-specific PAs constructed by registering atlases to the

target in shrinking frames using a fast SURF-based registration

method that estimates a homothetic transformation (translation

+ isotropic scale). Confidence regions of PAs are used to

derive target-specific intensity likelihoods. The spatial prior is

derived from shortest-path constraints defined on the adjacency

graph of structures [47]. Likelihoods and the spatial prior

define an energy function, optimized by a multilabel Graph Cut

algorithm to obtain the multiorgan segmentation. A prelimi-

nary, less efficient version of the present work has appeared in

[48], [49] where we employed a different registration approach

by using a reference image in the frame of which PAs were

created and transfered to the target by pairwise registration.

We describe our approach in this section and present eval-

uations in the subsequent one. The last section concludes the

paper pointing out future directions of research.

A. SURF keypoint-based image registration

Image registration is a key component in our segmentation

method using PAs. Dense deformable registration methods are

robust to shape variability but they exhibit high computational

cost [20], which is a problem for the construction of PAs for

over two dozen structures. Moreover, as PAs do not constitute

the dominant decision factor in segmentation, suboptimal

PAs can be nearly as effective as ones built via deformable

registration. Imperfections can be balanced out by criteria such

as organ appearance and spatial coherence.

We use a fast and robust registration algorithm based on

SURF keypoints and a homothetic transformation, capable of

registering a pair of images within a few seconds. Keypoints

are extracted from each 2D axial slice, however, registration is

computed in 3D i.e. the transformation is estimated in the 3D

object space, regardless of image spacing, hence the (2+1)D

designation. Volumes with partial overlap are well handled,

which is important for localizing organs not entirely falling

in the image frame. In this paper we improve the registration

method detailed in [49] by following a multiscale approach.

1) Feature extraction and matching: We currently extract

SURF keypoints [41], but our method is generic and could

use other off-the-shelf descriptors as well. To reduce com-

putation time, we first isotropically resample the volume

so that its second longest dimension is equal to a desired

resolution R. Next, we extract SURF features from each

axial slice. Fig. 1 shows features found in a pair of slices in

Visceral training dataset images 10000108_1_CTce_ThAb

and 10000109_1_CTce_ThAb. The total number of fea-

tures is 11500 and 9400, respectively. Lastly, extracted features

are matched using the second closest ratio criterion [40]. Fig. 1

shows the 9 matching keypoint pairs found in both slices.
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Fig. 1. (top) Features extracted from axial slices in a pair of Visceral training
images, (bottom) the 9 matching features. A feature is represented by a circle
of radius proportional to the scale at which it is detected, blue and red circles
correspond to positive and negative Laplacian values [41]. Reproduced from
Fig. 1 in [49].

2) (2+1)D registration: Once keypoint pairs are found, we

proceed with volume registration. One problem with keypoint-

based registration is that the number of true matching keypoint

pairs is relatively low. Hence, for robustness, we use a simple

homothetic transformation model:

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We estimate s, tx, ty and tz on keypoint pairs similarly

to the RANSAC method [50]. The use of a single scale

factor preserves the intrinsic shape of an organ, which might

otherwise be compromised with higher degrees of freedom.

Rotation parameters are unnecessary because we currently

process images with consistent patient orientations.

3) Registration in shrinking frames: To improve the ro-

bustness of organ localization proposed in [49], we follow

a multiscale approach seeking a balance between registration

domain size and accuracy according to the following heuristic:

a large image contains many keypoints, therefore its regis-

tration would be robust, however its structures will all be

registered by the same transformation limiting the accuracy of

individual structure registrations. In contrast, a smaller image

contains fewer keypoints, therefore its registration would be

less robust but might be locally more accurate. Therefore,

when registering a source patient organ with its counterpart

in the target, we start by registering patients on the entire

image frame, then progressively shrink registration frames

while converging towards the bounding box of the source

organ. To register an organ O, our algorithm performs the

following steps:

• Set the source frame F1 to the whole image of patient 1,

and the target frame F2 to that of patient 2.

• Register F1 onto F2.

Fig. 2. Multiscale registration in shrinking frames. Source (blue) and target
(green) patients are initially set to entire images. The algorithm alternates
registration and shrinking for a number of iterations, or until registration fails.

• If registration is successful, i.e. the number of RANSAC

inliers is above a threshold θ, shrink F1 and F2 towards

the bounding box of source O, and recompute the trans-

form, otherwise use the previous transform and terminate.

In our experiments, we use 5 shrinking steps setting θ to 20.

Fig. 2 illustrates the procedure. We note that our global-to-

local registration strategy is closer to the MRF-based mul-

tiscale registration approach taken in the MAS method [16]

compared to MAS methods [15], [51] that proceed according

to anatomical hierarchies, performing affine registration on

thorax-abdomen and deformable registration on organ levels.

A related 2-step regression-based method is proposed in [52].

B. Organ probabilistic atlas construction

A target-specific PA of an organ introduces a bias for

certain locations in the image for the shape it represents

allowing to rule out locations that are unlikely to be part of

the organ. Fig. 3a illustrates such a PA. The reference-frame

PA creation approach in our earlier work [49], while having

lower computational cost, fails to exploit the full variability

of the dataset because only a single pairwise registration, that

of the reference and target images, is attempted. Moreover the

use of a dataset-representative reference introduces bias for it.

Using images and annotations from the Visceral training

dataset as atlases [53], we construct target-specific PAs for the

20 structures listed in Table I. We also create PAs for three

additional regions: background (BKG), thorax and abdomen

(THAB) and body envelope (ENV) from annotations generated

automatically as explained in [49]. Full-image modeling by the

introduction of these labels gives more discriminative power

to our spatial prior and allows to label corresponding regions

in the target with the same segmentation algorithm as the

structures of interest, rather than resorting to target-dependent

preprocessing to remove undesired regions as in [51].

We create a PA separately for each structure in a target

image of a given modality according to the following steps:

• Register dataset images of the same modality as the

target onto the latter via the procedure described in

Section II-A3. Use bounding boxes of organ annotations

in dataset images to guide the frame shrinking process.

• Apply obtained transformations to corresponding annota-

tion images (essentially binary mask images).
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(a)

target organ

high overlap

no overlap

(b)

Fig. 3. (a) Probabilistic atlas of right kidney (transparent white) and its
confidence region (transparent red) overlaid on the organ in a contrasted CT
image (Section II-D2). (b) Illustration of annotation ranking: two registered
annotations with good overlap having good chances of selection for PA con-
struction, and one poorly registered annotation highly likely to be eliminated.

• Rank registered annotations according to their mutual

overlap as measured by the Dice similarity metric. Anno-

tations with greater mean overlap (agreement) with others

are ranked higher. Refer to Fig. 3b.

• Select highest ranking annotations eliminating ones with

mean overlap inferior to a predefined threshold τ .

• Accumulate selected annotations in a 3D histogram of

target image dimensions and normalize it to produce a

spatial probability distribution representing the PA.

Our ranking scheme is similar to the approach taken in

[13], although the latter uses the overlap measure to weigh

registered annotations in the PA rather than selecting better

and eliminating poorer ones. In practice, we set τ = 0.20.

C. Image clustering

The full-resolution voxel representation is often redundant

because objects usually comprise many similar pixels that

could be grouped. Therefore, we simplify the image prior

to segmentation by an image-adaptive centroidal Voronoi

tessellation (CVT) achieving a good balance between cluster

compactness and object boundary adherence. We have shown

that the clustering improves the runtime and memory footprint

of the segmentation up to an order of magnitude without

compromising the quality of the result [47], as it remains

largely stable across practical settings of clustering resolution.

Note however that imprecise tessellations cannot be corrected,

as we apply no post-segmentation correction or refinement. We

shall leave out algorithmic details of the method and define the

graph of a CVT, illustrated in Fig. 4b. Denote the surface of a

cluster Ci by ∂Ci. Given a clustering C, let the set S index its

clusters, and let G = 〈S, E〉 be an undirected graph on cluster

centroids where pairs of clusters sharing a surface define the

set of edges E =
{

{i, j} | i, j ∈ S, |∂Ci ∩ ∂Cj | 6= 0
}

.

Consequently, the neighborhood of a node i ∈ S is defined as

Ni =
{

j | j ∈ S, ∃ {i, j} ∈ E
}

.

D. Multiorgan image segmentation

We formulate image segmentation as a Bayesian labeling

problem, defined as the optimal assignment of a label from a

set of labels L, representing the structures to be segmented,

(a) (b)

Fig. 4. Adaptive CVT clustering and its graph (b) for a circle image (a).
Reproduced from Fig. 5 in [49].

to each of the variables in a set of n variables, indexed by S.

Assume that each variable i ∈ S represents a cluster of a CVT-

clustered image and is associated with the corresponding node

in the CVT graph G. An assignment of labels to all variables,

denoted by ℓ ∈ L, is called a configuration. An assignment

of a label to a single variable is denoted by ℓi. In order to

find the optimal segmentation, we follow a maximum a pos-

teriori approach and compute the optimal configuration by mi-

nimizing the energy of a posterior distribution of ℓ, defined by:

E(ℓ) = t1
∑

i∈S

Di(ℓi)+ t2
∑

i∈S

Pi(ℓi)+
1

2

∑

i∈S

∑

j∈Ni

Vi,j(ℓi, ℓj) .

(2)

In (2), t1 and t2 are temperature parameters, Ni is the

neighborhood of the variable i. The first and second sums

in (2) correspond respectively to organ intensity and location

(PA) likelihood energies, and the third is the energy of a prior

distribution of label configurations expressed as a Markov

random field (MRF) with respect to G. We minimize (2) via

the expansion moves multilabel Graph Cut algorithm [38].

1) Spatial configuration prior: Pairwise terms of (2) encode

prior information on interactions between labels assigned to

pairs of neighboring variables. They favor the spatial consis-

tency of the labeling with respect to a reference model by

favoring valid and penalizing invalid but possible solutions.

We define these terms according to the piecewise-constant

vicinity prior model we proposed in [47]. Let A = 〈L,W 〉
be a weighted undirected graph on L where W is the set of

unit-weight edges linking pairs of nodes representing adjacent

structures in the image. We define the pairwise term in (2) by:

Vi,j

(

ℓi, ℓj
)

= |∂Ci ∩ ∂Cj |ω
(

a, b
)

, ℓi = a, ℓj = b . (3)

where ω
(

a, b
)

is the shortest-path weight from a to b in A,

|∂Ci ∩ ∂Cj | is the area of the common surface of clusters

Ci, Cj ensuring that (2) is independent of clustering resolution.

We use the graph given in Fig. 5 to define the spatial prior in

experiments involving the Visceral dataset.

2) Intensity and location likelihoods: Unary terms of (2)

measure the cost of label assignments. They are defined by:

Di(ℓi) = − ln
∏

v∈Ci

Pr(Iv | ℓi) , (4a)

Pi(ℓi) = − ln
∏

v∈Ci

Pr(Xv | ℓi) , (4b)
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BKG

ENV

THAB

trachea r. lung bladder

Fig. 5. The adjacency graph used to define the spatial prior in our experiments.
Reproduced from Fig. 6 in [49].

where Iv and Xv denote the intensity and the coordinates of

voxel v. Location likelihoods Pr(X |l) are defined from PAs.

The intensity likelihood Pr(I|l) for a given l is estimated as a

Gauss-smoothed normalized intensity histogram derived from

voxels inside regions of high probability in the corresponding

PA. We define confidence regions according to a probability

threshold. Fig. 3a gives an illustration for the right kidney.

III. EVALUATION RESULTS

We have evaluated our method in Visceral benchmarks

[54]. Visceral provides training and test datasets of annotated

radiological images and a cloud-based platform allowing par-

ticipants to develop and evaluate segmentation algorithms in

identical environments on the same test dataset. Since the latter

comprises few images and is not available to participants, in

order to make statistically valid conclusions and to explore pa-

rameter settings, we have evaluated our method independently

on the training dataset as well. In addition to comparisons with

benchmarks participants, we compare our method with state

of the art methods and conclude this section by comparing our

results for abdominal organs with those reported by specialized

single-organ MAS methods.

A. Data

The Visceral dataset [53] is divided into training and

testing subsets comprising, respectively, 10 and 20 anno-

tated large FOV images of 4 modalities with the following

mean image dimensions and voxel sizes: contrast-enhanced

thoracic-abdominal CT (CTce_ThAb, 512×512×438 voxels,

0.71× 0.71× 1.5 mm), unenhanced whole-body CT (CT_wb,

512 × 512 × 877 voxels, 0.84 × 0.84 × 1.5 mm), contrast-

enhanced abdominal MRI (MRT1cefs_Ab, 313 × 76 × 384
voxels, 1.25×3×1.25 mm) and unenhanced whole-body MRI

(MRT1_wb, 391 × 29 × 1469 voxels, 1.26 × 6 × 1.26 mm).

Annotations for all structures listed in Table I are provided

for all modalities except abdominal MRI, which does not carry

annotations for thoracic structures. We discard these structures

in segmentation. Details on subjects and acquisition conditions

are given in the Visceral project documentation [55].

B. Performance metrics

We measure segmentation quality with respect to ground

truth via two metrics, the well-known Dice similarity metric

(DSM) and mean surface distance (MSD). These metrics

are complementary in that DSM measures volume overlap

whereas MSD measures the accuracy of boundary delineation.

Visceral benchmarks follow a per-anatomy evaluation strat-

egy that is more suited to single-organ or sequential multior-

gan segmentation methods. Simultaneous multiorgan methods,

producing segmentations for all organs in a single run with a

single parameterization ought to be evaluated additionally on

the entire image. Thus, in addition to DSM and MSD for

individual structures, we employ “overall” metrics calculated

from respective mean weighted measures for all structures.

Let Sl and Tl represent the sets of voxels labeled with l ∈ L

in the segmented image I and the ground-truth annotation T
respectively, and denote the DSM for a structure l ∈ L by

DSMl(I, T ). We define the “overall” DSM metric by:

DSM
L

(I, T ) =

∑

l∈L
DSMl(I, T ) |Tl|

|T |
, (5)

where | · | denotes the structure size in voxels. Note that the

weighting mechanism allows larger structures to dominate (5)

biasing it against smaller ones.

Let M l
S and M l

T be the surfaces of structure volumes

labeled by l ∈ L in the segmented image I and the ground-

truth annotation T . The MSD for l ∈ L is given by:

MSD
l

= max
(

d(M l
S ,M

l
T ), d(M

l
T ,M

l
S)
)

, (6)

where d(A,B) is the directed mean distance in millimeters.

For a pair of surfaces A and B, d(A,B) is given by:

d(A,B) =
1

M

∑

a∈A

min
b∈B

‖a− b‖. (7)

The overall MSD metric is defined similarly to (5).

C. Qualitative evaluation

Fig. 6 gives 3D illustrations of multiorgan segmentations

produced by our method on 2 images of different modalities

from the Visceral training dataset. Corresponding 2D coronal

views are given in Fig. 7. Further qualitative and quantitative

results are given in the supplement. In 3D views, segmen-

tations are represented by surfaces extracted from labeled

volumes, overlaid on coronal cross sections of corresponding

images and rendered with transparencies to allow occluded

structures to be visible. Fig. 6 is organized in 2 groups of

3 views presenting 3 multiorgan segmentations for the same

image. The leftmost view in each group presents the best

image segmentation as measured by (5), the middle presents

an aggregate of best organ segmentations as measured by DSM

and the rightmost view presents the ground-truth annotation.

It is obvious that most structures in globally or individually

evaluated segmentations have similar segmentation quality, es-

pecially larger ones such as the lungs and the liver. Differences

can be observed on smaller organs, e.g. the oversegmentation

of the bladder in CTce_ThAb (left).
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Fig. 6. 3D rendering of multiorgan segmentations of Visceral training dataset images 10000109_1_CTce_ThAb (left) and 10000331_4_MRT1cefs_Ab
(right). In each group, the leftmost view gives the best image segmentation, the middle an aggregate of best organ segmentations and the rightmost the
ground-truth annotation.

Fig. 7. 2D coronal views of multiorgan segmentations of Visceral training dataset images 10000109_1_CTce_ThAb (left) and
10000331_4_MRT1cefs_Ab (right). In each group, the left view gives the best image segmentation, the right an aggregate of best organ segmentations.

Fig. 8. Comparison of best organ segmentations vs. organs coming from best image segmentations vs. organ segmentations produced by fixed parameters on
the Visceral training dataset CTce_ThAb. Sample sizes are given above the upper horizontal axis. Refer to Section III-D for details.

D. Results on the Visceral training dataset

For all images in the dataset, we follow a leave-one-

out approach by selecting a target and using all remaining

annotated images in the same modality to construct PAs. We

set the registration resolution parameter R to 150 voxels.

100 segmentations are attempted per image, corresponding to

combinations of energy parameters t1 and t2 (2) uniformly

sampled on empirically determined ranges. For CT modalities

t1 ∈ [0.1, 1.0], and for MRI t1 ∈ [0.5, 1.4]. Irrespective of

modality, t2 is set to c×t1, where c ∈ [0.1, 1.0]. Due to differ-
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TABLE I
QUANTITATIVE LEAVE-ONE-OUT EVALUATION RESULTS OF THE PROPOSED METHOD ON ALL FOUR MODALITIES OF THE VISCERAL TRAINING DATASET.

CTce_ThAb CT_wb MRT1cefs_Ab MRT1_wb

Structures # DSM MSD # DSM MSD # DSM MSD # DSM MSD

trachea 20 0.868 ± 0.031 0.465 ± 0.419 20 0.878 ± 0.047 0.349 ± 0.327 0 - - 20 0.556 ± 0.300 3.114 ± 8.672

lung R 20 0.978 ± 0.009 0.037 ± 0.019 20 0.974 ± 0.011 0.043 ± 0.025 0 - - 20 0.883 ± 0.037 0.312 ± 0.154

lung L 20 0.974 ± 0.012 0.049 ± 0.034 20 0.972 ± 0.011 0.046 ± 0.031 0 - - 19 0.866 ± 0.081 0.404 ± 0.349

pancreas 18 0.573 ± 0.207 4.066 ± 5.940 20 0.441 ± 0.151 4.717 ± 2.943 11 0.338 ± 0.265 4.624 ± 4.296 5 0.137 ± 0.147 8.798 ± 5.041

gallbladder 20 0.542 ± 0.323 4.882 ± 6.993 18 0.179 ± 0.200 15.96 ± 15.52 10 0.133 ± 0.245 21.06 ± 21.01 6 0.093 ± 0.227 59.34 ± 89.44

bladder 20 0.903 ± 0.052 0.215 ± 0.207 19 0.747 ± 0.124 1.232 ± 0.930 20 0.673 ± 0.269 1.952 ± 3.246 20 0.700 ± 0.277 1.806 ± 3.064

sternum 20 0.788 ± 0.103 1.557 ± 2.371 20 0.772 ± 0.098 1.035 ± 1.194 0 - - 5 0.280 ± 0.139 4.401 ± 2.749

L1 20 0.613 ± 0.215 3.067 ± 3.358 20 0.486 ± 0.149 3.388 ± 1.984 13 0.375 ± 0.196 4.462 ± 3.241 19 0.495 ± 0.264 2.900 ± 3.162

kidney R 20 0.935 ± 0.052 0.208 ± 0.397 20 0.762 ± 0.175 1.651 ± 2.415 17 0.783 ± 0.191 1.771 ± 2.740 20 0.784 ± 0.155 0.704 ± 0.870

kidney L 20 0.941 ± 0.069 0.190 ± 0.530 20 0.852 ± 0.107 0.670 ± 1.072 19 0.844 ± 0.181 1.859 ± 5.073 19 0.745 ± 0.236 0.927 ± 1.315

adrenal R 14 0.361 ± 0.251 4.621 ± 6.077 13 0.193 ± 0.153 5.127 ± 3.232 3 0.001 ± 0.002 16.83 ± 10.04 2 0.006 ± 0.008 2.770 ± 0.862

adrenal L 16 0.346 ± 0.242 9.340 ± 20.26 14 0.219 ± 0.111 4.370 ± 2.868 5 0.166 ± 0.227 9.975 ± 8.625 6 0.006 ± 0.014 14.33 ± 20.01

psoas R 20 0.866 ± 0.033 0.496 ± 0.192 20 0.792 ± 0.101 1.085 ± 0.776 20 0.749 ± 0.061 0.831 ± 0.301 20 0.747 ± 0.168 1.200 ± 2.099

psoas L 20 0.858 ± 0.042 0.610 ± 0.284 20 0.792 ± 0.083 1.049 ± 0.693 20 0.709 ± 0.086 1.318 ± 0.921 20 0.728 ± 0.248 9.779 ± 39.65

abdominal R 20 0.683 ± 0.158 2.509 ± 2.849 20 0.510 ± 0.213 4.442 ± 3.647 3 0.063 ± 0.057 14.42 ± 11.56 2 0.132 ± 0.185 5.457 ± 1.173

abdominal L 20 0.661 ± 0.199 4.262 ± 8.083 20 0.545 ± 0.263 5.058 ± 6.670 4 0.197 ± 0.164 6.592 ± 2.810 2 0.075 ± 0.103 6.175 ± 0.003

aorta 20 0.760 ± 0.126 2.150 ± 1.433 20 0.621 ± 0.109 2.674 ± 1.150 3 0.360 ± 0.288 6.440 ± 3.623 20 0.540 ± 0.083 1.741 ± 0.710

liver 20 0.929 ± 0.072 0.546 ± 1.410 20 0.889 ± 0.039 0.689 ± 0.508 20 0.868 ± 0.052 0.512 ± 0.426 19 0.818 ± 0.038 0.696 ± 0.339

thyroid 15 0.505 ± 0.244 3.543 ± 3.383 17 0.444 ± 0.223 3.475 ± 3.018 0 - - 13 0.283 ± 0.266 3.047 ± 2.138

spleen 20 0.906 ± 0.123 1.030 ± 2.570 20 0.898 ± 0.053 0.376 ± 0.603 20 0.817 ± 0.113 0.717 ± 0.812 20 0.739 ± 0.102 0.680 ± 0.629
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Fig. 9. Comparison of the proposed method with our previous [49] on the
Visceral training dataset CTce_ThAb. Sample sizes are given above the upper
horizontal axis, significant improvements at p = 0.01 indicated via “*”.

ences in mean image dimensions, we use a different clustering

resolution for each modality to allow maximum resolution

given memory capacity available to the algorithm. Numbers

of CVT clusters for CTce_ThAb, CT_wb, MRT1cefs_Ab

and MRT1_wb are set respectively to 5%, 3%, 20% and 20%
of image voxel count. In intensity likelihood estimation for all

structures, we fix the confidence threshold to 0.75 times that

of the maximum probability of corresponding PAs.

In Fig. 8, we present the three quantitative evaluation

strategies we have followed on the Visceral training dataset

CTce_ThAb modality only. Results on other modalities fol-

low similar patterns. Blue bars (leftmost bars in each group

of three) give mean DSM and MSD values calculated over

best structure segmentations produced by a parameter setting.

Orange bars (middle) give mean DSM and MSD values

calculated on organs coming from best image segmentations,

as measured by overall DSM (5) and MSD, produced by a per-

image parameter setting. Yellow bars (rightmost) give mean

DSM and MSD values calculated on structure segmentations

produced by a fixed setting for all images, t1 = 0.2 and

R=200 R=150 R=100 R=50 
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Fig. 10. Evaluation of the impact of the registration resolution parameter R

on the quality of segmentation as measured by structure mean DSM on the
Visceral training dataset CTce_ThAb. Sample sizes are at the top.

t2 = 0.12, found empirically to produce good results for

most organs in this modality in terms of organ presence in

results and acceptable segmentation quality. Naturally, blue

bars indicate the best performance, however orange ones

corresponding to overall performance are quite similar, espe-

cially on major thoracic and abdominal organs, while falling

short on smaller ones due to the bias in the overall metric.

Lastly, yellow bars indicate performance implications of using

“default” parameters in situations where seeking an optimal

setting would be impractical. The mean DSM value on all

structures in the presented modality is about 10% lower in the

fixed setting compared to optimized settings.

Table I presents the results of quantitative evaluation on all

4 modalities of the Visceral training dataset. For each structure

in the leftmost column, we give mean DSM and MSD values

calculated over best structure segmentations produced by a

parameter setting. We give the number of structures for each

modality under the “#” column. Since the Visceral dataset does

not provide annotations for all structures in all images, this

number is not always equal to 20.

In Fig. 9 we compare the proposed method with our
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TABLE II
VISCERAL BENCHMARK EVALUATION RESULTS OF THE PROPOSED AND OTHER MULTIORGAN SEGMENTATION METHODS ON THE VISCERAL TEST

DATASET CTCE_THAB . BEST PERFORMANCES ARE HIGHLIGHTED IN BOLD FACE.

Proposed Gass et al. [16] Jimenez et al. [15] Wang & Smedby [51]

Structures # DSM MSD DSM MSD DSM MSD DSM MSD

trachea 10 0.834 ± 0.050 0.538 ± 0.319 0.847 ± 0.050 0.378 ± 0.515 0.855 ± 0.022 0.223 ± 0.046 - -

lung R 10 0.973 ± 0.016 0.049 ± 0.030 0.965 ± 0.013 0.069 ± 0.035 0.963 ± 0.013 0.065 ± 0.032 0.971 ± 0.014 0.070 ± 0.034

lung L 10 0.972 ± 0.015 0.050 ± 0.029 0.961 ± 0.011 0.121 ± 0.107 0.959 ± 0.010 0.071 ± 0.022 0.972 ± 0.013 0.076 ± 0.061

pancreas 4 0.585 ± 0.132 4.459 ± 1.885 0.460 ± 0.159 3.472 ± 2.270 0.423 ± 0.136 3.804 ± 2.867 - -

gallbladder 8 0.673 ± 0.220 2.433 ± 3.134 0.381 ± 0.208 6.314 ± 7.680 0.484 ± 0.132 3.603 ± 2.910 - -

bladder 10 0.848 ± 0.097 0.629 ± 0.644 0.683 ± 0.090 1.514 ± 0.639 0.679 ± 0.142 1.879 ± 1.192 0.866 ± 0.070 0.375 ± 0.284

sternum 8 0.784 ± 0.112 0.801 ± 0.755 0.635 ± 0.148 1.257 ± 0.941 0.721 ± 0.058 0.899 ± 0.388 0.762 ± 0.092 0.993 ± 0.649

L1 8 0.584 ± 0.233 7.601 ± 6.271 0.624 ± 0.356 3.228 ± 5.710 0.523 ± 0.301 4.504 ± 5.509 - -

kidney R 10 0.950 ± 0.013 0.087 ± 0.037 0.914 ± 0.027 0.199 ± 0.116 0.889 ± 0.026 0.243 ± 0.097 0.959 ± 0.011 0.072 ± 0.030

kidney L 10 0.947 ± 0.014 0.092 ± 0.042 0.913 ± 0.029 0.335 ± 0.403 0.910 ± 0.015 0.172 ± 0.046 0.945 ± 0.027 0.137 ± 0.127

adrenal R 4 0.290 ± 0.205 3.180 ± 1.910 0.213 ± 0.139 3.035 ± 1.588 0.342 ± 0.148 2.660 ± 1.437 - -

adrenal L 4 0.304 ± 0.283 8.632 ± 8.740 0.250 ± 0.159 3.900 ± 2.906 0.331 ± 0.176 3.115 ± 1.965 - -

psoas R 10 0.818 ± 0.024 0.989 ± 0.390 - - 0.799 ± 0.025 0.757 ± 0.230 0.845 ± 0.026 0.671 ± 0.321

psoas L 10 0.797 ± 0.075 1.036 ± 0.673 0.813 ± 0.046 0.622 ± 0.277 0.794 ± 0.049 0.742 ± 0.298 0.830 ± 0.074 0.638 ± 0.321

abdominal R 6 0.633 ± 0.176 4.763 ± 4.905 - - 0.453 ± 0.173 6.600 ± 5.901 - -

abdominal L 5 0.703 ± 0.137 3.276 ± 3.255 - - 0.474 ± 0.180 6.068 ± 7.420 - -

aorta 10 0.681 ± 0.130 6.219 ± 7.854 0.785 ± 0.042 1.011 ± 0.619 0.762 ± 0.039 1.094 ± 0.508 - -

liver 10 0.950 ± 0.012 0.182 ± 0.068 0.908 ± 0.021 0.646 ± 0.378 0.887 ± 0.019 0.514 ± 0.179 0.949 ± 0.010 0.174 ± 0.075

thyroid 5 0.375 ± 0.170 4.427 ± 2.568 0.184 ± 0.166 5.847 ± 2.749 0.410 ± 0.157 3.337 ± 1.295 - -

spleen 10 0.911 ± 0.069 0.557 ± 1.364 0.781 ± 0.075 1.530 ± 1.144 0.730 ± 0.116 2.005 ± 1.967 0.909 ± 0.069 0.573 ± 1.210

previous [49]. We limit the presentation to the CTce_ThAb

modality using only the DSM metric. We can see that the

proposed method improves on the previous for all structures

except one. Statistical testing using one-tailed paired t-test

confirms that improvements are significant on the p = 0.05
level for 18 structures, and for 8 structures on p = 0.01.

No improvements were made for the 1st lumbar vertebra

(L1). This can be explained as follows. The proposed method

performs several registrations to construct the structure PA and

has greater chances of missing the target L1 and registering

against nearby vertebrae compared to the previous approach

that performs a single registration between the target and a

reference image onto which PAs are constructed in advance.

We close this section by an evaluation of the segmenta-

tion quality vs. runtime trade-off induced by settings of the

registration resolution parameter R on the training dataset

CTce_ThAb. Fig. 10 gives mean DSM values of best struc-

ture segmentations for 4 settings of R: 200, 150, 100 and

50. Table III summarizes corresponding mean runtimes. All

algorithms are implemented in C++ and run in a 64-bit Linux

environment on a laptop computer with a CPU speed of 2.1

GHz and a RAM capacity of 16 GB. Table III shows that

a threefold reduction of PA construction time is possible via

R = 50, and that PA construction time dominates total run-

time. We construct PAs sequentially, which is not mandatory

since PAs are independent, therefore a speedup proportional

to the number of CPUs is possible by parallel PA creation.

The current per-organ runtime however is close to that of

the recent patch-based method [26] where 2 h are needed to

segment 5 abdominal structures using 20 atlases, i.e. 0.4 h

per organ. In comparison, using 20 atlases to segment 23

structures, our method requires about 0.57 h per organ for

R = 100. Fig. 10 confirms that the segmentation quality re-

mains relatively stable for larger organs, such as the lungs and

major abdominal organs, and even for the thin and elongated

but well contrasted trachea. However important deteriorations

TABLE III
MEAN (PER IMAGE) MEMORY FOOTPRINT AND RUNTIME FIGURES OF

PROPOSED ALGORITHMS MEASURED ON THE VISCERAL DATASET

CTCE_THAB FOR VARYING REGISTRATION RESOLUTIONS.

R Mem. (MB) PA constr.∗(s) Clust. (s) Seg. (s) Total (h)

50

10542

27683

3827

1327 9.12

100 42669 1072 13.21

150 90116 1010 26.38

200 127965 1257 36.96

∗ sequential

in segmentation quality can be observed for smaller or thinner

poorly contrasted structures such as abdominal muscles and

the gallbladder. We think that the quality–runtime trade-off can

be resolved only in the context of an application. We discuss

fundamental approaches to runtime reduction in Section IV.

E. Visceral benchmark results and comparisons

We present evaluation results obtained on the Visceral test

dataset during Visceral benchmarks. We mention that out of a

dozen participating groups, only 2, other than ours, attempted

to segment all structures in all modalities. The cloud-based

platform, evaluation conditions and results of participants up

to 2016 are described in [54]. Results are also published

online on a leaderboard [57], this, however is left to the

discretion of participants. Therefore we refer to both [54] and

the leaderboard to obtain complete figures for comparisons.

Table II lists our results along with those reported by partic-

ipants who have segmented at least half of the structures in the

CTce_ThAb modality. Comparisons on other modalities are

given in the supplement. For each structure, we report mean

DSM and MSD values along with the number of produced

segmentations. Unfortunately we do not have access to the

latter figures for other participants. Due to the impracticality of

searching best settings of segmentation parameters t1 and t2 in

the virtual machine execution environment, in benchmark runs

we use temperature settings that have produced best overall
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TABLE IV
COMPARISON WITH STATE OF THE ART METHODS. DSM IS GIVEN AS A PERCENTAGE, MSD IN MILLIMETERS.

Method Subjects Metric Lungs Liver Kidneys Spleen Pancreas Bladder Gallbladder Aorta

Proposed method ‡

20
DSM 97.6 ± 1.1 92.9 ± 7.2 93.8 ± 6.1 90.6 ± 12.3 57.3 ± 20.7 90.3 ± 5.2 54.2 ± 32.3 76.0 ± 12.6

best parameter settings MSD 0.1 ± 0.0 0.6 ± 1.4 0.2 ± 0.5 1.0 ± 2.6 4.1 ± 5.9 0.2 ± 0.2 4.9 ± 7.0 2.2 ± 1.4

Proposed method ‡

20
DSM 97.2 ± 1.1 89.7 ± 10.0 85.8 ± 10.16 83.8 ± 21.2 41.8 ± 18.8 74.1 ± 17.5 46.7 ± 26.8 62.0 ± 17.3

fixed parameter setting MSD 0.1 ± 0.0 1.2 ± 2.8 1.8 ± 4.5 3.5 ± 7.4 6.0 ± 6.4 1.7 ± 1.6 6.1 ± 8.2 4.3 ± 4.4

Oliveira et al. [19] ‡ 20
DSM 97.7 ± 1.2 93.6 ± 2.8 93.2 ± 7.2 91.0 ± 9.4 57.2 ± 14.7 65.7 ± 17.3 51.8 ± 27.5 86.2 ± 6.6

MSD 0.9 ± 0.4 2.7 ± 1.1 1.9 ± 3.0 2.7 ± 3.5 6.7 ± 5.6 6.4 ± 2.4 7.9 ± 10.9 2.1 ± 1.2

Heinrich et al. [28] ‡ 20 DSM - 90.9 ± 5.1 89.9 ± 5.4 83.3 ± 17.3 - 62.3 ± 18.8 - -

Pawlowski et al. [34] ∗ 20 DSM - 95.7 91.1 92.5 72.2 - 67.6 87.5

Larsson et al. [31]
∗

20
DSM - 94.6 88.8 93.1 60.2 - 62.4 86.1

MSD - 1.7 2.0 1.9 4.5 - 8.7 5.0

Heinrich et al. [14], [17]
∗

20
DSM - 94.8 90.8 91.9 74.0 - 60.4 85.7

MSD - 1.5 1.1 1.6 2.3 - 7.0 3.6

Wang et al. [14]
∗

20
DSM - 94.6 88.7 92.8 65.1 - 68.0 83.4

MSD - 1.5 1.7 1.4 4.9 - ∞ 5.2

Tong et al. [26] † 150 DSM - 94.9 ± 1.9 93.6 ± 3.8 92.5 ± 6.5 71.1 ± 14.7 - - -

Wolz et al. [13] † 150
DSM - 94.0 ± 2.8 92.5 ± 7.2 92.0 ± 9.2 69.6 ± 16.7 - - -

MSD - 2.0 ± 2.8 2.3 ± 3.4 2.3 ± 3.0 3.7 ± 4.4 - - -

Okada et al. [23] 134
DSM - 94.1 ± 2.4 91.6 ± 14.3 92.1 ± 8.1 72.5 ± 17.6 - 63.5 ± 28.5 85.0 ± 18.6

MSD - 1.7 ± 0.9 1.5 ± 2.9 1.2 ± 1.6 3.0 ± 3.1 - 5.2 ± 5.5 2.1 ± 3.3

Chu et al. [12] 100
DSM - 95.1 ± 1.0 90.1 ± 5.0 91.4 ± 5.7 69.1 ± 15.3 - - -

MSD - 1.2 ± 0.2 1.3 ± 0.4 0.9 ± 0.4 1.9 ± 0.6 - - -

Bagci et al. [22] 20 DSM - 95.8 ± 0.6 96.5 ± 0.7 96.5 ± 0.8 - - - -

Linguraru et al. [10] 20
DSM - 95.6 ± 0.6 92.6 ± 2.3 91.8 ± 1.5 - - -

MSD - 1.1 ± 0.4 0.8 ± 0.4 1.0 ± 0.5 - - -

Kohlberger et al. [36] 120,100,20 MSD 1.6 ± 0.5 2.9 ± 1.7 1.2 ± 1.0 - - - - -

Seifert et al. [30] 226,335,203,,53 MSD - 1.3 ± 0.5 1.1 ± 0.4 2.1 ± 1.2 - 1.4 ± 0.8 - -

‡ Visceral training dataset (public) ∗ Beyond the Cranial Vault challenge dataset (public) [56] † Nagoya University Hospital dataset (private)

segmentations as measured by (5) on the Visceral training

dataset. We have also tested few nearby settings in an attempt

to produce better segmentations for smaller structures.

F. Comparison with the state of the art

It is difficult to compare one’s method to the state of the art

due to differences in datasets, evaluation strategies and metrics.

Nevertheless, in Table IV we present a quantitative comparison

of multiorgan segmentation methods representative of the

families of approaches discussed in Section I-A. With few

exceptions, these methods have been developed and evaluated

on contrast-enhanced abdominal CT images. We report results

for commonly segmented structures. Methods evaluated on the

same dataset appear with a common symbol in the table. We

can see that our method achieves comparable performances to

those of related methods while opting for simpler algorithms

and segmenting 4–5 times as many structures.

G. Comparison with single organ MAS methods

Finally we compare our results to those reported by 3

specialized MAS methods for major abdominal organs. The

comparison confirms that our generic method achieves close

results to and can even outperform these methods.

1) Liver: In [58], a MAS approach using PAs constructed

by nonrigid registration is used in a graph-cut segmentation

incorporating an intensity model, a label prior probability and

spatial regularizer based on a Finsler metric. On 10 contrast-

enhanced CT images, reported mean DSM = 0.973 ± 0.007.

In comparison, we obtain 0.929 ± 0.072 on 20 such images.

2) Kidneys: In [59], a two-step approach is followed

whereby kidneys are first located via affine registration of

atlases in low resolution, then aligned to higher resolution

atlases via deformable registration to obtain final segmenta-

tions. On 22 kidneys segmented from contrasted angiographic

CT images, mean DSM = 0.952 ± 0.018 and MSD = 0.913 ±
1.06 mm. On 40 kidneys in similar images, we achieve mean

DSM = 0.938 ± 0.061 and mean MSD = 0.20 ± 0.46 mm.

3) Spleen: In [60], atlas-to-target registrations are used

to locate the spleen, the fusion of which provides a shape

constraint for a level-set segmentation. On 25 contrasted CT

images, mean DSM = 0.83 ± 0.08 and mean MSD = 3.48 ±
1.88 mm. In comparison, we obtain mean DSM = 0.906 ±
0.123 and mean MSD = 1.030 ± 2.570 mm on 20 such cases.

IV. FUTURE WORK

There are several opportunities for near-term improvements

on the present method. Table I shows that it performs better on

CT than on MR images. The reason is that CT images have

consistent appearances, whereas MR images suffer intensity

inhomogeneity the correction of which [61] can improve

registration and segmentation. Furthermore, the accuracy of

PAs for some “stray” structures, e.g. L1, can be improved by

initializing registration for such structures from those of more

stable neighbors, e.g. psoas major muscles and the kidneys.
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Generic data-independent methods are suitable for the unat-

tended processing of large datasets. With similar segmentation

performances by most methods, the main challenge today

is to achieve significant improvements in runtime with in-

creasing numbers of anatomies while maintaining accuracy

levels. Recent approaches, such as patch-based methods, while

eliminating deformable registration, are still computationally

expensive, leading in practice to the use of fewer atlases

thus reducing the robustness of the method. Deep learning

approaches require large amounts of annotated data and ded-

icated hardware to be effective. We think that sparse repre-

sentations constitute a promising approach to overcome the

burden of image data and to accelerate algorithms significantly.

For keypoint-based representations [46], the problem of false

matches, the number of which can be well above one third of

all matches [62], has to be addressed. We think that metric

learning methods [63], especially in 3D, can be beneficial in

this context.

Another interesting future research direction is the ability

to handle images of varying FOV where not all atlas dataset

structures are present. This too is beneficial for the batch

processing of large heterogeneous datasets. In this case, an

initial detection of the image’s content would subsequently

allow to select suitable atlases to define models only for

structures appearing in the image. Content detection could also

be carried out by a keypoint-based approach [64].
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